
1. Introduction

Recently some novel interest seems to be raised toward the symbolic LU decomposition
of Vandermonde matrices. Several explicit formulas at various levels along with matrix
subfactorizations are well-known for them and their inverses. Our aim in this paper to
extend these results to the matrices associated with interpolation problems with Hermite
type.

2. Preliminaries

2.1. First we recall briefly the results spread in the literature concerning the LU decom-
position of the Vandermonde matrix

V = V (x) :=


1 x0 . . . xN0
1 x1 . . . xN1
...

...
. . .

...
1 xN . . . xNN

 , x :=
[
x0, . . . , xN

]
xi ̸= xj for i ̸= j .

Henceforth N is a fixed positive integer, and we shall consider (N + 1)2-matrices with
indices ranging from 0 to N . In terms of the formal vectors

δ(x) :=


δx0

δx1

...
δxN

 , e(x) :=
[
1, x, x2, . . . , xN

]

where x is a variable symbol and δa denotes the evaluation functional p 7→ p(a) defined for
polynomials in x of degree≤ N , we can write

V (x) = δ(x)e(x).

Consider the Lagrange interpolation polynomial p := px,y defined by the requirements
p(xn) = yn (n = 0, . . . , N) (with y := [y0, . . . , yn]

T). Since we can write p in the form
p =

∑
n pnx

N = e(x)p, it follows y = δ(x)px,y(x) = δ(x)e(x)px,y = V (x)px,y that is

px,y(x) = e(x)V (x)−1y.

The Newtonian form p(x) =
N∑

n=0
p(x0, . . . , xn)ωn(x) of this polynomial with

ωn(x) :=
∏

k:k<n

(x− xk), p(x0, . . . , xn) =
n∑

j=0

p(xj)
∏

i:j ̸=i≤n

(xj − xi)
−1

(convention: ω0 ≡ 1) yields the relation px,y(x) = e(x)Ω(x)∆(x)y with the upper resp.
lower triangular matrices

Ω(x) :=
[
coeffs of ωn in column n

]N
n=0

, ∆(x) :=
[ ∏
i:j ̸=i≤n

(xj − xi)
−1

]N
n,j=0
n≥j

.
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Hence the following triangular decompositions are immediate

V (x)−1 = Ω(x)∆(x), V (x) = ∆(x)−1Ω(x)−1

along with the explicit closed formula

∆(x)−1 = V (x)Ω(x) = δ(x)e(x)Ω(x) =
[
ωn(xk)

]N
k,n=0

.

Not stated explicitly in [Monthly] but the arguments can be continued to achieve a shortcut
to a closed (i.e. recursion free) formula for the entries of the upper triangular term Ω(x)−1.
Indeed, we have

Ω(x)−1 = ∆(x)V (x) = ∆(x)δ(x)e(x) =
[[ n∑

j=0

∏
i:j ̸=i≤n

(xj − xi)
−1

]
δxj

]N
n=0

e(x) =

=
[[ n∑

j=0

∏
i:j ̸=i≤n

(xj − xi)
−1

]
δxj (x

ν)
]N

n,ν=0
n≤ν

=
[Newton difference

xν(x0, . . . , xn)

]N
n,ν=0
n≤ν

=

=
[ ∑

i0+···+in=ν−n

i0,i1,...,in≥0

xi00 x
i1
1 · · ·xinn

]N
n,ν=0
n≤ν

.

For any fixed degree ν, the last formula can be obtained by induction on n from the
identities p(xk, . . . , xk+s+1) =

[
p(xk + 1, . . . , xk+s+1)− p(xk, . . . , xk+s)

]
/(xk+s+1 − xk).

2.2. Next we recall the concept of Hermite (or Hermite-Vandermonde) matrices along
with their relationship to Hermite approximation. Henceforth we fix numbers m1, . . . ,mr

such that (m1+1)+ . . .+(mr +1) = N +1. Given an r-tuple a := [a1, . . . , ar], along with

row matrices bk :=
[
b
(0)
k , . . . , b

(mk)
k

]
(k = 1, . . . , r), the Hermite interpolation polynomial

q(x) := qa,b1,...,br
(x) is defined as the unique polynomial of degree≤ N satisfying

dsq

dxs

∣∣∣
x=ak

= b
(s)
k (k = 1, . . . , r; 0 ≤ s ≤ mk).

For later matrix operations, we divide the integer interval I := {0, 1, . . . , N} into consec-
utive segments

Ik := {ν(0)k , . . . , ν
(mk)
k }, ν

(s)
k := s+

∑
ℓ:ℓ<k

(mℓ + 1)

with inverse indices κ(n) :=
[
k : n∈ Ik

]
, σ(n) :=

[
position of n in Iκ(n)

]
=

[
s : n= ν

(s)
κ(n)

]
.

The Hermite-Vandermonde matrix over the base point system a = [a1, . . . , ar] of multiorder
m := [m1, . . . ,mr] is the (N + 1)2-matrix H = Hm(a) of the system of linear equations
of the form qHm(a) = [b1, . . . ,br] for the coefficient vector q := [q0, . . . , qN ] of the
polynomial qa,b1,...,br . In terms of the linear functionals

δ(s)a : p 7→ dsp

dxs

∣∣∣
x=a

, δm(a) :=
[
δ(0)a1

, . . . , δ(m1)
a1

, . . . , δ(0)ar
, . . . , δ(mr)

ar

]T
,
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analogously as in the Vandermonde case (r = N +1,m1 = · · · = mN+1 = 0), we can write

Hm(a) = δm(a)e(x), qa,b1,...,br (x) = e(x)Hm(a)−1b with b := [b1, . . . ,br]
T.

It is well known that Hermite interpolation polynomials admit also a Newtonian form

q(x) =
N∑

n=0

q(a
ν
(0)
0

, . . . , a
ν
(s)

k

)ωn(x), ωn(x) :=
∏
i:i<n

(x− aκ(i))

in terms of generalized Newton differences. As outlined in [Monthly] hence we can get
again a triangular decomposition of the form

Hm(a)−1 = Ωm(a)∆m(a)

where ∆m(a) is a lower triangular matrix whose row with index n contains the coefficients

of qa,b1,...,br (aν(0)
0

, . . . , a
ν
(s)

k

) with respect to the variables b
s)
k with ν(k, s) ≤ n, while col-

umn n of Ωm(a) consists of the coefficients of the polynomial ωn(x). Similarly as in the
Vandermonde case, we can conclude that

∆m(a)−1 = Ωm(a)Hm(a)) = δm(a)e(x)Ωm(a) =
[ dσ(i)
dxσ(i)

∣∣∣
x=aκ(i)

ωn(x)
]N
i,n=0

in the standard LU decomposition Hm(a) = ∆m(a)−1Ωm(a)−1.

3. Combinatorial formulas of the upper triangular factors

Closed formulas for the entries of the matrices Ωm(a),Ωm(a)−1 can be obtained simply
by a formal substitution of the tuple x = (x0, . . . , xN ) (supposed to have pairwise different
entries in Subsection 2.1 with x := am =

(
a0, . . . , a0︸ ︷︷ ︸

m0+1

, . . . , ar, . . . , ar︸ ︷︷ ︸
mr+1

)
. Namely the diagonal

entries are 1 in both cases and, for for the entries of indices i < j we have

[
Ωm(a)

]
ij
=

[
coeff. of xi in

j−1∏
k=0

(x− xk)
]∣∣∣

x=am
=

= (−1)j−i
∑

0≤ℓ1<ℓ2<···<ℓj−i<j

xℓ1xℓ2 · · ·xℓj−i

∣∣∣
x=am

=

= (−1)j−i
∑

(k0,...,kr)∈Kij

ϱij(k0,...,kr)
ak0
0 · · · akr

r

with the index sets

Kij :=
{
(k0, . . . , kr) ∈

[
×

α<κ(j−1)
[0,mα]

]
×
[
0, σ(α)

]
×
{
0
}r−κ(j)

: k0 + · · ·+ kr = j − i
}
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and respective weight coefficients ϱij(k0,...,kr)
:=

[ ∏
α<κ(j−1)

(
mα

kα

) ](
σ(j)

kκ(j−1)

)
.

Similarly, for n < ν we have[
Ωm(a)−1

]
nν

=
∑

i0+···+in=ν−1

i0,i1,...,in≥0

xi00 x
i1
1 · · ·xinn

∣∣∣
x=am

=
∑

(k0,...,kr)∈K̃nν

ϱ̃nν(k0,...,kr)
ak0
0 · · · akr

r

with K̃nν :=
{
(k0, . . . , kr)∈

[
×

α<κ(j−1)
[0,mα]

]
×
[
0, σ(α)

]
×
{
0
}r−κ(j)

: k0+· · ·+kr=ν−1
}
,

ϱ̃nν(k0,...,kr)
= #

{
functions ϕ : {0, . . . , n} → ZZ 0 with

∑
i∈Is

ϕ(i) = ks (s = 0, . . . , κ(n))
}
=

=
[ κ(n−1)∏

s=0

µ(ms + 1, ks)
]
µ
(
σ(n) + 1, kκ(n)

)
where µ(ℓ, k) denotes the number of all functions ψ : {1, . . . , ℓ} → ZZ + with

∑
i ψ(i) = k.

4. Combinatorial formulas of the upper triangular factors

In accordance with the partition I =
∪r

k=1 Ik, we partition the vectors z := [z0, . . . , zN ]
into subvectors

zk :=
[
zν(k,0), zν(k,1), . . . , zν(k,mk)

]
(k =, . . . , r)

and consider the corresponding Newton difference matrices

∆(xk) :=
[ ∏
i:j ̸=i≤n

(xν(k,j) − xν(k,i))
−1

]mk

n,j=0
n≥j

.

It is well-known from classical analysis [??] that differentiations can be obtained as limits
of Newton differences: given any smooth function ϕ : IR → IR along with a net x(α) → am

with pairwise different terms x
(α)
n ̸= x

(α)
ν (0 ≤ n < ν ≤ N), we have

∆k

(
x
(α)
k

)[
ϕ
(
x
(α)
ν(k,0)

)
, . . . , ϕ

(
x
(α)
ν(k,mk)

)]T
−→

[
ϕ(ak), ϕ

′(ak), . . . ,
dmk

dxmk

∣∣∣
a=ak

ϕ(x)
]T
.

5. Hermite interpolation as limit of Lagrange interpolations

As far as we know no explicit formulas were published for the entries of both ∆m(a)
and its inverse. We achieve them below by a limiting process from Vandermonde cases.

Proposition. Suppose f : IR → IR is a function being Cmk -smooth in suitable neighbor-

hoods of the points ak with dj/dxj |x=ak
f(x) = b

(j)
k (k = 1, . . . , r; 0 ≤ j ≤ mk). Assume a

net of (N +1)-tuples x[α] consists of points with pairwise different coordinates (x
[α]
i ̸= x

[α]
j

for i ̸= j) and converges to am. Then Lf |{x[α]0 , . . . , x
[α]
N }(x) → HF.
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Proof. Let g := f −HF. Notice that dj/dxj |x=ak
f(x) = 0 (k = 1, . . . , r; 0 ≤ j ≤ mk).

Since HF is a polynomial of degree N , we have LHF = HF and hence it suffices to see
that

Lg|{x[α]0 , . . . , x
[α]
N }(x) → 0.

This can be done by showing that for all its Newton differences,

(∗) g
(
x(α)n , . . . , x

(α)
n+s

)
→ 0 (s = 0 . . . , N ; 0 ≤ n ≤ N − s).

We verify this statement by induction on the order index s. For s = 0 and fixed n =

(m1 +1)+ · · ·+(mk +1)+ j− 1 we have g(x
(α)
n ) → g(ak+1) = 0 because of the continuity

of g at the points a1, . . . , ar and since x
(α)
(m1+1)+···+(mk+1)+j−1 → ak+1 by assumption.

Assuming (∗) for some s, we consider the behavior of g
(
x
(α)
n , . . . , x

(α)
n+s+1

)
in two cases: (1)

if x
(α)
n → ai, x

(α)
n+s+1 → aj with i ̸= j (i.e. ai ̸= aj); (2) if x

(α)
n , x

(α)
n+s+1 → ai. In this case

also x
(α)
n+1, . . . , x

(α)
n+s → ai. In case (1) we have

g
(
x
(α)
n+1, . . . , x

(α)
n+s+1

)
=
g
(
x
(α)
n+1, . . . , x

(α)
n+s+1

)
− g

(
x
(α)
n , . . . , x

(α)
n+s

)
x
(α)
n+s+1 − x

(α)
n

→

→ 0− 0

aj − iai
= 0.

In case (2) we apply the fact that a Newton difference of order (s + 1) can be expressed
by a derivation of or order (s+ 1) taken at some location between the most left and right
base points:

g
(
x
(α)
n+1, . . . , x

(α)
n+s+1

)
=

ds+1

dxs+1

∣∣∣
x=θα

g(x) → ds+1

dxs+1

∣∣∣
x=ai

g(x) = 0

with a suitable net θα → ai.
......................................................
......................................................
......................................................

Corollary. For any r ∈ IR, let x[t] :=
[
ak + jt : k = 1, . . . , r; 0 ≤ j ≤ mk

] (
that is x[t] =

(a1, a1 + t, . . . , a1 +m1t, a2, . . . , ar +mrt)
)
and let y[t] :=

[ mk∑
i=0

b
(i)
k

[(j−1)t]i

i! : 0 ≤ j ≤ mk

]
.

Then, for some ε > 0, the components of the tuples x[t] are different if |t| < ε. Fixing such

a value of ε, with the function germs f [t] :=
[
x
[t]
0 7→ y

[t]
0 , . . . , x

[t]
N 7→ y

[t]
N

]
(−ε < t < ε) we

have HF = lim
t→0

Lf [t] and H(am)−1b = lim
t→0

V (x[t])−1y[t].

Proof.
......................................................
......................................................
......................................................
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Lemma. With the upper triangular Newton matrices Nk :=
[ (

j
i

) ]
0≤i≤j≤mk

we have

H(am) = lim
t→0

V (x[t])
[ r
⊕
k=1

[
Nk diag(1−1, t, . . . , t−mk)

]]
.

Proof.
......................................................
......................................................
......................................................

5. Closed formulas for the entries of the upper triangular factors.

Lemma. For the subdiagonal matrix S :=
[
1{k}(ℓ+ 1)k

]N
k,ℓ=0

=
N∑

k=1

k eke
T
k−1 we have

exp(tS) =
[
tk−ℓ

(k
ℓ

)]N
k,ℓ=0

=
N∑

k=0

k∑
ℓ=0

tk−ℓ
(k
ℓ

)
eke

T
ℓ .

Proof. The n-th power of a subdiagonal matrix has non-zero entries only in the n-th skew
row below the diagonal. Thus we can write

Sn :=
[
1{k}(ℓ+ n)σ

(n)
ℓ

]N
k,ℓ=0

=
N−n∑
ℓ=0

σ
(n)
ℓ eℓ+ne

T
ℓ .

We have the recursion

N−(n+1)∑
ℓ=0

σ
(n+1)
ℓ eℓ+n+1e

T
ℓ = Sn+1 =

= SnS =
[N−n∑

ℓ=0

σ
(n)
ℓ eℓ+ne

T
ℓ

][ N∑
k=1

k eke
T
k−1

]
=

N−n∑
ℓ=1

σ
(n)
ℓ ℓ eℓ+ne

T
ℓ−1;

σ
(n+1)
ℓ = σ

(n)
ℓ+1 (ℓ = 0, . . . , N − (n+ 1)).

Taking into account the definition of S implying σ
(1)
ℓ = ℓ + 1, we conclude by induction

on n that σ
(n)
ℓ = (ℓ + 1)(ℓ + 2) · · · (ℓ + n) = (ℓ + n)!/ℓ! in all cases. It follows exp(tS) =

N∑
n=0

tn

n!S
n =

N∑
n=0

tn
N−n∑
ℓ=0

(ℓ+n)!
n!ℓ! eℓ+ne

T
ℓ =

N∑
k=0

k∑
ℓ=0

tk−ℓ
(

k
ℓ

)
eke

T
ℓ .

......................................................

......................................................

......................................................
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v(x) :=
[
1, x, x2, . . . , xN

]
x :=

[
x0, x1, x2, . . . , xN

]
y :=

[
y0, y1, y2, . . . , yN

]
f :=

[
(x0, y0), (x1, y1), . . . , (xN , yN )

]
function germ

V (x) :=

 v(x0)
...

v(xN )

 Vandermonde matrix

Lf(x) :=
[
Lagrange polynomial of f with symbolic variable x

]
Lf(x) = c0 + c1x+ · · · cNxN = v(x)c where c :=

[
c0, c1, c2, . . . , cN

]T
V (x)c = y interpolation equations
Lf(x) = v(x)V (x)−1y
Lf(x)= f(x0)+f(x0, x1)(x−x0)+· · ·+f(x0,. . ., xN )(x−x0)· · ·(x−xN−1) Newton form

f(x0, . . . , xk) =
∑k

j=0 yj
∏

i:j ̸=i≤k(xk − xi)
−1 = dk(x)y Newton difference quo-

tients
ωk(x) := (x− x0) · · · (x− xk−1) , ω0(x) := 1

ωk(x) =
∑k

j=0 wk,jx
j = v(x)wk

Ω(x) :=
[
w0(x), . . . ,wN (x)

]
upper triangular matrix

Df(x) :=

 d0(x)
...

dN (x)

 lower triangular matrix

Lf(x) = v(x)Ω(x)Df(x)y
V (x)−1 = Ω(x)Df(x) triangular decomposition

a :=
[
a1, . . . , ar

]
, r ≤ N + 1

b :=

b1
...
br

, bk :=

 b
(0)
k
...

b
(mk)
k


(m1 + 1) + · · ·+ (mr + 1) = N + 1
F :=

[(
(a1,b1), . . . , (ar,br)

]
function germ with derivatives

HF(x) :=
[
Hermite polynomial of F with symbolic variable x

]
dj

dxj

∣∣∣
x=ak

HF(x) = b
(j)
k (k = 1, . . . , r; 0 ≤ j ≤ mk) interpolation equations

Lagrangian case: r = N + 1, m1 = · · · = mN+1 = 0
HF(x) = v(x)c classical polynomial form, c :=

[
c0, . . . , cN

]
m :=

[
m1, . . . ,mr

]
Tm(a) :=


v(a)

d/dx|x=av(x)
...

dm/dxm|x=av(x)

 Taylor matrices
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H(am) :=

Tm1(a1)
...

Tmr (ar)

 Hermite matrix

H(am)c = b interpolation equations
HF(x) = v(x)H(am)−1b
We get the Newtonian form of HF(x) as a limit of Vandermode cases
am(t) :=

[
a1, a1 + t, . . . , a1 +m1t, . . . , ar, ar + t, . . . , ar +mrt

]
b(t) :=

[
b
(0)
1 , b

(0)
1 + b

(1)
1 t, . . . ,

∑m1

j=0 b
(j)
1 tj/j!, . . . , b

(0)
r , b

(0)
r + b

(1)
r t, . . . ,

∑mr

j=0 b
(j)
r tj/j!

]T
ft :=

[(
a1, b

(0)
1

)
,
(
a1, b

(0)
1 +b

(1)
1 (t)

)
, . . . ,

(
ar+mrt,

m1∑
j=0

b
(j)
1 tj/j!)

]
pairing of am(t),b(t)

HF(x) = lim
t→0

Lft(x)
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