Books

2. ┴. Szendrei, Clones in Universal Algebra, SÚminaire de MathÚmatiques SupÚrieures, vol. 99., Les Presses de l'UniversitÚ de MontrÚal, MontrÚal, 1986. [Available from: Centre de Recherches MathÚmatiques, UniversitÚ de MontrÚal]

1. L. Szabˇ, ┴. Szendrei (Editors), Lectures in Universal Algebra (Proc. Conf. Szeged, 1983), Colloq. Math. Soc. J. Bolyai, vol. 43, North-Holland, Amsterdam--New York--Oxford, 1986.

Chapters in Books (solicited)

1. ┴. Szendrei, A survey of clones closed under conjugation, in: Galois Connections and Applications (edited by K. Denecke, M. ErnÚ, S. L. Wismath), Kluwer, 2004; pp. 297-343. (pdf)

Research Papers

77. K. A. Kearnes, ┴. Szendrei, Cube term blockers without finiteness, Algebra Universalis, accepted for publication. arXiv:1609.02605 [math.RA]

76. K. A. Kearnes, ┴. Szendrei, R. Willard, Simpler Maltsev conditions for (weak) difference terms in locally finite varieties, Algebra Universalis, accepted for publication. (pdf)

75. K. A. Kearnes, E. W. Kiss, and ┴. Szendrei, Varieties whose finitely generated members are free, Algebra Universalis, accepted for publication. arXiv:1508.03807 [math.RA]

74. K. A. Kearnes and ┴. Szendrei, Dualizable algebras with parallelogram terms, Algebra Universalis, 76 (2016), 497-539. arXiv:1502.02192 [math.RA]
(The final publication is available at www.springerlink.com)

73. K. A. Kearnes, E. W. Kiss, and ┴. Szendrei, Growth rates of algebras, III: Finite solvable algebras, Algebra Universalis 76 (2016), 199-222. arXiv:1311.2359 [math.RA]
(The final publication is available at www.springerlink.com)

72. K. A. Kearnes, E. W. Kiss, and ┴. Szendrei, Growth rates of algebras, II: Wiegold dichotomy, Internat. J. Algebra Comput. 25 (2015), no. 4, 555-566. arXiv:1311.6189 [math.RA]
(The final publication is available at www.worldscientific.com)

71. K. A. Kearnes, E. W. Kiss, and ┴. Szendrei, Growth rates of algebras, I: Pointed cube terms, J. Austral. Math. Soc., 101 (2016), 56-94. arXiv:1311.2352 [math.RA]
(The final publication is available at http://journals.cambridge.org)

70. K. A. Kearnes, ┴. Szendrei, and R. Willard, A finite basis theorem for difference-term varieties with a finite residual bound, Trans. Amer. Math. Soc. 368 (2016), 2115ľ2143; published electronically on July 10, 2015. (pdf)
(Online publication is available at www.ams.org)

69. ┴. Szendrei, Rosenberg-type completeness criteria for subclones of Slupecki's clone, in: ISMVL 2012 (Proceedings of the 42nd International Symposium on Multiple-Valued Logic held in Victoria, BC, Canada, May 14-16, 2012), (Edited by D. M. Miller and V. C. Gaudet) IEEE 2012; pp. 349-354. (ISBN 978-1-4673-0908-0) (pdf)
(The final publication is available at IEEE Xplore)

68. E. Lehtonen, ┴. Szendrei, Partial orders induced by quasilinear clones, in: Contributions to General Algebra 20, (Proceedings of the Conference AAA81 held in Salzburg, Austria, February 3-6, 2011) (Edited by J. Czermak, G. Dorfer, G. Eigenthaler, W. B. MŘller, J. Schoissengeier), Verlag Johannes Heyn, Klagenfurt, 2012; pp. 51-83. (ISBN: 978-3-7084-0447-9) (pdf)

67. T. Dent, K. A. Kearnes, and ┴. Szendrei, An easy test for congruence modularity, Algebra Universalis, 67 (2012), no. 4, 375-392. (pdf)
(The final publication is available at www.springerlink.com)

66. M. Behrisch, M. Couceiro, K. A. Kearnes, E. Lehtonen, and ┴. Szendrei, Commuting polynomial operations of distributive lattices, Order, 29 (2012), 245-269. (pdf)
(The final publication is available at www.springerlink.com)

65. E. Lehtonen, ┴. Szendrei, The submaximal clones on the three-element set with finitely many relative R-classes, Discussiones Mathematicae, General Algebra and Applications, 30 (2010), 7--33. arXiv:0905.1614 [math.RA]

64. E. Lehtonen, ┴. Szendrei, Clones with finitely many relative R-classes, Algebra Universalis 65 (2011), 109--159. arXiv:0905.1611 [math.RA]
(The final publication is available at www.springerlink.com)

63. K. A. Kearnes, ┴. Szendrei, Clones of algebras with parallelogram terms, Internat. J. Algebra Comput. 22 (2012), no. 1, 1250005, 30 pp. (pdf)
(The final publication is available at www.worldscinet.com)

62. E. Lehtonen, ┴. Szendrei, Equivalence of operations with respect to discriminator clones, Discrete Math. 309 (2009), 673-685. arXiv:0706.0195 [math.RA]

61. K. A. Kearnes, J. Shaw, ┴. Szendrei, Clones of 2-step nilpotent groups, Algebra Universalis 59 (2008), 491-512. (pdf)

60. K. A. Kearnes, ┴. Szendrei, Clones closed under conjugation I: Clones with Constants, Internat. J. Algebra Comput. 18 (2008), 7-58. (pdf)

59. K. A. Kearnes, ┴. Szendrei, Clones of finite groups, Algebra Universalis 54 (2005), no. 1, 23--52. (pdf) (corrigendum)

58. K. A. Kearnes, ┴. Szendrei, Groups with identical subgroup lattices in all powers, J. Group Theory 7 (2004), 385--402. (pdf)

57. K. A. Kearnes, ┴. Szendrei, J. Wood, Generating singular transformations, Semigroup Forum 63 (2001), 441--448. (pdf)

56. K. A. Kearnes, E. W. Kiss, ┴. Szendrei, R. D. Willard, Chief factor sizes in finitely generated varieties, Canad. J. Math. 54 (2002), 736--756. (pdf)

55. K. A. Kearnes, ┴. Szendrei, Collapsing permutation groups, Algebra Universalis 45 (2001), 35--51. (pdf)

54. G. CzÚdli, R. Halas, K. A. Kearnes, P. P. Pßlfy, ┴. Szendrei, The join of two minimal clones and the meet of two maximal clones, Algebra Universalis 45 (2001), 161--178. (pdf, without figures)

53. K. A. Kearnes, ┴. Szendrei, The residual character of strictly simple term minimal algebras, Algebra Universalis 42 (1999), 269--292. (pdf)

52. ┴. Szendrei, Modules in general algebra, in: Contributions to General Algebra 10 (Proc. Klagenfurt Conf., 1997), Verlag Johannes Heyn, Klagenfurt, 1998; pp. 41--53. (pdf)

51. K. A. Kearnes, ┴. Szendrei, The classification of commutative minimal clones, Discussiones Math. 19 (1999), 147--178. (pdf)

50. K. A. Kearnes, ┴. Szendrei, Projectivity and isomorphism of strictly simple algebras, Algebra Universalis 39 (1998), 45--56 (pdf)

49. K. A. Kearnes, ┴. Szendrei, The relationship between two commutators, International Journal of Algebra and Computation 8 (1998), 497--531 (pdf)

48. K. A. Kearnes, ┴. Szendrei, Self-rectangulating varieties of type 5, International Journal of Algebra and Computation 7 (1997), 511--540. (pdf)

47. ┴. Szendrei, Nearly-idempotent plain algebras are indeed nearly idempotent plain algebras, Math. Slovaca 46 (1996), 391--403. (pdf)

46. ┴. Szendrei, Expansions of minimal varieties, Acta Sci. Math. (Szeged) 60 (1995), 659--679. (pdf)

45. K. A. Kearnes, ┴. Szendrei, A characterization of minimal locally finite varieties, Trans. Amer. Math. Soc. 349 (1997), no. 5, 1749--1768. (pdf)

44. ┴. Szendrei, Strongly Abelian minimal varieties, Acta Sci. Math. (Szeged) 59 (1994), 25--42. (pdf)

43. ┴. Szendrei, Maximal non-affine reducts of simple affine algebras, Algebra Universalis 34 (1995), 144--174. (pdf)

42. ┴. Szendrei, Nonfinitely based finite groupoids generating minimal varieties, Acta Sci. Math. (Szeged) 57 (1993), 593--600. (pdf)

41. ┴. Szendrei, A completeness criterion for semi-affine algebras, in: Proceedings of the 22nd International Symposium on Multiple-Valued Logic (May 27--29, 1992, Sendai, Japan), IEEE Computer Society Press, Los Alamitos, California, U.S.A., 1992; pp. 314--319. (pdf)

40. J. Berman, E. W. Kiss, P. Pr§hle, ┴. Szendrei, On the set of types of a finitely generated variety, DiscreteMath. 112 (1993), 1--20. (pdf)

39. ┴. Szendrei, Term minimal algebras, Algebra Universalis 32 (1994), 439--477. (pdf, without figures)

38. ┴. Szendrei, Simple Abelian algebras, J. Algebra 151 (1992), 408--424. (pdf)

37. ┴. Szendrei, A survey on strictly simple algebras and minimal varieties, in: Universal Algebra and Quasigroup Theory (edited by A. Romanowska, J. D. H. Smith), Research and Exposition in Mathematics, vol. 19, Heldermann Verlag, Berlin, 1992; pp. 209--239. (pdf, without figures)

36. ┴. Szendrei, A classification of strictly simple algebras with trivial subalgebras, Demonstr. Math. 24 (1991), 149--173. (pdf, without figures)

35. ┴. Szendrei, Simple surjective algebras having no proper subalgebras, J. Austral. Math. Soc. Ser A 48 (1990), 434--454. (pdf)

34. ┴. Szendrei, The primal algebra characterization theorem revisited, Algebra Universalis 29 (1992), 41--60. (pdf)

33. T. Bajusz, G. McNulty, ┴. Szendrei, Lyndon's groupoid is not inherently nonfinitely based, Algebra Universalis 27 (1990), 254--260.

32. ┴. Szendrei, Symmetric algebras, in: Contributions to General Algebra 6, Verlag H÷lder--Pichler--Tempsky, Wien and Verlag Teubner, Stuttgart, 1989; pp. 259--280. (pdf, without figures)

31. ┴. Szendrei, Every idempotent plain algebra generates a minimal variety, Algebra Universalis 25 (1988), 36--39.

30. ┴. Szendrei, Idempotent algebras with restrictions on subalgebras, Acta Sci. Math. (Szeged) 51 (1987), 251--268.

29. ┴. Szendrei, Locally para-primal algebras, in: Contributions to General Algebra 5 (Proc. Salzburg Conf., 1986), Verlag H÷lder--Pichler--Tempsky, Wien and Verlag Teubner, Stuttgart, 1987; pp. 367--399.

28. ┴. Szendrei, Demi-primal algebras with a single operation, Lectures in Universal Algebra (Proc. Conf. Szeged, 1983), Colloq. Math. Soc. J. Bolyai, vol. 43, North-Holland, Amsterdam--New York--Oxford, 1986; pp. 509--531.

27. P. P. Pßlfy, ┴. Szendrei, Unary polynomials in algebras. II, in: Contributions to General Algebra 2 (Proc. Klagenfurt Conf., 1982), Verlag H÷lder--Pichler--Tempsky, Wien and Verlag Teubner, Stuttgart, 1983; pp. 273--290.

26. I. G. Rosenberg, ┴. Szendrei, Submaximal clones with a prime order automorphism, Acta Sci. Math. (Szeged) 49 (1985), 29--48.

25. E. Fried, L. Szabˇ, ┴. Szendrei, Algebras with p-uniform principal congruences, Studia Sci. Math. Hungar. 16 (1981), 229--235 (appeared in 1983).

24. ┴. Szendrei, Demi-primal algebras, Algebra Universalis 18 (1984), 117--128.

23. ┴. Szendrei, Short maximal chains in the lattice of clones over a finite set, Math. Nachr. 110 (1983), 43--58.

22. ┴. Szendrei, Algebras of prime cardinality with a cyclic automorphism, Arch. Math. (Basel) 39 (1982), 417--427.

21. I. G. Rosenberg, ┴. Szendrei, Degrees of clones and relations, Houston J. Math. 9 (1983), 545--580.

20. P. P. Pßlfy, L. Szabˇ, ┴. Szendrei, Automorphism groups and functional completeness, Algebra Universalis 15 (1982), 385--400.

19. L. Szabˇ, ┴. Szendrei, Slupecki-type criteria for quasilinear functions over a finite dimensional vector space, Elektron. Informationsverarbeit. Kybernetik 17 (1981), 601--611.

18. G. Pollßk, ┴. Szendrei, Independent basis for the identities of entropic groupoids, Comment. Math. Univ. Carolinae 22 (1981), 71--85.

17. ┴. Szendrei, Clones of linear operations on finite sets, in: Finite Algebra and Multiple-Valued Logic (Proc. Conf. Szeged, 1979), Colloq. Math. Soc. J. Bolyai, vol. 28, North-Holland, Amsterdam--New York--Oxford, 1981; pp. 693--738.

16. P. P. Pßlfy, L. Szabˇ, ┴. Szendrei, Algebras with doubly transitive automorphism groups, in: Finite Algebra and Multiple-Valued Logic (Proc. Conf. Szeged, 1979), Colloq. Math. Soc. J. Bolyai, vol. 28, North-Holland, Amsterdam--New York--Oxford, 1981; pp. 521--535.

15. ┴. Szendrei, On closed classes of quasilinear functions, Czechoslovak Math. J. 30 (105) (1980), 498--509.

14. L. Szabˇ, ┴. Szendrei, Almost all algebras with triply transitive automorphism groups are functionally complete, Acta Sci. Math. (Szeged) 41 (1979), 391--402.

13. ┴. Szendrei, On weakly commuting operations, in: Contributions of General Algebra} (Proc. Klagenfurt Conf., 1978), Verlag Johannes Heyn, Klagenfurt, 1979; pp. 373--380.

12. ┴. Szendrei, A new proof of the McKenzie--Gumm Theorem, Algebra Universalis 13 (1981), 133--135.

11. ┴. Szendrei, Identities in idempotent affine algebras, Algebra Universalis 12 (1981), 172--199.

10. ┴. Szendrei, Identities satisfied by convex linear forms, Algebra Universalis 12 (1981), 103--122.

9. ┴. Szendrei, On closed sets of linear operations over a finite set of square-free cardinality, Elektron. Informationsverarbeit. Kybernetik 14 (1978), 547--559.

8. ┴. Szendrei, On modules in which idempotent reducts form a chain, Colloq. Math. 40 (1979), 191--196.

7. ┴. Szendrei, On the idempotent reducts of modules II, in: Universal Algebra (Proc. Conf. Esztergom, 1977), Colloq. Math. Soc. J. Bolyai, vol. 29, North-Holland, Amsterdam--New York--Oxford, 1982; pp. 769--780.

6. ┴. Szendrei, On the idempotent reducts of modules I, in: Universal Algebra (Proc. Conf. Esztergom, 1977), Colloq. Math. Soc. J. Bolyai, vol. 29, North-Holland, Amsterdam--New York--Oxford, 1982; pp. 753--767.

5. ┴. Szendrei, Torsion theories in affine categories, Acta Math. Acad. Sci. Hungar. 30 (1977), 351--369.

4. ┴. Szendrei, On the arity of affine modules, Colloq. Math. 38 (1977), 1--4.

3. ┴. Szendrei, On affine modules, in: Contributions to Universal Algebra (Proc. Conf. Szeged, 1975), Colloq. Math. Soc. J. Bolyai, vol. 17, North-Holland, Amsterdam--New York--Oxford, 1977; pp. 457--464.

2. ┴. Szendrei, The operation ISKP on classes of algebras, Algebra Universalis 6 (1976), 349--353.

1. ┴. Szendrei, Idempotent reducts of abelian groups, Acta Sci. Math. (Szeged) 38 (1976), 171--182.