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Abstract

Let A be a standard operator algebra acting on a (real or complex) normed space E. For two n-tuples
A = (A1, . . . , An) and B = (B1, . . . , Bn) of elements in A, we define the elementary operator RA,B on
A by the relation RA,B(X) = ∑n

i=1 AiXBi for all X in A. For a single operator A ∈ A, we define the
two particular elementary operators LA and RA on A by LA(X) = AX and RA(X) = XA, for every X in
A. We denote by d(RA,B) the supremum of the norm of RA,B(X) over all unit rank one operators on E.
In this note, we shall characterize: (i) the supremun d(RA,B), (ii) the relation d(RA,B) = ∑n

i=1 ‖Ai‖‖Bi‖,
(iii) the relation d(LA − RB) = ‖A‖ + ‖B‖, (iv) the relation d(LARB + LBRA) = 2‖A‖‖B‖. Moreover,
we shall show the lower estimate d(LA − RB) � max{supλ∈V (B) ‖A − λI‖, supλ∈V (A) ‖B − λI‖} (where
V (X) is the algebraic numerical range of X in A).
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Let E be a normed space (not necessarily a Banach space) over K (R or C), let B(E) be the
normed algebra of all bounded linear operators acting on E and let A denote a standard operator
algebra of B(E) (it is a subalgebra of B(E) that contains all finite rank operators on E).

For two n-tuples A = (A1, . . . , An) and B = (B1, . . . , Bn) of elements in A, we define the
elementary operator RA,B on A by RA,B(X) = ∑n

i=1 AiXBi (if one of the operators Ai, Bi is
equal to the identity I , A contains I ).

For a single operator A ∈ A, we define the following two particular elementary operators
LA and RA on A by LA(X) = AX and RA(X) = XA for every X in A (are called the left
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multiplication and right multiplication by A, respectively); and also we define the other particular
elementary operators: (i) the generalized derivation δA,B = LA − RB , (ii) the inner derivation
δA = δA,A, (iii) the multiplication operator MA,B = LARB , (iv) the operator �A = LA + RA,
(v) the operator UA,B = MA,B + MB,A, (vi) the operator VA,B = MA,B − MB,A.

Let F be any (real or complex) normed space. In this note we adopt the following notations
and definitions:

(i) We denote by F ′ the topological dual space of F and by (F )1 the unit sphere of F .
(ii) If F is an inner product space and x, y ∈ F , the relation x ⊥ y holds if and only if

infλ∈K ‖y + λx‖ = ‖y‖ (or equivalentely to ‖y + λx‖ � ‖y‖, for every λ in K). This last
condition makes sense in any normed space and therefore may be taken as a definition of
the relation of the orthogonality in this general situation. In this general case, it is clear by
using Hahn–Banach Theorem, that the relation x ⊥ y holds if and only if there exists a unit
element f in F ′ such that f (x) = 0 and f (y) = ‖y‖ (this relation is not symmetric in a
general situation of a normed space).

(iii) If F is an inner product space and x, y ∈ F , then the relation x ‖ y (that means x, y are
linearly dependent) holds if and only if ‖x + λy‖ = ‖x‖ + ‖y‖ for some unit scalar λ. The
two conditions make sense on a normed space and the first condition implies the second but
the converse is false in general. So we may adopt as definition of the parallelism relation in
normed space as follows x ‖ y if and only if ‖x + λy‖ = ‖x‖ + ‖y‖ for some unit scalar λ.

Let � be any (real or complex) normed algebra with unit I and let A∈�. We define the algebraic
numerical range of A by V (A) = {f (A) : f ∈ P(�)}, where P(�) = {f ∈ �′ : f (I) = ‖f ‖ =
1} (the elements of P(�) are called states), and the numerical radius of A by w(A) = sup{|λ| :
λ ∈ V (A)}. It is known that V (A) is non-empty, closed and convex (for more details see [3]). We
put VN(A) = V

(
A

‖A‖
)

for a non-zero element A in � (the normalized algebraic numerical range
of A). A is called normaloid if w(A) = ‖A‖. If � = B(E) and E is a complex Hilbert space, then
A is normaloid if and only if r(A) = ‖A‖ (where r(A) is the spectral radius of A, see [7]).

For (x, f ) ∈ E × E′, we define the operator x ⊗ f on E by (x ⊗ f )y = f (y)x. We denote
by F1 the set of all unit rank one operators acting on E (it is clear that F1 = {x ⊗ f : ‖x‖ =
‖f ‖ = 1}), and by d(R) = supX∈F1

‖R(X)‖, for every R ∈ B(A).
The norm problem for elementary operators consists in finding a formula which describes

the norm of an elementary operator in terms of its coefficients. It is easy to see that the upper
estimate ‖RA,B‖ �

∑n
i=1‖Ai‖‖Bi‖ is valid for any elementary operator, so the norm of any

elementary operator is between 0 and D(RA,B) (minimal and maximal value), where D(RA,B)

denotes the second member of this last estimation. It is clear that d(RA,B) � ‖RA,B‖ � D(RA,B).
The lower estimate for the particular elementary operator UA,B is studied by several authors
in several algebras (see [1,4,5,8–10]). Recently, the best lower estimate of this operator acting
on a Hilbert space is given in the two papers [2,14], that is ‖UA,B‖ � ‖A‖‖B‖. On the other
hand in Hilbert space case Stampfli [13] has characterized the norm of δA,B by the relation
‖δA,B‖ = inf{‖A − λI‖ + ‖B − λI‖ : λ ∈ C}, and he has proved that ‖δA,B‖ = D(δA,B) if and
only if WN(A) ∩ WN(−B) /= ∅ (where WN denotes the normalized maximal numerical range and
A and B are non-zero).

In this note, in Section 2, we shall characterize the supremum d(RA,B) when it gets the maximal
value D(RA,B). It is clear that the condition d(RA,B) = D(RA,B) implies ‖RA,B‖ = D(RA,B)

(we shall show that the converse is not true in general). We shall deduce for every non-zero
elements A and B in A that d(δA,B) = D(δA,B) if and only if VN(A) ∩ VN(−B) ∩ (K)1 /= Ø,
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d(UA,B) = D(UA,B) if and only if A ‖ B, d(�A) = D(�A) if and only if A ‖ I , and if and only
if A is normaloid (this gives a characterization of normaloid operators in A).

In Section 3, we shall characterize when the norm of RA,B gets its minimal value 0.
In Section 4, we are interested to give some lower estimate for d(δA,B) and for d(UA,B). It is

clear that every lower estimate for d(R) is also a lower estimate for ‖R‖, for every R in B(A).
We shall show the lower estimate d(δA,B) � max{supλ∈V (B) ‖A − λI‖, supλ∈V (A)‖B − λI‖} for
every A, B in A, and some other consequences.

2. Characterization of the relation d(RA,B) = D(RA,B)

Theorem 2.1. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two n-tuples of elements in A.

The following equalities hold:

d(RA,B) = sup
f,g∈(A′)1

∣∣∣∣∣
n∑

i=1

f (Ai)g(Bi)

∣∣∣∣∣,
= sup

f ∈(A′)1

∥∥∥∥∥
n∑

i=1

f (Bi)Ai

∥∥∥∥∥ ,

= sup
f ∈(A′)1

∥∥∥∥∥
n∑

i=1

f (Ai)Bi

∥∥∥∥∥ .

Proof. We denote by k1, k2 and k3 the above supremum cited in Theorem 2.1 in the same
order. Let x, y ∈ (E)1, h ∈ (E′)1 and f, g ∈ (A′)1. Since d(RA,B) �

∥∥ ∑n
i=1 Ai(x ⊗ h)Biy

∥∥ =∥∥( ∑n
i=1 h(Biy)Ai

)
x
∥∥, then d(RA,B) �

∥∥ ∑n
i=1 h(Biy)Ai

∥∥. So that d(RA,B) �
∣∣ ∑n

i=1 f (Ai) ×
h(Biy)

∣∣ = ∣∣h( ∑n
i=1 f (Ai)Biy

)∣∣, then from Hahn–Banach Theorem it follows that d(RA,B) �∥∥( ∑n
i=1 f (Ai)Bi

)
y
∥∥. Thus d(RA,B) �

∥∥ ∑n
i=1 f (Ai)Bi

∥∥ and so d(RA,B) �
∣∣g( ∑n

i=1 f (Ai) ×
Bi

)∣∣ = ∣∣ ∑n
i=1 f (Ai)g(Bi)

∣∣. Therefore d(RA,B) � k1. It is clear that k1 �
∥∥f

( ∑n
i=1 g(Bi)Ai

)∥∥,
then k1 �

∥∥ ∑n
i=1 g(Bi)Ai

∥∥, so that k1 � k2. Since k2 �
∥∥f

( ∑n
i=1 g(Bi)Ai

)∥∥ = ∥∥g
( ∑n

i=1 ×
f (Ai)Bi

)∥∥, it follows that k2 �
∥∥ ∑n

i=1 f (Ai)Bi

∥∥. Therefore k2 � k3. Since k3 �
∣∣h( ∑n

i=1 ×
f (Ai)Biy

)∣∣ = ∣∣ ∑n
i=1 f (Ai)h(Biy)

∣∣ = ∣∣f ( ∑n
i=1 h(Biy)Ai

)∣∣, then k3 �
∥∥ ∑n

i=1 h(Biy)Ai

∥∥ �∥∥ ∑n
i=1 h(Biy)Aix

∥∥ = ∥∥( ∑n
i=1 Ai(x ⊗ h)Bi

)
y
∥∥. Therefore k3 � d(RA,B), this completes the

proof. �

Lemma 2.1. Let F be a normed space and x1, . . . , xn ∈ F. Then
∥∥ ∑n

i=1 xi

∥∥ = ∑n
i=1 ‖xi‖ if

and only if there exists f ∈ (F ′)1 such that f (xi) = ‖xi‖ for i = 1, . . . , n.

Proof. This follows immediately form Hahn–Banach Theorem. �

Theorem 2.2. LetA = (A1, . . . , An)andB = (B1, . . . , Bn)be twon-tuples of non-zero elements
in A. The following properties are equivalent:

(i) d(RA,B) = D(RA,B),

(ii) there exist two unit elements f, g in A′ and n unit scalars λ1, . . . , λn such that f (Ai) =
λi‖Ai‖ and g(Bi) = λi‖Bi‖ for i = 1, . . . , n,

(iii)
∥∥ ∑n

i=1 λiAi

∥∥ = ∑n
i=1 ‖Ai‖and

∥∥∑n
i=1 λiBi

∥∥ = ∑n
i=1 ‖Bi‖ for some unit scalarsλ1, . . . ,

λn.
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Proof. The equivalence (ii) ⇐⇒ (iii) follows immediately from Lemma 2.1.
(ii) �⇒ (i) is also trivial since

∑n
i=1 ‖Ai‖‖Bi‖ = ∣∣ ∑n

i=1 f (Ai)g(Bi)
∣∣ � d(RA,B) �

∑n
i=1 ×

‖Ai‖‖Bi‖, for f and g given in the condition (ii).
(i) �⇒ (ii) The map f → ∥∥ ∑n

i=1 f (Ai)Bi

∥∥ is w∗-continuous on A′ and (A′)1 is w∗-com-
pact, so it follows that d(RA,B) = ∥∥ ∑n

i=1 f (Ai)Bi

∥∥, for some element f in (A′)1. The Hahn–
Banach Theorem guaranties also the existence of an element g in (A′)1 such that

∑n
i=1 ‖Ai‖

‖Bi‖ = d(RA,B) = ∑n
i=1 f (Ai)g(Bi). SinceAi, Bi are non-zero and |f (Ai)| � ‖Ai‖, |g(Bi)| �

‖Bi‖, for i = 1, . . . , n then |f (Ai)| = ‖Ai‖, |g(Bi)| = ‖Bi‖ and f (Ai)g(Bi) = ‖Ai‖‖Bi‖ for
i = 1, . . . , n. Thus f (Ai) = λi‖Ai‖ and g(Bi) = λi‖Bi‖ for some unit scalars λ1, …, λn. �

Corollary 2.1. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two n-tuples of non-zero ele-
ments in A (with n � 2) such that A2 = B1 = I and d(RA,B) = D(RA,B). Then all operators
Ai and Bi are normaloid in A.

Proof. Using Theorem 2.2, there exist two unit elements f and g in A′ and n unit scalars
λ1, . . . , λn such that f (A1) = λ1‖A1‖, g(I) = λ1, f (I) = λ2, g(B2) = λ2‖B2‖ and if n � 3,
then f (Ai) = λi‖Ai‖, g(Bi) = λi‖Bi‖ for i = 3, . . . , n. So it follows immediately that
(λ2f )(A1) = (λ1λ2)‖A1‖, (λ2f )(I ) = 1, (λ1g)(B2) = (λ1λ2)‖B2‖, (λ1g)(I ) = 1, and if n � 3,
it follows also that (λ2f )(Ai) = (λ2λi)‖Ai‖, (λ1g)(Bi) = (λ1λi)‖Bi‖ for i = 3, . . . , n. This
completes the proof. �

Corollary 2.2. Let A, B be two non-zero elements in A. The following properties are equivalent:

(i) d(δA,B) = ‖A‖ + ‖B‖,
(ii) VN(A) ∩ VN(−B) ∩ (K)1 /= ∅,

(iii) ‖I + λA‖ = 1 + ‖A‖ and ‖I − λB‖ = 1 + ‖B‖ for some unit scalar λ.

Proof. It is clear that D(δA,B) = ‖A‖ + ‖B‖.
(i) �⇒ (ii) This implication follows from the proof of the above Corollary for n = 2.
(ii) �⇒ (iii) This implication is trivial.
(iii) �⇒ (i) This implication follows immediately from Theorem 2.2. �

Remark 2.1. In [13, Corollary 1], Stampfli has proved (in Hilbert space case) that ‖δA,B‖ =
‖A‖ + ‖B‖, if ‖A‖ = 1, W0(A) = {‖z‖ � 1} and B is arbitrary in B(E), so that in this situation
d(δA,B) < ‖δA,B‖ for any non-normaloid operator B in B(E).

Corollary 2.3. Let A, B be two normaloid in A. Then the following properties hold:

(i) d(δA,λB) = ‖A‖ + ‖B‖, for some unit scalar λ,

(ii) if V (A) = {|z| � ‖A‖} then d(δA,B) = ‖A‖ + ‖B‖.

Proof. (i) The result (i) is trivial if A = 0 or B = 0. If A and B are non-zero then there exist two
unit scalars α and β in VN(A) and VN(B), respectively. So the result (i) follows immediately from
the above corollary if we take λ = −α

β
.

(ii) The result (ii) is trivial if B = 0. If B /= 0 then there exists a unit scalar λ in VN(B), since
B is normaloid. Thus −λ ∈ VN(A) ∩ VN(−B) ∩ (K)1, since VN(A) = {|z| � 1}. Therefore the
result follows immediately from the above corollary. �
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Corollary 2.4. Let A ∈ A. The following properties are equivalent:

(i) d(δA) = 2‖A‖,
(ii) λ‖A‖ and −λ‖A‖ belong to V (A) for some unit scalar λ,

(iii) diam V (A) = 2‖A‖ (the diameter of V (A)),

(iv) ‖I + λA‖ = ‖I − λA‖ = 1 + ‖A‖ for some unit scalar λ.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iv) follows from Corollary 2.2 and the equivalence (ii) ⇔
(iii) is trivial. �

Corollary 2.5. Let A, B ∈ A. The following properties are equivalent:

(i) d(UA,B) = 2‖A‖‖B‖,
(ii) A ‖ B,

(iii) there exist a unit scalar λ and a unit element f in A′ such that f (A) = ‖A‖ and f (B) =
λ‖B‖.

Proof. This follows immediately from Theorem 2.2. �

Corollary 2.6. Let A ∈ A. The following properties are equivalent:

(i) A is normaloid,

(ii) A ‖ I,

(iii) d(�A) = 2‖A‖.

Proof. This follows from the fact that �A = UA,I and by using the above Corollary. �

Remark 2.2. (i) Corollary 2.6 gives a characterization of the normaloid operators in A. It is clear
that ‖�A‖ = 2‖A‖ for any A inA, so that d(�A) < ‖�A‖ for any non-normaloid operator A inA.

(ii) Stacho–Zalar mentioned in their paper [12] that the condition ‖UA,B‖ = 2‖A‖‖B‖ should
correspond to “being parallel”. That is not true because ‖UA,I‖ = 2‖A‖‖I‖ for every A ∈ A (A
is not necessarily parallel to I ), but the condition d(UA,B) = 2‖A‖‖B‖ correspond exactely to
A ‖ B.

3. Characterization of the relation RA,B = 0

Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two n-tuples of elements in A. We may
arrange the operators Bi so that B1, . . . , Bm form a maximal linearly independent subset of
B1, . . . , Bn. If m < n, we put Bk = ∑m

i=1cikBi , for k = m + 1, . . . , n and some constants cik

(1 � i � m, m + 1 � k � n); in this case RA,B = RC,D , where C = (C1, . . . , Cm), D =
(B1, . . . , Bm) and Ci = Ai + ∑n

j=m+1cijAj for i = 1, . . . , m.

Theorem 3.1. The following properties are equivalent:

(i) d(RA,B) = 0,
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(ii) A1 = · · · = An = 0 when m = n, and Ai = −∑n
j=m+1cijAj , for i = 1, . . . , m when m <

n,

(iii) RA,B = 0.

Proof. (i) �⇒ (ii) Since d(RA,B) = 0, by Theorem 2.1, we obtain
∑n

i=1 f (Ai)Bi = 0 for every
f in (A′)1 when m = n and

∑m
i=1 f (Ci)Bi = 0 for every f in (A′)1 when m < n. So from Hahn–

Banach Theorem it follows that A1 = · · · = An = 0 when m = n and Ai = −∑n
j=m+1cijAj for

i = 1, . . . , m when m < n.
(ii) �⇒ (iii) and (iii) �⇒ (i) are trivial. �

Remark 3.1. The above result is proved in [6] by another method but our proof follows immedi-
ately from our Theorem 2.1.

4. Lower estimate bound for d(δA,B) and d(UA,B)

Theorem 4.1. Let A, B ∈ A. We have the following lower estimate:

d(δA,B) � max

{
sup

λ∈V (B)

‖A − λI‖ , sup
λ∈V (A)

‖B − λI‖
}

.

Proof. Let λ ∈ V (A) and μ ∈ V (B). Then there exist two states f, g on A such that f (A) = λ

and g(B) = μ. So from Theorem 2.1, we obtain d(δA,B) � ‖f (A)I − f (I)B‖ = ‖B − λI‖ and
d(δA,B) � ‖g(I)A − g(B)I‖ = ‖A − μI‖. The result follows immediately. �

Corollary 4.1. Let A ∈ A. Then d(δA) � supλ∈V (A) ‖A − λI‖.

Corollary 4.2. Let A, B ∈ A. Then the following properties hold:

(i) d(δA,B) � ‖A‖ if 0 ∈ V (B),

(ii) d(δA,B) � ‖B‖ if 0 ∈ V (A),

(iii) d(δA) � ‖A‖ if 0 ∈ V (A).

Theorem 4.2. Let A, B ∈ A. Then d(UA,B) � 2(
√

2 − 1)‖A‖‖B‖.

Proof. The proof is given in [11] for ‖UA,B‖ but the proof is valid for d(UA,B). �

Theorem 4.3. Let A, B, C, D ∈ A such that C ⊥ A or D ⊥ B then MA,B ⊥ MC,D.

Proof. Assume C ⊥ A. So there exists a unit element f in A′ such that f (C) = 0 and f (A) =
‖A‖. Thus by using Theorem 2.1, it follows that d(MA,B + λMC,D) � ‖f (A)B + λf (C)D‖ =
‖A‖‖B‖ = ‖MA,B‖ for all complex λ. Therefore ‖MA,B + λMC,D‖ � ‖MA,B‖ for all complex
λ.

The second implication follows also by the same argument. �

Corollary 4.3. Let A, B ∈ A such that A ⊥ B or B ⊥ A. Then d(UA,B) � ‖A‖‖B‖ and
d(VA,B) � ‖A‖‖B‖.
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