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Abstract. We investigate the function dA(n), which gives the size of a smallest
generating set for An, in the case where A is a finite algebra.

1. Introduction

For a finite algebra A, write dA(n) = g if g is the least size of a generating set for
An, and write hA(g) = n if the largest power of A that is g-generated is An. These
functions map positive integers to positive integers and satisfy the bi-implication

dA(n) ≤ g ⇐⇒ n ≤ hA(g),

which asserts that dA is the lower adjoint of hA and hA is the upper adjoint of dA. It
follows that dA, hA : Z+ → Z+ are monotone functions, which are inverse bijections
between their images:

im(dA)
h−⇀↽−
d

im(hA);

and, moreover, each determines the other.
In the literature, the notation is slightly different. The least size of a generating set

for A is denoted d(A). The growth sequence for A is then defined to be the sequence

d(A) := (d(A), d(A2), d(A3), . . .).

The largest n such that An is g-generated is denoted h(g,A). The relationship
between the two notations is d(A) = (dA(1), dA(2), . . .) and h(g,A) = hA(g). In this
paper we will use the notation dA(n) and hA(n) in place of d(A) and h(n,A), and
use phrases “growth rate” or “growth function” in place of “growth sequence”.

The h function was studied by Philip Hall in [14]. Hall proved that if A is a finite,
simple, nonabelian group, then

(1.1) hA(g) =
1

|Aut(A)|
∑
H≤A

µ(H)|H|g,

where µ is the Möbius function of the subgroup lattice of A. An estimate for the d
function of A was derived from (1.1) by James Wiegold in [36]. Wiegold showed that
dA(n) is one of the three integers nearest log|A|(n)+log|A|(|Aut(A)|). Wiegold’s paper
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initiated a program of research into growth rates of groups [5, 6, 7, 8, 9, 10, 11, 23,
25, 29, 30, 34, 37, 38, 39, 41, 42]. The program expanded to include the investigation
of growth rates of semigroups, in [31, 40], and later to include the investigation of
growth rates of arbitrary algebraic structures, in [13, 33]. Our own investigations
into growth rates of finite algebras, on which we are reporting here, was stimulated
by [32] and [16].

Some of the questions being investigated about growth rates of finite algebras are
related to the following theorems of Wiegold:

(I) A finite perfect group1 has growth rate that is logarithmic (dA(n) ∈ Θ(log(n))),
while a finite imperfect group has growth rate that is linear (dA(n) ∈ Θ(n)),
[38].

(II) A finite semigroup with identity has growth rate that is logarithmic or linear,
while a finite semigroup without identity has growth rate that is exponential
(dA(n) ∈ 2Θ(n)), [40].

Herbert Riedel partially extended item (I) to congruence uniform varieties in [33]
by proving that finite perfect algebras in such varieties have logarithmic growth rate.
He adds that “Unfortunately, Wiegold’s results for the imperfect case do not hold even
for modules.” It is not clear what this sentence means. It is not very difficult to show
that any finite imperfect algebra in a congruence uniform variety has linear growth, so
either Riedel’s remark is a mistake or he means that Wiegold’s sharp estimate on the
leading coefficient of the linear growth function is not valid for every finite module.
Riedel concludes his paper by asking whether his result about perfect algebras can
be extended from congruence uniform varieties to congruence permutable varieties.
We will see that it does.

The paper [32] by Martyn Quick and Nikola Ruškuc extends item (I) to any variety
of rings, modules, k-algebras or Lie algebras, but also fall short of extending item (I)
to arbitrary congruence uniform varieties.

The results from [32] can be presented in a stronger way: let Σ be a set of identities.
If A is an algebra in a language K, then say that A realizes Σ if there is a way to
interpret the function symbols occurring in Σ as K-terms in such a way that each
identity in Σ holds in A. What is really proved in [32] is that if ΣGrp is the set of
identities axiomatizing the variety of groups and A is a finite algebra realizing ΣGrp,2

then A has a logarithmic growth rate if it is perfect and has a linear growth rate if
it is imperfect. Hence the arguments in [32] can be used to extend Wiegold’s result
(I) from finite groups to expansions of finite groups.

Our main results are also best expressed in the language of algebras realizing a
set of identities. Call a term basic if it contains at most one nonnullary function

1G is perfect if [G,G] = G.
2The statement “A realizes ΣGrp” is equivalent to what elsewhere might be expressed as “A is

an expansion of a group” or “A has underlying group structure”.
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symbol. An identity s ≈ t is basic if the terms on both sides are. This paper is
an investigation into the restrictions imposed on growth rates of finite algebras by
a set Σ of basic identities. A new concept that emerges from this investigation is
the notion of a pointed cube term. If Σ is a set of identities in a language L, then
a L-term F (x1, . . . , xm) is a p-pointed, k-cube term if there is a k × m matrix M
consisting of variables and at most p distinct constant symbols, with every column
of M containing a symbol different from x, such that

(1.2) Σ |= F (M) ≈

x...
x

 .

(1.2) is meant to be a compact representation of a sequence of k row identities of a
special kind. For example,

(1.3) Σ |= m

(
x y y
y y x

)
≈
(
x
x

)
,

which is the assertion that Σ |= m(x, y, y) ≈ x and Σ |= m(y, y, x) ≈ x, witnesses
that m(x1, x2, x3) is a 3-ary, 0-pointed, 2-cube term. The basic identities (1.3) define
what is called a Maltsev term. For another example,

(1.4) Σ |= B

(
1 x
x 1

)
≈
(
x
x

)
,

which is the assertion that Σ |= B(1, x) ≈ x and Σ |= B(x, 1) ≈ x, witnesses that
B(x1, x2) is a 2-ary, 1-pointed, 2-cube term. As a final example,

(1.5) Σ |= M

y x x
x y x
x x y

 ≈
xx
x

 ,

which is the assertion that M is a majority term for the variety axiomatized by Σ,
witnesses that M(x1, x2, x3) is a 3-ary, 0-pointed, 3-cube term.

To state our main results, let Σ be a set of basic identities in a language with only
finitely many constant symbols.

(1) If Σ does not entail the existence of a pointed cube term, then Σ imposes
no restriction on growth rates of finite algebras (Theorem 4.2.3). That is,
for every finite algebra A there is a finite algebra B realizing Σ such that
dB = dA.3

(2) If Σ entails the existence of an m-ary p-pointed k-cube term, then any finite
algebra realizing Σ has growth rate that is bounded above by a polynomial
of degree at most logw(mp), where w = 2k/(2k − 1) (Theorem 4.3.1). More-
over, there exist finite algebras with 1-pointed cube terms whose growth rate

3We call Σ with this property nonrestrictive. Otherwise Σ is restrictive.
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is asymptotically equivalent to a polynomial of any prescribed degree (Theo-
rem 4.4.1).

(3) If Σ entails the existence of a 0-pointed cube term, and A realizes Σ, then
the growth rate of A is logarithmic if A is perfect and linear if A is imperfect
(Theorem 5.4.1).

Item (3) extends Wiegold’s result (I) to a setting that includes, as special cases,
any algebra with a Maltsev term or any algebra with a majority term. To further
specialize,4 this includes the case of finite algebras in congruence uniform varieties.

Concerning Wiegold’s result (II), Remark 4.15 of [32] states that “At present no
finite algebraic structure is known for which the d–sequence does not have one of log-
arithmic, linear or exponential growth.” Item (2) on the list establishes the existence
of such examples.

Item (1) on this list is perhaps the most striking of all. It implies, for example,
that any function that arises as the d-function of an arbitrary finite algebra must also
arise as the d-function of a finite algebra in a congruence distributive and congruence
3-permutable variety. This is the only item on this list that requires the assumption
that only finitely many distinct constants appear in Σ. Example 3.2.4 shows that
this assumption is necessary.

In addition to our main results, we give a new proof of Kelly’s Completeness
Theorem for basic identities (Theorem 3.1.1). We give a procedure, based on this
theorem, for deciding if a finite set of basic identities implies the existence of a pointed
cube term (Corollary 4.2.4). Some of our results are valid and interesting for infinite
algebras. This is discussed in Section 6.

2. Preliminaries

2.1. Notation. [n] denotes the set {1, . . . , n}. A tuple in An may be denoted
(a1, . . . , an) or a. A tuple (a, a, . . . , a) ∈ An with all coordinates equal to a may
be denoted â. The size of a set A, the length of a tuple a, and the length of a string
σ are denoted |A|, |a| and |σ|. Structures are denoted in bold face font, e.g. A, while
the universe of a structure is denoted by the same character in italic font, e.g., A.
The subuniverse of A generated by a subset G ⊆ A is denoted 〈G〉.

We will use Big Oh notation. If f and g are real-valued functions defined on some
subset of the real numbers, then f ∈ O(g) and f = O(g) both mean that there are
constants M and N such that |f(x)| ≤M |g(x)| for all x > N . We write f ∈ Ω(g) and
f = Ω(g) to mean that there are constants M and N such that |f(x)| ≥M |g(x)| for
all x > N . Finally, f ∈ Θ(g) and f = Θ(g) mean that both f ∈ O(g) and f ∈ Ω(g)
hold.

4A finite algebra in a congruence uniform variety has a Maltsev term, according to [28].
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2.2. Easy estimates.

Theorem 2.2.1. Let A be a finite algebra.

(1) dAk(n) = dA(kn).
(2) If B is a homomorphic image of A, then dB(n) ≤ dA(n).
(3) If B is an expansion of A (equivalently, if A is a reduct of B), then dB(n) ≤

dA(n).
(4) (From [32].) If B is the full polynomial expansion of A, then

dA(n)− dA(1) ≤ dB(n) ≤ dA(n).

Proof. For (1), both dAk(n) and dA(kn) count the number of elements in a smallest
generating set for (Ak)n ∼= Akn.

For (2), if ϕ : A→ B is surjective and G ⊆ An is a smallest generating set for An,
then ϕ(G) is a generating set for Bn. Hence dB(n) ≤ |G| = dA(n).

For (3), if G ⊆ An is a smallest generating set for An, then G is also a generating
set for Bn. Hence dB(n) ≤ |G| = dA(n).

For (4), the right-hand inequality dB(n) ≤ dA(n) follows from (3). Now let G ⊆ An

be a smallest generating set for Bn and let H ⊆ A be a smallest generating set for A.

For each a ∈ H let â = (a, a, . . . , a) ∈ An be the associated constant tuple, and let Ĥ
be the set of these. Every tuple of An is generated from G by polynomial operations

of A acting coordinatewise, hence is generated from G ∪ Ĥ by term operations of A
acting coordinatewise. This proves dA(n) ≤ |G| + |H| = dB(n) + dA(1), from which
the left-hand inequality follows. �

Theorem 2.2.2. If A is a finite algebra of more than one element, then

dlog|A|(n)e ≤ dA(n) ≤ |A|n

and
blog|A|(n)c ≤ hA(n) ≤ |A|n.

Moreover,

(1) dA(n) ∈ O(log(n)) iff hA(n) ∈ 2Ω(n).
(2) dA(n) ∈ O(n) iff hA(n) ∈ Ω(n), and dA(n) ∈ Ω(n) iff hA(n) ∈ O(n).
(3) dA(n) ∈ 2Ω(n) iff hA(n) ∈ O(log(n)).

Proof. It follows from Theorem 2.2.1 (3) that, among all algebras with universe A,
the algebra equipped with no operations has the smallest d-function and the algebra
equipped with all finitary operations has the largest d-function. These two algebras
are also extremes for the h-function.

If A has no operations, then every element of An is a required generator, so dA(n) =
|A|n. In this case, hA(n) = blog|A|(n)c, since h is the upper adjoint of d.

Now assume that A is equipped with all finitary operations, i.e., A is primal.
The n-generated free algebra in the variety generated by A is isomorphic to A|A|

n
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(Theorem 3 of [12]). Since the largest n-generated algebra in this variety is a power
of A, it is also the largest n-generated power of A in the variety; we obtain that
hA(n) = |A|n. In this case, dA(n) = dlog|A|(n)e, since d is the lower adjoint of h.

The fact that dA is the lower adjoint of hA suggests an asymmetry, in that

(2.1) dA(n) ≤ k ⇐⇒ n ≤ hA(k),

relates an upper bound of dA to a lower bound of hA. But the fact that these
functions are defined between totally ordered sets allows us to rewrite (2.1) as

(2.2) hA(k) < n⇐⇒ k < dA(n),

which almost exactly reverses condition (2.1) on dA and hA. Using this fact and the
following claim, one easily verifies items (1)–(3).

Claim 2.2.3. If f, g : [a,∞)→ R are increasing functions that tend to infinity as x
tends to infinity, then bf(n)c < dA(n) ≤ dg(n)e holds for all large n iff bg−1(n)c ≤
hA(n) < df−1(n)e holds for all large n.

Allow “∀N” to stand for “for all large n”. We have

∀N(dA(n) ≤ dg(n)e) =⇒ ∀N(n ≤ hA(dg(n)e))
=⇒ ∀N(bg−1(n)c ≤ hA(dg(bg−1(n)c)e))
=⇒ ∀N(bg−1(n)c ≤ hA(n)),

because the monotonicity of g guarantees that dg(bg−1(n)c)e)) ≤ n. The reverse
implication is proved the same way, as are both implications in bfc < d ⇔ h <
df−1e. �

Recall that the free spectrum of a variety V is the function fV(n) := |FV(n)| whose
value at n is the cardinality of the n-generated free algebra in V .

Theorem 2.2.4. If A is a finite algebra and fV is the free spectrum of the variety
V = V(A), then hA(n) ≤ log|A|(fV(n)). In particular,

(1) if fV(n) ∈ O(nm) for some fixed m ∈ Z+, then dA(n) ∈ 2Θ(n);
(2) if fV(n) ∈ 2O(n), then dA(n) ∈ Ω(n).

Proof. The algebra AhA(n) is n-generated, hence a quotient of the n-generated free
algebra FV(n). This proves that |A|hA(n) ≤ fV(n), or hA(n) ≤ log|A|(fV(n)).

If fV(n) ∈ O(nm) for some fixed m ∈ Z+, then log(fV(n)) ∈ O(log(n)), hence
hA(n) ∈ O(log(n)). It follows from Theorem 2.2.2 (3) that dA(n) ∈ 2Θ(n).

If fV(n) ∈ 2O(n), then log(fV(n)) ∈ O(n), hence hA(n) ∈ O(n). It follows from
Theorem 2.2.2 (2) that dA(n) ∈ Ω(n). �

Corollary 2.2.5. Let A be a finite algebra and let B be a homomorphic image of
Ak for some k.

(1) If B is strongly abelian (or even just strongly rectangular), then dA(n) ∈ 2Θ(n).
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(2) If B is abelian, then dA(n) ∈ Ω(n).

Proof. For (1), Theorem 5.3 of [20] proves that a finite strongly rectangular algebra
generates a variety with free spectrum bounded above by a polynomial. By Theo-
rem 2.2.4, dA(n) ∈ 2Θ(n) in this case. The strong abelian property is more restrictive
than the strong rectangular property by Lemma 2.2 (11) of [20].

For (2), any finite abelian algebra generates a variety V whose free spectrum satis-
fies fV(n) ∈ 2O(n), according to [3], so Theorem 2.2.4 (2) completes the argument. �

Recall that an algebra is affine if it is polynomially equivalent to a module. It is
known that A is affine iff A is abelian and has a Maltsev term iff A is abelian and
has a Maltsev polynomial.

Theorem 2.2.6. If A is a finite affine algebra of more than one element, then
dA(n) ∈ Θ(n).

Proof. If M is a module, then the set of tuples in Mn with exactly one nonzero entry
is a generating set for Mn of size ≤ |M |n. Hence dM(n) ∈ O(n).

Theorem 2.2.1 (4) implies that if dM(n) ∈ O(n), then any finite algebra polynomi-
ally equivalent to M has the same property.

It follows from Corollary 2.2.5 (2) that if A is abelian, then dA(n) ∈ Ω(n), so
together with the previous conclusions we get that, if A is affine, then dA(n) ∈
Θ(n). �

3. Kelly’s Completeness Theorem

In Subsection 3.1 we give a new proof of Kelly’s Completeness Theorem for basic
identities. The proof involves the construction of a model of a set of basic identities.
In Subsection 3.2 we construct a simpler model by modifying the construction from
the Completeness Theorem. The simpler model is not adequate for proving the
Completeness Theorem, but it is exactly we need for our investigation of growth
rates. Strictly speaking, it would be possible and easier to construct only the simpler
model, but the Completeness Theorem is important for testing claims about specific
examples, and no proof of the theorem appears in the literature; hence we include
one here.

3.1. The Completeness Theorem for basic identities. Let L be an algebraic
language. Recall that an L-term is basic if it contains at most one nonnullary function
symbol. An L-identity s ≈ t is basic if both s and t are basic terms. If Σ ∪ {ϕ} is a
set of basic identities, then ϕ is a consequence of Σ, written Σ |= ϕ, if every model
of Σ is a model of ϕ.

Let C be the set of constant symbols of L and let X be a set of variables. The weak
closure of Σ in the variables X is the smallest set Σ of basic identities containing Σ
for which
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(i) (t ≈ t) ∈ Σ for all basic L-terms t with variables from X.
(ii) If (s ≈ t) ∈ Σ, then (t ≈ s) ∈ Σ.

(iii) If (r ≈ s) ∈ Σ and (s ≈ t) ∈ Σ, then (r ≈ t) ∈ Σ.
(iv) If (s ≈ t) ∈ Σ and γ : X → X ∪C is a function, then (s[γ] ≈ t[γ]) ∈ Σ, where

s[γ] denotes the basic term obtained from s by replacing each variable x ∈ X
with γ(x) ∈ X ∪ C.

(v) If t is a basic L-term and (c ≈ d) ∈ Σ for c, d ∈ C, then (t ≈ t′) ∈ Σ, where
t′ is the basic term obtained from t by replacing one occurrence of c with d.

These closure conditions may be interpreted as the inference rules of a proof cal-
culus for basic identities. Therefore, write Σ `X ϕ if ϕ belongs to the weak closure
of Σ in the variables X. If the set X is large enough, the relation `X captures |=
for basic identities, as we will prove in Theorem 3.1.1. X is large enough if (a) X
contains at least 2 variables, (b) |X| ≥ arity(F ) for any function symbol F occurring
in Σ, and (c) |X| is at least as large as the number of distinct variables occurring in
any identity in Σ ∪ {ϕ}. Call Σ inconsistent relative to X if Σ `X x ≈ y for distinct
x, y ∈ X and large enough X. Otherwise Σ is consistent relative to X.

Theorem 3.1.1. (David Kelly, [22]) Let Σ∪{ϕ} be a set of basic identities and X be
a set of variables that is large enough. If Σ is consistent relative to X, then Σ `X ϕ
if and only if Σ |= ϕ.

Kelly’s theorem is a natural restriction of Birkhoff’s Completeness Theorem for
equational logic to the special case of basic identities. However, it is in general
undecidable for finite Σ ∪ {ϕ} whether Σ ` ϕ using Birkhoff’s inference rules, while
it is decidable for basic identities using Kelly’s restricted rules.5

In the proof we use a variation of Kelly’s Rule (iv): rather than use functions
γ : X → X ∪ C for substitutions we will use functions Γ: X ∪ C → X ∪ C whose
restriction to C is the identity. (That is, we replace γ with Γ := γ ∪ id|C .)

Lemma 3.1.2. If Σ `X x ≈ h for some basic term h in which x does not occur, then
Σ is inconsistent relative to any set X containing a variable other than x.

Proof. Append to a Σ-proof of x ≈ h the formulas (y ≈ h) for some y ∈ X \ {x}
(Rule (iv)); (h ≈ y) (Rule (ii)); and (x ≈ y) (Rule (iii)). �

Proof of Theorem 3.1.1. Kelly’s inference rules are sound, since they are instances of
Birkhoff’s inference rules for equational logic. Hence Σ `X ϕ implies Σ |= ϕ for any
X.

5The reason that Σ `X ϕ is decidable with Kelly’s inference rules when Σ ∪ {ϕ} is finite is
that deciding Σ `X ϕ amounts to generating Σ. If L is the language whose function and constant
symbols are those occurring in Σ∪{ϕ}, X is a minimal (finite) set of variables that is large enough,
and T is defined to be the set of basic L-terms in the variables X, then generating Σ amounts to
generating an equivalence relation on the finite set T using Kelly’s inference rules.
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Now assume that Σ6 `Xϕ, where X is large enough and Σ is consistent relative to
X. We construct a model of Σ∪{¬ϕ} to show that Σ6 |=ϕ. Let T be the set of basic
L-terms in the variables X, and let ≡ be the equivalence relation on T defined by
Kelly provability: i.e., s ≡ t if and only if Σ `X s ≈ t. Write [t] for the ≡-class of t.
Now extend T to a set T0 = T ∪ {0} where 0 is a new symbol, and extend ≡ to this
set by taking the equivalence class of 0 to be {0}.

The universe of the model will be the set M := T0/≡ of equivalence classes of T0

under ≡. We interpret a constant symbol c as the element cM := [c] ∈ M . Now let
F be an m-ary function symbol for some m > 0. The natural idea for interpreting F
as an m-ary operation on this set is to define FM([a1], . . . , [am]) = [F (a1, . . . , am)].
However, this does not work, since F (a1, . . . , am) will not be a basic term unless all
the ai’s belong to X ∪C. Nevertheless, we shall follow this idea as far as it takes us,
and when we cannot apply it to assign a value to FM([a1], . . . , [am]) we shall assign
the value [0].

Choose and fix a well-order < of the set C of constant symbols of L. Let I be the
set of partial injective functions ı : M → X ∪C that satisfy the following conditions:

(1) If a class [t] ∈M in the domain of ı contains a constant symbol, c ∈ C, then
ı[t] = d where d ∈ C is the least element in [t] ∩ C under <.

(2) If a class [t] in the domain of ı contains a variable, x ∈ X, then ı[t] = x.
(3) If a class [t] in the domain of ı fails to contain a variable or constant symbol,

then ı[t] ∈ X.

According to Lemma 3.1.2, the consistency of Σ implies that any class [t] contains at
most one variable, and if [t] contains a constant symbol, then [t] contains no variable.
Hence there is no ambiguity in conditions (1) and (2).

If S ⊆M has size at most |X|, then S is the domain of some ı ∈ I.
If S ⊆ M and a class [t] ∈ S contains a variable x, then call x a fixed variable of

S. Any other variable is an unfixed variable of S.
Now we define how to interpret an m-ary function symbol F as an m-ary operation

on the set M . Choose any ([a1], . . . , [am]) ∈ Mm, then choose ı ∈ I that is defined
on S := {[a1], . . . , [am]}. Note that f := F (ı[a1], . . . , ı[am]) is a basic term, since it
is a function symbol applied to elements of X ∪ C. We refer to this term to define
FM([a1], . . . , [am]).

Case 1. (The class [f ] contains a term h whose only variables are among the fixed
variables of S.) Define FM([a1], . . . , [am]) = [f ].

Case 2. ([f ] contains a variable.) If x is a variable in [f ], then Σ `X f ≈ x. Since Σ
is consistent, Lemma 3.1.2 proves that x must occur in f , i.e., x = ı[ak] for
some k. Hence

Σ `X F (ı[a1], . . . , ı[am]) ≈ ı[ak]

for some k. In this case we define FM([a1], . . . , [am]) = [ak] (= ı−1(x).)
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Case 3. (The remaining cases.) Define FM([a1], . . . , [am]) = [0].

Before proceeding, we point out that there is overlap in Cases 1 and 2, but no
conflict in the definition of FM([a1], . . . , [am]). If [f ] contains a term h whose variables
are fixed variables of S and [f ] also contains a variable x, then Σ `X f ≈ x and
Σ `X h ≈ x. The consistency of Σ forces x to be a common variable of f and
h, and (since only fixed variables of S occur in h) to be a fixed variable of S. In
this situation, Case 1 defines FM([a1], . . . , [am]) = [f ] = [x] while Case 2 defines
FM([a1], . . . , [am]) = ı−1(x) = [x].

Claim 3.1.3. FM : Mm →M is a well-defined function.

Choose ([a1], . . . , [am]) ∈Mm and define S = {[a1], . . . , [am]}. There exist elements
of I defined on S, because this set has size ≤ arity(F ) ≤ |X|. Suppose that ı,  ∈ I
are both defined on this set. Let f = F (ı[a1], . . . , ı[am]) and g = F ([a1], . . . , [am]).
To show that FM([a1], . . . , [am]) is uniquely defined it suffices to show that the same
value is assigned whether we refer to the term f or the term g.

In all cases of the definition of FM([a1], . . . , [am]), the assigned value depends only
on the term f = F (ı[a1], . . . , ı[am]) = F (ı|S[a1], . . . , ı|S[am]). Thus, to complete the
proof of Claim 3.1.3, we may replace both ı and  by ı|S and |S and assume that ı
and  have domain S. Now ı and  are injective functions from S into X ∪ C, and
ı[t] = [t] whenever [t] ∈ S and [t] contains a constant symbol or a fixed variable of
S. When ı[t] 6= [t], then both are unfixed variables of S. In this situation, there is
a function Γ: X ∪ C → X ∪ C that is the identity on C and on the fixed variables
of S for which  = Γ ◦ ı. Hence f [Γ] = g and, if h is a term whose only variables are
fixed variables of S, then h[Γ] = h.

Case 1. ([f ] contains a term h whose only variables are among the fixed variables of
S.) Here Σ `X f = F (ı[a1], . . . , ı[am]) ≈ h. Append to a Σ-proof of f ≈ h
the formula f [Γ] ≈ h[Γ] (Rule (iv)). Since f [Γ] = g and h[Γ] = h, this is a
proof of g ≈ h. Next append h ≈ g (Rule (ii)) and f ≈ g (Rule (iii)). We
conclude that [f ] = [g], so the value [f ] assigned to FM([a1], . . . , [am]) using
ı is the same as the value [g] assigned using .

Case 2. ([f ] contains a variable.) If x ∈ X is a variable in [f ], then x = ı[ak] for some
k and Σ `X F (ı[a1], . . . , ı[am]) ≈ ı[ak] for this k. Append to a Σ-proof of
f ≈ x the formula f [Γ] ≈ x[Γ] (Rule (iv)). Since f [Γ] = g and x[Γ] = [ak],
we conclude that Σ `X F ([a1], . . . , [am]) ≈ [ak] for the same k. Whether
we use ı or  we get FM([a1], . . . , [am]) = [ak].

Case 3. (The remaining cases.) In Case 1 we showed that [f ] = [g] while in Case 2 we
showed that if x is a variable in [f ], then x[Γ] is a variable in [g]; together these
show that if [g] does not contain a variable nor a term whose only variables
are among the fixed variables of S, then the same is true of [f ]. This argument
works with f and g interchanged, so the remaining cases are those where both
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[f ] and [g] contain no variables nor terms whose only variables are among the
fixed variables of S. Whether we use ı or , we get FM([a1], . . . , [am]) = [0].

M is defined. We now argue that M is a model of Σ. Choose an identity (s ≈ t) ∈
Σ. If s is an n-ary function symbol F followed by a sequence α : [n]→ X∪C of length
n consisting of variables and constant symbols, then let F [α] be an abbreviation for
s. If s is a variable or constant symbol, then s determines a function α : [1] →
X ∪ C : 1 7→ s, so abbreviate s by ♦[α]. We will, in fact, write s as F [α] in either
case, but will remember that F may equal the artificially introduced symbol ♦. The
identity s ≈ t takes the form F [α] ≈ G[β].

A valuation in M is a function v : X ∪ C →M satisfying v(c) = cM = [c] for each
c ∈ C. To show that M satisfies F [α] ≈ G[β] we must show that FM[v◦α] ≈ GM[v◦β]
for any valuation v. Choose ı ∈ I that is defined on the set im(v◦α)∪ im(v◦β). This
is possible, since we assume that |X| is at least as large as the number of distinct
variables in the identity F [α] ≈ G[β] ∈ Σ. The values of FM[v ◦α] and GM[v ◦β] are
defined in reference to the terms f := F [ı ◦ v ◦ α] and g := G[ı ◦ v ◦ β] respectively.

Claim 3.1.4. [f ] = [g].

Observe that (ı ◦ v)(c) = ı[c] = d, where d ∈ C is the <-least constant symbol
in the class [c]. If Γ : X ∪ C → X ∪ C is a function that agrees with (i ◦ v) on the
variables in im(α) ∪ im(β), but is the identity on C, then applications of Rule (v)
show that Σ `X F [ı ◦ v ◦ α] ≈ F [Γ ◦ α] and Σ `X G[ı ◦ v ◦ β] ≈ G[Γ ◦ β]. From
Rule (iv), the fact that Σ `X F [α] ≈ G[β] implies that Σ `X F [Γ ◦ α] ≈ G[Γ ◦ β].
Hence

Σ `X f = F [ı ◦ v ◦ α] ≈ F [Γ ◦ α] ≈ G[Γ ◦ β] ≈ G[ı ◦ v ◦ β] = g,

from which we get [f ] = [g].

We conclude the argument that M satisfies F [α] ≈ G[β] as follows.

Case 1. ([f ] = [g] contains a term h whose only variables are among the fixed variables
of S.) In this case FM[v ◦ α] = [f ] = [g] = GM[v ◦ β].

Case 2. ([f ] = [g] contains a variable.) If [f ] = [x] = [g], then FM[v ◦ α] = ı−1(x) =
GM[v ◦ β].

Case 3. (The remaining cases with [f ] = [g].) FM[v ◦ α] = [0] = GM[v ◦ β].

To complete the proof of the theorem we must show that M does not satisfy ϕ.
Suppose ϕ has the form F [α] ≈ G[β]. Define the canonical valuation to be

v : X ∪ C →M : x 7→ [x], c 7→ [c].

Choose ı ∈ I that is defined on im(v ◦ α) ∪ im(v ◦ β). It follows from the definitions
that ı ◦ v : X ∪C → X ∪C fixes every variable in im(α) ∪ im(β). If Γ is the identity
function on X ∪C, then Γ agrees with ı ◦ v on the variables in im(v ◦ α)∪ im(v ◦ β),
while (ı ◦ v)(c) = d is the <-least constant symbol in the class of c = Γ(c). Just as
in the proof of Claim 3.1.4, we obtain Σ `X f = F [ı ◦ v ◦ α] ≈ F [Γ ◦ α] = F [α] and



12 KEITH A. KEARNES, EMIL W. KISS, AND ÁGNES SZENDREI

Σ `X g = G[ı ◦ v ◦ β] ≈ G[Γ ◦ β] = G[β]. Now [f ] contains a term h := F [α] whose
only variables are among the fixed variables of S = im(α), so we are in Case 1 of the
definition of FM. Hence FM(v ◦ α) = [F [α]], and similarly GM(v ◦ β) = [G[β]]. Part
of our assumption about ϕ = (F [α] ≈ G[β]) is that Σ 6`X ϕ, so [F [α]] and [G[β]] are
distinct elements of M . Therefore, v witnesses that M does not satisfy ϕ. �

Theorem 3.1.1 establishes that if X and Y are two sets of variables that are large
enough, then Σ `X ϕ holds iff Σ `Y ϕ, and hence Σ is consistent relative to X if and
only if it is consistent relative to Y . Now that the theorem is proved, we drop the
subscript in `X and the phrase “relative to X” when writing about provability.

3.2. The model V. Later in the paper we prove theorems about finite algebras
realizing a set Σ of basic identities. For this, we need to be able to construct finite
models of Σ. The model constructed in Theorem 3.1.1 may be infinite, so we explain
how to produce finite models.

Definition 3.2.1. Let Σ be a set of basic identities in a language L whose set of
constant symbols is C. Let Y be a set of variables, z a variable not in Y , and X a
large enough set of variables containing Y ∪ {z}. Let V be the subset of the model
M constructed in the proof of Theorem 3.1.1 consisting of

{[y] | y ∈ Y } ∪ {[c] | c ∈ C} ∪ {[0]}.

Write [Y ] for {[y] | y ∈ Y } and [C] for {[c] | c ∈ C}.
Let F be an m-ary function symbol of L. If ([a1], . . . , [am]) ∈ V n, then let a′i = ai

if ai ∈ Y ∪ C and a′i = z if ai = 0. Define FV([a1], . . . , [am]) = [t] if there exists
t ∈ Y ∪ C such that Σ ` F (a′1, . . . , a

′
m) ≈ t, and define FV([a1], . . . , [am]) = [0] if

there is no such t.
V is the algebra with universe V equipped with all operations of the form FV.

Theorem 3.2.2. V is a model of Σ.

Proof. Let F [α] ≈ G[β] be an identity in Σ, and let v : X ∪ C → V be a valuation.
We must show that FV(v ◦ α) = GV(v ◦ β).

The function v is also a valuation in M, because V ⊆M . Since M is a model of Σ,
we get FM[v ◦ α] = GM[v ◦ β]. Choose ı ∈ I defined on the set im(v ◦ α) ∪ im(v ◦ β)
such that ı[0] = z, if [0] is in this set. Let f = F [ı ◦ v ◦ α] and g = G[ı ◦ v ◦ β]. As in
the proof of Claim 3.1.4, if Γ : X ∪ C → X ∪ C is the identity on C and agrees with
ı ◦ v on the variables in im(α) ∪ im(β), then Σ ` f ≈ F [Γ ◦ α] ≈ G[Γ ◦ β] ≈ g.

The term F (a′1, . . . , a
′
m) of Definition 3.2.1 is none other than f . FV[v ◦ α] = [t]

for some t ∈ Y ∪C if and only if Σ ` f = F (a′1, . . . , a
′
m) ≈ t. But since Σ ` f ≈ g we

also get GV[v ◦ β] = [t]. This shows that FV[v ◦ α] and GV[v ◦ β] are equal when at
least one of them is not [0]. Of course, they are also equal when both of them equal
[0], so FV(v ◦ α) = GV(v ◦ β). �
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Corollary 3.2.3. If Σ is a consistent set of basic identities in a language whose set
of constant symbols is C, then Σ has models of every cardinality strictly exceeding
|C|.

Proof. Vary the size of Y in the definition of V, and use Theorem 3.2.2. �

Corollary 3.2.3 is close to the best possible result about sizes of models of a set of
basic identities, as the next example shows.

Example 3.2.4. Let C be a set of constant symbols and let B = {Bc,d | c, d ∈ C}
be a set of binary function symbols. Let

Σ = {Bc,d(c, x) ≈ x,Bc,d(d, x) ≈ d | c, d ∈ C}.
Σ is a consistent set of basic identities, since if A is any set containing C we can
interpret each c ∈ C in A as itself and each Bc,d on A by letting BA

c,d(c, y) = y and

BA
c,d(x, y) = x if x 6= c.

If M is any model of Σ and cM = dM for some c, d ∈ C, then the identity function
BM
c,d(c

M, x) equals the constant function BM
c,d(d

M, x), so |M | = 1. Thus elements of
C must have distinct interpretations in any nontrivial model of Σ, implying that
nontrivial models have size at least |C|.

In the case where C is infinite, Σ does restrict growth rates of finite algebras for
the artificial reason that Σ has no nontrivial finite models. On the other hand, Σ
does not entail the existence of a pointed cube term according to the criterion of
Lemma 4.2.1.

4. Restrictive Σ

Recall (from footnote 3) that a set Σ of identities is called nonrestrictive if, when-
ever A is a finite algebra, there is a finite algebra B realizing Σ such that dB(n) =
dA(n). Otherwise Σ is restrictive. At first glance this definition might seem too mild
to be of any use. Surely the realization of any nontrivial Σ ought to affect growth
rates? In fact, this is not so. Only relatively strong Σ will enforce any kind of re-
striction on growth rates. In Subsection 4.1 we prove that the growth rates of finite
partial algebras are the same as the growth rates for finite total algebras. In Sub-
section 4.2 we prove that if Σ is restrictive, then it entails the existence of a pointed
cube term. The converse is proved in Subsection 4.3, by showing that a finite algebra
with a pointed cube term has growth rate the is bounded above by a polynomial. In
particular, it is shown that a finite algebra A with a 1-pointed k-cube term satisfies
dA(n) ∈ O(nk−1). In Subsection 4.4 we describe an example of a 3-element algebra
with a 1-pointed k-cube term whose growth rate satisfies dA(n) ∈ Θ(nk−1), showing
that the preceding estimate is sharp. In Subsection 4.5 we classify the finite abelian
algebras that have pointed cube terms. In Subsection 4.6 give a way of recognizing
when an algebra has an exponential growth rate, and we use it to exhibit a variety
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containing a chain of finite algebras A1 ≤ A2 ≤ · · · , each one a subalgebra of the
next, where Ai has logarithmic growth when i is odd and exponential growth when
i is even.

4.1. Growth rates of partial algebras. A partial algebra is a set equipped with
a set of partial operations. The definitions of functions dA and hA make sense when
A is a partial algebra, as does the problem of determining growth rates of partial
algebras. We will learn in this subsection that a function arises as the growth function
of a partial algebra if and only if it arises as the growth function of a total algebra.

Definition 4.1.1. Let A = 〈A;P 〉 be a partial algebra with universe A and a set P
of partial operations on A. The one-point completion of A is the total algebra whose
universe is A0 := A ∪ {0}, where 0 is some element not in A, and whose operations
P0 = {p0 | p ∈ P} ∪ {∧} are defined as follows.

(1) If p ∈ P is a partial m-ary operation on A with domain D ⊆ Am, then the
total operation p0 : (A0)m → A0 is defined by

p0(a) =

{
p(a) if a ∈ D; or

0 otherwise.

(2) A meet operation ∧ on A0 is defined by

a ∧ b =

{
a if a = b;

0 otherwise.

Theorem 4.1.2. If A is a partial algebra of more than one element, then An and
An

0 have the same minimal generating sets. Hence dA0 = dA.

Proof. It suffices to prove the following two statements: (i) any generating set for An

is a generating set for An
0 , and (ii) any minimal generating set for An

0 is a subset of
An and a generating set for An.

In this paragraph we prove (i). If G ⊆ An is a generating set for An, then as a
subset of An

0 it will generate (in exactly the same manner) all tuples in An0 which
have no 0’s. If z ∈ An0 is an arbitrary tuple and a, b ∈ A are distinct, let za and zb
be the tuples obtained from z by replacing all 0’s with a and b, respectively. Then
za, zb ∈ An, so they are generated by G, and z = za ∧ zb, so z is also generated by G.
Hence G generates all of An

0 .
Now we prove (ii). Assume that H ⊆ An0 is a minimal generating set for An

0 . If
a ∈ An0 , let Z(a) ⊆ [n] be the zero set of a, by which we mean the set of coordinates
where a is 0. It is easy to see that for any basic operation F of A0 it is the case that

(4.1) Z(a1) ∪ · · · ∪ Z(am) ⊆ Z(F (a1, . . . , am)),

since 0 is absorbing for every basic operation. If the right-hand side is empty, then
the left-hand side is empty as well; i.e., tuples with empty zero sets can be generated
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only by tuples with empty zero sets. Said a different way, if H ⊆ An0 generates An
0 ,

then H ∩ An suffices to generate all tuples in An, and, by (i), these tuples suffice
to generate An

0 ; hence H ∩ An generates An
0 . Therefore, if H ⊆ An0 is a minimal

generating set for An
0 , then H ⊆ An. If you consider how H generates elements of

An in the algebra An
0 , it is clear that H generates those elements in the algebra An

in exactly the same way, so H is a generating set for An. �

4.2. Restrictive Σ forces a pointed cube term. Let Σ be a set of basic identities
in a language L whose set C of constant symbols is finite. Given an algebra A in an
arbitrary language, we construct another algebra AΣ which realizes Σ, where AΣ is
finite if A is.

For the first step, let [C] = {[c1], . . . , [cp]} be the same set of equivalence classes
denoted by [C] in Definition 3.2.1. These classes represent the different Σ-provability
classes of constant symbols. If there are p such classes, then apply the one-point
completion construction of Subsection 4.1 p+ 1 times to A to produce a sequence A,
Az1 , Az1,z2 , . . . , ending at Az1,...,zp,0. This is an algebra whose universe is the disjoint
union of A and {z1, . . . , zp, 0}.

AΣ will be an expansion of Az1,...,zp,0 obtained by merging the latter algebra with
the model V introduced in Definition 3.2.1. Let Y be a set of variables satisfying
|Y | = |A|, and let [Y ] = {[y] | y ∈ Y } be the set of equivalence classes also denoted by
[Y ] in Definition 3.2.1. The universe of V is the disjoint union V = [Y ]∪ [C]∪ {[0]}.

Let ϕ : [Y ]→ A be a bijection. Extend this to a bijection from V = [Y ]∪ [C]∪{[0]}
to A∪{z1, . . . , zp}∪ {0} by defining ϕ([ci]) = zi and ϕ([0]) = 0. Now ϕ is a bijection
from the universe of V to the universe of Az1,...,zp,0. Use this bijection to transfer the
operations of V over to Az1,...,zp,0 to create AΣ. Specifically, the interpretation of the
constant symbol ci in AΣ will be zi, and if F is an m-ary function symbol of L, then

(4.2) FAΣ(x1, . . . , xm) := ϕ(FV(ϕ−1(x1), . . . , ϕ−1(xm)))

will be the interpretation of the symbol F in AΣ. AΣ is the expansion of Az1,...,zp,0

by all constant operations and all operations of the form (4.2). Under this definition
the function ϕ is an isomorphism from V to the L-reduct of AΣ.

Lemma 4.2.1. Let A be a finite algebra with more than one element and let Σ be a
set of basic identities involving finitely many constant symbols. Let V be the variety
axiomatized by Σ. The following statements about a positive integer k are equivalent.

(1) V has a pointed k-cube term.
(2) For n ≥ k, the family of minimal generating subsets of An is different from

the family of minimal generating subsets of An
Σ.

(3) V has a pointed k-cube term of the form F (x1, . . . , xm), where m > 1, F is a
function symbol occurring in Σ, and the variables x1, . . . , xm are distinct.

Proof. [(1) ⇒ (2)] Let P(x1, . . . , xm) be a pointed k-cube term of the variety ax-
iomatized by Σ. There is a k × m matrix M = [yi,j] of variables and L-constant
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symbols, where every column contains a symbol different from x, such that Σ proves
the identities

(4.3) P(y1, . . . ,ym) = P

 y1,1
...
yk,1

 , · · · ,
 y1,m

...
yk,m

 ≈
 x

...
x

 .
Let G ⊆ An be a minimal generating set for some n ≥ k, and let a ∈ G be a tuple.

Using the row identities of (4.3), solve the equation P(b1, . . . ,bm) = a for the bi’s,
row by row, according to the following rules. In the i-th row,

(a) if yi,j = x, then let bi,j = ai.
(b) if yi,j = cr is a constant symbol, then let bi,j = zr be its interpretation in AΣ.
(c) if yi,j is a variable different from x, then let bi,j = 0.

Under these choices, bi ∈ AnΣ for all i and P(b1, . . . ,bm) = a. Moreover, since each
column yi in (4.3) has a symbol different from x, it follows from (a)–(c) that each bi
has a coordinate value that is in the set {z1, . . . , zp, 0}. Hence bi ∈ AnΣ \An for all i.

Since G is a generating set for An, it is a generating set for An
Σ. Since a can be

generated from {b1, . . . ,bm} using P, it follows that

G′ = (G \ {a}) ∪ {b1, . . . ,bm}

is a generating set for AΣ. Hence there exists a minimal generating subset G′′ ⊆ G′

for An
Σ. If An and An

Σ had the same minimal generating sets, then G′′ would be a
subset of G′ ∩ An = G \ {a}. But this is not so, since G \ {a} is a proper subset of
the minimal generating set G of An, hence it is not itself a generating set.

[(2) ⇒ (3)] By repeated application of Theorem 4.1.2 we know that An has the
same minimal generating sets as An

z1,...,zp,0
. Our assumption is that these minimal

generating sets are not the same as the minimal generating sets of the expansion
An

Σ of An
z1,...,zp,0

. Since every generating set for An
z1,...,zp,0

is a generating set for the
expansion An

Σ, there must be a generating set G for An
Σ that is not a generating set

for An
z1,...,zp,0

. The subuniverse S = 〈G〉 of An
z1,...,zp,0

cannot contain all of An, since
An is a generating set for An

z1,...,zp,0
, and G is not.

Claim 4.2.2. The set H = S ∪ (Anz1,...,zp,0 \A
n) is a proper subuniverse of An

z1,...,zp,0
.

Choose tuples h1, . . . ,hr ∈ H and operate on them to produce some element
g = EAn

z1,...,zp,0(h1, . . . ,hr). If some hi belongs to Anz1,...,zk,0 \ A
n, then so does g, by

(4.1). Otherwise all hi belong to S, in which case g does, since S is a subuniverse.
H = S ∪ (Anz1,...,zp,0 \ A

n) is proper, since H ∩ An = S ∩ An 6= An.

Since the proper subuniverse H of An
z1,...,zp,0

contains the set G, which generates
the algebra An

Σ, and contains the interpretations of the L-constants, it cannot be
closed under the the interpretations of the function symbols of L. Hence there is a
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tuple a /∈ H, an m-ary function symbol F , and m tuples b1, . . . ,bm ∈ H such that
FAΣ(b1, . . . ,bm) = a. Necessarily a ∈ An.

Using the isomorphism ϕ from V to the L-reduct of AΣ, we obtain that there
is a tuple y = ϕ−1(a) ∈ ϕ−1(An) = [Y ]n and tuples vi = ϕ−1(bi) 6= y such that
FV(v1, . . . ,vm) = y. Since v1 6= y, there is a coordinate ` where these tuples differ.
In the `-th coordinate we have FV([v`,1], . . . , [v`,m]) = [y`] for some variable y` ∈ Y
and some elements v`,j ∈ Y ∪ C ∪ {0} with [v`,1] 6= [y`]. By the definition of V,

(4.4) Σ ` F (v′`,1, . . . , v
′
`,m) ≈ y`,

where v′`,j = v`,j when v`,j ∈ Y ∪ C and v′`,j = z is a variable not in Y when v`,j = 0.
Since [v`,1] 6= [y`], we have v`,1 6= y`. After renaming variables, (4.4) can be rewritten
as

Σ ` F (m1,1, . . . ,m1,m) ≈ x,

where each m1,j is a variable or constant and m1,1 6= x. Similarly, for each i, the fact
that vi 6= y produces an identity

Σ ` F (mi,1, . . . ,mi,m) ≈ x,

where each mi,j is a variable or constant and mi,i 6= x. Thus, it is a consequence of
Σ that the row identities of

F ([mi,j]) ≈

x...
x


hold. Since the diagonal elements of [mi,j] are not x, these identities make F a pointed
cube term for V .

[(3)⇒ (1)] This is a tautology. �

The next result is the main result of this subsection.

Theorem 4.2.3. Let Σ be a set of basic identities involving finitely many constant
symbols. If Σ does not entail the existence of a pointed cube term, then Σ is nonre-
strictive.

Proof. Recall that “Σ is nonrestrictive” means that for every finite algebra A there
is a finite algebra B realizing Σ such that dB = dA, “Σ is restrictive” means the
opposite.

If Σ is restrictive, then there must exist a finite algebra A with the property that
dB 6= dA whenever B is finite and realizes Σ. For B = AΣ the fact that dB 6= dA
implies that An and An

Σ do not have the same minimal generating sets for some n,
so the theorem follows from Lemma 4.2.1 (1)⇔(2). �

One unplanned consequence of Lemma 4.2.1 is a procedure to decide if a strong
Maltsev condition involving only basic identities implies the existence of a pointed
cube term.
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Corollary 4.2.4. A strong Maltsev condition defined by a set Σ of basic identities
entails the existence of a pointed k-cube term if and only if it is possible to prove from
Σ that some term of the form F (x1, . . . , xm) is a pointed k-cube term, where m > 1,
F is a function symbol occurring in Σ, and the variables x1, . . . , xm are distinct.

Proof. A strong Maltsev condition defined by a set Σ of identities entails the existence
of a pointed k-cube term if and only if the variety axiomatized by Σ has a pointed
k-cube term, so the corollary follows from Lemma 4.2.1 (1)⇔(3). �

That the property in the theorem statement can be decided follows from Theo-
rem 3.1.1.

4.3. Pointed cube terms enforce polynomially bounded growth. In the pre-
ceding subsection we proved that if Σ is restrictive, then Σ entails the existence of
a pointed cube term. We now prove the converse. As the title of the subsection
suggests, we shall prove that if A is a finite algebra with a pointed cube term, then
dA(n) is bounded above by a polynomial. Since not all finite algebras have polyno-
mially bounded growth rates, this suffices to show that Σ is restrictive when it entails
the existence of a pointed cube term.

Theorem 4.3.1. If A is a finite algebra with an m-ary, p-pointed, k-cube term, with
p ≥ 1, then dA is bounded above by a polynomial of degree at most logw(mp), where
w = 2k/(2k − 1).

Proof. Here is a coarse outline of the proof. Let F (x1, . . . , xm) be a p-pointed k-
cube term for A. We shall describe a way to “process” a randomly selected tuple
a ∈ An which accomplishes the following things. If a is not already “fully pro-
cessed”, then processing a produces tuples b1, . . . ,bm ∈ An with the properties that
(i) FA(b1, . . . ,bm) = a and (ii) each of b1, . . . ,bm is recognizably “more processed”
than a. It will follow that An can be generated by the set of fully processed tuples.
A count will show that there are only polynomially many fully processed tuples.

Let’s fix some notation for the proof. Suppose that the fact that F (x1, . . . , xm) is
a p-pointed k-cube term (with p ≥ 1) is witnessed by identities

F (M) ≈

 x
...
x

 ,

where M is a k ×m matrix of variables and constant symbols, where each column
contains a symbol that is not x. Since p ≥ 1, we may assume that the only variable
appearing in M is x, since we may choose a constant symbol c appearing in M ,
replace all instances of other variables in M by c (Kelly’s Rule (iv)), thereby obtaining
another matrix R with no variables other than x which also witnesses that F is a
p-pointed k-cube term.
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The order of the k rows identities, F (R) ≈ [x, . . . , x]T, is fixed once and for all.
For example, if the original cube term identities were

F (M) = F

(
1 x 2
x y 3

)
≈
(
x
x

)
,

then after replacing y with, say, the constant symbol 2, we obtain

(4.5) F (R) = F

(
1 x 2
x 2 3

)
≈
(
x
x

)
.

Finally we fix the order of the identities. For this example, once and for all, we
declare the ‘first’ cube identity to be F (1, x, 2) ≈ x and the ‘second’ cube identity to
be F (x, 2, 3) ≈ x. There will be k such identities for a k-cube term.

We will need a function λ : [m] → [k] from the column indices to the row indices
with the property that if λ(j) = i, then the matrix R has a constant symbol in
the i, j-th position. Such λ exists because every column of R contains at least one
constant symbol. For the example in (4.5), one could take λ : [3] → [2] to be the
function λ(1) = λ(3) = 1, λ(2) = 2. (This is not the only choice.)

The processing of tuples in An will make use of an m-ary tree which we refer to
as the (processing) template. We refer to nodes of the template by their addresses,
which are finite strings in the alphabet [m] = {1, . . . ,m}. The root node has empty
address, and is denoted n∅. If nσ is the node at address σ, then its children are the
nodes nσ1, . . . ,nσm.

Each node n of the template is labeled by a subset `(n) ⊆ [n]. (Recall that n is
the number appearing in the exponent of An.) To define the labeling function ` we
first specify a fixed method for partitioning some subsets U ⊆ [n]. Given a subset
U = {u1, . . . , ur} ⊆ [n], consider it to be a linearly ordered set u1 < . . . < ur under
the order inherited from [n]. Now, define π(U) = (U1, . . . , Uk) to be the ordered
partition of U into k consecutive nonempty intervals

that are as equal sized as possible. That is, let

(U1, . . . , Uk) = ({u1, u2, . . . , ui1}, {ui1+1, . . . , ui2}, . . . , {uik−1+1, . . . , uik = ur}),
where

u1 < u2 < · · · < ui1 < ui1+1 < · · · < ui2 < uik−1+1 < · · · < uik = ur

(i.e., the cells of the partition are consecutive nonempty intervals) and

|U1| ≥ · · · ≥ |Uk| ≥ |U1| − 1

(i.e., the cells are as equal sized as possible). The k appearing here as the number of
cells of the partition is the same k as the one in the assumption that F is a k-cube
term. In order for π(U) to be defined, it is necessary that |U | ≥ k.

As mentioned earlier, the label on node nσ will be some subset `(nσ) ⊆ [n]. Re-
cursively define the labels as follows:
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(1) `(n∅) = ∅.
(2) If all nodes between nσ and n∅ are labeled, V is the union of labels occurring

between nσ and the root n∅, and π([n]\V ) = (U1, . . . , Uk), then `(nσi) = Uλ(i).

In (2), if [n] \ V has fewer than k elements, then it is impossible to partition it into
k nonempty intervals, in which case there do not exist sufficiently many labels for
potential children. In this case, we do not include any descendants of nσ in the
template.

Let’s illustrate our progress with the example started back at (4.5). In this case,
the reduced matrix R for F is 2 × 3, so k = 2 and m = 3. The following picture
depicts the processing template in the case [n] = [9] = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

∅

n∅

{1, 2, 3, 4, 5}
n1 n2

{6, 7, 8, 9}
n3
{1, 2, 3, 4, 5}

n11

{6, 7}

n12

{8, 9}

n13

{6, 7}

n21

{1, 2, 3}

n22
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n23

{1, 2, 3}

n31

{6, 7}

n32
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n33

{6, 7}

n221

{1, 2}

n222

{3}

n223

{1, 2}
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Now we define precisely what is meant by processing. Let P = {c1, . . . , cp} be the
constant symbols appearing in the cube identities for F . A tuple a ∈ An is processed
for node nσ if there is a constant symbol c ∈ P such that the i-th coordinate of a
is cA for all i ∈ `(nσ). A tuple a is fully processed if there is a path through the
template from the root to a leaf such that a is processed for each node in the path.

Before proceeding, we refine the coarse outline given in the first paragraph of
this proof. The processing template describes, in reverse order, a particular way to
generate tuples in An. Given a tuple a ∈ An, we assign it to the root n∅ and denote it
a∅. This tuple a = a∅ is already processed for n∅, since this is an empty requirement.
Now, for each address σ of a node in the template, we will construct aσ1, . . . , aσm
from aσ so that (i) FA(aσ1, . . . , aσm) = aσ, and (ii) each aσi is processed at all nodes
between nσi and n∅. Assign aσi to nσi. The original tuple a can be generated via FA

by the fully processed tuples derived from a in this way. The following claim is the
heart of this argument.
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Claim 4.3.2. Suppose that nσ is an internal node of the processing template. Given
an arbitrary tuple a ∈ An, there exist tuples b1, . . . ,bm such that

(1) FA(b1, . . . ,bm) = a.
(2) bi is processed for node nσi for i = 1, . . . ,m.
(3) If n is a node between nσ and n∅, and a is processed for n, then each bi is

also processed for n for i = 1, . . . ,m.

Let V be the union of labels on nodes between nσ and n∅. If π([n] \ V ) =
(U1, . . . , Uk), then {V, U1, . . . , Uk} is a partition of [n] (with V possibly empty).
For simplicity of expression, reorder coordinates so that a and bi can be written
[aV , aU1 , . . . , aUk ]

T and [bi,V ,bi,U1 , . . . ,bi,Uk ]
T, with coordinates from V or Uj grouped

together. Given a, we need to solve for bi,V and bi,Uj in

(4.6) FA(b1, . . . ,bm) = FA




b1,V

b1,U1

...
b1,Uk

 , . . . ,


bm,V
bm,U1

...
bm,Uk


 =


aV
aU1

...
aUk

 = a

in order to satisfy item (1) of the claim. We shall do using the first cube identity
in the V -coordinates and the U1-coordinates, and the i-th cube identity in the Ui-
coordinates.

Whether W = V or W = Ui, to solve FA(b1,W , . . . ,bm,W ) = aW for the bi,W ’s
using a particular cube identity, take bi,W = aW if there is an x in the i-th place of
F in the cube identity, and take bi,W = [cA, . . . , cA]T if there is a c in the i-th place
of the cube identity. It is not hard to see that this works, and so (1) holds.

The label on node nσi is Uλ(i). The element λ(i) ∈ [k] is the number of a cube
identity which has some constant symbol c ∈ P in the i-th place of F . Hence
bi,Uλ(i)

= [cA, . . . , cA]T. Thus bi is processed for node nσi, establishing (2).
If, in the first cube identity, there is an x in the i-place of F , then bi,V = aV . If

there is a constant symbol c ∈ P in the i-th place of F , then bi,V = [cA, . . . , cA]T. In
the latter case, b is processed at all coordinates in V , hence at all nodes between nσ
and n∅. In the former case, bi is processed at any node between nσ and n∅ where a
is processed, since bi,V = aV . In either case, (3) holds. The claim is proved.

Let’s estimate the number of fully processed tuples by estimating the number of
descriptions of such tuples. A tuple a is fully processed if there is a path through the
template from the root to a leaf such that a is processed for each node in the path.
For a to be processed at a node n, there must be a constant symbol c ∈ P such that
the i-th coordinate of a is cA for all i ∈ `(n). So, beginning at the root, descend
through the template choosing a new child nσi and a new constant symbol to assign
to the coordinates in `(nσi) at each step. Each such step can be accomplished in mp
different ways, since each node has m children and there are p constant symbols to
choose from. If the length of a longest path in the template is r, we will produce at
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most (mp)r partial descriptions of fully processed tuples when we arrive at the leaves
of the template. But there may be k − 1 elements of [n] that were not encountered
in the labels of the maximal path, so all but perhaps k − 1 coordinates of a typical
fully processed tuple have been described. By filling in the last k − 1 coordinates
randomly, one sees that there are at most (mp)r|A|k−1 fully processed tuples. What
remains is to estimate r, the length of the longest branch in the processing template.

Let V0 = `(n∅) = ∅. This represents the set of coordinate positions that have been
processed before the processing begins, i.e., no coordinate positions. As we progress
down a longest branch in the template, n∅,ni,nij, . . . ,nσ, we may construct sets
Vσi = Vσ ∪ `(nσi), where Vσ represents the set of coordinate positions that have been
processed along this branch from n∅ to nσ. The unprocessed coordinate positions,
[n] \ Vσ are then divided evenly, π([n] \ Vσ) = (U1, . . . , Uk), to appear as labels of the
children of nσ. Thus, |V∅| = 0 and

(4.7) |Vσi| = |Vσ ∪ `(nσi)| = |Vσ|+ |`(nσi)|.
The useful parameter is the number uσ := |[n] \ Vσ| = n− |Vσ| of nodes that remain
unprocessed after reaching nσ. This parameter satisfies u∅ = |[n] \ V∅| = n and, from
(4.7),

(4.8) uσi = (n− |Vσi|) = (n− |Vσ|)− |`(nσi)| = uσ − |`(nσi)|.
Since π([n]\Vσ) = (U1, . . . , Uk) is an even division of [n]\Vσ into k sets, and `(nσi) =
Uλ(i), we get

(4.9) |`(nσi)| = |Uλ(i)| ≥ b(n− |Vσ|)/kc = buσ/kc.
Combining (4.8) and (4.9) we have

uσi ≤ uσ − buσ/kc =

⌈(
k − 1

k

)
uσ

⌉
.

In order to avoid considering truncation error, we use the following fact, whose proof
we leave to the reader.

Claim 4.3.3. If u ≥ k ≥ 1, then
⌈(

k−1
k

)
u
⌉
≤
(

2k−1
2k

)
u.

Hence

uσi ≤
(

2k − 1

2k

)
uσ

for each σ, and therefore

uσ ≤
(

2k − 1

2k

)|σ|
u∅ =

(
2k − 1

2k

)|σ|
n

for each σ. If, for some r, it happens that
(

2k−1
2k

)r
n < k, then there are fewer than k

unprocessed nodes at address σ for any σ satisfying |σ| ≥ r. Such an r is an upper
bound on the length of paths through the template.
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Solving
(

2k−1
2k

)r
n < k for r we obtain that any r > logw(n/k), w = 2k

2k−1
, is an

upper bound on the length of paths in the template; hence r = logw(n/k) + 1 is
such a bound. Combining this with our earlier number (mp)r|A|k−1 estimating the
number of fully processed tuples, we get that the number of such tuples is no more
than

(mp)logw(n/k)+1|A|k−1 = (mp)logw(n/k)(mp)|A|k−1

= (n/k)logw(mp)(mp)|A|k−1

= nlogw(mp)(k− logw(mp)(mp)|A|k−1) ∈ O(nlogw(mp)).

�

This theorem deals only with the case p ≥ 1. We describe next how to refine the
estimate in the case p = 1 and how to derive the result for p = 0 from the p = 1 case.

Corollary 4.3.4. If A is a finite algebra with a 0-pointed or 1-pointed k-cube term,
then dA(n) ∈ O(nk−1).

Proof. Suppose that A has a 1-pointed k-cube term, and that c is the one constant
that appears among the cube identities. Then a fully processed tuple a has cA in
every processed coordinate position, and has at most k − 1 unprocessed coordinate
positions. Hence the set of tuples with a cA in all but at most k−1 positions contains
all the fully processed tuples, and therefore is a generating set for An. The number
of such tuples is (

n

k − 1

)
|A|k−1 ∈ O(nk−1).

Now suppose that F (x1, . . . , xm) is a 0-pointed k-cube term of A. Suppose that
the cube identities are

(4.10) F (M) ≈

 x
...
x

 .

If B is the polynomial expansion of A, then we can choose an element c ∈ B = A
and replace all variables other than x in (4.10) with c to obtain identities witnessing
that F (x1, . . . , xm) is a 1-pointed k-cube term for B. Hence dB(n) ∈ O(nk−1) by the
earlier part of the argument. Now dA(n) ∈ O(nk−1) by Theorem 2.2.1 (4). �

In Section 5 we shall improve this result by showing that Wiegold dichotomy holds
for algebras with a 0-pointed k-cube term. In particular, this means that growth
rates are at most linear for such algebras.

Let’s combine the results of this subsection with the results of the previous sub-
section.

Theorem 4.3.5. The following are equivalent for a set Σ of basic identities in which
only finitely many constant symbols occur.
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(1) Σ is restrictive.
(2) The variety axiomatized by Σ has a pointed cube term.
(3) The variety axiomatized by Σ has a pointed cube term of the form F (x1, . . . , xm),

where m > 1, F is a function symbol occurring in Σ, and the variables
x1, . . . , xm are distinct.

(4) If A is a finite algebra realizing Σ, then dA(n) is bounded above by a polyno-
mial.

(5) There is no finite algebra A realizing Σ such that dA(n) = 2n for all n.

Proof. [(1)⇒ (2)] Theorem 4.2.3.
[(2)⇔ (3)] Lemma 4.2.1.
[(2)⇒ (4)] Theorem 4.3.1 and Corollary 4.3.4.
[(4)⇒ (5)] dA(n) = 2n is not bounded above by a polynomial.
[(5)⇒ (1)] There exists a finite algebra A with dA(n) = 2n, namely the 2-element

set equipped with no operations. �

4.4. Finite algebras with polynomial growth. In this subsection we prove that
the bound on growth rates for finite algebras with 1-pointed k-cube terms, which we
established in Corollary 4.3.4, is sharp.

Theorem 4.4.1. For each k ≥ 2 there is a finite algebra with a 1-pointed k-cube
term whose growth rate satisfies dA(n) ∈ Θ(nk−1).

Proof. We shall first construct a partial with the desired growth rate, then modify it
slightly to obtain a total algebra satisfying the hypotheses of the theorem.

The universe of the partial algebra will be A = {a1, . . . , aq, 1}. We equip this set
with a partial k-ary operation F which satisfies

FA(1, x, . . . , x, x) = FA(x, 1, . . . , x, x) = · · · = FA(x, x, . . . , x, 1) = x

for each x ∈ A, and which is undefined otherwise. Thus, FA is a partial near
unanimity operation that is defined only on the nearly unanimous tuples where the
lone dissenter is 1 and on the tuple whose entries are unanimously 1. Set A = 〈A;F 〉.

We shall prove the exact formula

(4.11) dA(n) =

(
n

0

)
+ q

(
n

1

)
+ q2

(
n

2

)
+ · · ·+ qk−1

(
n

k − 1

)
for this partial algebra, which is a polynomial in n of degree k−1, since k = arity(F )
and q = |A|− 1 are fixed. This will show that A is an (q+ 1)-element partial algebra
with dA(n) ∈ Θ(nk−1). (When q = 1 we will obtain a 2-element partial algebra with
dA(n) ∈ Θ(nk−1).)

Choose and fix n. Define the support of a tuple a ∈ An to be the subset supp(a) ⊆
[n] consisting of indices s where as 6= 1. The proof involves showing that the set of
all tuples whose support has size at most k − 1 is the unique minimal generating set
for An.
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Claim 4.4.2. If S ⊆ [n] and G ⊆ An, then let GS denote the tuples in G that have
support contained in S. If a ∈ 〈G〉, then a ∈ 〈GS〉.

In A, we have

FA(x1, . . . , xk) = 1⇐⇒ x1 = x2 = · · · = xk = 1.

Hence, in An, if FAn
(g1, . . . ,gk) is defined and equal to b, then i /∈ supp(b) if and

only if i /∈ supp(gi) for any gi. Equivalently,

(4.12) supp(FAn

(g1, . . . ,gk)) =
k⋃
i=1

supp(gi)

whenever FAn
(g1, . . . ,gk) is defined. Now let G(0) = G, GS(0) = GS, G(j + 1) =

G(j) ∪ FAn
(G(j), . . . , G(j)), and GS(j + 1) = GS(j) ∪ FAn

(GS(j), . . . , GS(j)). By
induction on j, using (4.12), it can be shown that any tuple in G(j) that has support
in S lies in GS(j). Since 〈G〉 =

⋃
j G(j) and 〈GS〉 =

⋃
j GS(j), any tuple in 〈G〉 with

support in S lies in 〈GS〉.

Claim 4.4.3. The tuple 1̂ = [1, 1, . . . , 1]T of empty support is an essential generator.

This follows immediately from Claim 4.4.2.

Claim 4.4.4. Any tuple whose support has size at most k−1 is an essential generator
of An.

Let b ∈ An be a tuple of support S where 1 ≤ |S| ≤ k − 1. Without loss of
generality, S = [`] = {1, . . . , `} for some 1 ≤ ` ≤ k − 1. In order to obtain a
contradiction to the claim, assume that b is not an essential generator. Then b can
be generated by elements different from b, so the equation FAn

(x1, . . . ,xk) = b can
be solved for the xi in such a way that b /∈ {x1, . . . ,xk}. Moreover, by (4.12), the
xi’s must be taken from the tuples whose support is contained in S. The equation
to be solved is therefore:

(4.13) FAn
(x1, . . . ,xk) = FAn





x1,1
...

x`,1
1
...
1


, . . . ,



x1,k
...

x`,k
1
...
1




=



b1
...
b`
1
...
1


= b.

We have introduced horizontal segments as dividers separating the coordinates in
S = [`] from the remaining coordinates in order to make the argument clearer. Since
FAn

(x1, . . . ,xk) is defined, every row above the dividers is a nearly unanimous row
with exactly one 1. Hence there are exactly ` 1’s above the dividers. This means that
there are at most ` columns which contain a 1 above the dividers. Since there are k
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such columns, and k > `, there is a column xj that contains no 1 above the dividers.
Since the i-th row above the dividers is nearly unanimous with majority value bi, the
column xj which contains no 1’s above the dividers is exactly b. This contradicts the
assumption that b /∈ {x1, . . . ,xk}, showing that b is indeed an essential generator.

Claim 4.4.5. An is generated by the tuples whose support has size at most k − 1.

It is enough to show that if b has support S of size ` ≥ k, then b can be generated
from tuples whose support is properly contained in S. It is enough to prove this in
the case where S = [`]. For this we must explain how to solve

(4.14) FAn
(x1, . . . ,xk) = FAn





x1,1
...

x`,1
1
...
1


, . . . ,



x1,k
...

x`,k
1
...
1




=



b1
...
b`
1
...
1


= b

when ` ≥ k in such a way that every column contains at least one 1 above the dividers
and the i-th row above the dividers is nearly unanimously equal to bi. This is easy
to do. Set x1,1 = · · · = xk,k = 1, then put exactly one 1 arbitrarily in each of rows
k + 1 to `, then fill in the remaining entries above the dividers so that the i-th row
above the dividers is nearly unanimously equal to bi.

We have established up to this point that the set of tuples of support of size at
most k − 1 is the unique minimal generating set for An. To complete the proof that
the partial algebra A has the specified growth rate, observe that the number of tuples
with support S is (|A| − 1)|S| = q|S|, so the number of tuples whose support has size

i is qi
(
n
i

)
. This yields the formula dA(n) =

∑k−1
i=0 q

i
(
n
i

)
.

The one-point completion, A0, is a total algebra with the same growth rate as
A. Let B be the expansion of A by one constant symbol 1 whose interpretation is
1B = 1. The operation FB still satisfies

FB(1, x, . . . , x, x) = FB(x, 1, . . . , x, x) = · · · = FB(x, x, . . . , x, 1) = x

for each x ∈ A0, so it is a 1-pointed k-cube term for B.
An and An

0 have the same unique minimal generating set, G, which is the set of
all tuples with support at most k − 1; this set contains 1̂. The algebra B must also
have a unique minimal generating set, namely the set obtained from G by deleting
1̂ = 1Bn . Thus dB(n) = dA(n)− 1 =

∑k−1
i=1 q

i
(
n
i

)
∈ O(nk−1). �

4.5. Abelian algebras with pointed cube terms are affine. Theorem 4.3.5
shows that a set Σ of basic identities is restrictive iff it forces polynomially bounded
growth rates iff it entails the existence of a pointed cube term. In this subsection
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we classify the finite abelian algebras that have pointed cube terms by showing that
they are exactly the finite affine algebras.

In fact, we do somewhat more than this, although somewhat less than fully deter-
mine the growth rates of finite abelian algebras. It is plausible that the following five
properties are equivalent for finite abelian algebras:

(i) A has a Maltsev term.
(ii) A has a pointed cube term.

(iii) dA(n) ∈ Θ(n).
(iv) dA(n) /∈ 2Ω(n).
(v) No finite power An has a nontrivial strongly abelian homomorphic image.

It is clear that for abelian algebras item (i) is the strongest of these properties
and item (v) is the weakest. We have (i)⇒(ii) since Maltsev terms are cube terms,
(i)⇒(iii) by Theorem 2.2.6, (ii)⇒(iv) by Theorem 4.3.5, (iii)⇒(iv) (trivial), and
(iv)⇒(v) by Corollary 2.2.5 (1). In this subsection we shall prove in addition that (i)
and (ii) are equivalent for abelian algebras (Corollary 4.5.3), and that (iii), (iv) and
(v) are equivalent for algebras that generate abelian varieties (Theorem 4.5.4).

The equivalence of (i) and (ii) for abelian algebras is a corollary to the following
theorem about nilpotent algebras.

Theorem 4.5.1. A finite left nilpotent algebra has a Maltsev polynomial iff it has a
pointed cube polynomial.

Proof. [⇒] A Maltsev polynomial is a 3-ary, 0-pointed, 2-cube polynomial.
[⇐] This part of the proof uses tame congruence theory, [15].
Let A be a finite left nilpotent algebra. Replace A by its polynomial expansion.

In this setting, our goal is to show that if A has a pointed cube term, then it has
a Maltsev term. In general, if A is a finite solvable algebra and B ≤ Ak is a
subalgebra of a finite power of A, then B has typeset contained in {1,2}. A finite
solvable algebra A has a Maltsev term iff the typeset of any such B is contained in
{2}. Since left nilpotent algebras are solvable, we can prove this theorem by showing
that any subalgebra of a finite power of A omits type 1.

Let B be a subalgebra of a finite power of A and assume that α ≺ β is a covering
of type 1 in Con(B). Let U be an 〈α, β〉-minimal set, let e be an idempotent unary
polynomial with range U , let T be a trace in U , and let 1 be an element of T . Let
F (x1, . . . , xm) be a pointed cube term for the variety generated by A. Let M be a
k×m matrix of variables and constants, where each column contains an entry different
from x, such that F (M) ≈ [x, . . . , x]T in the variety generated by A. As shown in the
proof of Theorem 4.3.1, we may (and do) assume that the only variable appearing in
M is x. Let N be the matrix obtained from M be replacing each constant with 1.
Thus, N is a matrix of x’s and 1’s, and each column of N has at least one 1.
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Claim 4.5.2. In the variety generated by A, F (N) ≈ [π1(x), . . . , πk(x)]T holds, where
each πi is a unary term of finite order. (I.e., for some positive integer r the identity
πri (x) ≈ x holds.) Moreover, each polynomial eπB

i (x) is a permutation of U .

The i-th cube identity is of the form F (z1, . . . , zm) ≈ x where each zi is either
a constant symbol or is x. Rewrite it as ti(x, ci) ≈ x, where ci is the sequence
of constant symbols that appear and ti(x,y) is the appropriate term. Let 1̂i =
(1, 1, . . . , 1) have the same length as ci. The polynomials tBi (x, ci) and tBi (x, 1̂i) are
twins, meaning that they are derived from the same term with different constants as
parameters. Theorem 3.9 and Corollary 3.8 of [19] establish that idempotent twins
polynomials of a finite left nilpotent algebra have the ranges of the same cardinality.
B is finite and left nilpotent since it is a subalgebra of a finite power of A and A
has these properties. The polynomial tBi (x, ci) = FB(z1, . . . , zm) = x is idempotent
with range of size |B|, so the idempotent iterate of its twin tBi (x, 1̂i) also has range
of size |B|. This forces πi(x) := tBi (x, 1̂i) to be a permutation of B, necessarily of
finite order. Since A and B generate the same variety, there is an identity of the
form πri (x) ≈ x that holds in this variety.

If one repeats this argument with the polynomials etBi (x, ci) = e(x) and etBi (x,1i) =
eπi(x), then one obtains that eπi(x) is a permutation of U .

Now we consider the behavior of the polynomial eFB(x1, . . . , xm) when its argu-
ments are restricted to the trace T . Since the type of this trace is 1, the function

eFB : Tm → U

is essentially unary modulo α, which means that the induced function

eFB/α : (T/α)m → U

depends on at most one variable. Each column of N contains an entry equal to
1, so some row of N contains a 1 in its first position. For this row, the fact that
eFB(N) = [eπ1(x), . . . , eπm(x)]T where each eπB

i (x) is a permutation of U yields
that eFB(x1, . . . , xm), restricted to T , depends modulo α on some variable other
than x1. The same type of conclusion holds for each variable of eFB(x1, . . . , xm),
which is impossible if this polynomial is essentially unary modulo α on T . �

Corollary 4.5.3. A finite abelian algebra has a pointed cube polynomial iff it is
affine.

Not every finite abelian algebra generates an abelian variety, but for those that do
we can prove that the growth rate is linear or exponential.

Theorem 4.5.4. If V is an abelian variety and A ∈ V is finite, then the following
are equivalent.

(iii) dA(n) ∈ Θ(n).
(iv) dA(n) /∈ 2Ω(n).
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(v) No finite power An has a nontrivial strongly abelian homomorphic image.

Proof. We explained why (iii)⇒(iv)⇒(v) in the paragraphs before Theorem 4.5.1.
Here we prove that (v)⇒(iii).

No assumption or conclusion is altered if we replace A with its polynomial expan-
sion and the replace V by the variety this algebra generates, so henceforth we assume
that every element of A is the interpretation of a constant term and that V is locally
finite.

Claim 4.5.5. Let U be a set containing exactly one member from each polynomial
isomorphism class of type 2 minimal sets of A. If α ≺ β is a covering of type 2 in
Con(An), then there is an 〈α, β〉-minimal set of the form Un for some U ∈ U .

Since Con(An) is modular modulo the strong solvability congruence, the covering
α ≺ β is projective via a sequence of coverings to a covering γ ≺ δ which lies above
a coordinate projection kernel, η. Thus the 〈α, β〉-minimal sets are the same as the
〈γ, δ〉-minimal sets. Identifying A with An/η, choose some U ∈ U that is a 〈γ/η, δ/η〉-
minimal set. Then (a) Un is the image of an idempotent unary polynomial of An,
(b) An|Un is an E-minimal algebra of type 2 (since An|Un is polynomially equivalent
to (A|U)n and powers of solvable E-minimal algebras are E-minimal, according to
Lemma 4.10 of [18]), and (c) γ|Un 6= δ|Un . Items (a)–(c) are enough to show that Un

is a minimal set for 〈γ, δ〉 and hence for 〈α, β〉.
If U ∈ U , then A|U is affine, so there is a constant cU such that (A|U)n can be

generated by a set GU of size at most cU · n. Let G =
⋃
U∈U GU , which is a set of

size at most (
∑

U∈U cU)n, and let B = 〈G〉 be the subalgebra generated by this set.
Since V is a locally finite abelian variety it is Hamiltonian (cf. [24]), which means
that subalgebras are congruence classes. Let θ be a congruence on An that has B as
a class.

Claim 4.5.6. An/θ is strongly abelian.

Since V is abelian, to show that the algebra An/θ ∈ V is strongly abelian it suffices
to prove that it has no type 2 covering. If it did, then there would be congruences
α ≺ β above θ in Con(An) such that 〈α, β〉 has type 2. By Claim 4.5.5, there is some
〈α, β〉-minimal set of the form Un where U ∈ U . By the definition of a minimal set,
α|Un is properly contained in β|Un , so α|Un is not the universal equivalence relation
on Un. Since θ ≤ α, θ|Un is also not the universal equivalence relation on Un. But
Un ⊆ B, and B is a θ-class, so θ|Un must be the universal equivalence relation on
Un. Our assumption that An/θ has a type 2 quotient has been contradicted, so this
algebra is indeed strongly abelian.

To complete the proof, assume that (v) holds, i.e., no finite power An has a non-
trivial strongly abelian homomorphic image. Claim 4.5.6 then implies that θ is the
universal congruence on An. Since θ has B as a class, we get B = An. But B
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was generated by at most (
∑

U∈U cU)n ∈ O(n), proving that dA ∈ O(n). By Corol-
lary 2.2.5 (2) we get that dA ∈ Θ(n). �

4.6. Exponential growth. If A has exponential growth and B has arbitrary growth,
then A ×B has exponential growth. Hence it is probably unrealistic to expect any
meaningful classification of algebras with exponential growth. This subsection will
therefore be limited to identifying one property that forces exponential growth. We
will use the property to show that the variety generated by the 2-element implica-
tion algebra, 〈{0, 1};→〉, contains a chain of finite algebras A1 ≤ A2 ≤ · · · , each
one a subalgebra of the next, where Ai has logarithmic growth when i is odd and
exponential growth when i is even.

We explore a very simple idea: Suppose that A is finite and u and v are distinct
elements of A. If every element of {u, v}n is an essential generator of An for each n,
then the growth rate of A must be at least 2n. A way to force some tuple t ∈ {u, v}n
to be an essential generator of An is to arrange that An \ {t} is a subuniverse of An.
This can be accomplished by imposing an ‘irreducibility’ condition on each coordinate
t of t, or equivalently by requiring that the complementary set A \ {t} behaves like
an ‘ideal’. For this to work it is enough that A\{t} behaves like a 1-sided semigroup-
theoretic ideal, so we introduce a definition that captures this notion for an arbitrary
algebraic signature.

Definition 4.6.1. Let σ = (F, α) be an algebraic signature. I.e., let F be a set (of
operation symbols) and let α : F → ω be a function (assigning arity). Let F0 ⊆ F
be the set consisting of those f ∈ F such that α(f) > 0. (F0 is the set of nonnullary
symbols.) A selector for σ is a function φ : F0 → ω such that 1 ≤ φ(f) ≤ α(f) for
each f ∈ F0. (φ selects one of the places of the function symbol f .)

If φ is a selector for σ and A is an algebra of signature σ, then a φ-irreducible
subset of A is a subset U ⊆ A such that whenever α(f) = n and φ(f) = i one has

fA(a1, . . . , an) ∈ U ⇒ ai ∈ U.
The complement of a φ-irreducible subset is called a φ-ideal. Explicitly, I ⊆ A is

a φ-ideal if whenever α(f) = n, φ(f) = i and ai ∈ I, then fA(a1, . . . , an) ∈ I.

In this terminology, a left ideal of a semigroup with multiplication represented by
the symbol m would be a φ-ideal for the function φ : {m} → {1, 2} : m 7→ 2, while a
right ideal would be a φ-ideal for the function φ : {m} → {1, 2} : m 7→ 1.

Theorem 4.6.2. Let A be an algebra of signature σ and let φ be a selector for σ. If
A is the union of finitely many proper φ-ideals, then dA(n) ≥ 2n.

Proof. The union of φ-ideals is again a φ-ideal, so if A is the union of k ≥ 2 proper
φ-ideals then it can be expressed as the union I ∪ J of 2 proper φ-ideals. The
complements I ′ := A \ I and J ′ := A \ J are disjoint φ-irreducible sets. Any product
T := X1 × · · · × Xn, with Xi = I ′ or J ′ for all i, is a φ-irreducible subset of An.
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Each such set must contain at least one element of any generating set, since the
φ-irreducibility of T implies that An \ T is a subuniverse of An. Since there are 2n

products of the form X1×· · ·×Xn with Xi = I ′ or J ′, and they are pairwise disjoint,
any generating set for An must contain at least 2n elements. �

Example 4.6.3. In this example, 2 is the 2-element Boolean algebra and 2◦ =
〈{0, 1};→〉 is the reduct of 2 to the operation x → y = x′ ∨ y. The variety V
generated by 2◦ is called the variety of implication algebras. This variety is con-
gruence distributive and has 2◦ as its unique subdirectly irreducible member. Each
finite algebra in V may be viewed as an order filter in a finite Boolean algebra: if
A ∈ Vfin, then an irredundant subdirect representation A ≤ (2◦)k may be viewed as
a representation of A as a subset of 2k closed under →; such subsets of 2k are order
filters.

Considering an algebra A ∈ Vfin to be an order filter in 2k, each order filter
contained within A is a right ideal in A with respect to the operation →. By Theo-
rem 4.6.2, if A is the union of its proper order filters, its growth rate is exponential.
This case must occur unless A itself is a principal order filter in 2k. Since we repre-
sented A irredundantly, A is a principal order filter in 2k only when it is the improper
filter, i.e., A = (2◦)k. In this situation A is polynomially equivalent to the Boolean
algebra 2k, so it shares logarithmic growth rate with 2k.

In summary, a finite implication algebra has logarithmic growth rate if it has a
least element and has exponential growth rate otherwise.

Now, it is easy to produce a chain of implication algebras A1 ≤ A2 ≤ · · · , each
one a subalgebra of the next, where Ai has logarithmic growth when i is odd and
exponential growth when i is even. One simply chooses larger and larger Boolean
order filters which are principal only when i is odd. Figure XXX shows how the chain
might begin.
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5. Wiegold dichotomy holds for algebras with a cube term

In this section we investigate growth rates of finite algebras with a (0-pointed) cube
term. Unlike the previous section, where we focused primarily on upper bounds on
growth rates, we will prove that growth rates of finite algebras with a cube term must
be one of two kinds: if A is a finite algebra with a cube term, then dA(n) ∈ Θ(log(n))
if A is perfect and dA(n) ∈ Θ(n) if A is imperfect.
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Our approach will be through the analysis of the maximal subuniverses of An. The
relevance of maximal subuniverses may be recognized from the fact that a subset
G ⊆ An is a generating set for An if and only if G 6⊆M for any maximal subuniverse
M of An. Our analysis of a maximal subuniverse M of An involves finding surjective
homomorphisms ϕ : An → B such that ϕ(M) 6= B. When ϕ is such a homomorphism,
Mϕ := ϕ(M) will be a maximal subuniverse of B and M will equal ϕ−1(Mϕ) (since
ϕ−1(Mϕ) is a proper subuniverse of An that contains M). We say that M is induced
by ϕ in this situation.

We will consider two types of homomorphisms. The first type of homomorphism
considered is the projection πU : An → AU onto the coordinates in U for some subset
U ⊆ [n]. The second type will be the homomorphism η : An → (A/[1, 1])n induced
by the abelianization map in each coordinate.

Our first main result, Theorem 5.2.4, states that if A has a 0-pointed k-cube term,
then every maximal subuniverse is induced by either (i) a projection πU onto a set
of coordinates of size |U | < max{3, k}, or (ii) the abelianization homomorphism η.
The second main result, Theorem 5.4.1, is that there exists a set Gπ ⊆ An of size
O(log(n)) that is contained in no maximal subuniverse which can be induced by a
type (i) map, and there exists a set Gη ⊆ An of size O(n) that is contained in no
maximal subuniverse which can be induced by a type (ii) map. It follows that Gπ∪Gη

is contained in no maximal subuniverse at all, so it is a generating set of size O(n)
for An. When A is imperfect, the O(n)-estimate is asymptotically optimal, since it
is proved in Corollary 2.2.5 (2) that dA(n) ∈ Ω(n) when A is imperfect. When A is
perfect, η is constant, hence no maximal subuniverse of An can be induced by η. It
follows that Gπ is a generating set of size Θ(log(n)) for An, which is asymptotically
optimal by Theorem 2.2.2.

5.1. Maximal subuniverses of powers. In this subsection we relate arbitrary
maximal subuniverses of An to critical maximal subuniverses.

Definitions 5.1.1. [21] A compatible n-ary relation of A is a subuniverse of An.
A compatible relation R is critical if it is completely ∩-irreducible in the subalgebra

lattice of An and directly indecomposable as a relation. (The latter means that R is
not of the form S × T for subsets S ⊆ AU and T ⊆ AV , where {U, V } is a partition
of [n] into two cells.)

Any maximal subuniverse M of An is completely ∩-irreducible in the subalgebra
lattice of An, so a critical maximal subuniverse of An is just a maximal subuniverse
that is directly indecomposable as a relation.

Definition 5.1.2. If M is a subuniverse of An, then a support of M is a subset
U ⊆ [n] such that πU(M) 6= AU .

Lemma 5.1.3. If M is a maximal subuniverse of An, then M has a unique minimal
support. If U is the minimal support of M , then MU := πU(M) is a critical maximal
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subuniverse of AU , M = MU×AV for V = [n]\U , and M is induced by the projection
πU . In particular, M itself is critical if and only if its unique support is [n].

Proof. Assume that U, V ⊆ [n] are distinct minimal supports of the maximal subuni-
verse M ≤ An. U and V must be incomparable under inclusion. Let MU = πU(M)
and MV = πV (M).

We shall view elements of An as functions from [n] to A. In this language, M is
a proper subset of the set of all functions, MU is the set of restrictions to U of the
functions in M , and MV is the set of restrictions to V of the functions in M . Since
MU 6= AU , there is a function f : U → A that is not in MU . Since V is a minimal
support and U ∩ V is properly contained in V , it follows that every function from
U ∩ V to A is the restriction of some function in M . In particular, f |U∩V = g|U∩V
for some g ∈ M . Let h ∈ An be any function that agrees with f on U and g on V .
Then h|U = f /∈ MU , so h /∈ M . Yet h|V = g|V ∈ MV , so h ∈ M , a contradiction.
This shows that M has a unique minimal support.

If U is the minimal support of M and V = [n] \U , then M = MU ×AV is induced
by πU . (This does not require minimality of U , only that U is a support and that
M is a maximal subuniverse.) To show that MU is a critical maximal subuniverse
of AU , observe that MU ≤ AU is a maximal subuniverse since it is the image of
one under the surjective homomorphism πU . If MU = S × T , where S ≤ AX and
T ≤ AY for some partition {X, Y } of U , then either AX 6= πAU

X (MU) = πAn

X (M), or

AY 6= πAU

Y (MU) = πAn

Y (M). Either way, one obtains that X or Y is a proper subset
of U that is a support of M , contradicting the minimality of U .

For the final statement of the lemma, if the minimal support of M is [n], then
π[n](M) = M is critical by the second statement of the lemma. Conversely, assume
that M is critical and U ⊆ [n] is its minimal support. Since M = MU × AV and M
is directly indecomposable as a relation, we get V = ∅, equivalently [n] = U . �

5.2. The parallelogram property for critical relations. In the preceding sub-
section we showed that all maximal subuniverses of An are induced by critical max-
imal subuniverses on projections AU of An. In this section we show that the critical
maximal subuniverses of AU have a special structure when A has a 0-pointed k-cube
term.

Definition 5.2.1. [21] Given a partition {S, T} of [n] into two cells, write xy for
a tuple in An to mean that x ∈ AS and y ∈ AT . A compatible n-ary relation R
satisfies the parallelogram property if, for any partition {S, T} of [n], au, av,bv ∈ R
implies bu ∈ R.

Theorem 3.5 and Theorem 3.6 (3) of [21] together prove the following theorem.

Theorem 5.2.2. A variety V has a 0-pointed k-cube term if and only if every member
A ∈ V has the property that any critical relation of A of arity at least k has the
parallelogram property.
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It follows from this theorem that if A has a 0-pointed k-cube term, and M is
a maximal subuniverse of An, then either M is induced by a relation of arity less
than k or M = MU × AV is induced by a critical maximal subuniverse MU ≤ AU

that has the parallelogram property. (In the latter case, M itself will also have the
parallelogram property.) Our next step is to investigate the structure of maximal
subuniverses with the parallelogram property.

The paper [21] analyzes arbitrary compatible relations with the parallelogram prop-
erty in congruence modular varieties. It is shown in [2] that any algebra with a 0-
pointed k-cube term generates a congruence modular variety, so the results of [21]
apply here. The first step in the analysis is the “reduction” of a relation, which we
describe next.

Suppose that R ≤ An is a compatible relation with the parallelogram property;
as a special case, suppose that M ≤ An is a maximal critical subuniverse with the
parallelogram property. For the first step in the reduction, realize R as a subdirect
product R ≤sd

∏n
i=1 Ai, where Ai := πi(R) ≤ A. In the special case involving the

maximal subuniverse M we will have Ai = πi(M) = A unless the projection of M
onto one single coordinate is not surjective. This happens only if M has a support
of size one, which, by criticality, implies that M is a unary relation. We henceforth
consider only M of arity at least two, so that in our special case πi(M) = A for all
i. Thus, in the first step in reduction, nothing happens if M is maximal and of arity
greater than one.

Second, define relations, called coordinate kernels in [21],

θi = {(a, b) ∈ A2
i | ∃c ∈

∏
j 6=i

Aj (ac ∈ R & bc ∈ R)}.

It is proved in Lemma 2.3 of [21] that (i) each θi is a congruence on Ai, and (ii) R is
induced by the homomorphism ψ :

∏
Ai →

∏
Ai/θi that is the natural map in each

coordinate. (This means: if R = ψ(R), then R = ψ−1(R).) The relation R is the
reduction of R.

In our special case M ≤ An, where M is critical and maximal, we observe that
M = ψ(M) is a maximal subuniverse of

∏
A/θi. For, if M < M ′ <

∏
A/θi, then

M = ψ−1(M) < ψ−1(M ′) < An, contradicting the maximality of M .
The next result is a specialization of (some parts of) Theorem 2.5 of [21] to the

case where M is a critical maximal subuniverse of An and n is greater than one. We
maintain the numbering of [21], but omit the unused parts of the theorem.

Theorem 5.2.3. Let M be a critical maximal subuniverse of An that satisfies the
parallelogram property, and let M ≤

∏
A/θi be its reduction. If n > 1 and A lies in

a congruence modular variety, then the following hold.

(1) M ≤
∏

A/θi is a representation of M as a subdirect product of subdirectly
irreducible algebras.
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(5)∗ If n > 2, then the monolith of A/θi is the total relation; i.e. A/θi is simple.
(7)∗ If n > 2, then each simple algebra A/θi is abelian.

Here, items (5) and (7) are marked with asterisks, because we have altered the
statement of (5) from [21] in order to take into account that M is a maximal sub-
universe of

∏
A/θi and we have altered the statement of (7) in order to take into

account the conclusion from (5)∗ that A/θi is simple.
We explain what this theorem contributes to our current investigation. Suppose

that A has a 0-pointed k-cube term. Suppose also that M ≤ An is maximal, U is
the minimal support of M , and M = MU ×AV is induced by πU : An → AU . If |U | is
at least as large as max{3, k}, then the theorem proves that MU is induced by a ho-
momorphism ψ : AU →

∏
U A/θi where each factor A/θi is a simple abelian algebra.

Thus, M itself is induced by the composition of the surjective homomorphisms

An πU−→ AU−→ (A/[1, 1])U −→
∏
U

A/θi,

where the last two maps are a factorization of the map ψ : AU →
∏

U A/θi which
induces MU , and these two maps are defined coordinatewise by the natural maps
A → A/[1, 1] → A/θi. (We have θi ≥ [1, 1], since A/θi is abelian.) Hence M is

induced by the sub-composition An πU−→ AU−→ (A/[1, 1])U , which may be factored

another way as An η−→ (A/[1, 1])n
πU−→ (A/[1, 1])U . Hence M is induced by the single

map η, which maps An onto its abelianization. Altogether this proves the desired
result:

Theorem 5.2.4. Assume that A has a 0-pointed k-cube term. If M ≤ An is a
maximal subuniverse, then either

(π) M is induced by a projection πU : An → AU for some subset U ⊆ [n] satisfying
|U | < max{3, k}, or

(η) M is induced by η : An → (A/[1, 1])n.

5.3. A solution to a combinatorial problem. The problem considered here is:
If A is a finite set and n ≥ k > 1 are integers, then how small can a set G ⊆ An be
if its projection onto any subset of k coordinates is surjective?

If A is finite, G ⊆ An and |G| = g, then G can be linearly ordered and taken to be
the sequence of rows of a g × n matrix of elements of A, say [ai,j]. If

σ : 1 ≤ j(1) < · · · < j(k) ≤ n

is a selection of k numbers between 1 and n, then the projection of G onto the
coordinates in σ is the set of row vectors (a1,j(1), . . . , a1,j(k)), . . . , (ag,j(1), . . . , ag,j(k))
which occur as the set of rows of the g × k minor of [ai,j] whose column indices are
the indices in σ. G projects surjectively onto each k coordinates of An if and only
if, for each choice σ of k column indices, the set of row vectors of the corresponding
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g × k minor of [ai,j] exhausts Ak. Therefore, call a g × k matrix of elements of A a
bad minor (or bad matrix ) if its rows fail to exhaust Ak. The desired property of G
is that its associated matrix has no bad minors.

Theorem 5.3.1. Let A be a finite set of size |A| = a > 1. Let n ≥ k > 1 be natural
numbers, and set u = ak/(ak − 1). If g ≥ k logu (n) + logu

(
ak/k!

)
, then there is a

matrix in Ag×n with no bad minors.

Proof. This is a probabilistic proof. Our sample space is the set Ag×n of all g × n
matrices of elements of A. Our probability distribution is the uniform one, so each
individual matrix M ∈ Ag×n has probability P (M) = |Ag×n|−1 = a−gn. For each
matrix M ∈ Ag×n and each sequence of k column indices,

σ : 1 ≤ j(1) < · · · < j(k) ≤ n,

let Mσ denote the g × k minor of M whose column indices are those enumerated by
σ (called the σ-minor of M). Let Xσ be the random variable whose value at the
element M ∈ Ag×n is 1 if Mσ is a bad minor and 0 otherwise, i.e., Xσ is the indicator
variable for bad σ-minors.

Claim 5.3.2. For any σ, the expected value of Xσ satisfies

(5.1) E(Xσ) ≤ ak
(
ak − 1

)g
a−gk.

The expectation is computed

E(Xσ) =
∑

M∈Ag×n(Xσ(M) · P (M))
=
∑

M∈Ag×n(Xσ(M) · a−gn)
=
(∑

M∈Ag×n Xσ(M)
)
a−gn,

where the sum
∑

M∈Ag×n Xσ(M) on the last line represents the number matrices in
Ag×n whose σ-minor is bad. By definition, a g×k matrix is bad if some tuple a ∈ Ak
does not appear among its rows. So, for each a ∈ Ak, let Ua denote the set of all
g × k matrices where a does not appear among the rows. |Ua| can be computed by
noting that the g rows of a matrix in Ua may be freely chosen from the set Ak−{a},
which has size ak − 1, so |Ua| = (ak − 1)g. The bad g × k matrices are those from⋃

a∈Ak Ua. Since the cardinality of the union is no more than the sum of the individual
cardinalities, and these summands have the same size, we get that the number of bad
g × k matrices is no more than |Ak| · |Ua| = ak(ak − 1)g. Each bad g × k matrix
N can be extended in ag(n−k) ways to a matrix M ∈ Ag×n whose σ-minor satisfies
Mσ = N , so the number of matrices in Ag×n with a bad σ-minor is no more than
ak(ak − 1)gag(n−k). Hence

E(Xσ) =

( ∑
M∈Ag×n

Xσ(M)

)
a−gn ≤ ak(ak − 1)gag(n−k)a−gn = ak(ak − 1)ga−gk,

as claimed.
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If X :=
∑

σXσ is the sum of all Xσ as σ ranges over all
(
n
k

)
choices of k column

indices and M ∈ Ag×n, then X(M) equals the number of bad g × k minors of M .
Since expectation is linear, and since

(
n
k

)
< nk/k! when n ≥ k > 1, we get from (5.1)

that

E(X) =
∑
σ

E(Xσ) ≤
(
n

k

)
ak(ak − 1)ga−gk < nk(ak/k!)(ak − 1)ga−gk.

If it is the case that

(5.2) nk(ak/k!)(ak − 1)ga−gk ≤ 1,

then we will have E(X) < 1, meaning that the expected number of bad minors in
an element of Ag×n is strictly less than 1. This can happen only if matrices without
bad minors exist. Rewriting (5.2) as

nk ≤
(

ak

(ak − 1)

)g
(ak/k!)−1 = ug(ak/k!)−1,

using the definition u = ak/(ak − 1), we can solve for g to get

(5.3) g ≥ k logu(n) + logu(a
k/k!).

When this inequality holds we get that (5.2) holds, so a matrix with no bad minors
exists. This is exactly the statement of the theorem. �

Corollary 5.3.3. Let A be a finite set of size |A| = a > 1. Let n ≥ k > 1 be natural
numbers, and set u = ak/(ak − 1).

(1) If g = dk logu (n) + logu
(
ak/k!

)
e, then there exists a subset G ⊆ An of size g

whose projection onto any k coordinates of An is surjective.
(2) Let G ⊆ An be a subset.

(i) If the projections pri : G→ A and prj : G→ A onto distinct coordinates
are different functions for all i and j, then |G| ≥ loga(n).

(ii) If no two projections pri : G→ A and prj : G→ A differ by a permutation
of A (i.e., if it is not the case that π ◦ pri = prj for any i and j or
π ∈ Sym(A)), then |G| ≥ loga(n) + loga(a!).

(iii) If all projections of G onto pairs of coordinates are surjective, then |G| ≥
loga(n) + loga(a!).

When reading the statement of this corollary one should imagine that a and k (and
hence u) are fixed while n ranges. Item (1) implies that there is a subset G ⊆ An

of size O(log(n)) that projects surjectively onto any k coordinates. Item (2) implies
that any set G ⊆ An that projects surjectively onto each set of k coordinates must
have size Ω(log(n)) if k is at least 2. Taken together these statements show that, as
a function of n, the least size of a set G ⊆ An that projects onto each k coordinates
is Θ(log(n)).
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Proof of Corollary 5.3.3. Part (1) is an immediate consequence of Theorem 5.3.1.
For (2)(i), suppose that G ⊆ An is a subset whose projections onto distinct coor-

dinates are different functions for different coordinates. Then the set of projections
onto distinct coordinates constitute n distinct elements of the function space AG,
which has cardinality ag. It follows that n ≤ ag, or |G| = g ≥ loga(n).

The argument for (2)(ii) is essentially the same as for (2)(i). The assumptions
imply that the set of all functions of the form π ◦ pri : G → A, π ∈ Sym(A), are
distinct. This yields |Sym(A)| · n = a! · n functions from the set AG, which has size
ag, hence a! · n ≤ ag. Solving for g yields |G| = g ≥ loga(n) + loga(a!).

For (2)(iii), if two projections differ by a permutation, say π ◦ pri = prj, then the
projection of G onto the i-th and j coordinates maps G into the the set of pairs of
the form (x, π(x)). All such pairs lie on the graph of π, which is a proper subset of A2

when |A| > 1. Thus, if all projections of G onto pairs of coordinates are surjective,
no two single coordinate projections can differ by a permutation. This shows that
item (2)(iii) follows from (2)(ii). �

Remark 5.3.4. It is possible to refine the estimate in Corollary 5.3.3 (1) when we are
dealing with algebras instead of just sets. Suppose that there is a subset B ⊆ A
such that Bk generates Ak. Then we can apply the arguments above to obtain a set
G ⊆ Bn whose projection onto any k coordinates is Bk. According to the arguments,
we can find such a G of size

|G| = dk logv (n) + logv
(
bk/k!

)
e,

where b = |B| and v = bk/(bk − 1). This is a larger base for the logarithm and a
smaller constant on the right, so an overall smaller estimate for G. The subalgebra
of An generated by G will project surjectively onto each k coordinates, since its
projection contains the generating set Bk. Note here that there is no longer any need
to assume that A is finite, only that B is finite.

Another refinement can be made on top of the preceding one. Suppose that there
is a subset P ⊆ Bk of size |P | = p that generates Ak. (Here we do not assume
that P is the k-th power of a subset of A.) The argument we have given does not
generalize to produce a subset G ⊆ An whose projection onto any k coordinates is
exactly P , but it does generalize to produce a subset G ⊆ An whose projection onto
any k coordinates will be contained in Bk and will contain P . This enough to ensure
that the subalgebra of An that is generated by G projects surjectively onto any k
coordinates. How much of an improvement do we get in our estimate of |G|?

The assumption that P (⊆ Bk) generates Ak affects the estimate in Claim 5.3.2 as
follows. For each b ∈ P , let Ub denote the set of all matrices in Bg×k where b does not
appear among the rows. Then |Ub| = (bk−1)g, so |

⋃
b∈P Ub| ≤ |P |(bk−1)g = p(bk−1).

Each of these g× k matrices can be extended in bg(n−k) ways to a matrix in Bg×n, so
we obtain the estimate E(Xσ) ≤ p(bk − 1)b−gk. This allows us to choose G so that it
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is slightly smaller, namely

|G| = dk logv(n) + logv(p/k!)e.
Let’s summarize the two refinements. Let A be a (possibly infinite) algebra. Sup-

pose that P ⊆ Ak is a finite generating set for Ak. Let B be the smallest subset
of A for which P ⊆ Bk, i.e., let B ⊆ A be the set of elements that appear in the
coordinates of the tuples in P . Let b = |B|, p = |P |, and v = bk/(bk − 1). Assertion:
There is a set G ⊆ An of size dk logv(n) + logv(p/k!)e that generates a subalgebra of
An which projects surjectively onto any k coordinates.

5.4. Growth rates for algebras with a cube term. In this subsection we combine
the preceding results to obtain the following.

Theorem 5.4.1. Suppose that A has a (0-pointed) k-cube term. If A is imperfect,
then dA(n) ∈ Θ(n). If A perfect, then dA(n) ∈ Θ(log(n)).

Proof. According to Theorem 5.2.4, if M ≤ An is a maximal subuniverse, then either

(π) M is induced by a projection πU : An → AU for some subset U ⊆ [n] satisfying
|U | < max{3, k}, or

(η) M is induced by η : An → (A/[1, 1])n.

For each n, choose a subset Gπ ⊆ An of size O(log(n)) whose projection onto any
subset of max{3, k} coordinates is surjective. The existence of such a set is guaranteed
by Corollary 5.3.3. Clearly Gπ is contained in no maximal subuniverse of An that is
induced by a projection onto any subset of max{3, k} coordinates.

The algebra A/[1, 1] is abelian and has a cube term, so according to Corollary 4.5.3
A is affine. According to Theorem 2.2.6, (A/[1, 1])n contains a set of generators of
size O(n). For each n, choose a set Gη ⊆ An of size O(n) such that η(Gη) generates
(A/[1, 1])n. Then Gη is contained in no maximal subuniverse of An induced by η.

We now have that Gπ ∪ Gη is a set of size O(n) that is contained in no maximal
subuniverse of An, hence Gπ ∪Gη is a generating set for An of size O(n).

When A is imperfect, then dA(n) ∈ Ω(n) by Corollary 2.2.5, so the generating sets
we have found for the powers of A are asymptotically optimal in size. When A is
perfect, then An has no maximal subuniverses induced by η, so Gπ is a generating
set for An of size O(log(n)). By Theorem 2.2.2 dA(n) ∈ Ω(log(n)) for any nontrivial
algebra, so the generating sets we have for the powers of A in this case are also
asymptotically optimal in size. �

6. Extensions and problems

6.1. Growth rates of infinite algebras. Any set Σ of basic identities that does not
entail the existence of a pointed cube term is also nonrestrictive for infinite algebras.
This can be shown in essentially the same way we showed it for finite algebras, but the
situation is clearer for infinite algebras because we can say explicitly which growth
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rates are possible. In Example 6.1.1 we show that if d : Z+ → Z+ is an arbitrary
monotone function, then there is a countably infinite algebra whose growth rate is d.
In Example 6.1.3 we show how to modify the example, without changing its growth
rate, so that it realizes a given set Σ of basic identities, provided Σ does not entail
the existence of a pointed cube term. The cardinality of this second example can
be any infinite cardinal that is at least as large as the number of constant symbols
appearing in Σ.

Example 6.1.1. Let d : Z+ → Z+ be an arbitrary monotone function. We construct
a countably infinite partial algebra A such that dA(n) = d(n) for all n. The one-point
completion of A (Definition 4.1.1) will be a total algebra with the same growth rate.

Let M (1),M (2), . . . be a sequence of matrices with the following properties.

(1) M (n) = [a
(n)
i,j ] is an n× d(n) matrix.

(2) All elements of all matrices are different from one another.

Let A = {a(n)
i,j } be the set of all entries appearing in these matrices. Our aim is

to equip A with partial operations ensuring that the d(n) columns of M (n) form a
smallest size generating set for An. If we achieve this, then we will have dA(n) = d(n)
for all n.

For each n ∈ Z+ and each b ∈ An, introduce a d(n)-ary partial operation Fb for
which Fb(M (n)) = b. This means that Fb has domain of size n, consisting of the n

rows of M (n), and that Fb(a
(n)
i,1 , . . . , a

(n)
i,d(n)) = bi for each i = 1, . . . , n.

Our partial algebra is A equipped with all partial operations of the type described
in the previous paragraph. Since Fb(M (n)) = b whenever b ∈ An, the columns of
M (n) form a generating set of size d(n) for An. The following claim will help us to
prove that there is no smaller generating set for An.

Claim 6.1.2. If a subset G ⊆ An has fewer than d(n) tuples whose coordinates are
distinct, then the same is true for 〈G〉.

If the claim is not true, then it must be possible to generate in one step a tuple
c ∈ An whose coordinates are all distinct using other tuples, where fewer than d(n)
of these other tuples have the property that their coordinates are all distinct. If
the partial operation used is some Fb, b ∈ Am for some m, and the tuples used to
generate are x1, . . . ,xd(m), then the following row equations must be satisfied.

(6.1) Fb(x1, . . . ,xd(m)) = Fb


 x1,1

...
xn,1

 , . . . ,

 x1,d(m)
...

xn,d(m)


 =

 c1
...
cn

 = c.

Considering the definition of Fb, it is clear that the (distinct!) entries of c are
among the entries of b, so m = |b| ≥ |c| = n. Moreover, the row equations
Fb(xi,1, . . . , xi,d(m)) = ci can be solved in only one way, namely by using the ap-

propriate row of M (m). This forces all entries of [xi,j] to be distinct. But this means
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there are d(m) columns, xj, whose coordinates are distinct, and we assumed that
there were fewer than d(n) such columns. Altogether this yields that m ≥ n and
d(m) < d(n), contradicting the monotonicity of d(n). The claim is proved.

The claim completes the argument, since a subset G ⊆ An of size less than d(n)
must have fewer than d(n) tuples whose coordinates are distinct. Such a set cannot
generate An, since the generated subuniverse 〈G〉 contains fewer than d(n) tuples
whose coordinates are distinct while An has infinitely many such tuples.

Example 6.1.3. Here we explain how to modify the algebra from Example 6.1.1,
without changing its growth rate, so that it realizes a given set Σ of basic identities.
The only requirement on Σ is that it does not entail the existence of a pointed cube
term.

The construction is like the one in Subsection 4.2, so we only outline it. Recall
that we started with an algebra A, enlarged it to Az1,...,zp,0 by iterating the one-point
completion construction, and then merged it with the model V of Σ to create AΣ,
which realized Σ and had the same growth rate as A. In this construction, we used
the one-point completion construction p times, where p was the number of equivalence
classes of constant symbols under Σ-provable equivalence. The only thing different
here is that we may not have finitely many equivalence classes of constant symbols.
However, we may well-order the equivalence classes of constants (say, by stipulating
that [c] < [d] if the least constant in class [c] is smaller than the least constant in
[d] under the well-order from the proof of Kelly’s Theorem). Now, rather than using
the one-point completion construction p times, we use the idea of the construction
exactly once to adjoin a well-ordered set {0} ∪ Z to A to create AZ,0. Here the
well-order is 0 < z1 < z2 < · · · , with 0 the least element, and 〈Z;<〉 is a well-ordered
set for which there is a bijection ϕ : [C] → Z from the set of equivalence classes of
constants. The algebra has universe AZ,0 equal to the disjoint union of A, Z and 0.
If F is a function symbol in the language of A, then it is defined on AZ,0 by

FAZ,0(a) =

{
FA(a) if a ∈ An;

min{{a1, . . . , an} ∩ ({0} ∪ Z)} else.

We also define binary operations corresponding to the operation x∧y of the one-point
completion, namely x ∧z y for z ∈ Z ∪ {0}. Here

x ∧z y =


x if x = y;

z if x 6= y and x, y ∈ A ∪ [z);

min{{x, y} ∩ ({0} ∪ Z)} else.

Arguments similar to those in Theorem 4.1.2 show that A and AZ,0 have the same
minimal generating sets, so the same growth rate. We can merge this example with
a model V from Definition 3.2.1 to obtain a model AΣ, as we did in Subsection 4.2.
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Using the same arguments as before, it can be shown that this model will have the
same growth rate as A unless Σ entails the existence of a pointed cube term.

In particular, it is possible to find infinite algebras generating congruence dis-
tributive and congruence 3-permutable varieties whose growth rate is any prescribed
monotone function.

We showed in Subsection 4.3 that a finite algebra with a p-pointed k-cube term
has growth that is bounded above by a polynomial. When p ≥ 1, the constant |A|k−1

appears in the polynomial, so the argument requires A to be finite. However, some
version of the argument holds when A is infinite.

Let P be the set of p (≥ 1) constant symbols that appear in the cube identities for
some k-cube term. Say that a term operation tA centralizes P if tA(cA, . . . , cA) = cA

for all c ∈ P . The argument we gave in Subsection 4.3 may be extended to prove:

Theorem 6.1.4. Let A be an algebra with an m-ary, p-pointed, k-cube term, and

let P be the set of constant symbols appearing in the cube identities. Let Â be the

reduct of A to the term operations that centralize P . If the reduct Âk−1 is finitely
generated, then the growth rate of A is bounded above by a polynomial of degree at
most logw(mp), for w = 2k/(2k − 1).

Proof. The proof is the same as the proof of Theorem 4.3.1, except that we apply
one more step after fully processing all tuples. Let F ⊆ A be a finite subset with the

property that F k−1 generates Âk−1.
Recall that a fully processed tuple a has the structure that all but k − 1 of its

coordinates may be divided into a small number of intervals, and in each interval the
coordinate value is the interpretation of a constant symbol from P . Write such a
tuple as a = pu, splitting it into its processed part and its unprocessed part. If we
choose tuples ui ∈ F k−1 so that u = t(u1, . . . ,ur) for some term t which centralizes P ,
then a = pu = t(pu1, . . . ,pur). Hence our previously fully processed tuple pu may
be processed one more step into fully processed pu1, . . . ,pur, where the unprocessed
part lies in F k−1. Now the finite number |F |k−1 may replace our use of the number
|A|k−1 in the proof of Theorem 4.3.1, yielding a polynomial upper bound on growth
rate. �

6.2. Problems. Theorem 6.1.4 motivates the following problem.

Problem 6.2.1. Is it true that, for an arbitrary infinite algebra A with a pointed
k-cube term, if Ak−1 is finitely generated, then dA(n) is bounded above by a poly-
nomial? Is it even true that Ak−1 being finitely generated implies that An is finitely
generated for all n?

The first statement of the problem has an affirmative answer for 0-pointed k-cube
terms, as one sees by examining the proof of Theorem 5.4.1 and noting that finitely
generated infinite modules have growth rate bounded by a linear function.
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In this paper, we have partially filled in the spectrum of possible growth rates
by producing examples of finite algebras with polynomial growth rates. There is an
interesting gap that remains between logarithmic and linear growth rates.

Problem 6.2.2. Is there a finite algebra A where dA(n) /∈ O(log(n)) and dA(n) /∈
Ω(n)?

We know that no algebra with a 0-pointed cube term can have growth rate between
logarithmic and linear, but do not know the situation for pointed cube terms. The
following seems to be the most interesting special case.

Problem 6.2.3. Is it true that a finite algebra with a 2-sided unit for some binary
term has logarithmic or linear growth?

Despite the results of Theorem 2.2.6, Corollary 4.5.3, and Theorem 4.5.4, we still do
not know if the growth rate of a finite abelian algebra must be linear or exponential.
We pose the following problem.

Problem 6.2.4. Let A be a finite abelian algebra. What is the relationship between
the following properties?

(i) A has a Maltsev term.
(ii) A has a pointed cube term.

(iii) dA(n) ∈ Θ(n).
(iv) dA(n) /∈ 2Ω(n).
(v) No finite power An has a nontrivial strongly abelian homomorphic image.

Are they equivalent? What if A generates an abelian variety? What if A is simple?
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