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Preface 

Vector calculus is the fundamental language of mathematical physics. It pro­
vides a way to describe physical quantities in three-dimensional space and the 
way in which these quantities vary. Many topics in the physical sciences can 
be analysed mathematically using the techniques of vector calculus. These top­
ics include fluid dynamics, solid mechanics and electromagnetism, all of which 
involve a description of vector and scalar quantities in three dimensions. 

This book assumes no previous knowledge of vectors. However, it is assumed 
that the reader has a knowledge of basic calculus, including differentiation, 
integration and partial differentiation. Some knowledge of linear algebra is also 
required, particularly the concepts of matrices and determinants. 

The book is designed to be self-contained, so that it is suitable for a pro­
gramme of individual study. Each of the eight chapters introduces a new topic, 
and to facilitate understanding of the material, frequent reference is made to 
physical applications. The physical nature of the subject is clarified with over 
sixty diagrams, which provide an important aid to the comprehension of the 
new concepts. Following the introduction of each new topic, worked examples 
are provided. It is essential that these are studied carefully, so that a full un­
derstanding is developed before moving ahead. Like much of mathematics, each 
section of the book is built on the foundations laid in the earlier sections and 
chapters. In addition to the worked examples, a section of exercises is included 
at the middle and at the end of each chapter. Solutions to all the exercises are 
given at the back of the book, but the student is encouraged to attempt all 
of the exercises before looking up the answers! At the end of each chapter, a 
one-page summary is given, listing the most essential points of the chapter. 



VI Vector Calculus 

The first chapter covers the basic concepts of vectors and scalars, the ways 
in which vectors can be multiplied together and some of the applications of 
vectors to physics and geometry. 

Chapter 2 defines the ways in which vector and scalar quantities can be 
integrated, covering line integrals, surface integrals and volume integrals. Again, 
these are illustrated with physical applications. 

Techniques for differentiating vectors and scalars are given in Chapter 3, 
which forms the essential core ofthe subject of vector calculus. The key concepts 
of gradient, divergence and curl are defined, which provide the basis for the 
following chapters. 

Chapter 4 introduces a new and powerful notation, suffix notation, for ma­
nipulating complicated vector expressions. Quantities that run to several lines 
using conventional vector notation can be written extremely compactly using 
suffix notation. One of the main reasons for writing this book is that there 
are very few other books that make full use of suffix notation, although it is 
commonly used in undergraduate mathematics courses. 

Two important theorems, the divergence theorem and Stokes's theorem, are 
covered in Chapter 5. These help to tie the subject together, by providing links 
between the different forms of integrals from Chapter 2 and the derivatives of 
vectors from Chapter 3. 

Chapter 6 covers the general theory of orthogonal curvilinear coordinate 
systems and describes the two most important examples, cylindrical polar co­
ordinates and spherical polar coordinates. 

Chapter 7 introduces a more rigorous, mathematical definition of vectors 
and scalars, which is based on the way in which they transform when the 
coordinate system is rotated. This definition is extended to a more general 
class of objects known as tensors. Some physical examples of tensors are given 
to aid the understanding of what can be a difficult concept to grasp. 

The final chapter gives a brief overview of some of the applications of the 
subject, including the flow of heat within a body, the mechanics of solids and 
fluids and electromagnetism. 
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1 
Vector Algebra 

1.1 Vectors and scalars 

This book is concerned with the mathematical description of physical quanti­
ties. These physical quantities include vectors and scalars, which are defined 
below. 

1.1.1 Definition of a vector and a scalar 

A vector is a physical quantity which has both magnitude and direction. There 
are many examples of such quantities, including velocity, force and electric field. 
A scalar is a physical quantity which has magnitude only. Examples of scalars 
include mass, temperature and pressure. 

In this book, vectors will be written in bold italic type (for example, u is a 
vector) while scalar quantities will be written in plain italic type (for example, 
a is a scalar). There are two other commonly used ways of denoting vectors 
which are more convenient when writing by hand: an arrow over the symbol 
(""it) or a line under the symbol (y). 

Vectors can be represented diagrammatically by a line with an arrow at the 
end, as shown in Figure 1.1. The length of the line shows the magnitude of the 
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2 Vector Calculus 

vector and the arrow indicates its direction. If the vector has magnitude one, 
it is said to be a unit vector. Two vectors are said to be equal if they have the 
same magnitude and the same direction. 

Fig. 1.1. Representation of a vector. 

Example 1.1 

Classify the following quantities according to whether they are vectors or 
scalars: energy, electric charge, electric current. 

Energy and electric charge are scalars since there is no direction associated 
with them. Electric current is a vector because it flows in a particular direction. 

1.1.2 Addition of vectors 

Two vector quantities can be added together by the 'triangle rule' as shown 
in Figure 1.2. The vector a + b is obtained by drawing the vector a and then 
drawing the vector b starting from the arrow at the end of a. 

b 
a 

a+b 

Fig. 1.2. Addition of vectors. 

The vector -a is defined as the vector with magnitude equal to that of a 
but pointing in the opposite direction. 
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By adding a and -a we obtain the zero vector, O. This has magnitude zero 
and so does not have a direction; nevertheless it is sensible to regard 0 as a 
vector. 

1.1.3 Components of a vector 

Vectors are often written using a Cartesian coordinate system with axes x, y, z. 

Such a system is usually assumed to be right-handed, which means that a screw 
rotated from the x-axis to the y-axis would move in the direction of the z-axis. 
Alternatively, if the thumb of the right hand points in the x direction and the 
first finger in the y direction, then the second finger points in the z direction. 

Suppose that a vector a is drawn in a Cartesian coordinate system and 
extends from the point (Xl, YI, zd to the point (xz, Y2, zz), as shown in 
Figure 1.3. Then the components of the vector are defined to be the three 
numbers al = X2 - Xl, a2 = Y2 - Yl and a3 = Z2 - Zl. The vector can then be 
written in the form a = (aI, a2, a3). 

z 

x 

Fig. 1.3. The components of the vector a are (X2 - Xl, Y2 - Yl, Z2 - Zl). 

By introducing three unit vectors el, ez and e3, which point along the 
coordinate axes x, Y and z respectively, the vector can also be written in the 
form a = aIel + a2e2 + a3e3. Using this form, the sum of the two vectors a 
and b is a + b = aIel + a2e2 + a3e3 + blel + b2e2 + b3e3 = (al + b1)el + (a2 + 
bz)ez + (a3 + b3)e3. It follows that vectors can be added simply by adding their 
components, so that the vector equation c = a + b is equivalent to the three 
equations CI = al + bl , C2 = az + b2, C3 = a3 + b3· 
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The magnitude of the vector is written lal. It can be deduced from Pythago­
ras's theorem that the magnitude of the vector can be written in terms of its 
components as lal = Jar + a~ + a~. 

The position of a point in space (x,y,z) defines a vector which points from 
the origin of the coordinate system to the point (x, y, z). This vector is called 
the position vector of the point, and is usually denoted by the symbol r, with 
components given by r = (x, y, z). 

Example 1.2 
The vectors a and b are defined by a = (1,1,1), b = (1,2,2). Find the magni­
tudes of a and b, and find the vectors a + b and a-b. 

The magnitude ofthe vector a is lal = vl12 + 12 + 12 = v'3. The magnitude 
of b is Ibl = v'12 + 22 + 22 = 3. The vector a + b is (1,1,1) + (1, 2, 2) = (2,3,3) 
and a - b = (0, -1, -1). 

1.2 Dot product 

The dot product or scalar product of two vectors is a scalar quantity. It is written 
a . b and is defined as the product of the magnitudes of the two vectors and 
the cosine of the angle between them: 

a . b = lallbl cos 11. (1.1) 

A number of properties of the dot product follow from this definition: 

• The dot product is commutative, i.e. a . b = b . a. 
• If the two vectors a and b are perpendicular (orthogonal) then a· b = O. 
• Conversely, if a . b = 0 then either the two vectors a and b are perpendicular 

or one of the vectors is the zero vector. 

• a· a = lal2 • 

• Since the quantity Ibl cos 11 represents the component of the vector b in the 
direction of the vector a, the scalar a . b can be thought of as the magnitude 
of a multiplied by the component of b in the direction of a (see Figure 1.4). 

• The dot product is distributive over addition, i.e. a· (b + c) = a· b + a . c. 
This follows geometrically from the fact that the component of b + c in the 
direction of a is the same as the component of b in the direction of a plus 
the component of c in the direction of a (see Figure 1.5). 
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"'E~- Iblcos 9 ---;.~ a 

Fig. 1.4. The component of b in the direction of a is Ibl cos 8. 

a 

Fig. 1.5. Geometrical demonstration that the dot product is distributive over addi­
tion. 
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A formula for the dot product a . b in terms of the components of the two 
vectors a and b can be derived from the above properties. Considering first 
the unit vectors el, e2 and e3, it follows from the fact that these vectors have 
magnitude 1 and are orthogonal to each other that 

The dot product of a and b is therefore 

a· b = (aIel + a2e2 + a3e3) . (blel + b2e2 + b3e3) 

= alblel· el + a2b2e2 . e2 + a3b3e3 . e3 

= albl + a2b2 + a3b3· 

Example 1.3 

Find the dot product of the vectors (1,1,2) and (2,3,2). 
(1, 1,2) . (2,3,2) = 1 x 2 + 1 x 3 + 2 x 2 = 9. 

Example 1.4 

For what value of c are the vectors (c, 1, 1) and (-1,2,0) perpendicular? 

(1.2) 

They are perpendicular when their dot product is zero. The dot product is 
-c + 2 + 0 so the vectors are perpendicular if c = 2. 

Example 1.5 

Show that a triangle inscribed in a circle is right-angled if one of the sides of 
the triangle is a diameter of the circle. 

a a 

Fig. 1.6. Geometrical construction to show that Q is a right angle. 

Introduce two vectors a and b a.<; shown in Figure 1.6. Since these two 
vectors are both along radii of the circle they are of equal magnitude. The two 
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sides c and d of the triangle are then given by c = a + band d = a-b. The dot 
product of these two vectors is c·d = (a+b)·(a-b) = lal2 -a·b+b·a-lbI2 = O. 
Since the dot product is zero the vectors are perpendicular, so the angle a is a 
right angle. This is just one of many geometrical results that can be obtained 
using vector methods. 

1.2.1 Applications of the dot product 

Work done against a force 

Suppose that a constant force F acts on a body and that the body is moved a 
distance d. Then the work done against the force is given by the magnitude of 
the force times the distance moved in the direction opposite to the force; this 
is simply - F . d (Figure 1. 7). 

F 

d 

Fig. 1.7. The work done against a force F when an object is moved a distance d is 
-F·d. 

Equation of a plane 

Consider a two-dimensional plane in three-dimensional space (Figure 1.8). Let 
r be the position vector of any point in the plane, and let a be a vector 
perpendicular to the plane. The condition for a point with position vector r to 
lie in the plane is that the component of r in the direction of a is equal to the 
perpendicular distance p from the origin to the plane. The general form of the 
equation of a plane is therefore 

r . a = constant. 

An alternative way to write this is in terms of components. Writing r = (x, y, z) 
and a = (al,a2,a3), the equation of a plane becomes 

(1.3) 
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a 

o 

Fig. 1.S. The equation of a plane is r . a = constant. 

EXERCISES 

1.1 Classify the following quantities according to whether they are vec­
tors or scalars: density, magnetic field strength, power, momentum, 
angular momentum, acceleration. 

1.2 IT a = (2,0,3) and b = (1,0, -1), find lal, Ibl, a+ b, a - b and a· b. 
What is the angle between the vectors a and b? 

1.3 If 'U = (1,2,2) and v = (-6,2,3), find the component of 'U in the 
direction of v and the component of v in the direction of 'U. 

1.4 Find the equation of the plane that is perpendicular to the vector 
(1,1, -1) and passes through the point x = 1, Y = 2, z = 1. 

1.5 Use vector methods to show that the diagonals of a rhombus are 
perpendicular . 

1.6 What is the angle between any two diagonals of a cube? 
1.7 Use vectors to show that for any triangle, the three lines drawn from 

each vertex to the midpoint of the opposite side all pass through the 
same point. 
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1.3 Cross product 

The cross product or vector product of two vectors is a vector quantity, written 
a x b. Since it is a vector, its definition must specify both its magnitude and 
direction. The magnitude of a x b is lallbl sin (J, where (J is the angle between the 
two vectors a and b. The direction of a x b is perpendicular to both a and b in a 
right-handed sense, i.e. a right-handed screw rotated from a towards b moves in 
the direction of a x b (Figure 1.9). We may therefore write a x b = lallbl sin(Ju, 
where u is a unit vector perpendicular to a and b in a right-handed sense. 

a X b 

a 

Fig. 1.9. The cross product of a and b is perpendicular to a and b, in a right-handed 
sense. 

The cross product has the following properties: 

• The cross product is not commutative. Because of the right-hand rule, a x b 
and b x a point in opposite directions, so a x b = -b x a. 

• If the two vectors a and b are parallel then a x b = O. 

• a x a = O. 
• The magnitude of the cross product of a and b is the area of the parallelogram 

made by the two vectors a and b (Figure 1.10). Similarly the area of the 
triangle made by a and b is la x bl/2. 

• The cross product of a and b only depends on the component of b perpen­
dicular to a. This is apparent from Figure 1.10 since the component of b 
perpendicular to a is Ibl sin(J. 

• The cross product is distributive over addition, i.e. a x (b+c) = a x b+a x c. 
This is demonstrated geometrically in Figure 1.11, where the vector a points 
into the page. The vectors b, c and b + c do not necessarily lie in the page, 
but from the previous point the cross products of these vectors with a only 
depend on their projections onto the page. The effect of taking the cross 
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b 
Iblsin8 

8 

a 

Fig. 1.10. The area of the parallelogram is the length of its base, lal, multiplied by 
its height, Ibl sin e. 

product with a on any vector is to project it onto the page, rotate through 
1f /2 clockwise and then multiply by lal. Thus the triangle made by the vectors 
b, c and b + c becomes rotated and scaled as in Figure 1.11 but remains a 
triangle. 

c 

b+c 
a X b 

b 

a X (b+c) 

Fig. 1.11. Geometrical demonstration that the cross product is distributive over 
addition. The vector a points into the page. 

A formula for the cross product a x b in terms of the components of the two 
vectors a and b can be derived in a similar manner to that carried out for the 
dot product. Consider first el x ez. Since these two vectors have magnitude 
1 and are perpendicular, sin {I = 1 and the magnitude of el x e2 is 1. The 
direction of el x ez is perpendicular to both el and e2 in a right-handed sense, 
so el x e2 = e3. 

It follows that the unit vectors el, ez and e3 obey 

The cross product of a and b is therefore 
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a x b = (aIel + a2e2 + ases) x (blel + b2e2 + bses) 

= al b2 el x e2 + alb~ el x es + a2bl e2 x el 

+a2bS e2 x es + aSbl es x el + aSb2 es x e2 

11 

= (a2bs - asb2)el + (asbl - al bs)e2 + (a1b2 - a2bdes. (1.4) 

This can also be written as the determinant of a 3 x 3 matrix as follows: 

Example 1.6 

el e2 es 
a x b = al a2 as 

bl b2 bs 

Find the cross product of the vectors (1,3,0) and (2, -1, 1). 
(1,3,0) x (2, -1, 1) = (3 - 0,0 -1, -1- 6) = (3, -1, -7). 

Example 1.7 
Find a unit vector which is perpendicular to both (1,0,1) and (0,1,1). 

A perpendicular vector is (1,0,1) x (0,1,1) = (-1, -1, 1). To make this a 
unit vector we must divide by its magnitude, which is V3, so the unit vector 
perpendicular to (1,0,1) and (0,1,1) is (-1, -1, 1)/V3. 

Example 1.8 
What is the area of the triangle which has its vertices at the points P = (1,1,1), 
Q = (2,3,3) and R = (4,1, 2)? 

First construct two vectors that make up two sides of the triangle. The 
vector from P to Q is a = (1,2,2) and the vector from P to R is b = (3,0,1). 
The cross product of these vectors is a x b = (2,5, -6). The area of the triangle 
is then la x bl/2 = ../65/2 ::::l 4.03. 

1.3.1 Applications of the cross product 

Solid body rotation 

Suppose that a solid body is rotating steadily about an axis. What is the 
velocity vector of a point within the body? 

Consider a body rotating with angular velocity n (this means that in a 
time t the body rotates through an angle nt radians). Since there is a rotation 
axis, a vector U can be defined, with magnitude lUI = n and directed along 
the rotation axis. Since this vector could point in either direction, the following 
form of the right-hand rule is used to define the direction of U: a screw rotating 
in the same direction as the body moves in the direction of U. Alternatively, if 
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the fingers of the right hand point in the direction of the rotation, the thumb of 
the right hand points in the direction of n. This means that for a body which 
is rotating to the right, n points upwards (Figure 1.12). 

Fig. 1.12. Motion of a rotating body. 

Now consider the motion of a point at a position vector r, which makes 
an angle 9 with the rotation axis. The speed at which this point moves is nd, 
where d is the perpendicular distance from the point to the rotation axis. Since 
d = Irl sin 9 (Figure 1.12), the speed of motion is v = nlrl sin 9. Note that this 
is equal to In x rl. Now consider the direction of the motion. In Figure 1.12, 
where both nand r lie in the plane of the page, the direction of motion is 
into the page, perpendicular to both nand r and so in the direction of n x r. 
Therefore the velocity vector of the point at r is 

v = n x r, (1.5) 

since this vector has both the correct magnitude and the correct direction. 

Equation of a straight line 

The equation of a straight line can be written in terms of the cross product 
as follows. Suppose that a is the position vector of a particular fixed point on 
the line, and that U is a vector pointing along the line (Figure 1.13). Then any 
point r on the line can be reached from the origin by travelling first along the 
vector a onto the line and then some multiple of the vector u along the line: 

r = a + AU, (1.6) 
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where A is a parameter. This is referred to as the parametric form of the equa­
tion of a line. 

---------
---------

a 

o 

Fig. 1.13. The equation of a line is r = a + Au. 

To obtain a form of (1.6) that does not involve the parameter A, the term 
involving the vector u must be eliminated. This can be done by taking the 
cross product of (1.6) with u. This gives r x u = a x u. Since the vector a x u 
is a constant, it can be relabelled b, giving the second form for the equation of 
a straight line: 

r x u = b. (1.7) 

Physical applications 0/ the cross product 

There are many physical quantities that are defined in terms of the cross prod­
uct. These include the following: 

• A particle of mass m has position vector r and is moving with velocity v. Its 
angular momentum about the origin is h = m r x v. 

• A particle of mass m moves with velocity u in a frame which is rotating with 
angular velocity U. Due to the rotation, the particle experiences a sideways 
force called the Coriolis force, F = 2m u x U. Since the Earth is rotating, 
this force influences motion on the surface of the Earth. The effect deflects 
particles to the right in the northern hemisphere and is strongest for motions 
on large scales such as ocean currents and weather systems. 

• A particle with electric charge q moves with velocity v in the presence of a 
magnetic field B. This results in a force, called the Lorentz force, equal to 
q v x B. This is the force which is responsible for the operation of an electric 
motor. 
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1.4 Scalar triple product 

The scalar triple product of three vectors a, band c is defined to be a· (b x c). 
In fact the brackets here are unnecessary: (a· b) x c is meaningless since (a· b) 
is a scalar and so cannot be crossed with the vector c. Therefore the expression 
a . b x c is well defined. 

The formula for the scalar triple product in terms of the components of 
the three vectors a, b and c can be obtained using the formula for the cross 
product (1.4): 

The scalar triple product has a number of properties, listed below. The first 
four follow directly from (1.8). 

• The dot and the cross can be interchanged: 

a . b x c = a x b . c. 

• The vectors a, band c can be permuted cyclically: 

a . b x c = b . c x a = c . a x b. 

• The scalar triple product can be written in the form of a determinant: 

al a2 a3 

a . b x c = bi b2 b3 

CI C2 C3 

• If any two of the vectors are equal, the scalar triple product is zero. 
• Geometrically, the magnitude of the scalar triple product is the volume of 

the three-dimensional object known as a parallelepiped formed by the three 
vectors a, band c (Figure 1.14). This can be shown as follows. The area ofthe 
parallelogram forming the base is Ibx cl. The height is the vertical component 
of a, which is the magnitude of the component of a in the direction of b x c. 
This is la· b x ci/ib x cl, so the volume is the area of the base multiplied by 
the height, which is la· b x cl. Similarly, the volume of the tetrahedron made 
by the vectors a, b and c is la . b x c1/6. 
The scalar triple product of a, band c is often written [a, b, c]. This notation 

highlights the fact that the dot and the cross can be interchanged. 
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b 

Fig. 1.14. The volume of the object formed by the three vectors a, b and c is la·bx cl. 

Example 1.9 

Find the scalar triple product of the vectors (1,2,1), (0,1,1) and (2,1,0). 
First find the vector (0,1,1) x (2,1,0) = (-1,2,-2). Now dot this with 

(1,2,1), giving the answer 1. 

Example 1.10 

Show that if three vectors lie in a plane, then their scalar triple product is zero. 
If a, band c lie in a plane, then the vector b x c is perpendicular to the 

plane and hence perpendicular to a. Since the dot product of perpendicular 
vectors is always zero, it follows that a . b x c = 0. 

Example 1.11 

A particle with mass m and electric charge q moves in a uniform magnetic 
field B. Given that the force F on the particle is F = qv x B, where v is the 
velocity of the particle, show that the particle moves at constant speed. 

The equation of motion of the particle is written using Newton's second 
law, force equals mass times acceleration. The acceleration of the particle is 
the rate of change of the velocity, written v, so the equation of motion is 

qv x B = mv. 

Now taking the dot product of both sides of this equation with v, the scalar 
triple product on the left-hand side gives zero since two of the vectors are equal. 
Hence 

0= mv· v = mdd (v· v)/2 = m~ {lvI2 ) /2, 
t dt 

so the speed of the particle, lvi, does not change with time. 
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1.5 Vector triple product 

The vector triple product of three vectors is a x (b x c). The brackets are 
important here, since a x (b x c) :F (a x b) x c. Since only cross products are 
involved, the result is a vector. An alternative expression for a x (b x c) can 
be obtained by writing out the components. Since 

the first component of ax (b x c) is 

[a x (b x c)h = a2(btC2 - b2cd - a3(b3Ct - btC3) 

= bt(a2c2 + a3c3) - cI(a2b2 + a3b3)' 

By adding and subtracting the quantity at bl CI, this can be written 

[a x (b x c)h = bl (aici + a2C2 + a3c3) - CI (al bl + a2b2 + a3b3) 

= bla· c - CIa· b. 

Similar equations hold for the second and third components, so the vector triple 
product can be expanded as 

a x (b x c) = (a· c)b - (a· b)c. (1.9) 

From this result it also follows that 

(a x b) xc = -c x (a x b) = -(c· b)a + (c· a)b. (1.10) 

Example 1.12 
Under what conditions are a x (b x c) and (a x b) x c equal? 

By comparing (1.9) with (1.10), the two are equal if -(a· b)c = -(c· b)a. 
This can alternatively be written b x (a x c) = o. 

Example 1.13 
Find an alternative expression for (a x b) . (c x d). 

Since the dot and cross can be interchanged in a scalar triple product, 

(a x b) . (c x d) = a· (b x (c x d)) 

= a· «b· d)c - (b· c)d) 

= (a· c)(b . d) - (a· d)(b . c). 
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1.6 Scalar fields and vector fields 

A scalar or vector quantity is said be a field if it is a function of position. 
An example of a scalar field is the temperature inside a room; in general the 
temperature has a different value at different points in space, so the temperature 
T is a functi·on of position. This is indicated by writing T(r), where r is the 
position vector of a point in space, r = (x, y, z). Other examples of scalar fields 
include pressure and density. An example of a vector field is the velocity of the 
air within a room. 

In general, a scalar field T is three-dimensional, i.e. it depends on all three 
coordinates, T = T(x, y, z). Such fields are difficult to visualise. However, if 
the scalar field only depends on two coordinates, T = T(x,y), then it can be 
visualised by sketching a contour plot. To do this, the line T(x, y) = constant 
is plotted for different values of the constant. For example, consider the scalar 
field T(x, y) = x2 + y2. The contour lines are the lines x2 + y2 = constant, 
which are concentric circles centred at the origin, as shown in Figure 1.15(a). 

(a) 
y 

(b) 
y 

\ ! 
x x 

I \ 
Fig. 1.15. (a) Contours of the scalar field T(x,y) = x 2 + y2. (b) The vector field 
u(x, y) = (y, x). 

Vector fields in two dimensions can also be visualised by a sketch. In this 
case the simplest procedure is to evaluate the vector field at a sequence of points 
and draw vectors indicating the magnitude and direction of the vector field at 
each point. An example of this procedure is the drawing of wind speeds and 
directions on weather maps. For example, consider the vector field u(x, y) = 
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(y, x). At the point (1,0), u = (0,1), so at this point a vector of magnitude 1 
pointing in the y direction is drawn. Similarly, at (0,1), u = (1,0) and at (1,1), 
u = (1,1). By considering a few additional points, a sketch of the vector field 
can be built up (Figure l.15(b)). 

Summary of Chapter 1 

• A vector is a physical quantity with magnitude and direction. 
• A scalar is a physical quantity with magnitude only. 
• In Cartesian coordinates a vector can be written in terms of its components 

as either a = (aI, a2, a3) or a = aIel + a2e2 + a3e3, where el, e2 and e3 are 
unit vectors along the x-, y- and z-axes respectively. 

• The magnitude of the vector a is lal = Ja~ + a~ + a~. 
• The dot product or scalar product of a and b is a scalar, 

a· b = lallbl cosO = albl + a2b2 + a3b3. 

This can also be thought of as lal multiplied by the component of b in the 
direction of a. Applications of the dot product include the work done when 
moving an object acted on by a force and the equation of a plane. 

• The cross product or vector product of a and b is a vector, a x b, with 
magnitude lallbl sinO, perpendicular to a and b in a right-handed sense. In 
component form, 

The magnitude of a x b is lal multiplied by the component of b perpendicular 
to a, which is the area of the parallelogram made by a and b. Applications 
of the cross product include the equation of a straight line and the rotation 
of a rigid body. 

• The scalar triple product is a . b x c = a x b . c = b . c x a. 
• The vector triple product is a x (b x c) = (a· c)b - (a . b)c. 
• A scalar or vector quantity is a field if it is a function of position. 
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EXERCISES 

1.8 Find the equation of the straight line which passes through the points 
(1,1,1) and (2,3,5), (a) in parametric form; (b) in cross product 
form. 

1.9 Using vector methods, prove the sine rule, 

sin A sin B sin C 
a b c 

(1.11) 

and the cosine rule, 

(1.12) 

for the triangle with angles A, B, C and sides a, b, c in the figure 
below. 

c B a 

A c 
b 

1.10 (a) Show that the set of vectors and the operation of vector addition 
form a group. (The set of objects a, b, c, ... and the operation * form 
a group if the following four conditions are satisfied: (i) for any two 
elements a and b, a * b is in the set; (ii) (a * b) * c = a * (b * c); (iii) 
there is an element I obeying a * I = I * a = a; (iv) each element a 
has an inverse a-l such that a * a-l = a-I * a = I.) 
(b) Do the set of vectors and the dot product form a group? 
(c) Do the set of vectors and the cross product form a group? 

1.11 Simplify the following expressions: 
(a) la x bl 2 + (a· b)2; 
(b) a x (b x (a x b)); 
(c) (a - b) . (b - c) x (c- a); 
(d) (a x b) . (b x c) x (c x a). 

1.12 The vector x obeys the two equations x· a = 1 and x x a = b, where 
a and b are constant vectors. Solve these equations to find an ex­
pression for x in terms of a and b. Give a geometrical interpretation 
of this question. 
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1.13 Find the equation of the line on which the two planes r . a = 1 and 
r· b = 1 meet. 

1.14 (a) Express the vector a x b in the form aa + (3b + ,c, assuming 
that the vectors a, band c are not coplanar. 
(b) Hence find an expression for (a x b· C)2 that does not involve 
any cross products. 
(c) Hence find the volume of a tetrahedron made from four equilat­
eral triangles with sides of length 1. 

1.15 A particle of mass m at position r and moving with velocity 11 is 
subject to a force F directed towards the origin, F = - f(r)r. Show 
that the angular momentum vector h = m r x 11 is constant. 

1.16 Sketch the scalar field T(x, y) = x 2 - y. 
1.17 Sketch the vector field u(x,y) = (x + y, -x). 
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Line, Surface and Volume Integrals 

2.1 Applications and methods of integration 

This chapter is concerned with extending the concept of integration to vector 
quantities and to three dimensions. Before embarking on these more compli­
cated types of integration, however, it is useful to review the concept of inte­
gration and some standard techniques for evaluating integrals. It is important 
that the reader is familiar with these methods, since this will be assumed in 
the following sections. 

2.1.1 Examples of the use of integration 

Example 2.1 
A rod of length a has a mass per unit length p(x) that varies along the length 
of the rod according to the formula p( x) = 1 + x. What is the total mass of the 
rod? 

Consider dividing the rod into N small sections, each of length dXi. The 
mass of each section is p(Xi)dxi. The total mass M of the rod is the sum of the 
masses of all these sections, 

P. C. Matthews, Vector Calculus
© Springer-Verlag London Limited 1998
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N 

M = L P(Xi) dXi. 
i=l 

The integral of p(x) is defined to be the limit of this sum as N -t 00: 

la N 

p(x) dx = lim L p(xi)dxi. 
o N ..... oo i=l 

The total mass M is therefore 

M= la1+Xdx=[x+x2/2]~=a+a2/2. 

Example 2.2 
A vehicle starts from rest and accelerates uniformly up to a speed of 10 m/s 
over a time of 20 s. What is the total distance travelled during this time? 

The vehicle starts from rest and reaches a speed of 10 m/s after 20 s, so 
its speed at a time t is v(t) = t/2 m/s. In a small time interval dt the distance 
travelled is v(t) dt = t/2 dt. The total distance S travelled in the total time of 
20 s is therefore 

2.1.2 Integration by substitution 

In this method for the evaluation of integrals, a complicated integral is trans­
formed to a simpler one by a substitution or change of variable. In some cases 
the choice of the change of variable is easy to find, but in others it can be 
difficult to spot the most sensible substitution. Often, there is more than one 
possible substitution. Three examples of the application of this method are 
given below. 

Example 2.3 

Evaluate J x/~ dx. 
Here, the difficulty is caused by the ~ in the denominator. This sug­

gests that the appropriate substitution is u = 1 - x, so x = 1 - u and 
dx = -duo The integral becomes J -(1 - u)/fodu = J -l/fo + fodu = 
_2U1/ 2 + 2U3/ 2 /3+c, where c is an arbitrary constant of integration. The result 
can be expressed in terms of the original variable x as -2vr=x (2 + x)/3 + C. 
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Example 2.4 

Evaluate J VI - x 2 dx. 
For integrals involving the quantity v"f=X2, the appropriate substitution is 

x = sinO (or x = cosO, which would do equally well). With this choice, VI - x 2 

becomes cos 0 and dx = cos 0 dO. The integral then simplifies to J cos2 0 dO. 
Integrals of this type, which occur very frequently, are evaluated using the 
trigonometric formula cos2 0 = (1 + cos 20)/2, so the value of the integral is 
(20 + sin 20) /4 + c. In terms of x this result can be written 

J ~ dx= (sin-lx+x~)/2+c. 

Example 2.5 
Evaluate J; x 2Vl - x 2 dx. 

Again the substitution x = sin 0 is used. Since the limits of integration are 
given, these can also be expressed in terms of the new variable O. When x = 0, 
0=0 and when x = 1,0 = 7r/2, so the integral becomes Jo7r/2 sin2 0cos2 0dO. 

This can be simplified to Jo7r / 2 1/4 sin2 20 dO = Jo7r/21/8 (1- cos 40) dO = 7r/16. 

2.1.3 Integration by parts 

Integration by parts is an important and useful technique, used when an integral 
involves a product of two terms. The integration by parts formula is derived 
from the product rule for differentiation. Given two functions of x, u(x) and 
v(x), the rule for the derivative of their product is 

d(uv) dv du 
~=udx+vdx' (2.1) 

Integrating this expression and rearranging the terms gives the integration by 
parts formula: 

u - dx = u v - v - dx. J dv J du 
dx dx 

(2.2) 

As with the case of integration by substitution, some experience is helpful in 
determining whether this formula will be useful in evaluating an integral, and 
exactly how to split the integral into the two parts. In general, it is best to 
choose u to be a function which becomes simpler when differentiated. The 
following two examples illustrate the use of the method of integration by parts. 
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Example 2.6 
Evaluate J xsinxdx. 

Vector Calculus 

In this example we choose u = x, dv/dx = sinx, so v = -cosx. Applying 
the formula (2.2) gives 

J xsinxdx = -xcosx + J cosxdx = -xcosx + sinx + c. 

Note that it is essential to make the right choice for u and v. If we had chosen 
u = sin x, dv / dx = x then the resulting integral would have involved x2 cos x 
which is more complicated than the integral we started with. 

Example 2.7 

Evaluate J exp ax cos x dx. 
For this case two applications of (2.2) are necessary. Choosing u = exp ax, 

dv/dx = cosx, 

J expaxcosxdx = expaxsinx - J aexpaxsinxdx + c. 

Now apply (2.2) to the integral on the r.h.s. with u = a exp ax, dv/dx = sinx: 

J expax cos x dx = expaxsinx + a exp ax cos x - J a2 exp ax cos x dx + c. 

At this stage it may appear that no progress has been made, since the original 
integral has reappeared on the right-hand side. However, by rearranging the 
terms, 

(1 + a2 ) J expaxcosxdx = expaxsinx + aexp ax cos x + c 

and so the value of the original integral is 

J expax cos x dx = (expax sinx + aexp ax cos x + c)/(l + a2 ). 

In this case the choice of u and v does not matter: the result can also be obtained 
by choosing u = cos x, dv / dx = exp ax, provided that a similar choice, with u 
chosen to be the trigonometric term and dv / dx chosen to be the exponential 
term, is made for the second application of (2.2). 
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2.2 Line integrals 

2.2.1 Introductory example: work done against a force 

As an introductory example of a line integral, consider a particle moving along 
a curved path C through space. The particle is acted on by a force F(r), which 
is a vector field. What is the total amount of work done as the particle moves 
along the curve C? 

To answer this question, first divide the curve C into a large number of small 
pieces. Consider the work done when the particle moves from the position r 
to r + dr (Figure 2.1). On this small section of the curve C, the work done is 
- F . dr. The total amount of work done W as the particle moves along C is 
therefore the sum of the contributions from all the small segments of the curve, 

N 

W = L -Fi ·dri. 
i=l 

The line integral of F along the curve C is defined by 

N 1 F . dr = lim L Fi . dri. 
c N-+oo 

i=l 

The vector dr is often referred to as a line element. 

(2.3) 

(2.4) 

Note that the direction of the integral along the curve C must be specified. 
If the direction of the curve is reversed, all the line elements dr are reversed 
and so the value of the integral is multiplied by -l. 

c o 

Fig. 2.1. A small section of the curve C is represented by the line element dr. 
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2.2.2 Evaluation of line integrals 

Line integrals are evaluated by using a parameter, t for example, together with 
a formula giving the value of the position vector r in terms of t. This can be 
regarded as an example of integration by substitution, since 

1 F . dr = J F . dr dt. 
e dt 

(2.5) 

For example, suppose that the curve C is given in terms of t by 

x = t, y = t, z = 2t2 , (2.6) 

and t lies in the range 0 S t ::; 1. Then as t varies between 0 and 1, the position 
vector r = (x, y, z) moves along a curve C in space connecting the points 
(0,0,0) and (I, I, 2). Suppose that the vector field F is given by F = (y, x, z). 
To evaluate the line integral, both F and dr /dt must be written in terms of t. 
Substituting (2.6) into the expression for F gives F = (t, t, 2t2 ), and 

dr (dX dy dZ) 
di= dt'dt'dt = (l,l,4t). 

The line integral can now be evaluated: 

1 F· dr = t (t, t, 2t2 ) . (1,1, 4t) dt = {I 2t + 8t3 dt = 3. 
e io io 

In this first example, the parametric form of the curve C was given. If the 
curve C is given in a different form, then a parametric form must be constructed 
so that the line integral can be evaluated. For example, suppose now that 
F = (y, x, z) as before, but C is the straight line connecting the origin to the 
point (1,2,3). The way in which the curve C is parametrised is not unique, so 
we can make the arbitrary choice x = t. Since x varies between 0 and 1 along 
the line, this is also the range for t. The end point of C is (1,2,3), so y and 
z must be given by y = 2t, z = 3t, and so dr = (1,2,3) dt. The value of the 
integral is therefore 

fc F . dr = 11 (2t, t, 3t) . (1,2,3) dt = 11 13t dt = 6.5. 

Line integrals sometimes occur over curves that are dosed, i.e. when the 
starting point and end point of the curve are equal. In this case the integral is 
written using the symbol f, which indicates that the integral is along a closed 
curve. For example, consider the integral of F = (y, x, z) around the closed 
curve given by x = cosO, y = sinO, z = 0, where 0::; 0 S 211'. Here, as 0 varies, 
the curve C describes a circle in the x, y plane. The line element dr is expressed 
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in terms of the parameter 0 as dr = (dx, dy, dz) = (- sin 0, cos 0, 0) dO, so the 
value of the line integral is 

J F.dr 
Ie 1027r

(SinO, cosO, 0) . (-sinO,cosO,O)dO 

r27r io - sin2 0 + cos2 0 dO 

r27r io cos 20 dO = [1/2 sin20]~7r = 0. 

The line integral of a vector field F around a closed curve C is often called the 
circulation of F around C. 

Example 2.8 
Evaluate the line integral of the vector field u = (xy,z2,x) along the curve 
given by x = 1 + t, Y = 0, z = t 2 , ° ::; t ::; 3. 

First write u and dr in terms of t: u = (0, t4 , 1 + t), dr = (1,0, 2t) dt. The 
value of the integral is therefore 

f F. dr = f3 (0, t\ 1 + t) . (1,0, 2t) dt = f3 2t + 2t2 dt = [t2 + 2t3 /3]~ = 27. ie io io 

Example 2.9 

Find the line integral of F = (y, -x, 0) along the curve consisting of the two 
straight line segments (a) y = 1, 0::; x ::; 1, (b) x = 1, 1 ::; y ::; 2. 

Here, the contributions from the two line segments must be taken separately. 
On section (a), using x as the parameter, we have 

10 1 
(1, -x, 0) . (dx, 0, 0) = 1. 

Similarly on section (b) we have 

/2 (y, -1,0). (O,dy,O) =-1. 

Therefore the total value of the integral is 0. 

Example 2.10 

Find the circulation of the vector F = (y, -x, 0) around the unit circle, x2 + 
y2 = 1, z = 0, taken in an anti clockwise direction. 

The circle is written in terms of a parameter 0 as x = cos 0, y = sin (}, z = 0, ° ::; 0 ::; 271'. The value of the integral is 

i F. dr = r27r 
(sinO, - cosO,O) . (- sinO, cos 0, 0) dO = {21f -1 dO = -271'. 

e io io 
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2.2.3 Conservative vector fields 

A vector field F is said to be conservative if it has the property that the line 
integral of F around any closed curve C is zero: 

1. F· dr = o. tc (2.7) 

An equivalent definition is that F is conservative if the line integral of F 
along a curve only depends on the endpoints of the curve, not on the path 
taken by the curve, 

r F· dr = j. F· dr 
lC I C 2 

(2.8) 

where C1 and C2 are any two curves that have the same endpoints but different 
paths (Figure 2.2). 

B -------.,-

A 

Fig. 2.2. A vector field is conservative if the line integrals along two different curves 
C 1 and C2 from A to B are equal. 

The equivalence of these two definitions can be demonstrated as follows. 
Consider two curves C1 and C2 that start from the point A and end at the 
point B (Figure 2.2). Let C be the closed curve that starts from the point A, 
follows the curve C1 to the point B and then follows the curve C2 in the reverse 
direction to return to A. Then 

1 F. dr = j. F· dr - r F· dr tc C 1 lC2 

(2.9) 

since the effect of the reversed direction of the integral along C2 is to change 
the sign of the integral. From this equation it follows that if the integral around 
C is zero, then the integrals along C1 and C2 are equal, and similarly, if the 
integrals along C1 and C2 are equal, then the integral around C is zero. 
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Conservative vector fields are of great importance, since many physical ex­
amples of vector fields are conservative. Consider for example the Earth's grav­
itational field, g. A particle of mass m experiences a force mg, so the work 
done in moving the particle along a path C from point A to point B is just 
minus the line integral of mg along C. However, we know physically that the 
work done only depends on the position of the points A and B - in fact the 
work done is simply the difference in the potential energy of the particle at A 
and B. Equivalently, if the particle is moved around but returns to its starting 
point, the total work done is zero. Therefore, the Earth's gravitational field is 
an example of a conservative vector field. 

Example 2.11 

By considering the line integral of F = (y, x 2 - X, 0) around the square in the 
x, y plane connecting the four points (0,0), (1,0), (1,1) and (0,1), show that 
F cannot be a conservative vector field. 

This line integral consists of four parts (Figure 2.3). On the first section 

y 

x 

Fig. 2.3. The line integral around the square is split into four straight sections. 

C1 , from (0,0) to (1,0), dr = (dx, 0, 0) and y = ° so F = (0, x 2 - x, 0) and 
F·dr = 0. On the second section C2 , dr = (O,dy,O) and x = 1 so F = (y,O,O) 
and again F . dr = 0. On the third section C3 , dr = (dx, 0, 0) and y = 1 so 
F = (1, x 2 - x, 0) and the contribution to the line integral is 

[0 Idx =-1. 

Finally, on the fourth section C4 of the square F . dr = ° again, so the total 
value of the integral is -1. Since the integral around the closed circuit is non­
zero, F cannot be conservative. 
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2.2.4 Other forms of line integrals 

The line integral Ie F· dr is the most important type of line integral, but there 
are two other forms of the line integral which can occur. These are 

and fa F x dr 

where ¢ is a scalar field and F is a vector field. Note that in each of these cases 
the result of the integral is a vector quantity. These integrals can be evaluated 
using a parameter, as in the following examples. 

Example 2.12 
Evaluate the line integral 

fax + y2 dr, 

where C is the parabola y = x 2 in the plane z = 0 connecting the points (0,0,0) 
and (1,1,0). 

The curve can be written in terms of a parameter t as x = t, Y = t 2 , Z = 0, 
o ~ t ~ 1, so dr = (1, 2t, 0) dt. The value of the integral is therefore 

fax + y2 dr = 101 (t + t4 )(1, 2t, 0) dt 

= el (11 
t + t4 dt) + e2 (11 

2t2 + 2t5 dt) = 0.7el + e2. 

Example 2.13 
Evaluate the line integral 

fa F x dr, 

where F is the vector field (y, x, 0) and C is the curve y = sin x, z = 0, between 
x = 0 and x = 1r. 

The curve can be written as x = t, y = sin t, Z = 0, 0 ~ t ~ 1r. Then 
F = (sin t, t, 0) arid dr = (1, cos t, 0) dt, so F x dr = (0,0, sin t cos t - t) dt and 
the integral is 

fa F x dr = e3107r sin t cos t - t dt = 1/2 [sin2 t - t2]~ e3 = _7r2 /2 e3. 
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EXERCISES 

2.1 Evaluate the line integral 

fa F· dr where 2 F = (5z ,2x, x + 2y) (2.lO) 

and the curve C is given by x = t, Y = t2 , Z = t2 , O:S t:S 1. 
2.2 Evaluate the line integral of the same vector field F given in (2.10) 

along the straight line joining the points (0,0,0) and (1,1,1). Is F 
a conservative vector field? 

2.3 Find the line integral of the vector field u = (y2, x, z) along the curve 
given by z = y = eX from x = 0 to x = 1. 

2.4 Find the line integral fc r x dr where the curve C is the ellipse 
x 21a2 + y21b2 = 1 taken in an anticlockwise direction. What do you 
notice about the magnitude of the answer? 

2.3 Surface integrals 

2.3.1 Introductory example: flow through a pipe 

Suppose that fluid flows with velocity u through a pipe. What is the total 
volume of fluid passing through the pipe per unit time (Figure 2.4)? This 

Fig. 2.4. Fluid flows with velocity u along a pipe. The rate at which it crosses the 
surface S at the end of the pipe is an example of a surface integral. 

volume flow rate is often called the flux of fluid through the pipe, or the flux 
of fluid across the surface S that forms the end of the pipe. We will consider 
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this question in several different cases, beginning with the simplest case and 
progressing to more complicated examples. 

Suppose first that the pipe has cross-sectional area A and that the velocity 
u, which in general can be a function of space and time, is a constant and is 
directed parallel to the walls of the pipe, with speed lui = Uo . In this case, 
the fluid moves along the pipe as if it were a solid block. In a time t, the fluid 
moves a distance Uot, so a 'block' of fluid of volume UotA emerges from the 
end of the pipe. The flow rate Q, or flux, of fluid through the pipe is therefore 
this volume divided by the time t, giving Q = UoA. 

dy 
u 

Fig. 2.5. Enlargement of a small surface element dS forming part of the surface S. 

Now suppose that the flow is again directed parallel to the walls of the 
pipe but that the speed of the flow depends on the position within the pipe, so 
lui = Uo(x,y), and that the pipe has a square cross-section with the walls at 
x = 0,1 and y = 0,1. Now consider a small surface element with area dB on 
the surface B, which is a small rectangle with sides of length dx and dy located 
at the point (x,y) on the surface B, so that dB = dxdy (Figure 2.5). Following 
the argument of the previous paragraph, the flux dQ of fluid across this surface 
element dB is dQ = Uo(x,y)dB = Uo(x,y)dxdy. To calculate the total flux Q 
across the surface B, we need to add up the contributions from all the small 
surface elements dB. This sum of contributions becomes an integral, but since 
the surface is two-dimensional the resulting integral is a surface integral or 
double integral, representing integration in both the x and y directions: 

Q = lis Uo(x,y)dB = lis Uo(x,y)dxdy. (2.11) 

In the above example, the fluid flow direction is perpendicular to the surface 
B. Consider nOw the case where the vector field u and the surface B are both 
arbitrary. In general, B may represent a curved surface. Again we consider a 
small surface element dB (Figure 2.6) and compute the flux of u across dB. Now 
if u is perpendicular to dB, this flux is just luldB, but if u is not perpendicular 
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n 

Fig. 2.6. The unit normal vector n is perpendicular to the surface element dS. 

to dS, only the component of u perpendicular to dS contributes to the flux 
across dS. To extract this component it is necessary to introduce a normal 
vector n to the surface dS, with the properties that n is perpendicular to dS 
and that n is a unit vector, Inl = 1. The component of u perpendicular to 
dS is then the component of u in the direction of n, which is just u . n (see 
Section 1.2), so the flux across the surface element dS is u . n dS. The total 
flux across the surface S is given by the surface integral 

Q = lis u . n dS = lis u . n dx dy. 

Note that the direction of the normal vector n has not been uniquely spec­
ified: the vector n could have been chosen to point in the opposite direction 
in Figure 2.6, and this would change the sign of the answer. Therefore the 
direction of n must be specified when a surface integral is written down. 

Surface integrals often occur over surfaces which are closed. In this case, the 
normal to the surface which points outward is used (Figure 2.7). To indicate 
that the surface is closed, a circle is sometimes drawn through the integral, in 
a similar manner to the notation used for line integrals around closed curves: 

fJ u ·ndS. 
5 

2.3.2 Evaluation of surface integrals 

Surface integrals can be evaluated by carrying out two successive integrations. 
Consider first the evaluation of (2.11) where S is the square surface given by 
o ::; x ::; 1, 0 ::; y ::; 1. The surface integral is then 

Q = lis Uo(x,y)dS = 11 11 Uo{x,y)dxdy. 
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n 

n 

s n 

Fig. 2.7. For a closed surface, the convention is that the normal points outward. 

There is some potential ambiguity here, since it is not immediately clear which 
of the integral signs refers to the x integration and which to the y integration. 
The convention adopted is that the integrals are 'nested', so that the first 
integral sign represents the y integral and the second one represents the x 
integral. The double integral is then interpreted as 

It is also assumed that the inner integral, the x integral in the above equation, 
is to be evaluated first. For example, suppose that Uo(x, y) = (x - x 2 )(y _ y2). 

The inner, x, integral is evaluated first, and within this inner integral y is 
regarded as a constant. Carrying out the first integral gives 

Q 101 101 
(x - x 2)(y - y2) dx dy 

10 1 
[x2 /2 - x 3 /3]~ (y - y2) dy 

t 1/6 (y - y2) dy . 
.fo 

The double integral has now been reduced to a single integral which can be 
evaluated in the usual way: 

Consider now the case where the surface is circular. In the original example 
of pipe flow, this corresponds to a cylindrical pipe. If the surface is circular, it 
is best to use polar coordinates to evaluate the integral. Polar coordinates (r,8) 
are related to Cartesian coordinates (x, y) by x = r cos 8, y = r sin (I. The angle 
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o is measured in radians and ranges from 0 to 27T. The area element dS can be 
computed by considering a small angle dO and a small change in radius dr as 
shown in Figure 2.8. If dr and dB are both small then the corresponding area 

dS rde 

dr 

Fig. 2.8. The area element dS in polar coordinates. 

element dS is almost rectangular, with length dr in the r direction and r dB in 
the 0 direction, so dS = r dB dr. Suppose now that the radius of the surface S 
is 1 and that Uo = 1 - r2. The value of the surface integral is then 

rr t r27r 

Q = lls UodS = lo lo (1- r2)r dB dr. 

The inner, B, integral is carried out first, with r temporarily regarded as a 
constant. Since there is no dependence on B in the integral, this inner integral 
just gives a factor of 27T, so 

Finally, consider the case where the surface S is curved. The surface can 
be written in terms of two parameters, v and w, so that a position vector r 
lying in the surface is written r = r(v, w). Now consider a small change inthe 
value of v, to v + dv. The vector r(v + dv, w) also lies on the surface, so the 
difference between these two vectors, r(v + dv, w) - r(v, w) = (ar /av) dv must 
be a vector lying in, or tangent to, the surface, and similarly for the vector 
(ar/aw) dw. To evaluate the surface integral we need an expressions for ndS, 
but we know from Section 1.3 that this is simply the cross product of the two 
vectors, since the cross product of two vectors gives a vector perpendicular to 
both and with a magnitude equal to the area of the parallelogram created by 
the two vectors. Therefore the surface integral can be written as 

r r u. n dS = II u. ar x ar dv dw. 
lls lls av aw 

For example, consider the integral of the vector field u = (x, z, -y) over the 
curved surface of the cylinder x 2 + y2 = 1 lying between z = 0 and z = 1. The 
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z 

x 

Fig. 2.9. A point on the cylindrical surface x 2 + y2 

parameters z and (). 
1 can be denoted by the 

two parameters describing the surface are the height z and the angle 0 around 
the cylinder (Figure 2.9). In terms of these parameters the position vector is 
r = (x, y, z) = (cos 0, sin 0, z), so 

or . 
00 = (- sm 0, cos B, 0), 

or az = (0,0,1) 

and 
or or 
00 x az = (cos 0, sin 0,0). 

The value of the integral is therefore 

JIs u·ndS 

Example 2.14 

11 127r (cos 0, z, - sin 0) . (cos 0, sin 0,0) dO dz 

t r27r 
io io cos2 0 + z sin 0 dO dz 

11 1rdz = 1r. 

Evaluate the surface integral of u = (y, x2 , Z2), over the surface S, where S is 
the triangular surface on x = 0 with y 2: 0, z 2: 0, y + z ~ 1, with the normal 
n directed in the positive x direction. 

In this example n = (1,0,0) and so u . n = y. When the surface is not 
rectangular, care must be taken when setting the limits of the integration. If 
we choose to do the z integral first, then for any given value of y, the range 
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z 

o 
o y 

Fig. 2.10. For each value of y, z runs from the line z = 0 up to the line y + z = 1. 

of values for z is 0 ~ z ~ 1 - y (Figure 2.10). The outer y integral then has 
limits of 0 and 1. This corresponds to covering the triangular area with vertical 
strips. The value of the integral is 

101 101
-

V Y dz dy = 101 [yz]~-V dy = 101 
Y - y2 dy = 1/6. 

The integral could also have been evaluated by doing the y integral first, in 
which case the limits for y are 0 ~ y ~ 1 - z and the limits for z are 0 S z S 1. 
This ordering corresponds to covering the region of integration in Figure 2.10 
with horizontal strips. The value of the integral is the same: 

[1 [1-Z ( [1 
10 10 y dy dz = 10 [y2 /2]~-Z dz = 10 (1 - Z)2 /2 dz = 1/6. 

Example 2.15 

Find the surface integral of 'U = r over the part of the paraboloid z = 1-x 2 _ y2 

with z > 0, with the normal pointing upwards. 
Since the surface is curved, a description of the surface in terms of two 

parameters is needed. Using simply x and y, a point on the surface is (x, y, 1-
x 2 - y2) and the two tangent vectors in the surface, obtained by differentiating 
with respect to x and y, are (1,0, -2x) and (0,1, -2y). Taking the cross product 
of these two vectors, the quantity n dS is (2x, 2y,_ 1) dx dy. Note that this has 
a positive z component, so is directed upwards as required. Taking the dot 
product with 'U gives 'U . n dS = 2X2 + 2y2 + z dx dy = 1 + x 2 + y2 dx dy. The 
limits on the integral are determined in a similar manner to Example 2.14. The 
edge of the surface is given as z = 0, which is the circle x2 + y2 = 1. Choosing 
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Fig. 2.11. For any value of x, y ranges from the lower half of the circle x 2 + y2 = 1 
to the upper half of the circle. 

to do the y integral first, the y integration is carried out with x fixed, so the 
range of values for y is -J1 - x2 < y < J1 - x 2 (Figure 2.11). The range of 
values for x is -1 < x < 1. The value ofthe integral is 

j1j~ 1 + x 2 + y2 dy dx = 
-1 -~ 

j1[ ]~ Y + x 2y + y3/3 dx -1 -~ 

[11 (8/3 + 4/3 x 2 ) ~ dx 

47r /3 + 7r /6 = 37r /2, 

where the final integral has been evaluated using the results of Section 2.1.2. 

2.3.3 Other forms of surface integrals 

The surface integral of u . n is the most important type of surface integral. 
However, as in the case of line integrals, other types of surface integrals can be 
defined, for example 

Ilsf ndS and lis v x ndS, 

where f is a scalar field and v is a vector field. These integrals are evaluated 
using the methods of the previous section. 
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Example 2.16 

If S is the entire x, y plane, evaluate the integral 

I = lis e-
X2

-
y2 dS, 

by transforming the integral into polar coordinates. 

39 

In polar coordinates (r, B), x 2 + y2 = r2 and dS = r dB dr. The ranges of 
the variables to cover the whole plane are 0 ::; r < 00 and 0 ::; B < 211", so 

1= 100 121r e-r\ dB dr = 100 27re- r \d1· == 11" [_e-r2]~ == 11". 

This answer can be used to show that J~oo e-:r2 dx = y1f, a result which cannot 
be obtained by standard methods of integration. 

2.4 Volume integrals 

2.4.1 Introductory example: mass of an object with 
variable density 

Suppose that an object of volume V has a density p. If p is a constant, the 
mass M of the object is simply M == p V. Now suppose that the object has a 
density which is a function of position, p == p( r). What is the total mass of the 
object? 

The argument proceeds in a similar manner to the examples of line and 
surface integrals. The volume V is divided into N small pieces with volumes 
1511;, i == 1, ... ,N, which are called volume elements. Within each of the volume 
elements the density is approximately constant (assuming that p is a continuous 
function of position) and so the mass Mi of the volume element at position ri 
is Mi = p(ri) 1511;. The total mass of the object is the sum of the masses of all 
the volume elements, 

N 

M = L p(ri) 1511;. 
i=1 

The volume integral of p over the volume V is defined to be the limit of this 
sum as N -+ 00: 

N 

({{ pdV == lim L p(ri) 1511;. JJJv N~oo 
i=1 

(2.12) 
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Volume integrals can also be used to compute the volumes of objects, in which 
case p = 1 in the above example. Note that volume integrals usually occur as 
integrals of scalar quantities. However, the volume integral of a vector field u, 

Iii udV 
can be defined in a similar way. 

2.4.2 Evaluation of volume integrals 

Volume integrals are evaluated by carrying out three successive integrals. The 
same rule for the evaluation of the triple integral applies as for double integrals: 
the inner integral is evaluated first. The main difficulty in this process is in 
determining the correct limits for the integrals when the shape of the object is 
complicated. It is often helpful to sketch the region of integration in order to 
find the limits on the integrals. Also useful is the rule that in general, the limits 
on an integral can depend only on the variables of integrals that lie outside that 
integral. For example, if the integrals are evaluated in the order x, y, z then 
the limits on the y integral may depend on z but not on x. 

Example 2.17 
A cube 0 ~ x, y, z, ~ 1 has a variable density given by p = 1 + x + y + z. What 
is the total mass of the cube? 

The total mass is 

M IlipdV 
= 1111 11 1 + x + y + zdxdydz 

1111 [x+x2/2+xy+xz]~ dydz 

= 1
1
1\3/2+ Y +Z)dY dz 

11 [3y/2 + y2/2 + yz]~ dz 

11 (2 + z)dz 

= [2z + z2 /2]~ = 5/2. 
Note that in this example the integrals were carried out in the order x, y, z, but 
any other choice of ordering is equally valid. 
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Example 2.18 
Find the volume of the tetrahedron with vertices at (0,0,0), (a, 0, 0), (0, b, 0) 
and (0,0, c). 

z 

c 

a x 

Fig. 2.12. For any given values of x and y, z ranges from the plane z = 0 up to the 
plane x/a + y/b + z/c = 1. This is indicated by the vertical column. 

A sketch of the tetrahedron is shown in Figure 2.12. The faces of the tetra­
hedron are the planes x = 0, y = 0, z = ° and the plane which passes through 
the three points (a, 0, 0), (0, b, 0) and (0,0, c). The equation of this plane is 
x/a + y/b + z/c = 1, which can be deduced from the general formula for the 
equation of a plane (1.3). Suppose that we choose to do the z integral first. 
This integral is carried out for fixed values of x and y, so the range of z is 
from the plane z = ° to the plane z = c(l - x/a - y/b). Choosing to do the 
y integral next, y ranges from ° to the line that passes through (a, 0, 0) and 
(O,b,O), which is y = b(l- x/a). Finally the range of x is from ° to a. The 
volume V is therefore 

V = l
a lb(l-x/a) l c(l-x/a- Y/b) 

dzdydx 
000 r (btl-x/a) 

10 10 c(l - x/a - y/b) dydx 

= c r [y(l - x/a) _ y2/2b]b(1-x/a) dx 10 0 

= cb r (1 _ x/a) 2 dx = abc. 
2 10 6 

Note that this result is consistent with the formula for the volume of a tetra­
hedron given in terms of the scalar triple product in Section 1.4. 
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Summary of Chapter 2 

• There are several different types of integral, but each one should be inter­
preted as the limit of a sum. 

• A line integral, written 

f F.dr, lc 
represents the sum of the elements F· dr along the curve C. Applications 
include the total amount of work done when a particle moves in the presence 
of a force that is a function of position. 

• Line integrals are evaluated by writing the vector F and the curve C in terms 
of a parameter, t. 

• If the line integral of F around any closed curve is zero, F is said to be 
conservative. 

• The surface integral, 

lis u· ndS, 

represents the flux of u across the surface S; this can be thought of as the 
volume of fluid flowing with velocity u across the surface S per unit time. 
The normal vector n is a unit vector that is perpendicular to the surface S. 

• Surface integrals are evaluated by carrying out two successive integrations. 
• The volume integral, 

represents the sum of p dV over all the volume elements dV contained within 
V. If p is the density, the volume integral gives the total mass of the object 
with volume V. 

• Volume integrals are evaluated by carrying out three successive integrations. 
Care must be taken over setting the limits of the integrals and over the order 
in which the three integrals are evaluated. 

• In both surface and volume integrals, the inner integral is evaluated first. 
• There are other forms of line, surface and volume integrals, but the forms 

displayed above are the most commonly occurring. 
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EXERCISES 

2.5 Evaluate the surface integral of u = (xy,x,x + y) over the surface 
S defined by z = 0 with 0 ::; x ::; 1, 0 ::; y ::; 2, with the normal n 
directed in the positive z direction. 

2.6 Find the surface integral of u = r over the surface of the unit cube 
o ::; x, y, z ::; 1, with n pointing outward. 

2.7 The surface S is defined to be that part of the plane z = 0 lying 
between the curves y = x 2 and x = y2. Find the surface integral of 
u . n over S where u = (z, xy, x 2) and n = (0,0,1). 

2.8 Find the surface integral of u . n over S where S is the part of the 
surface z = x + y2 with z < 0 and x > -1, u is the vector field 
u = (2y + x, -1,0) and n has a negative z component. 

2.9 Find the volume integral of the scalar field ¢> = x 2 + y2 + z2 over the 
region V specified by 0 ::; x ::; 1, 1 ::; Y ::; 2, 0 ::; z ::; 3. 

2.10 Find the volume of the section of the cylinder x 2 + y2 = 1 that lies 
between the planes z = x + 1 and z = -x - l. 

2.11 A circular pond with radius 1 m and a maximum depth of 1 m has 
the shape of a paraboloid, so that its depth z is z = 1 - x 2 _ y2. 

What is the total volume of the pond? How does this compare with 
the case where the pond has the same radius and depth but has the 
shape of a hemisphere? 



3 
Gradient, Divergence and Curl 

3.1 Partial differentiation and Taylor series 

This chapter introduces important concepts concerning the differentiation of 
scalar and vector quantities in three dimensions. These concepts form the core 
of the subject of vector calculus. In this preliminary section, the methods of 
partial differentiation and Taylor series are reviewed. 

3.1.1 Partial differentiation 

Consider a scalar quantity 1 which is a function of three variables, so 1 = 
1 (x, y, z). Then the partial derivative of 1 with respect to x is defined to be the 
derivative of 1 with respect to x, regarding y and z as constants. To indicate 
that 1 is a function of more than one variable, the partial derivative is written 
using a curly d, 8. More formally, the definition of the partial derivative is 

81 = lim I(x + r5x, y, z) - I(x, y, z). 
8x ox-+o r5x 

(3.1) 

Second derivatives, such as 82 1/ 8x2 and mixed derivatives, such as 821/ 8y8x 
can also be defined: the mixed derivative means that 1 is differentiated with 
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respect to x regarding y as a constant, and then differentiated with respect to 
y regarding x as a constant. An important property of this mixed derivative, 
or cross-derivative, is that the order of the two derivatives does not matter, i.e. 

82 j 82 j 
8x8y - 8y8x' 

(3.2) 

provided that these second partial derivatives exist and are continuous. 
The main applications of partial differentiation are in the following sections. 

One additional application is in finding the maximum or minimum of a function 
of more than one variable: when a function is at a maximum or a minimum, 
all of its partial derivatives are zero. 

Example 3.1 
The function j (x, y, z) is defined by j = x2 + xy sin z - y z. Find the partial 
derivatives of 1 with respect to x, y and z and verify the result (3.2) that the 
order of partial differentiation does not matter. 

Differentiating 1 with respect to x, y and z in turn gives the three partial 
derivatives 

81 2 . 
8x = x +ysmz, 

8j . 
- =XSlnz-z, 
8y 

81 
8z = xy cos z - y. 

Differentiating 8118y with respect to x gives 

821 8 (81) . 
8x8y = 8x 8y = smz, 

and similarly, differentiating 811 8x with respect to y gives 

821 8 (81) . 
8y8x = 8y 8x = smz. 

In the same way it can be confirmed that the ordering of the cross-derivatives 
in x and z or in y and z does not matter. 

Example 3.2 
A rectangular box has height a, length b and breadth e, and is open at the top. 
If the volume of the box is fixed, deduce how a, b and e should be related to 
minimise the surface area of the box. 

Let the fixed volume of the box be V, so abe = V. Two sides of the box have 
area ab, two have area ae and the base has area be, so the total surface area is 
A = 2ab + 2ae + be. Using the constraint abe = V, a can be eliminated so that 
A = 2V Ie + 2V Ib + be. At a maximum or a minimum, the partial derivatives of 
A with respect to b and e must both be zero. This gives the two simultaneous 
equations 
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-2V/b2 + c = 0, -2V/c2 + b = O. 

From the first equation, c = 2V/b2 and substituting this into the second equa­
tion gives the solution for b, b3 = 2V or b = (2V)1/3, and similarly c = (2V)1/3. 
The condition abc = V gives a = V/«2V)2/3) = (2V)1/3/2. Therefore in the 
arrangement that minimises the surface area, b = c and a = b/2, so the height 
of the box is half its length. 

Note that we have not shown that this is a minimum and not a maximum. 
However, common sense suggests that since the area would be very large if the 
box were tall and thin, the solution found probably does represent a minimum. 

3.1.2 Taylor series in more than one variable 

The Taylor series for an infinitely differentiable function f (x) of a single variable 
is 

f(x) 
df (x - a)2 d2 f 

= f(a) + (x - a) dx (a) + 2! dx2 (a) + ... 

~ (x - a)n dnf (a). 
L n! dxn 
n=O 

= (3.3) 

This can also be written as 

(3.4) 

where c5x = (x - a) is a small perturbation and c5f = f(x) - f(a) is the 
corresponding perturbation in the value of the function. 

Taylor series can also be constructed for functions of more than one variable. 
For a function f(x,y) of two independent variables, the analogous formula is 

8f 8f (c5X)2f:J2f (c5y)282f 82f 
c5f = c5x-8 + c5Y-8 + -2' 8 2 + -,- 8 2 + c5xc5Y-8 8 +.... (3.5) x y . x 2. y x y 

In the following sections we will make use of the Taylor series for a function 
f(x,y,z) of three variables, but in all cases only the linear terms, that is, only 
those that only involve a single power of c5x, c5y or c5z, will be needed: 

(3.6) 

Taylor series can be useful for approximating functions, as in the following 
example. 
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Example 3.3 
Find an approximate value for the function f(x, y, z) = 2x + (1 + y) sinz at the 
point x = 0.1, Y = 0.2, z = 0.3. 

The function f takes the value 0 at the point (0,0,0). Near to this point, 
the function can be approximated by its Taylor series expansion. To do this, 
the three partial derivatives of f evaluated at (0,0,0) are required. These are 

of = 2, 
ax of = sinz = 0, ay 

Hence the Taylor expansion (3.6) is 

:~ = (l+y)cosz= 1. 

8f=28x+8z+ ... , 

which at the point (0.1,0.2,0.3) gives the approximate value f ~ 0.5 (the 
correct value to four decimal places is 0.5546). 

3.2 Gradient of a scalar field 

In Section 1.6 the concept of a scalar field was introduced as a scalar quantity 
which is a function of position in space. A scalar field f can be visualised in 
terms of the level surfaces or isosurfaces on which f is constant. The gradient 
of the scalar field f is a vector field, with a direction that is perpendicular to 
the level surfaces, pointing in the direction of increasing f, with a magnitude 
equal to the rate of change of f in this direction (Figure 3.1). 

The gradient of a scalar field f can be written as grad f, but the gradient is 
so important that a special symbol for grad, V, is used, so grad f = V f. This 
symbol is sometimes referred to as 'del' or 'nabla'. 

The gradient of f can also be defined in a Cartesian coordinate system in 
terms of the partial derivatives of f: 

Vf = of el + of e2 + of e3. ax ay az (3.7) 

We will now show that these two definitions are equivalent, by showing that the 
vector V f defined in (3.7) satisfies the two conditions of being perpendicular 
to the level surfaces and with magnitude equal to the rate of change of f in 
this direction. 
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f= constant \1f 

Fig. 3.1. The gradient of f is a vector perpendicular to the surface f = constant. 

Consider an infinitesimal change in position in space from r to r + dr. This 
results in a small change in the value of the scalar field I from I to I + dl, 
where, from (3.6), 

dl = 
al al al 
-dx + -dy + -dz 
ax ay az 

( al al al) 
ax' ay' az . (dx, dy, dz) 

V/·dr. (3.8) 

Now suppose that dr lies in the surface I = constant (Figure 3.2). In this 
case the change in the value of I must be zero, so we have dl = V I . dr = O. 
Now in general V f ¥ 0 and dr ¥ 0, so the two vectors V f and dr must be 
perpendicular. Since dr is in the level surface I = constant, the vector V I 
must be perpendicular to the level surface. 

So the vector V I defined by (3.7) has the correct direction; it remains to be 
shown that it has the correct magnitude. This is achieved by using (3.8) with 
dr = n ds, where n is the unit normal to the level surface and s is a distance 
measured along the normal. In this case, dl = V I . n ds = I V I I ds, since V I 
and n are parallel and Inl = 1. Hence the magnitude of V I is 

(3.9) 

which is the rate of change of I with position along the normal. 
From (3.8) it follows that V I can be used to find the rate of change of I in 

any direction. To find the rate of change of I in the direction of the unit vector 
U, set dr = u ds where ds is the distance along u. Then dl = V I· u ds and so 
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f= constant \If 

dr 

Fig. 3.2. Grad f is perpendicular to any vector dr lying in the surface f = constant. 

dl 
- =Vf·u. 
ds 

(3.10) 

This is the rate of change of I in the direction of the unit vector u, and is 
called the directional derivative of f. This can also be written as 

ds = IV II cosO, (3.11) 

where 0 is the angle between V I and the unit vector u. Since -1 ~ cos 0 ~ 1, 
it follows that the magnitude of V f is equal to the maximum rate of change 
of I with position. 

The symbol V can be interpreted as a vector differential operator, 

(3.12) 

where the term operator means that V only has a meaning when it acts on 
some other quantity. 

The gradient has many important applications. These include finding nor­
mals to surfaces and obtaining the rates of change of functions in any direction, 
as in the following examples. 

Example 3.4 
Find the unit normal n to the surface x2 + y2 - Z = 0 at the point (1,1,2). 

Define f(x, y, z) = x2 + y2 - Z = 0, so the surface is I = O. Then V I = 
(2x,2y, -1). At the point (1,1,2), Vf = (2,2, -1). This is a vector normal to 
the surface. To find the unit normal we need to divide by the magnitude, which 
is (22 + 22 + 12)1/2 = 3 so n = V f /IV fl = (2/3,2/3, -1/3). Note that the 
unit normal is not uniquely defined: the vector -n = (-2/3, -2/3, 1/3) is also 
a unit normal to the surface. 
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Example 3.5 
Find the directional derivative of the scalar field f = 2x + y + z2 in the direction 
of the vector (1,1,1), and evaluate this at the origin. 

The gradient of f is V f = (2,1, 2z). To find the directional derivative, we 
must take the dot product with the unit vector in the direction of (1, 1, 1) which 
is u = (1,1,1)/../3. The directional derivative is then V f . u = (3 + 2z)/../3. 
At the origin, x = y = z = 0, the directional derivative takes the value ../3. 

3.2.1 Gradients, conservative fields and potentials 

There is a very important link between the gradient of a scalar field and the 
concept of a conservative vector field defined in Section 2.2.3. Recall that a 
conservative vector field is one in which the line integral along a curve connect­
ing two points does not depend on the path taken. The connection between 
gradients and conservative fields is given by the following theorem. 

Theorem 3.1 

Suppose that a vector field F is related to a scalar field ¢ by F = V ¢ and 
V¢ exists everywhere in some region D. Then F is conservative within D. 
Conversely, if F is conservative, then F can be written as the gradient of a 
scalar field, F = V¢. 

Proof 

Suppose that F = V ¢. Then the line integral of F along a curve C connecting 
two points A and B is 

fc F . dr = fc V ¢ . dr. 

Using (3.8) this can be written as 

fc F· dr = fc d¢ = [¢l~ = ¢(B) - ¢(A), 

where the line integral has been evaluated simply using ¢ as the parameter. 
Since this result only depends on the end points of C, F is conservative. 

Conversely, suppose that F is conservative. Then a scalar field ¢( r) can be 
defined as the line integral of F from the origin to the point r: 

¢(r) = for F· dr. (3.13) 

Since F is conservative, the value of ¢ does not depend on the path taken from 
o to r, so ¢ is well defined. From the definition of an integral it then follows 
that an infinitesimal change in ¢ is given by 
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d¢ = F·dr. 

Comparing this with (3.8) shows that F· dr = V¢· dr. This must be true for 
any choice of dr and so F = V ¢. 0 

If a vector field F is conservative, the corresponding scalar field ¢ which 
obeys F = V ¢ is called the potential for F. Note that the potential is not 
unique, since an arbitrary constant can be added to ¢ without affecting V ¢. 
This arbitrary constant corresponds to the arbitrary choice of the origin for the 
lower limit in the integral in the definition (3.13). 

Example 3.6 
Show that the vector field F = (2x + y, x, 2z) is conservative. 

F is conservative if it can be written as the gradient of a scalar field ¢. This 
gives the three equations 

a¢ 
ax = 2x + y, 

a¢ 
ay = x, 

a¢ az = 2z. 

Integrating the first of these equations with respect to x gives ¢ = x 2 + xy + 
hey, z) where h is an arbitrary function of y and z, analogous to a constant of 
integration. The second equation forces the partial derivative of h with respect 
to y to be zero, so that h only depends on z. The third equation yields dhjdz = 
2z, so h(z) = z2 + c, where c is any constant. Therefore all three equations are 
satisfied by the potential function 

¢ = x 2 + xy + Z2 

and F is a conservative vector field. 

3.2.2 Physical applications of the gradient 

The gradient of a scalar field appears in many physical contexts. Two examples 
are given below. 

• Let p denote the pressure within a gas. Then there is a force F acting on any 
volume element 8V due to the pressure gradient, given by F = -Vp8V . 

• A material has a constant thermal conductivity K and a variable temperature 
T(r). Because of the temperature variation, heat flows from the hot regions 
to the cold regions. The heat flux q is a vector quantity, q = -KVT. 
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EXERCISES 

3.1 Find the gradient of the scalar field f = xyz, and evaluate it at the 
point (1,2,3). Hence find the directional derivative of f at this point 
in the direction of the vector (1,1,0). 

3.2 Find the unit normal to the surface y = x + z3 at the point (1,2,1). 
3.3 Show that the gradient of the scalar field ¢ = r = Ir I is r / r and 

interpret this result geometrically. 
3.4 Find the angle between the surfaces of the sphere x2 + y2 + z2 = 2 

and the cylinder x2 + y2 = 1 at a point where they intersect. 
3.5 Find the gradient of the scalar field f = yx2 + y3 - Y and hence find 

the minima and maxima of f. Sketch the contours f = constant and 
the vector field V f . 

3.6 If a is a constant vector, find the gradient of f = a . r and interpret 
this result geometrically. 

3.7 Determine whether or not the vector field F = (siny,x,O) is conser­
vative. 

3.8 Consider the vector field F = (y/(x2 + y2), -x/(x2 + y2), 0). Show 
that F can be written as the gradient of a potential ¢. Show also 
that the line integral of F around the unit circle x2 + y2 = 1 is 
non-zero. Explain why this result does not contradict Theorem 3.1. 

3.3 Divergence of a vector field 

This section introduces the first of two ways of differentiating a vector field, the 
divergence. The second way of differentiating a vector field, the curl, is defined 
in Section 3.4. Each of these quantities is defined in terms of an integral. 

The divergence of a vector field u is a scalar field. Its value at a point P is 
defined by 

divu = lim }V If u· ndS, 
6V-+o u H6S (3.14) 

where 6V is a small volume enclosing P with surface 6S and n is the outward 
pointing normal to oS. Physically, this corresponds to the amount of flux of 
the vector field u out of 6V divided by the volume 6V (Figure 3.3). 

As in the case of the gradient, this physical definition leads to an equiva­
lent definition in terms of the components of u = (Ul' U2, ua) in a Cartesian 
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n 

oS ov 
.p 

Fig. 3.3. Definition of the divergence. The small volume 6V has surface 68 and 
outward normal n. 

coordinate system. To derive this alternative form, take the volume I5V to be a 
small rectangular box with sides of length I5x, l5y and oz and centred on a point 
(x, y, z) (Figure 3.4). It is assumed that the components of u have continuous 
partial derivatives. 

/' /' 
S2 SI Oz 

• (x, y, z) 

n n 

/' ~ x 
y 

Ox 

Fig. 3.4. Rectangular box used to obtain an expression for div 11 in Cartesian coor­
dinates. 

Since the rectangular box has six faces, there are six different contributions 
to the surface integral in (3.14). Consider first the contribution from the face 
labelled S1 in Figure 3.4. This face is perpendicular to the x-axis, so the unit 
outward normal is (1,0,0) and hence u· n = U1. The centre offace S1 is at the 
point (x + ox/2,y,z) and the area of the face is oyoz, so the contribution to 
the surface integral from this face is 

fls
l 

u . n dS ;:::: U1 (x + ox/2, y, z) l5y oz, 

where we have used the fact that since the surface is small, the surface integral 
can be approximated as the value of u . n multiplied by the area of the surface. 
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A similar argument can be used to approximate the contribution to the 
surface integral from S2, which is located at (x - 8x/2, y, z). The unit outward 
normal for S2 is (-1,0,0) so U . n = -U1 and the contribution to the surface 
integral is 

ffs2 U . n dS ~ -U1 (x - 8x/2, y, z) 8y 8z. 

Adding the contributions from these two surfaces and making use of the defi­
nition of the partial derivative (3.1), the combined contribution to the surface 
integral is 

ffsl+S2 u·ndS ~ (U1(X+ 8;,y,z)-U1(x- 8;,y,z)) 8y8z 

aUl 
ax 8x 8y 8 z 

~~ 8V. 

Hence the contribution to div u defined in (3.14) from surfaces Sl and S2 is 
auI/ax. Note that this is now exact since the divergence is defined by taking 
the limit 8V -t O. Similarly, the contribution to div u from the two surfaces 
perpendicular to the y-axis is aU2/ay and that from the surfaces perpendicular 
to the z-axis is aU3/aZ. These are found simply by permuting the X-, y- and z­
axes. Finally, adding all six contributions together gives the definition of div u 
in terms of the Cartesian components of u: 

d. _ aUl aU2 aU3 
IVU - ax + ay + az . (3.15) 

The divergence of u can also be written in terms of the differential operator 
V defined in (3.12), since 

. aUl aU2 aU3 (a a a) 
dlVU = ax + ay + az = ax' ay' az . (U1,U2,U3) = V· u. (3.16) 

The form V . u will be used to indicate the divergence of u in the remainder 
of this book. 

Example 3.7 
Find the divergence of the vector field u = r. 

The components of u = rare u = (x, y, z). The divergence of u is therefore 

. ax ay az 
dlVU = ax + ay + az = 3. (3.17) 
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3.3.1 Physical interpretation of divergence 

The physical definition of the divergence (3.14) gives an intuitive meaning in 
terms of the flux of the vector field out of a small closed surface. This can 
also be interpreted as the rate of 'expansion' or 'stretching' of the vector field. 
Consider for example the simple vector field u = (x, 0, 0). This vector field 
only has a component in the x direction and it is sketched in Figure 3.5(a). It 
is useful to think of vector fields as representing the motion of a gas. Figure 
3.5(a) then represents a gas which is expanding, and the divergence of u, from 
(3.15), is 1 everywhere. The vector field v = -u = (-x, 0, 0) is shown in Figure 
3.5(b). This vector field is contracting, and its divergence is V·v = -1. Finally 
consider the vector field w = (O,x,O), sketched in Figure 3.5(c). This vector 
field is neither expanding nor contracting, and its divergence is zero. A vector 
field w for which V . w = 0 everywhere is said to be solenoidal. 

3.3.2 Laplacian of a scalar field 

Suppose that a scalar field ¢ is twice differentiable. Then the gradient of ¢ is a 
differentiable vector field V ¢, so we can take the divergence of V ¢ and obtain 
another scalar field. This scalar field, V . V ¢ is called the Laplacian of ¢ and 
has its own symbol, \72¢, so 

V·V¢=\72¢. 

The Laplacian of ¢ is often referred to as 'del squared ¢'. The formula for \72¢ 
can be found by combining the formulae for div (3.15) and grad (3.7), 

\72¢ = ! (:!) + :y (::) + ! (:~) 
{j2¢ fJ2¢ 82¢ 
8x2 + 8y2 + 8z2 ' (3.18) 

Thus the Laplacian of ¢ is just the sum of the second partial derivatives of ¢. 
The Laplacian can also act on a vector quantity, in which case the result is a 

vector whose components are the Laplacians of the components of the original 
vector: 

2 (2 2 2) \7 u = \7 Ul, \7 U2, \7 U3 . (3.19) 

The Laplacian is a very important quantity, occurring in many physical 
applications including heat transfer and wave motion. These applications will 
be considered in Chapter 8. The equation \72 ¢ = 0 is known as Laplace's 
equation. 
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(a) y 
... ~ -- • 
... ~ -- • 

x ... ~ -- • 
... ~ -- • 

(b) Y .. -- ~ ... 
• -- ~ ... 

x .. -- ~ ... 
• -- ~ ... 

(c) 

1 ~ 1 r 
y 

t • 

1 ~ • t 1 r 
Fig. 3.5. The three vector fields (a) u = (x, 0, 0), (b) v, = (-x, 0, 0), (c) w = (0, x, 0). 
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3.4 Curl of a vector field 

The curl of a vector field u is a vector field. Its component in the direction of 
the unit vector n is 

n . curl u = lim }5 1 . u . dr, 
.55->0 u lac (3.20) 

where 85 is a small surface element perpendicular to n, 8C is the closed curve 
forming the boundary of 85 and 8C and n are oriented in a right-handed sense, 
as shown in Figure 3.6. Note that this has a similar form to the definition of 
divergence (3.14), but with a line integral instead of a surface integral. 

Fig. 3.6. Definition of the curl of a vector field. The small surface 85 is enclosed by 
the curve 8C and has unit normal vector n. 

To obtain an expression for curl u in terms of the components (U1' U2, U3) 
of u, choose n = e3, the unit vector in the z direction, to determine the z 
component of curl u. The surface fJ5 then lies in the x, y plane and can be 
chosen to be a small rectangle with sides of length 8x, 8y centred on the point 
(x, y, z), with area 88 = 8x 8y. The right-hand rule means that the line integral 
in (3.20) must be taken in the anticlockwise direction. The line integral then 
has four sections, as shown in Figure 3.7. It is assumed that the vector field u 
is differentiable with continuous partial derivatives. 

Consider first the section C1 of the line integral, which has its centre at 
the point (x,y - 8yj2,z). Here, the line integral is directed in the positive x 
direction, so u . dr = U1 dx. Since the length 8x is small, the contribution to 
the line integral is approximately 

r U· dr ~ U1(X,y - 8yj2,z) 8x. 
lC I 

Similarly, on C3, centred at (x,y + 8yj2,z), the integral is directed in the 
negative x direction, so 
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y 

.(x. y. z) 

Ox 

x 

Fig. 3.7. A rectangle of four line segments is used to find an expression for curl u in 
Cartesian coordinates. 

r u· dr ~ -Ul (x, y + ljy/2, z) Ijx. 
lC3 

Adding these two contributions together gives 

Proceeding in a similar way with the line integrals along C2 , located at 
(x + Ijx/2, y, z) with dr directed in the positive y direction, and C4 , located at 
(x -ljx/2, y, z) with dr directed in the negative y direction, we obtain 

r u·dr ~ (u2(x+ox/2,y,z)-U2(X-ox/2,y,z))oy 
lc2+c. 

OU2 
ax Ijx Ijy. 

Adding together all four contributions, dividing by oS and taking the limit 
IjS -+ 0 gives the z component of curl u: 

(3.21 ) 

The other components can be found by permuting x, y and z cyclically (x -+ 
y -+ z -+ x, Ul -+ U2 -+ U3 -+ ud, giving 
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curlu= -- ---( 8U3 8U2 8Ul 8U3 8U2 8Ul) 
. 8y - 8z '8z 8x '8x 8y . 

(3.22) 

Notice that there is a similarity between this formula and that for the cross 
product of two vectors (1.4). Curl u can also be written in terms of a determi-
nant, 

el e2 e3 
curl u = a a a 

ax ay 8z 

Ul U2 U3 

provided that the determinant is expanded so that the partial derivatives act 
on the components of u. This can also be written as the cross product of the 
differential operator V and the vector u, so 

curlu = V x u. 

The notation V x u will be used henceforth. 

Example 3.8 
The vector field u is defined by u = (xy, z + x, V). Calculate V x u and find 
the points where V x u = o. 

The components of V x u are found using (3.22): 

V xu = ( 8y _ 8(z + x) 8(xy) _ 8y 8(z + x) _ 8(XY)) 
8y 8z' 8z 8x' 8x 8y 

(1- 1,0 - 0, 1 - x) = (0,0,1- x). 

Hence V x u = 0 on the plane x = 1. 

3.4.1 Physical interpretation of curl 

From the physical definition of V x u given in (3.20) and Figure 3.6 it is clear 
that V x u is related to the rotation or twisting of the vector field u. 

Consider the three simple vector fields shown in Figure 3.5. For the first 
of these, u = (x, 0, 0), the vector field is expanding but there is no sense of 
rotation, and computing the curl gives V x u = o. A vector field u for which 
V x u = 0 everywhere is said to be irrotational. Similarly, the second example, 
v = (-x, 0, 0), is also irrotational. For the third example, W = (0, x, 0), Figure 
3.5(c), V x W = (0,0,1), so there is a component of V x w in the z direction, 
out of the page. The vector field w has a rotation associated with it in the 
following sense. Think of w as the velocity of a fluid. Then a small particle 
placed in this fluid will rotate in an anti clockwise sense as it moves with the 
fluid, since at any point the velocity component in the y direction to the right 
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of the particle is greater than that on the left. This rotation is about an axis 
in the z direction, which is in the direction of V x w. The vector V x w can 
therefore be related to the rotation of a small particle placed in the velocity 
field w: the rate of rotation depends on the magnitude of V x w, and the axis 
of rotation is in the direction of V x w. In the context of the motion of a fluid, 
the curl of the velocity field is often referred to as the vorticity of the fluid. This 
relationship between rotation and curl is made more precise in the following 
section. 

3.4.2 Relation between curl and rotation 

Consider a rigid body rotating with angular velocity D. Then, as discussed in 
Section 1.3.1, the velocity v at any point can be written as v = n x r, where 
the vector n is directed along the axis of rotation (Figure 1.12). 

Choosing the z-axis in the direction of n gives n = (0,0, D) and hence 
v = (O,O,S]) x (x,y,z) = (-Dy,Dx,O). Computing the curl of this velocity 
field gives 

V = (_ o(Dx) _ o(Dy) o(Dx) O(DY)) = (0 ° 2 n) 
x v oz' oz' ox + oy , , H . 

Hence V x v = 2n, i.e. the curl of the velocity field is equal to twice the 
rotation rate. 

3.4.3 Curl and conservative vector fields 

Suppose that a vector field u is related to a scalar field ¢ by u = V ¢. Recall 
from Theorem 3.1 that this means that u is conservative. Now consider the 
curl of u, 

Vxu 
el (:y (~:) - :z (~:) ) + e2 (:z (~~) -! (~:) ) 
+e3 (~(o¢) _ ~ (o¢)) . 

ox oy oy ox 

Since the ordering of the cross derivatives of ¢ does not matter (see Section 
3.1.1), all of these terms cancel out, giving the result that 

VxV¢=o. (3.23) 

Thus any vector field that can be written as the gradient of a scalar field is 
irrotational. 
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The converse of this result is also true, so that any irrotational vector field 
is conservative. This result will be proved in Section 5.2. In combination with 
Theorem 3.1, this means that the following three statements are equivalent: 

• u can be written as the gradient of a potential: u = V cP. 
• u is irrotational: V x u = o. 
• u is conservative: the line integral of u around any closed curve is zero. 

(a) (b) (c) 

\ u u 

/ y-
~ ~ 

~ ~ ~ ) 
/ \ ~ 

Fig. 3.8. Physical picture associated with (a) gradient, (b) divergence, (c) curl. 



3. Gradient, Divergence and Curl 63 

Summary of Chapter 3 

• The gradient of a scalar field I, written grad I or V I, is a vector field perpen­
dicular to the surfaces I = constant, pointing in the direction of increasing 
I, with magnitude equal to the rate of change of I in this direction. 

• The components of V I are the partial derivatives of I: 

VI = (81 01 (1) 
8x' oy' 8z . 

• The directional derivative of I in the direction of the unit vector u is V I . u. 
• A vector field F is conservative if and only if it can be written as the gradient 

of a scalar field, F = V ¢. The function ¢ is called the potential for F. 
• The divergence of a vector field u, written div u or V . u, is it scalar field, 

V·u= 11m -"- u·ndS=-+-+- . . 1 If OUl OU2 OU3 
.5V -..;0 8V .5S 8x 8y 8z 

• The divergence of u corresponds to the amount of stretching or expansion 
associated with u. If V . u = 0, u is said to be solenoidal. 

• The Laplacian of a scalar field ¢, written \j2 ¢, is defined as \j2 ¢ = V . V ¢. 
• The curl of a vector field u is a vector field, curl u or V x u. Its component 

in the direction of a unit vector n perpendicular to the surface element 8S is 

n . V x u = lim ~ 1 U· dr . 
.55-..;0 8S he 

• In component form, 

V x u = (8U3 _ 8U2 8Ul _ 8U3 8U2 _ 8Ul) 
8y 8z ' 8z 8x ' 8x 8y . 

• Physically, V x u corresponds to the rotation or twist of u. If V x u = 0, u 
is said to be irrotational. 

• If u = V ¢, then u is irrotational. 
• The physical pictures corresponding to grad, div and curl are sketched in 

Figure 3.8. 
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EXERCISES 

3.9 Find the gradient V ¢ and the Laplacian '\l2¢ for the scalar field 
¢ = x 2 + xy + yz2. 

3.10 Find the gradient and Laplacian of 

¢ = sin(kx) sin(ly) exp( Vk2 + [2 z). 

3.11 Find the unit normal to the surface xy2 + 2yz = 4 at the point 
(-2,2,3). 

3.12 For ¢(x, y, z) = X2+y2+z2+xy-3x, find V¢ and find the minimum 
value of ¢. 

3.13 Find the equation of the plane which is tangent to the surface x 2 + 
y2 _ 2z3 = 0 at the point (1,1,1). 

3.14 Find both the divergence and the curl of the vector fields 
(a) u = (y,z,x); 
(b) v = (xyz,z2,x - y). 

3.15 Show that both the divergence and the curl are linear operators, i.e. 
V·(cu+dv) = cV·u+dV·v and Vx (cu+dv) = cVxu+dVxv, 
where u and v are vector fields and c and d are constants. 

3.16 For what values, if any, of the constants a and b is the vector field 
u = (y cos x + axz, b sin x + z, x2 + y) irrotational? 

3.17 (a) Show that u = (y2z,-z2siny + 2xyz, 2z cos y + y2x) is irrota­
tional. 
(b) Find the corresponding potential function. 
(c) Hence find the value of the line integral of u along the curve 
x = sin-rrt/2, y = t2 - t, z = t4, 0::; t ::; 1. 



4 
Suffix Notation and its Applications 

4.1 Introduction to suffix notation 

This chapter introduces a powerful, compact notation for manipulating vector 
quantities. In the previous chapters, many of the vector expressions are awk­
ward and cumbersome. This applies particularly to those expressions involving 
the cross product and the curl, such as the scalar triple product (1.8), the 
derivation of the alternative expression for the vector triple product (1.9) and 
the demonstration that V x V¢ = 0 (3.23). Through the use of a new nota­
tion, suffix notation, such complicated expressions can be written much more 
concisely and many results can be proved more easily. 

In this section, some simple vector equations are written using suffix nota­
tion. Consider first the equation c = a + b. This vector equation is equivalent 
to the three equations for the components of c, Ci = ai + bi for i = 1,2,3. In 
suffix notation, the equation is simply written 

Ci = ai + bi 

and it is understood that this equation holds for i = 1, 2 and 3. The suffix i is 
called a 'free suffix'. The choice of this free suffix is arbitrary, so the equation 
could equally well be written Cj = aj +bj or Ck = ak +bk . However, for simplicity 
and clarity the suffix i will be used for the free suffix in a vector equation in 

P. C. Matthews, Vector Calculus
© Springer-Verlag London Limited 1998
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this book. Note that the same free suffix must be used for each term in the 
equation. This is an important rule which must be followed for an expression 
in suffix notation to be meaningful: the free suffix must match in each term in 
the expression. 

Now consider the dot product of two vectors, a . b = a1b1 + a2b2 + a3b3· 
This can be written more compactly as 

3 

a·b= Lajbj. 
j=l 

In suffix notation, this is written simply as 

a·b=ajbj , (4.1) 

where the repeated suffix j implies that the term is to be summed from j = 1 
to j = 3. This is known as the summation convention: whenever a suffix is 
repeated in a single term in an equation, summation from 1 to 3 is understood. 
The repeated suffix is referred to as a 'dummy suffix', and must appear no more 
than twice in any term in an equation. The choice of the dummy suffix does 
not matter, so we can write a· b = ajbj = akbk, since each of these expressions 
is equivalent to a1b1 + a2b2 + a3b3. 

Next, suppose that an expression involves two dot products multiplied to­
gether, (a· b)(c· d). In order to indicate which vector is dotted with which, a 
different dummy suffix must be used for each of the dot products: 

(a· b)(c· d) = ajbjCkdk. 

Here, both j and k are repeated, so the summation convention implies summa­
tion over both j and k. Again the choice of dummy suffix is arbitrary, so for 
example we could have written (a· b)(c· d) = atbtcmdm. However, it is essential 
that no suffix appears more than twice in any term, since this would lead to 
ambiguity. 

Note that it is the suffices that indicate which vector is dotted with which, 
not the ordering of the components of the vectors. In fact, since the components 
are just multiplied together, the ordering of terms is arbitrary, so the expression 
ckajdkbj also means (a· b)(c· d). 

Example 4.1 

Write the suffix notation expression ajbicj in ordinary vector notation. 
The suffix j is repeated and is therefore a dummy suffix to be summed over. 

So ajbicj means 
3 

L ajbicj = (a· c)bi , 

j=l 

which is the i component of the vector (a· c)b. 
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Example 4.2 

Write the vector equation 

u + (a· b)v = laI 2 (b· v)a 

in suffix notation. 
First introduce a free suffix i, which is understood to run from 1 to 3, to 

write the equation in component form; also write lal 2 as a dot product: 

Ui + (a· b)Vi = (a· a)(b· v)ai. 

Now introduce a dummy suffix, which is repeated and therefore summed from 
1 to 3, for each of the dot products: 

Note that two different dummy suffices are used on the right-hand side to avoid 
ambiguity. 

Example 4.3 
Show that the product of two N x N matrices A and B, G = AB can be written 
in suffix notation as Gij = AikBkj. Hence show that the trace of the matrix 
AB (defined as the sum of the elements on the diagonal) is the same as the 
trace of BA. 

Gij is the element in the ith row and jth column of the matrix G. The rule 
for matrix multiplication is that if G = AB then the element Gij is obtained 
by taking the ith row of A and the jth column of B and multiplying these 
together term by term, so 

N 

Gij = AilBlj + Ai2 B2j ... + AiNBNj = l: AikBkj = AikBkj , 
k=l 

where the repeated index k implies the sum from 1 to N. 
The trace of the matrix G is the sum of the elements on the diagonal, 

Tr(G) = Gll + G22 ... + GNN = Gjj . 

The trace of AB is 

Similarly the trace of BA is 
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Tr(BA) BjkAkj 

= AkjBjk (since order of terms does not matter) 

= AjkBkj (relabelling j +-t k) 

Tr(AB). 

Note that this proof makes use of the fact that the choice of label used for a 
dummy suffix is arbitrary, so the labels j and k can be interchanged. 

4.2 The Kronecker delta ~ij 

The Kronecker delta is written 8ij and is defined by 

{ I ifi=j, 
8ij = 0 if i =f:. j. 

(4.2) 

The suffices i and j can each take the values 1,2 or 3, so 8ij has nine elements. 
From the above definition it follows that three of these are equal to 1 (811 = 
822 = 833 = 1) while the remaining six elements are equal to 0 (812 = 813 = 
821 = 823 = 831 = 832 = 0). 8ij is an example of an object called a tensor. 
Tensors are described in detail in Chapter 7, but for the time being it is simplest 
to think of 8ij as the 3 x 3 identity matrix, 

From the definition it is clear that 8ij is symmetric, i.e. 8ij = 6ji . 

Consider now the expression 8ij aj. Notice that the suffix j is repeated, so 
by the summation convention, summation from j = 1 to 3 is understood. Hence 

3 

8ij aj = L8ijaj = 8i1 a1 + 8i2a2 + 8i3a3, 

j=1 

and it is clear that the result depends on the value of i. If i = 1, then 8i1 = 1 
while 8i2 = 8i2 = 0, so the right-hand side simplifies to a1. Similarly, if i = 2 
the result is a2 and if i = 3 the result is a3. In other words, the right-hand side 
simplifies to ai, giving the important equation 

(4.3) 
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From the symmetry of bij it follows that bij ai = aj. Because of this property 
of bij, it is sometimes referred to as the 'substitution tensor', since its effect 
when multiplied by aj is to replace the j with i. 

There is a relationship between bij and the dot product. The dot product of 
a and b can be written a· b = bijaibj. In this expression, both the i and the j 
suffices are repeated, so by the summation convention, both are to be summed 
from 1 to 3, giving a total of nine terms. However, because of the definition of 
bij, only three of these terms (the ones with i = j) are non-zero, so 

3 3 

bijaibj = L L bijaibj = a1 b1 + a2 b2 + a3 b3 = a· b. 

i=l j=l 

This result can also be demonstrated using (4.3), since bijbj = bi , so a . b = 

aibi = aiOijbj = Oijaibj. 

Example 4.4 

Evaluate Ojj. 

Since the suffix j is repeated, the summation convention implies that this 
expression must be summed from j = 1 to 3, so 

Example 4.5 
Simplify bijOjk. 

3 

Ojj = L bjj = Oll + b22 + b33 = 3. 
j=l 

Here the suffix j is repeated, and must therefore be summed over: 

3 

OijOjk = L OijOjk = OilOlk + Oi2 02k + Oi3 03k. 

j=l 

(4.4) 

The result depends on the values of i and k. If, for example, i = 1 and k = 2, we 
have 1 xO+Ox 1+0xO = 0; but ifi = 1 and k = 1, we have 1 x 1+0xO+OxO = 1. 
It is apparent that if i and k are different the result is 0, but if i and k are equal 
the result is 1. This result is therefore simply Oib so the solution is Oijbjk = bik. 

Notice that this result is consistent with the substitution rule described above: 
the effect of Oij on Ojk is to replace the j with i. 
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4.3 The alternating tensor €ijk 

This section introduces the quantity which is used for writing cross products in 
suffix notation. This will prove extremely useful for manipulating expressions 
involving the cross product and the curl. 

The alternating tensor is written fijk and is defined by 

fijk = {~1 
-1 

if any of i, j, k are equal, 
if (i, j, k) = (1,2,3), (2,3,1) or (3,1,2), 
if (i, j, k) = (1,3,2), (2,1,3) or (3,2,1). 

(4.5) 

Since fijk has three suffices, each of which can take any of the three values 1, 
2 or 3, fijk has 27 elements. However, from the above definition, all but six 
of these are zero. The six non-zero elements are f123 = f231 = f312 = 1 and 

f132 = E213 = f321 = -1. 
There are two important symmetry properties of fijk which follow directly 

from its definition: 

• fijk is unchanged if the suffices are reordered by moving them to the left and 
putting the first suffix third (a cyclic permutation of the suffices), Le. 

(4.6) 

• The sign of fijk changes if any two of the suffices are interchanged, e.g. 

(4.7) 

The relationship between fijk and the cross product is as follows: 

(4.8) 

In this equation, both j and k are repeated, so they are dummy suffices and 
must be summed over. To check that this agrees with the previous definition 
of ax b, consider first the case i = 1. The right-hand side is then 

3 3 

E1jk aj bk = L L E1jk aj bk . 

j=1 k=1 

Since Eijk is only non-zero when all three of its suffices are different, only the 
two terms j = 2, k = 3 and j = 3, k = 2 are non-zero in the double sum. 
Hence the right-hand side reduces to f123a2b3 + f132a3b2 = a2b3 - a3b2. This 
agrees with the previous definition (1.4) for the first component of the cross 
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product. It can be seen by cyclic permutation of indices that the second and 
third components also agree. 

There is also a relation between EijA: and the determinant of a 3 x 3 matrix. 
This can be written 

(4.9) 

A related formula is 
(4.10) 

An expression for the scalar triple product a . b x C can be deduced in suffix 
notation as follows: 

(4.11) 

A comparison of this neat and elegant expression with the cumbersome formula 
in terms of the components (1.8) shows the power of suffix notation. The prop­
erties of the scalar triple product can also be deduced using suffix notation, as 
in the following examples. 

Example 4.6 
Use suffix notation to show that a . b x c = a x b· c. 

a· b x c 

Example 4.7 

EijkaibjCk 

EkijaibjCk (using Eijk = Ekij) 

(a x bhck 

a x b· c. 

Show that a· b xc = b· c x a. 
The demonstration of this result is very similar: 

Example 4.8 
Evaluate Eiik. 

a . b x c EijkaibjCk 

= EjkiaibjCk 

= bjEjkiCkai 

bj{c x a)j 

= b· c x a. 

(using Eijk = Ejki) 

(just rearranging terms) 

Since Eijk = 0 if any of i, j, k are equal, it follows that Eiik = o. 
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Example 4.9 
Evaluate fijkfijk. 

Vector Calculus 

In this expression all three suffices i, j and k are repeated, and must there­
fore be summed over, giving a total of 27 terms. Only six of these terms are 

_ 2 2 2 2 2 2-6 non-zero, so fijkfijk - f123 + f132 + f213 + f 231 + f312 + f321 - . 

4.4 Relation between €ijk and bij 

An important relationship between fijk and c5ij is the following equation: 

(4.12) 

This equation has four free suffices (i, j, I and m) and therefore represents 81 
different equations! The left-hand side is summed over k, because the suffix k 
appears twice. 

The result (4.12) can be demonstrated by the following argument: since the 
three coordinate axes are equivalent, we need only consider the case i = 1. 
Consider now the possible values for j: 

1. If j = 1, fijk = fllk = 0 and so the l.h.s. is zero; the r.h.s. is 81l c51m - c51m81l 

which is also zero since the two c5 terms cancel. 
2. If j = 2, fijk = f12k = 0 unless k = 3, so only the k = 3 term contributes 

to the sum. When k = 3, the term fklm is zero unless I and mare 1 and 2. 
Therefore the l.h.s. takes the value + 1 if I = 1 and m = 2, -1 if I = 2 and 
m = 1, and zero otherwise. Now the r.h.s. is 81l c52m - c51m821 . This is also 
equal to +1 when I = 1 and m = 2 (from the first term), -1 when 1 = 2 
and m = 1 (from the second term) and zero otherwise. 

3. If j = 3, an equivalent argument to the case j = 2 applies; the details are 
left to the reader. 

Equation (4.12) is very useful for simplifying expressions involving two cross 
products. 

Example 4.10 
Derive the formula (1.9) for the expansion of the vector triple product using 
suffi~ notation. 

(a x (b x C))i fijkaj (b x C)k 

(writing the first cross product in suffix notation) 
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= €ijkaj€klnlb,Cm 

so we have shown that 

(writing the second cross product in suffix notation) 

(c5il c5jm - c5imc5jt}ajbICm (using (4.12)) 

ambicm - ajbjCi (using (4.3)) 

(a· c)bi - (a· b)Ci' 
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a x (b x c) = (a· c)b - (a· b)c. (4.13) 

Notice one very important point in this analysis: in the second line, the k 

component of the vector b x c is required. When this is written down in suffix 
notation it is essential that 'new' suffices are used (l and m above) to avoid 
repeating the existing suffices i and j - recall the essential rule of suffix notation 
that no suffix may appear more than twice. 

EXERCISES 

4.1 Write the vector equation a x b + (a . d)c = e in suffix notation. 
4.2 Translate the suffix notation equation c5ij cj + fkjiakbj = dlemcib1cm 

into ordinary vector notation. 
4.3 Use suffix notation to show that a x b = -b x a. 
4.4 Simplify the suffix notation expressions 

(a) c5ijfijk; 

(b) fijk film; 

(C) fijkfijm; 

(d) fijkfijk. 

4.5 Using suffix notation, find an alternative expression (involving no 
cross products) for a x b . c x d. 

4.6 If A and B are two N x N matrices, show that (AB)T = BT AT, 
where AT is the transpose of A defined by interchanging the rows 
and columns of A. 

4.7 Verify the formulae (4.9) and (4.10) for the determinant of a 3 x 3 
matrix. 

4.8 Use the formula (4.10) for the determinant of a 3 x 3 matrix M to 
show that 

(a) 61MI = fpqrfijkMpiMqjMrk ; 

(b) IMTI = IMI ; 
(c) IMNI = IMIINI . 
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4.5 Grad, div and curl in suffix notation 

The differential operators grad, div and curl can be written using suffix nota­
tion. To do this, the Cartesian coordinates (x, y, z) will be relabelled (Xl, X2, X3). 

As in the previous section, the use of suffix notation results in a much more 
compact formulation and simplifies many of the computations. 

Consider first the gradient of a scalar field, V I. This is defined by 

The i component of Viis equal to the partial derivative of 1 with respect to 
Xi, so in suffix notation this can be written 

01 
[V/j·=-· 

• OXi 
(4.14) 

Thus the vector differential operator V defined in (3.12) can be written in 
suffix notation as o 

[Vj.=-. 
• OXi 

The divergence of a vector field u is 

V . u = OUl + OU2 + OU3 = OUj 

OXl OX2 OX3 OXj' 

( 4.15) 

(4.16) 

where the summation convention implies the sum over j from 1 to 3. Note that 
the same expression results from taking the dot product of V defined by (4.15) 
with the vector u using the suffix notation formula (4.1) for the dot product 
of two vectors. 

The first component of V x u is, from (3.22), 

where the repeated j and k imply a double sum, and so the suffix notation 
expression for V x u is 

OUk 
[V X uji = Eijk-o . (4.17) 

Xj 

This can also be obtained simply by taking the cross product of V with u using 
(4.8). 
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Example 4.11 

Let T be the position vector T = (Xl, X2, X3) and r = IT I. Use suffix notation to 
evaluate oxi/OXj. Hence find Vr, V· T and V x T. 

T = (XI,X2,X3), so in suffix notation, ri = Xi. The three coordinate axes 
Xl, X2, X3 are independent. Thus the derivative of each of the Xi with respect 
to one of the others is zero, while the derivative with respect to itself is 1. Thus 

OXi 

OXj 

[VrJi = 

= 

So 

{~ if i = j, 
if i f. j 

r5ij . 

~2x8Xj 
2r J OXi 

1 X, 
-xJ r5iJ = -
r r 

Vr = Tlr 

(4.18) 

(4.19) 

as was shown in Exercise 3.3 without the use of suffix notation. Similarly, the 
divergence of T is 

and the curl of T is 

aX, 
V . T = _J = r5jj = 3 

OXj 

using the result of Exercise 4.4(a). 
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4.6 Combinations of grad, div and curl 

The operators grad, div and curl can be combined together in several different 
ways. Some of these combinations can be simplified or expanded into alternative 
expressions. These combinations are considered below, making use of suffix 
notation. All of these results can also be obtained without suffix notation, by 
writing out all the components, but in most cases the suffix notation method 
is much quicker. 

• Div grad: 

(4.20) 

This is the Laplacian of f introduced in Section 3.3.2, the sum of the second 
partial derivatives of f. 

• Curl grad: this combination was shown to be zero in Section 3.4.3. This result 
can be shown using suffix notation as follows: 

a af 
[V x (V f)L = €ijk aXj aXk 

a af 
€"k"-- (relabelling j t+ k) 

t J aXk aXj 

a af 
-€" "k-- (using €ikj = -€ijk) 

tJ aXk aXj 

a af 
-€ijk - - (as order of derivatives does not matter) 

aXj aXk 

= 0, 

since the expression has been manipulated to give minus itself. 
• Grad div: 

[V(V. U)li = ~ (aUi) 
aXi aXj 

This quantity cannot be simplified further. 

• Div curl: 

V·(Vxu) = 

= 

(4.21) 
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0, (4.22) 

using exactly the same argument as for curl grad . 
• Curl curl: 

[V x (V X U)]i 

= 
8 2Uj _ 82ui 

8xj8xi 8xj 8xj 

= [V(V. u) - \72uL. (4.23) 

This result can be used to provide a physical definition for \72 applied to 
a vector. The previous definition (3.19) was only defined in terms of the 
components of the vector in Cartesian coordinates. From the above result, 
\72u can be defined by 

\72 u = V(V· u) - V x (V xu). (4.24) 

These five combinations of grad, div and curl are the only ones that make 
sense. For example, the combination grad curl has no meaning since curl is a 
vector but grad can only act on a scalar. Combinations of three or more of the 
operators grad, div and curl can be evaluated using the above results, as in the 
following example. 

Example 4.12 
Show that 

V X (\72u) = \72 (V xu). 

U sing the result (4.24), 

V x (V(V . u) - V x (V xu)) 

-Vx(Vx(Vxu)) (sinceVxV=O) 

-V(V' (V xu)) + \72 (V X u) (using (4.23)) 

\72 (V x u) (since V . V xu = 0). 

So the operators \72 and V x commute. 

(4.25) 



78 Vector Calculus 

4.7 Grad, div and curl applied to products of 
functions 

Another useful application of suffix notation is in computing the action of grad, 
div and curl on products of vector and scalar fields. As in the previous section, 
these results can also be obtained by writing out all the components, but the 
suffix notation method is much more compact and elegant. Some of these results 
are straightforward applications of the usual rule for the differentiation of a 
product and can simply be written down without any calculation, but many of 
them are not so obvious. 

In the following, I and 9 are differentiable scalar fields and u and v are 
differentiable vector fields. 

8 8g 81 
[V(fg)Ji= 8Xi(fg)=18x; +g8x; = [JVg + gV/J; , so 

V(fg) = IVg + gV f. (4.26) 

V·(fu) = 

= 
(4.27) 

[V X (fU)Ji 

( 4.28) 

V . (u x v) 

(4.29) 
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[V x (11. X V)]i 

where the operator 11. • V is defined by 

a 
u'V=Uj­

aXj 

and can act on either a scalar or a vector. 
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(4.30) 

(4.31) 

To find an expansion for the expression V (11. . v), consider first the quantity 

[UX(VXV)]i 

Similarly, interchanging 11. and v, 

aUj aUi 
[V x (V Xu)]· = V· - - v '-• 1a 1a' Xi Xj 

Adding these two equations gives 

[11. X (V X v) + v x (V X U)]i 
aVj aVi aUj aUi = u·--u·-+v·--v·-

J aXi J aXj J aXi 1 aXj 

[V(u . v) - 11. . Vv - v . VU]i. (4.32) 

This can be rearranged to give 

V(U' v) = 11. X (V X v) + v x (V x 11.) + U· Vv + V· Vu. (4.33) 

The effect of applying grad, div or curl to products of more than two scalar 
or vector functions can be obtained either by the repeated use of the above 
results, or directly by suffix notation, as in the following example. 
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Example 4.13 
Find an expansion for V . (f gu). 

V . (fgu) = V(fg)· u + (fg)V . u (using (4.27» 

(fVg + gVf)· u + (fg)V· u 

fVg·u +gVf· u + fgV ·u. 

Alternatively, using suffix notation, 

V· (fgu) = ~(fgui) aXi 
aUi ag al = Ig-a + I-a Ui + -a gUi 

Xi Xi Xi 

= IgV·u+fVg·u+gVf·u. 

Example 4.14 

Show that u . Vu = V(luI2 /2) - u x (V xu). 
Apply (4.33) with v = u: 

V(u . u) = 2u x (V x u) + 2u . Vu. 

Rearranging this and dividing by 2 gives 

u· Vu = V(luI 2 /2) - u x (V xu). 

Example 4.15 

(4.34) 

Use the results (4.30) and (4.33) to provide a definition of u· Vv that is not 
given in terms of Cartesian components. 

By subtracting (4.30) from (4.33), v . Vu is eliminated and we obtain 

V(u·v)- V x (uxv) = u x (V xv)+v x (V xU)+2u·Vv-u(V ·v)+v(V·u) 

which can be rearranged to give 

u·Vv = 1 
2" (V(u . v) - V x (u x v) - u x (V x v) - v x (V xu) 

+u(V . v) - v(V· u»). (4.35) 
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Summary of Chapter 4 

Suffix notation 

Suffix notation is a powerful tool for manipulating expressions involving vectors. 
The rules of suffix notation are as follows: 

• Within any term in an equation, any suffix must appear either once or twice. 
No suffix may appear more that twice. 

• A suffix that appears once in any term is called a 'free' suffix. A free suffix 
takes the values 1, 2 and 3 and represents the components of a vector. For 
example a + b = c - d is written in suffix notation as ai + bi = Ci - d i . 

• In a vector equation, the free suffix must be the same in each term. The 
above equation may also be written aj + bj = Cj - dj , or any other suffix 
may be used, provided the same suffix appears in each term. 

• A suffix that appears twice in a term is called a 'dummy' suffix and is summed 
from 1 to 3. This is known as the summation convention. So ajbj means 
albl + a2b2 + a3b3 = a· b. 

• A pair of dummy suffices can be changed. For example, ajbj , akbk and ambm 

are all equal to a . b. 
• The order of terms in a suffix notation expression does not matter. 
• The Kronecker delta is defined by Jij = 1 if i = j, 0 if i =j:. j. Properties 

include Jij = Jji , Jijaj = ai and Jijaibj = a . b. 

• The alternating tensor fijk is defined by fijk = 0 if any of i, j, k are equal, 
f123 = f231 = f312 = 1, f132 = f213 = f321 = -1. Properties include fijk = 
fjki = fkij, fijk = -fjik· 

• The cross product of a and b can be written [a x bJi = fijkajbk. 

• fijk and Jij are related by fijkfklm = JilJjm - JimJjl . 

• Grad, div and curl can be written in suffix notation as follows: 

al 
[V/Ji = -a ' 

Xi 

Combinations of operators and derivatives of products 

• V· (V f) = \72 I· 
• V x (Vf) = O. 
• V· (V x u) = O. 
• V x (V x u) = V(V . u) - \72u. 
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• V(Jg) = IVg + gVI· 
• V· (Ju) = V I· u + IV· u. 
• V X (Ju) = V I x u + IV x u. 
• V· (u x v) = (V xu) . v - (V x v) . u . 
• V x (u x v) = u(V· v) + v· Vu - u· Vv - v(V· u). 
• V(u· v) = u x (V x v) + v x (V x u) + u· Vv + v· Vu. 

EXERCISES 

4.9 Write in suffix notation the vector equation a x b + c = (a· b)b - d. 
4.10 Simplify the suffix notation expressions 

(a) 6ij6jk6ki; 

(b) fijkfklmfmni. 

4.11 Simplify the suffix notation expression 6ijajb/ck6/i and write the re­
sult in vector form. 

4.12 (a) Show that V x (JV 1) = o. 
(b) Evaluate V . (JV 1). 

4.13 Show that the vector u = V I x V 9 is solenoidal. 
4.14 Verify the formula (4.34) for u· Vu by using (4.35). 
4.15 Show that V· V'2u = V'2 V . u, 

(a) using suffix notation; 
(b) using (4.24). 

4.16 The vector fields u and wand the scalar field ¢ are related by the 
equation 

u + V x w = V ¢ + V'2 u, 

and u is solenoidal. Show that ¢ obeys Laplace's equation. 
4.17 Show that VI(r) = f'(r)r/r, where r is the position vector r = 

(Xl,X2,X3) and r = Irl. 
4.18 The vector field u is defined by u = h( r)r, where h( r) is an arbitrary 

differentiable function. 
(a) Show that V xu = o. 
(b) If V . u = 0, find the differential equation satisfied by h. 
(c) Solve this differential equation. 

4.19 A vector field u with the property that u = cV x u, where c is a 
constant, is called a Beltrami field. 
(a) Show that a Beltrami field is solenoidal. 
(b) Show that the curl of a Beltrami field is a Beltrami field. 
(c) A Beltrami field has the form u = (sin y, I, g). Find the functions 
I and 9 and the possible values of c if it is given that 9 does not 
depend on x. 



5 
Integral Theorems 

This chapter describes two important theorems that link the material in Chap­
ter 2 on line, surface and volume integrals with the definitions of the divergence 
and curl from Chapter 3. These theorems have great physical significance and 
are widely used in deriving mathematical equations representing physical laws. 

5.1 Divergence theorem 

Let u be a continuously differentiable vector field, defined in a volume V. Let S 
be the closed surface forming the boundary of V and let n be the unit outward 
normal to S. Then the divergence theorem states that 

JJi V· u dV = ffs u . n dS. (5.1) 

Proof 
The volume V is divided into a large number of small subvolumes t5Vi with 
surfaces t5Si , as shown in Figure 5.1. The proof of the divergence theorem then 
follows naturally from the physical definition of the divergence in terms of a 
surface integral (3.14). Within each of the subvolumes, V . u is defined by 

P. C. Matthews, Vector Calculus
© Springer-Verlag London Limited 1998
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Fig. 5.1. Division of a volume V into small subvolumes 8V for the proof of the 
divergence theorem. 

v . u ::::: _l_fj u· n dS, 
8Vi 65i 

(5.2) 

where the approximation becomes exact in the limit 8Vi -t O. Now multiply 
both sides of (5.2) by 8Vi and add the contributions from all the subvolumes: 

LV. u 8Vi ::::: L fj u· n dS. 
i i 65. 

(5.3) 

Now take the limit 8Vi -t O. The l.h.s. becomes the volume integral of V·u over 
the volume V; this is just the definition of the volume integral. To simplify the 
r.h.s. consider two adjacent volume elements 8V1 and 8V2 (Figure 5.2). Since 

Fig. 5.2. Enlargement of two adjacent volume elements. 

the normal vector to each surface points outward, the normal vectors to the two 
surfaces along their common surface point in opposite directions: nl = -n2. 

Therefore the values of u·n cancel along the common surface: u·nl +u·n2 = O. 
This means that all the contributions to the sum on the r.h.s. of (5.3) from the 
interior of the region V cancel out, leaving only the surface integral over the 
exterior surface S. So in the limit 8Vi -t 0, (5.3) becomes 
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Iii V· u dV = ffs u . n dS. 

o 

The divergence theorem is sometimes referred to as Gauss's theorem. It has 
many important applications in physics, and it is important to develop a physi­
cal intuition for the meaning of the theorem. Roughly speaking, the divergence 
theorem states that the total amount of expansion of u within the volume V 
is equal to the flux of u out of the surface S. This is essentially a conservation 
law, and the mathematical form of many physical conservation laws is derived 
from the divergence theorem. An example is given in the following section. 

5.1.1 Conservation of mass for a fluid 

As an example of the application of the divergence theorem, this section 
presents the derivation of the law of conservation of mass for a fluid of variable 
density. 

Consider a fluid with density p(r, t) flowing with velocity u(r, t). Let V 
be an arbitrary volume fixed in space, with surface S and outward normal n 
(Figure 5.3). Then the total mass of the fluid contained in V is the volume 
integral of p: 

Mass of fluid in V = Iii p dv. (5.4) 

Now the rate at which mass enters V is equal to the surface integral of the flux 
pu: 

n 

u 

u 

Fig. 5.3. Fluid flows with velocity u through a region V. 
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Rate of mass flow into V = - !f/u. ndS, (5.5) 

where the minus sign appears because n points outward, so mass enters V if 
u·n<O. 

We can now apply the physical law that mass is conserved: the rate of change 
of the mass in V must equal the rate at which mass enters V. Mathematically 
this is 

:t iii p dV = - !f/u. ndS. (5.6) 

The surface integral on the r.h.s. can now be written as a volume integral using 
the divergence theorem. Also, the order of the derivative and the integral on 
the l.h.s. can be interchanged: 

Iii ~ dV = - iii v· (pu)dV, (5.7) 

where the time derivative has become a partial derivative since p is a function 
of space and time. These two integrals can now be combined into one: 

Iii ~ + V . (pu) dV = o. (5.8) 

Now this result has been obtained without any restrictions on the volume V. 
Thus it is true for any arbitrary volume V. The only way that this can be true 
is if the integrand (the quantity inside the integral) is zero everywhere. If there 
were some point where the integrand were non-zero, a small volume could be 
drawn around that point, which would contradict (5.8). 

Therefore the law for conservation of mass of a fluid is 

ap 
at+V.(pu)=O. (5.9) 

This conservation law takes the following form: the rate of change of the density 
plus the divergence of the flux is zero. Many other conservation laws can also 
be written in this form, for example conservation of energy or conservation of 
electric charge. 

By expanding the divergence of pu, (5.9) can be written in the form 

ap 
at + U· Vp + pV· 11. = O. (5.10) 

If the density of the fluid is constant and uniform, i.e. independent of time and 
space, then this equation simplifies to 

V·u=O. (5.11) 

A fluid obeying (5.11) is said to be incompressible. 
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5.1.2 Applications of the divergence theorem 

The divergence theorem has many important applications, in addition to the 
derivation of the mathematical form of conservation laws shown in the previous 
section. It can be used to simplify the evaluation of integrals, by converting a 
complicated volume integral into a simpler surface integral or vice versa. It can 
also be used to prove some important results, such as the uniqueness of the 
solution to Laplace's equation 

(5.12) 

Some of these applications are illustrated in the following examples. 

Example 5.1 

Show that for any closed surface S, 

f!/V x u) . n dS = O. 

Using the divergence theorem, the surface integral can be converted into a 
volume integral: 

ffs (V x u) . n dS = III V· (V xu) dV. 

Since the combination div curl is always zero, this integral is zero. 

Example 5.2 

Find the relationship between the surface integral 

ffsT ·ndS 

and the volume V contained within the closed surface S. 
Applying the divergence theorem, 

using the result (3.17) that V . r = 3. Thus the surface integral is three times 
the volume V. 

Example 5.3 

The scalar field ¢ obeys Laplace's equation (5.12) in the region V and obeys 
¢ = 0 on the surface S that encloses V. Show that the only possible solution 
for ¢ is ¢ = 0 everywhere within V. 
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using (4.27). Now integrate over the volume V and use the divergence theorem 
to convert the first term to a surface integral: 

Since cP = 0 on S, the surface integral vanishes. The quantity IVcPI2 is always 
greater than or equal to zero, so its integral can only be zero if V cP = 0 
everywhere. This means that cP must be a constant, and since cP = 0 on S, this 
constant must be zero, so cP = 0 everywhere within V. 

Example 5.4 

The scalar field cP obeys Laplace's equation (5.12) in the region V and the 
value of cP is given on the surface S that encloses V. Show that the solution to 
Laplace's equation is unique. 

To prove uniqueness, suppose that there are two different solutions, cP1 and 
cP2, obeying \12cP1 = 0 and \12cP2 = 0 in V. Since the value of r/J is specified on 
S, cPl = cP2 on S. Now consider the function 'IjJ = cPl - cP2. This function also 
obeys Laplace's equation, since \12(cPl - cP2) = \12r/Jl - \12cP2 = O. Moreover, 
'IjJ = 0 on S since cP1 = cP2 on S. Now we can apply the result of Example 5.3 
to 'IjJ: the only solution to \12 'IjJ = 0 in V, 'IjJ = 0 on S is 'IjJ = 0 everywhere. 
Therefore cPl = cP2 everywhere, so the solution is unique. 

5.1.3 Related theorems linking surface and volume 
integrals 

There are several other relationships between surface and volume integrals that 
can be derived from the divergence theorem by making different choices for the 
vector u . 

• Choose u = ai, where a is a constant vector and I is a scalar field. Then 
V . u = I V . a + a· V I = a· V I since a is constant. Applying the divergence 
theorem gives Iii a· VI dV = ffsal.nds. 

Since a is constant, it can be taken out of the integrals: 

a . (Iii V I dV - ffs In dS) = o. 

Now since a is an arbitrary constant vector, this holds for any a. This can 
only be true if the vector quantity within the large brackets is zero (for 
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example, choosing a = el, e2, e3 in turn shows that each of the components 
of the vector in large brackets is zero). The resulting integral theorem is then 

III VI dV = ff/ ndS. (5.13) 

• Choose u = a x v, where a is a constant vector and v is a vector field. Then 
V· u = (V x a) . v - (V x v) . a = -(V x v) . a. The divergence theorem 
gives 

III -(V x v)· a dV = ffs a x V· ndS = ffs a· v x ndS, 

using the rule that the dot and cross may be interchanged in a scalar triple 
product. As in the previous example, the dot product with a can be taken 
out of the integral sign and then cancelled, giving 

III -VxvdV= ffsv x ndS. (5.14) 

• Choose u = IV g, where I and g are two scalar fields. Then V . u = V I . 
Vg + f'\1 2g, and the divergence theorem gives 

(5.15) 

This result is known as Green's First Identity. 
• Choose u = IV g-gV f. By interchanging I and 9 in (5.15) and subtracting, 

we obtain 

(5.16) 

which is known as Green's Second Identity. 

Historical note 

George Green (1793-1841) was a Nottingham miller who spent less than two 
years at school and learnt his mathematics by studying library books. In 1828 
he published privately his first and greatest work, 'An essay on the application 
of mathematical analysis to the theories of electricity and magnetism', which 
includes the two theorems above. As with many geniuses his work was not 
appreciated until several years after his death. Green's mill in Nottingham 
has now been restored and is open to the public along with a Science Centre 
illustrating some of the applications of his work. 
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EXERCISES 

5.1 Use the divergence theorem to evaluate the surface integral 

ffsU ·ndS 

where U = (xsiny,cos2 x,y2 - zsiny) and S is the surface of the 
sphere x2 + y2 + (z - 2)2 = l. 

5.2 Verify the divergence theorem, by calculating both the volume in­
tegral and the surface integral, for the vector field U = (y, x, z - x) 
and the volume V given by the unit cube 0 ::; x, y, z, ::; l. 

5.3 An incompressible fluid is contained within a volume V with surface 
Sand U· n = 0 on S. Using the divergence theorem, show that 

II[ u . V 4> dV = 0 

for any differentiable scalar field 4>. 
5.4 Two scalar fields! and 9 are related by Poisson's equation, V'2! = g. 

Show that III gdV = ffV!. ndS. 

5.5 Use the divergence theorem to evaluate the surface integral 

lis v ·ndS 

where v = (x + y, Z2, x 2 ) and S is the surface of the hemisphere 
x 2 + y2 + z2 = 1 with z > 0 and n is the upward-pointing normal. 
Note that the surface S is not closed. 

5.6 Following the argument of Section 5.1.1, obtain the equation for 
conservation of electric charge relating the charge density q and the 
electric current density j. 

5.7 Use (5.13) to obtain a definition for V! as the limit of an integral, 
similar to the definitions of div and curl. 
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5.2 Stokes's theorem 

Stokes's theorem gives an alternative expression for the surface integral of the 
curl of a vector field. This is analogous to the divergence theorem, so Stokes's 
theorem could be referred to as the 'curl theorem'. The proof of the theorem is 
very similar to that for the divergence theorem, being based on the definition 
of curl in terms of a line integral. 

Let C be a closed curve which forms the boundary of a surface S. Then for 
a continuously differentiable vector field u, Stokes's theorem states that 

lis V xu· n dS = fa u . dr, (5.17) 

where the direction of the line integral around C and the normal n are oriented 
in a right-handed sense (Figure 5.4). 

s 

c 

Fig. 5.4. Orientation of the curve C and the surface 5 for Stokes's theorem. 

Proof 

To demonstrate the theorem we first divide the surface S into small pieces each 
with area JSi and bounding curves JCi (Figure 5.5). Within each piece of the 
surface, the definition (3.20) of V x u is 

V xu· n ::::::: _1_ 1 U· ciT, 
JSi he; 

where the approximation is exact in the limit JSi --t O. Multiplying by JSi and 
adding the contributions from all the surface elements, 
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Fig. 5.5. Division of the surface S into small elements 6S for the proof of Stokes's 
theorem. 

L V xu· n ~Si ~ L ic. u . dr. 
• • 

Now consider the limit {)Si -t o. The l.h.s. gives the surface integral of V x 
u . n over the surface S. On the r.h.s. the contributions to the line integrals 
from neighbouring elements cancel out, because the line elements dr point in 
opposite directions (Figure 5.6). Therefore only the curves that form part of C 

Fig. 5.6. Line integrals along adjoining elements cancel out. 

contribute to the sum, so the sum simplifies to the line integral around C: 

f Is V xu· n dS = fa u . dr. 

o 
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5.2.1 Applications of Stokes's theorem 

Stokes's theorem can be useful for evaluating integrals, by converting line in­
tegrals to surface integrals or vice versa. It can also be used to prove other 
theorems, as in Example 5.5 below, or to formulate physical laws (Example 
5.6). 

Example 5.5 
Show that any irrotational vector field is conservative. 

Suppose that u is irrotational, so V x u = o. Then for any closed curve C, 

t u . dr = lis V xu· n dS = 0, 

where S is any surface spanning C. Thus u is a conservative vector field. Note 
that this result completes the demonstration of the statement in Section 3.4.3 
of the equivalence of the three properties (i) u = V c/J, (ii) V xu = 0, (iii) u is 
conservative. 

Example 5.6 
Ampere's law states that the total flux of electric current flowing through a 
loop is proportional to the line integral of the magnetic field around the loop. 
Use Stokes's theorem to obtain an alternative form of this law that does not 
involve any integrals. 

Let B be the magnetic field strength and j be the current density. The 
constant of proportionality is J.lo in SI units. Then Ampere's law states that 

t B . dr = J.lo lis j . n dS 

for any surface S that spans the loop C. Using Stokes's theorem to transform 
the l.h.s. gives 

lis V x B· ndS = J.lo Ilsj· ndS. 

Now if this is true for any loop C, and so any surface S, it follows that 

V x B = J.loj. 
Note the similarity between this argument and that used when applying the 
divergence theorem to the conservation of mass of a fluid in Section 5.1.1. 
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Example 5.7 

Use Stokes's theorem to show that for any closed surface S, 

ffs (V xu)· ndS = O. 

Consider the case where a small hole is made in the closed surface. Then 
by Stokes's theorem, the surface integral of (V x u) . n over the surface S is 
equal to the line integral of u . dr around the perimeter of the small hole. As 
the size of the hole shrinks to zero, so does the value of the line integral, giving 
the required result. Note that this result was obtained using the divergence 
theorem in Example 5.1. 

Example 5.8 

The surface S is defined by x 2 + 4y2 = 1, -1 S z S 1. Use Stokes's theorem to 
evaluate the surface integral 

Jis (xz2, _yz2, 0) . n dS. 

Note that this surface is not simply connected, but Stokes's theorem can still 
be applied. By imagining a cut in the surface (Figure 5.7), the surface integral 
is equal to the sum of two line integrals around the two elliptical curves C1 

and C2 that form the ends of the cylindrical surface. In order to apply Stokes's 
theorem, the vector field (xz2, _ yz2, 0) must be written as the curl of another 
vector field u. Seeking a solution of the form u = (0,0, hex, y, z)), this can be 

n 

s 

Fig. 5.7. Stokes's theorem can be used to transform the surface integral over the 
curved surface of the cylinder into two line integrals around the ends of the cylinder, 
by introducing a cut in the surface. The two line integrals along the cut cancel out. 
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and these two equations are satisfied if h = xyz2. Now since the two curves C1 

and C2 lie in planes z = constant, so dr = (dx, dy, 0), u· dr = 0 on C1 and C2 

so the value of the integral is zero. 

5.2.2 Related theorems linking line and surface integrals 

As in the case of the divergence theorem, Stokes's theorem can be used to derive 
other theorems that relate line integrals to surface integrals by appropriate 
choices of the vector field u. 

• Choose u = ai, where a is a constant vector and I is a scalar field. Then 
V x u = V I x a + IV x a = V I x a, so Stokes's theorem gives 

lis VI x a· n dB = Ie al· dr. 

Using the rules for manipulating the scalar triple product and taking out the 
constant vector a from the integrals gives 

As in Section 5.1.3, the constant a can be cancelled, giving 

lis -VI x n dB = [Idr . 

• Choose u = a x v, where a is a constant vector and v is a vector field. This 
case is more complicated, but provides a good example for the use of suffix 
notation. The line integral in Stokes's theorem is 

1 a x v . dr = a· 1 v x dr, 
Je Je 

interchanging the dot and the cross and taking the constant a outside the 
integral. Since V x (a x v) = a(V . v) - a . Vv, from formula (4.30), the 
surface integral is 

IIs(a(v, v) - a· Vv)· n dB = lis (aj ~~: - ak~;~) nj dB 

= rr aj (8Vk nj _ 8Vk nk ) dB 
Jis 8Xk 8xj 
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where j and k have been interchanged in the second term. Applying Stokes's 
theorem and cancelling the aj gives a relationship between a surface integral 
and a line integral in suffix notation: 

r r 8Vk nj - 8Vk nk dS = [t v x dr] . 
lls 8 Xk 8xj C j 

(5.18) 

To obtain the form of this equation in vector notation, consider the quantity 
[(n x V) x vlJ. In suffix notation this is 

= 8Vl 
(c5lm c5jn - c5lnc5jm)nm-8 

Xn 
8Vl 8Vl 

nl--nj-' 
8xj 8Xl 

This is now minus the quantity appearing in the surface integral (5.18), so 
the vector form of (5.18) is 

lis -(n x V) x v dS = i v x dr. (5.19) 

Note that suffix notation is the only secure method for obtaining such results, 
short of writing out all the components of the vector quantities longhand. 
Attempts to expand using the rules for a vector triple product generally give 
incorrect results . 

• Choose the surface S to be a flat surface lying in the x, y plane, so n = 
(0,0,1) and choose u = (F(x,y),G(x,y),O). Then 

( 8G 8F) 
V x u = 0,0, 8x -. 8y 

and u . dr = F dx + G dy. Then Stokes's theorem gives 

lis ~~ -~~ dx dy = i F dx + G dy, (5.20) 

a result known as Green's theorem. 
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Summary of Chapter 5 

• The divergence theorem states that 

Iii V· udV = ffs u ·ndS, 

where S is the surface enclosing the volume V and n is the outward-pointing 
unit normal vector. 

• Geometrically, the divergence theorem follows naturally from the physical 
definition of the divergence. 

• The divergence theorem has many applications, including simplifying the 
evaluation of surface or volume integrals, deriving physical conservation laws 
and showing that Laplace's equation has a unique solution. 

• Stokes's theorem states that 

I Is V xu· n dS = i: u . dr, 

where the curve C encloses the surface Sand C and n are oriented in a 
right-handed sense. 

• Stokes's theorem follows from the definition of the curl in terms of a line 
integral. 

• A number of other related theorems linking volume, surface and line integrals 
can be derived from the divergence theorem and Stokes's theorem. 
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EXERCISES 

5.8 Show that 

for any closed curve C. 
5.9 Verify Stokes's theorem by evaluating both the line and surface in­

tegrals for the vector field u = (2x - y, _y2, _y2Z) and the surface 
S given by the disk z = 0, x 2 + y2 ::; 1. 

5.10 Use Stokes's theorem to show that 

t, IV 9 . dr = - Ie gV I . dr 

for any closed curve C and differentiable scalar fields I and g. 

5.11 If u is irrotational, express the surface integral 

J Is u x V I . n dS 

as a line integral. 
5.12 The magnetic field B in an electrically conducting fluid moving with 

velocity u obeys the magnetic induction equation 

8B at = V x (u x B). 

Show that the total flux of magnetic field through a surface enclosed 
by a streamline of the flow (a closed curve which is everywhere par­
allel to u) is independent of time. 

5.13 Use (5.18) to show that the area A of a flat surface S enclosed by a 
curve C is 

A = 1/21£ r x drl· 



6 
Curvilinear Coordinates 

6.1 Orthogonal curvilinear coordinates 

So far in this book we have used rectangular Cartesian coordinates. In many 
physical problems, however, these are not the most convenient coordinates to 
use. Consider, for example, the problem of finding the electric field produced by 
a charged sphere. In this chapter the general theory of non-Cartesian coordinate 
systems is introduced. Formulae for grad, div and curl in these coordinate 
systems are developed and the two most important examples, cylindrical and 
spherical polar coordinates are described. 

Suppose a transformation is carried out from a Cartesian coordinate system 
(Xl,X2,X3) to another coordinate system (Ul,U2,U3). This new system will 
be called a curvilinear coordinate system. It will be assumed that there is a 
one-to-one relationship between the Xi and the Ui, so that for example Xl 

can be written as a function of the Ui, Xl = XI(UI,U2,U3) and conversely 

UI = Ul(Xl,X2,X3). 

The surfaces Ui = constant are referred to as coordinate surfaces and the 
intersection of these surfaces defines the coordinate curves, so for example the 
Ul coordinate curve is the intersection of the surfaces U2 = constant and U3 = 
constant (Figure 6.1). 

P. C. Matthews, Vector Calculus
© Springer-Verlag London Limited 1998
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Fig. 6.1. The coordinate surfaces and coordinate curves of a curvilinear coordinate 
system. 

Now consider a small displacement dx = (dXl,dx2,dxa). Since the Xi are 
functions of the Ui this can be written as 

ox ox ox 
dx = ~dUI + ~dU2 + ~dua, 

UUI UU2' uUa 

Or mOre compactly using suffix notation as 

OXi 
dXi = ~duj, 

UUj 

where the repeated suffix j on the r.h.s. implies summation from 1 to 3. Now 
the partial derivative OX/~UI means the rate of variation of x with UI while 
U2 and Ua are held fixed, so the vector OX/OUI lies in the U2 and U3 coordinate 
surfaces and is therefore tangent to the UI coordinate curve. This enables a 
unit vector el to be defined in the direction of the UI curve, by 

ox / 
el = OUI hI (6.1) 

where hI is a scale factor defined by 

(6.2) 

The unit vectors e2 and ea are defined in a similar way, along with the scale 
factors h2 and h 3• 
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The displacement vector dx can then be written in terms of these unit 
vectors and scale factors as 

Attention will be restricted to coordinate systems in which the unit vectors are 
orthogonal, so that 

(6.3) 

Such coordinate systems are known as orthogonal curvilinear coordinates. This 
means that the coordinate curves are perpendicular to each other where they 
intersect. It will also be assumed that the coordinate system is right-handed, 
so that 

(6.4) 

Locally, this coordinate system appears as a rectangular coordinate system 
with axes stretched by the factors hi, so that a change in UI of size dUI leads to 
a change of distance hI dUI in the el direction (Figure 6.2). Globally, however, 
the directions of the unit vectors ei vary in space, as do the scale factors hi. 

"~ 

Fig. 6.2. An orthogonal curvilinear coordinate system appears locally as a rectangu­
lar coordinate system. 

Having set up this general framework, formulae for various useful quantities 
can be derived in terms of the scale factors hi with reference to Figure 6.2. The 
length of a line element ds is found from 

(6.5) 

A surface element dB on the UI coordinate surface generated by displacements 
dU2, dU3 is rectangular and so has the area 

(6.6) 
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and similarly for area elements on the U2 and U3 coordinate surfaces. Finally, 
the volume element dV produced by displacements dUI, dU2, dU3 is again rect­
angular and so its volume is 

(6.7) 

Example 6.1 
Show that the volume element in a right-handed orthogonal curvilinear coordi­
nate system, hlh2h3 dUI dU2 dU3, can also be written in terms of the Jacobian 
of the transformation, J, defined to be the determinant of the matrix with i,j 
element axifauj. 

The determinant of a matrix can be interpreted as the scalar triple product 
of the vectors forming its rows or columns, so J can be written as the scalar 
triple product of three vectors: 

J 
ax ax ax 
--·--x--
aUI aU2 aU3 

= hlel . h2e2 x h3e3 

= hlh2 h3 

since for a right-handed coordinate system, e2 x e3 = el so el . e2 x e3 = 1. 
Therefore the volume element can be written 

Example 6.2 

Parabolic coordinates (u, v, w) are related to Cartesian coordinates (Xl, X2, X3) 

by the equations 

Xl = 2uv, 2 2 
X2 = U - v , X3 = w. 

Sketch the U and v coordinate curves, find the scale factors hu, hv, hw and 
the unit vectors eu , ev , ew, and check that the (u,v,w) coordinate system is 
orthogonal. 

The u and v coordinate curves are the intersections of the v and u coordinate 
surfaces with the w coordinate surfaces. Since w = X3, the Xl, X2 plane is a 
w coordinate surface. Consider the surface U = c, where c is a constant. In 
terms of the Cartesian coordinates this can be written X2 = c2 - x~ /4c2 after 
eliminating v. Similarly the surface v = k can be written X2 = _k2 + xU4k2. 
The U and v coordinate curves are therefore parabolas in the Xl, X2 plane 
(Figure 6.3). 

The scale factors hu, hv, hw are just the magnitudes of the partial derivatives 
of the vector (Xl, X2, X3) with respect to u, v and w: 
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Fig. 6.3. The coordinate curves of the parabolic coordinate system. 

hu 1(2v,2u,0)1=2VU2 +V2 , 

hv 1(2u, -2v,0)1 = 2Vu2 + V 2 , 

hw 1(0,0,1)1 = 1. 

The unit vectors are the vectors of the partial derivatives divided by the scale 
factors: 

eu = (v,u,0)/VU2 +v2 , 

e v (u, -v,0)/vu2 + v2 , 

€w (0,0,1). 

Since the dot product of any two of these unit vectors is zero, the (u, v, w) 
system is orthogonal. 
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6.2 Grad, div and curl in orthogonal curvilinear 
coordinate systems 

In this section, formulae for the gradient of a scalar field and the divergence 
and curl of a vector field are derived for orthogonal curvilinear coordinate 
systems. In each case the physical definition is used, i.e. the definition which is 
independent of any coordinate system. 

6.2.1 Gradient 

The gradient VI of a scalar field 1 is a vector perpendicular to the surfaces 
1 = constant, defined by the equation 

dl=V/·dx 

where dx is an infinitesimal change in position and dl is the corresponding 
change in 1. Now from (6.1) we have 

If 1 is written as a function of the Ui then 

d1 = 81 dUI + 81 dU2 + 81 dU3 
8UI 8U2 8U3 
1 81 1 81 1 81 

= --hidul + --h2du2 + --h3du3 
hI 8UI h2 8U2 h3 8U3 

= (-.!.. 81 el + -.!.. 81 e2 + -.!.. 81 ea) . dx. 
hI 8UI h2 8U2 h3 8U3 

Since this holds for any dx, the term in the large brackets is V 1: 

1 81 1 81 1 81 V1 = --el + --e2 + --ea. 
hI 8UI h2 8U2 h3 8U3 

(6.8) 
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6.2.2 Divergence 

The formula for the divergence of a vector field v = VI el + V2e2 + V3ea in 
orthogonal curvilinear coordinates can be obtained using the definition (3.14) 

. 1 fj V . v = hm rv v . n dS. 
6V-+Ou 6S 

Since the coordinate system is orthogonal, the argument of Section 3.3 based 
on choosing 8V to be a small rectangular box can be repeated, with reference 
to Figure 6.2. The only difference in the argument is that the lengths of the 
sides of the box are scaled by the scale factors hi. On the UI surface on the 
right of the box, n = el so v . n = VI and 

where VI, h2 and h3 are evaluated at (UI + duI/2,U2,U3)' Similarly, on the 
opposite surface, 

v ·ndS ~ -vlh2h3du2du3 

evaluated at (UI - duI/2, U2, U3). Adding these two contributions and dividing 
by the volume hlh2h3duldu2du3 (exactly as in Section 3.3) gives the contribu­
tion to V . v from these two surfaces as 

Note that h2 and hs cannot be cancelled out because in general they are func­
tions of UI. The contributions to V . v from the other surfaces follow from cyclic 
permutation, so 

(6.9) 

By combining the definitions of div (6.9) and grad (6.8), a formula for the 
Laplacian of a scalar field, V2 f = V . (V f) can be obtained: 
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6.2.3 Curl 

The curl of a vector field v in orthogonal curvilinear coordinates is found using 
the definition . Ii n . V x v = hm - v . dr 

65--+08S 6C 

and following the argument of Section 3.4. To find the ea component of V x v, 
consider a small rectangle in the U3 surface, with sides of length hI dUI and 
h2du2 (Figure 6.4). The line integral along the right-hand side of the rectangle 

h1du1 

Fig. 6.4. Rectangle of four line segments for deriving the formula for V x v in 
orthogonal curvilinear coordinates. 

is approximately V2h2du2 evaluated at (UI + duI/2, U2, U3) and the integral 
along the left side is approximately -V2h2du2 evaluated at (UI -duI/2,U2,U3). 
Adding these two, taking the limit dUI -+ 0, dU2 -+ 0 and dividing by the area 
gives a contribution 

to the ea component of V x v, and similarly the upper and lower sides of the 
rectangle generate a contribution 

so the ea component of V x v is 

ea· V x v = _1_ (~(V2h2) - ~(VIhl») . 
hIh2 OUI OU2 

The other components are found by permuting the indices. The determinant 
form of V x v is 
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EXERCISES 

6.1 Verify that for Cartesian coordinates the scale factors are all equal 
to l. 

6.2 A coordinate system (u, v, w) is related to Cartesian coordinates 
(XI,X2,X3) by 

Xl = UVW, X2 = uv(l- w2 )1/2, X3 = (u2 - v2 )/2. 

(a) Find the scale factors hu, hv, hw. 
(b) Confirm that the (u, v, w) system is orthogonal. 
(c) Find the volume element in the (u,v,w) system. 

6.3 Find the scale factors and hence the volume element for the coordi­
nate system (u, v, 0) defined by 

Xl = uvcosO, X2 = uvsinB, X3 = (u2 - v2 )/2, 

in which u and v are positive and 0 s: B < 211". Hence find the volume 
of the region enclosed by the curved surfaces u = 1 and v = 1. 

6.4 Find the formula for V f in a general orthogonal curvilinear coordi­
nate system by writing V f in Cartesian coordinates and then finding 
the component of V f in the el direction. 

6.3 Cylindrical polar coordinates 

Cylindrical polar coordinates (R,,p, z) are related to Cartesian coordinates 
(XI,X2,X3) by 

Xl = Rcos,p, X2 = Rsin,p, X3 = z. (6.10) 

The transformation in the reverse direction is 

(6.11) 

The coordinate system is shown in Figure 6.5. The scale factors are found 
using (6.2): 
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Xl " .", 

Fig. 6.5. Cylindrical polar coordinates. 

hR = I~~I = 1 (COS cj>,sin cj>, 0)1 = 1, 

hq, = I~:I = 1(-Rsincj>,Rcoscj>,O)1 = R, 

hz I~:I = 1(0,0,1)1 = l. 

The unit vectors are found from (6.1): 

eR = ~~/hR = (coscj>,sincj>,O), 

e4> = ax / acj> hq, = (-sincj>,coscj>,O), 

e", = ax / az hz = (0,0,1). 

Note that the dot product of any two of the unit vectors is zero, so they obey 
the orthogonality condition. Also, since eR x e4> = e"" the coordinate system 
(R, cj>, z) is right-handed. 

Using the scale factors, area elements on each of the coordinate surfaces can 
be found from (6.6). For example on the cylindrical R coordinate surface, 

(6.12) 

Similarly, the volume element is, from (6.7), 
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dV = hRh¢hz dRd¢dz = RdRd¢dz. (6.13) 

The formulae for the gradient, divergence, Laplacian and curl can be ob­
tained by applying the results of Section 6.2: 

81 1 81 81 
V/= 8ReR+ R8¢e¢+ 8z e .. , (6.14) 

1 8 18v¢ 8vz 
V·v= R8R(RvR) + Ii 8¢ +8z' (6.15) 

218(81) 1821821 
V 1 = R 8R R 8R + R2 8¢2 + 8z2' (6.16) 

Vxv = ( 1 8vz 8v¢) (8VR 8Vz) ---- eR+ --- e", 
R 8¢ 8z 8z 8R 

1 ( 8 8VR) + R 8R(Rv¢) - 8¢ e ... (6.17) 

Example 6.3 
Calculate the volume of a cone of radius a and height H. 

In cylindrical polar coordinates the equation of the cone is z = H Ria if the 
origin is chosen at the vertex of the cone. Then for a given value of z the range 
of R is 0 < R < azlH. The volume is then 

JJ[ dV = 1H 1 az/H 121T Rd¢dRdz 

rH rz / H 
10 10 27rRdRdz 

rH a2z2 

10 7r H2 dz = 7ra2 H 13. 

Example 6.4 
Find the solution to Laplace's equation in cylindrical polar coordinates that 
only depends on the distance R from the axis. 

If 1 obeys Laplace's equation V 21 = 0 and 1 depends only on R then from 
(6.16), 

8 ( 81) 8R R8R =0, 
81 

so R8R = c, 

where c is a constant. Solving this differential equation gives 

1 = clogR+d, 

where d is another arbitrary constant. 
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6.4 Spherical polar coordinates 

Spherical polar coordinates (r, 8, ¢) are related to Cartesian coordinates by 

Xl = r sin 8 cos ¢, X2 = r sin 8 sin ¢, X3 = rcos8, (6.18) 

and the inverse transformation is 

r=jxi+x~+x~, 8=tan-I(Jx~:X~), ¢=tan-1 (::). (6.19) 

Note that ¢ here is equivalent to the angle ¢ for cylindrical polar coordinates. 
However, the reader should be aware that different authors use different nota­
tion for the labelling of the angles in cylindrical and spherical polar coordinates. 
The variable r corresponds to its earlier use as the magnitude of the position 
vector r, representing the distance from the origin. 

, , 
, , 

Fig. 6.6. Spherical polar coordinates. 

A sketch of the coordinate system is shown in Figure 6.6. Note that the 
ranges of the three coordinates are 

0::; r < 00, O~8~7f, o ~ ¢ < 27f. 
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A slightly modified form of spherical polar coordinates is used to measure 
position on the surface of the Earth. The longitude is the angle ¢ and the 
latitude is 1f/2 - O. 

The scale factors hr , ho and h", are 

hr = I (sin 0 cos ¢, sin 0 sin ¢, cos 0)1 = 1, 

ho = l(rcosOcos¢,rcosOsin¢,-rsinO)1 =r, 

h", = 1(-rsinOsin¢,rsinOcos¢,O)1 = rsinO. 

The unit vectors are 

er = (sin 0 cos ¢, sin 0 sin ¢, cos 0), 

e8 = (cos 0 cos ¢, cos 0 sin ¢, - sin 0), 

e", = (- sin ¢, cos ¢, 0) 

and it can be verified by taking the dot product of pairs of the unit vectors 
that the system is orthogonal. The area element on the spherical r coordinate 
surface is 

dS = h(Jh", dO d¢ = r2 sin 0 dO d¢ (6.20) 

and the volume element is 

(6.21) 

The formulae for grad, div, Laplacian and curl are 

(6.22) 

(6.23) 

(6.24) 

(6.25) 
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Example 6.5 
Suppose a sphere of radius a has a variable density P = Po (1 - r / a) where Po 
is a constant. What is the total mass of the sphere? 

The total mass M is just the volume integral of p. The limits on the integrals 
are 0 ~ r ~ a, 0 ~ () ~ 7r, 0 ~ </J < 27r and the volume element is dV = 
r2 sin () dr d() d</J. Choosing to do the integrals in the order r, (), </J, the mass is 

M = II[po(1-r/a)dV 

121f 11f 1 a Po (1- r/a)r2 sin()drd()d</J 

r21f r = 10 10 po[r3/3-r4/4a]~sin()d()d</J 

= 121f Po a3 /12 [ - cos ()] ~ d</J 

7rpo a3/3. 

Note that in triple integrals of this type, where the limits are constants, it is 
not strictly necessary to do the integrals one at a time. Thus it would have 
been possible to write after the second line, 

M = [r3 /3 - r 4 /4a]~ [ - cos()]~ [</J]~1f = 7rpo a3 /3. 

Example 6.6 

What proportion of the Earth's surface lies further north than the 450 N lati­
tude line? 

The required region of the surface is 0 ~ () ~ 7r / 4, 0 ~ </J < 27r. Using the 
formula (6.20) for the area element, the area A is 

A = II dS = 121f 11f/4 r2 sin()d()d</J = 27rr2 (1 - cos(7r/4)) = 7rr2(2 - v'2). 

As a proportion of the total area this is A/47rr2 = (2 - -/2)/4:::::: 0.15. 
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Summary of Chapter 6 

• A curvilinear coordinate system (UI, U2, U3) is related to a Cartesian coordi­
nate system (XI,X2,X3) by Xi = Xi(UI,U2,U3). 

• The unit vectors ei and the scale factors hi are defined for i = 1 by 

and similarly for i = 2,3. 
• The system (Ul, U2, U3) is orthogonal if ei . e j = ~ij. 

• The volume element in the (UI, U2, U3) system is dV = hI h2h3 dUI dU2 dU3· 

• Formulae for grad, div and curl in the (UI, U2, U3) system can be written 
down in terms of the scale factors and the unit vectors. 

• The two most important curvilinear coordinate systems are cylindrical polar 
coordinates, 

Xl = Rcoscp, 

and spherical polar coordinates, 

Xl = r sin B cos cp, 

EXERCISES 

X2 = Rsincp, 

X2 = rsinBsincp, X3 = rcosB. 

6.5 A cylindrical apple corer of radius a cuts through a spherical apple 
of radius b. How much of the apple does it remove? 

6.6 Find the proportion of the Earth's volume that is less than 30° away 
from the Equator. 

6.7 Find the divergence and curl of the unit vector e", in spherical polar 
coordinates. 

6.8 Find u· Vu for the vector u = e", in cylindrical polar coordinates. 
6.9 Find a formula for the R component of the Laplacian of a vector field, 

V 2v, in cylindrical polar coordinates. Verify that the components of 
the Laplacian of v are not equal to the Laplacians of the components 
ofv. 



7 
Cartesian Tensors 

7.1 Coordinate transformations 

At the very beginning of this book vectors and scalars were defined as 'phys­
ical quantities'. But what does this mean mathematically? In this chapter a 
precise mathematical statement is developed, using the idea that the physical 
quantity exists independently of any coordinate system that may be used. This 
new mathematical definition of vectors and scalars is generalised to define a 
wider class of objects known as tensors. Throughout this chapter attention is 
restricted to Cartesian coordinate systems. 

Consider a rotation of a two-dimensional Cartesian coordinate system Xl, 
X2 through an angle () (Figure 7.1) to give a new coordinate system x~, x~. 
Then by carrying out some simple geometrical constructions it can be seen 
that the coordinates of a point P in the Xl, X2 system are related to those in 
the X~, X~ system by the equations 

or in matrix form, 

X~ = Xl cos(} + X2 sin(}, 

x~ = X2COS(}-xlsin(}, 

cos () sin () 
- sin () cos () ) ( Xl) . 

X2 

(7.1) 

(7.2) 

P. C. Matthews, Vector Calculus
© Springer-Verlag London Limited 1998



116 Vector Calculus 

Fig. 1.1. Rotation of Cartesian coordinates through an angle 8. 

The 2 x 2 matrix relating (X~, X~) to (Xl, X2) will be referred to as L: 

L = ( COS() Sin(}). 
- sin () cos () 

The matrix multiplication can be written in suffix notation, since 

where the repeated suffix j implies summation, so 

(7.3) 

(7.4) 

The rotation matrix Lij has one particularly important property. The inverse 
of the matrix is a rotation through -(), 

L -1 = ( cos( -()) sin( -()) ) = ( cos () 
- sin( -()) cos( -(}) sin () 

- sin(} ) 
cos () , 

which is the transpose of the matrix L. Thus LLT = I, or in suffix notation, 
LijLJk = 6ik . Since LJk = Lkj, this can be written 

(7.5) 

A matrix with this property, that its inverse is equal to its transpose, is said 
to be orthogonal. Using this property, the inverse of the transformation can be 
written down, simply by transposing the suffices: 

(7.6) 
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Another important property of the matrix L is that its determinant is 

ILl = cos2 () + sin2 () = 1. 

117 

So far we have only considered a two-dimensional rotation of coordinates. 
Consider now a general three-dimensional rotation. For a position vector x = 
Xlel + X2e2 + X3e3, the i component in the dashed frame is defined by 

This is of the form (7.4), where 

(7.7) 

so Lij is the cosine of the angle between e~ and ej. By the same argument, the 
matrix which transforms from the dashed frame to the undashed frame has i,j 
element ei . ej = L ji , so again we see that the inverse of L is its transpose. 
Since LLT = I, the determinant of L obeys ILI2 = 1, so ILl = ±1. Orthogonal 
matrices with ILl = 1 represent rotations, while those with ILl = -1 are 
reflections. 

From (7.4) and (7.6), two further important properties of L follow: 

aX~ _ L .. 
- OJ 

aXj 
and (7.8) 

7.2 Vectors and scalars 

Now consider a vector v. Its components transform from one coordinate system 
to another in the same way as the coordinates of a point, so 

(7.9) 

This equation gives the mathematical definition of a vector: v is a vector if 
its components transform according to the rule (7.9) under a rotation of the 
coordinate axes. 

Similarly, a scalar 8 is defined by the property that its value is unchanged 
by a rotation of coordinates, so 

8' = 8. (7.10) 
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Using these new definitions of scalars and vectors, in terms of their trans­
formation properties under a rotation of coordinate axes, a number of rigorous 
results can be proved, as illustrated in the following examples. Suffix notation 
and the summation convention are used throughout. 

Example 7.1 
Suppose that a and b are vectors. Show that their dot product a· b is a scalar. 

Since a and b are vectors, their components transform under rotation ac­
cording to 

a~ = Lijaj, b~ = Lijbj . 

Now to show a· b is a scalar, we must show that its value in the dashed frame 
is the same as its value in the undashed frame. 

(a· b)' = a~b~ = LijajLikbk = LijLikajbk 

~jkajbk = akbk = a· b, 

so a . b is a scalar. 

Example 7.2 

Suppose that I is a scalar field. Show that V I is a vector. 

(7.11) 

(7.12) 

If I is a scalar then I = I'. To show that V I is a vector we need to 
determine how it transforms under a rotation of coordinates. 

(V f)~ = of' = 01 =!.L OXj 

• oxi oxi ox j oxi 

using the chain rule. Now making use of (7.8), 

01 01 
!:II = Lij~, 
uX i uXj 

so V I obeys the transformation rule for a vector. 

Example 7.3 
A quantity is defined in a two-dimensional Cartesian coordinate system by 
u = (ax2, bxdT. Show that this quantity can only be a vector if a = -b. 

If u is a vector, it must transform according to the rule ui = Lijuj where 
Lij is the 2 x 2 rotation matrix (7.3). This gives 

u' = ( aX2 cos() + bXl sin() ) 
-aX2 sin () + bXl cos () , 

but from the definition of u we also have 

u' = ( ax~ ) = ( -aXl sinO + aX2 COSO) 
bx~ bXl cos 0 + bX2 sin () . 

By comparing these two expressions we can see that they only agree if a = -b, 
so this is the condition for u to be a vector. 
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7.3 Tensors 

The definition of a vector as a quantity which transforms in a certain way 
under a rotation of coordinates can be extended to define a more general class 
of objects called tensors, which may have more than one free suffix. A quantity 
is a tensor if each of the free suffices transforms according to the rule (7.4). 
For example, consider a quantity Tij that has two free suffices. This quantity 
is a tensor if its components in the dashed frame are related to those in the 
un dashed frame by the equation 

(7.13) 

The rank or order of the tensor is the number of free suffices, so the quantity Tij 

obeying (7.13) is said to be a second-rank tensor. A tensor may have any number 
of free suffices. For example, a third-rank tensor P ijk transforms according to 
the rule 

(7.14) 

The rule for a tensor of rank one is the same as the rule for a vector, so a vector 
can be regarded as tensor of rank one. Similarly, a scalar can be thought of as 
a tensor of rank zero. 

We have already met. one second-rank tensor, 6ij, and a third-rank tensor, 
fijk. Tensors can also be constructed from vectors, for example 8Ui/8xj is a 
tensor. The demonstration that these quantities are indeed tensors is given in 
the following examples. 

Example 7.4 
Show that 6ij is a tensor. 

Consider the quantity LikLjm6km. From the substitution property of 6ij, 

this is LikLjk, which from the property (7.5) of Lis 6ij. Now 6~j = 6ij, since 
6ij is defined the same way in any coordinate system. Thus 6ij obeys the tensor 
transformation law, 6~j = LikLjm6km. 

Example 7..5 
Show that fijk is a tensor. 

Since fijk has three suffices, the appropriate transformation to consider is 
LipLjqLkrfpqr. Using (4.10), this is fijklLI = fijk' since ILl = 1 for a rotation. 
As for 6ij, fijk is defined in the same way in all coordinate systems so <jk = 
fijk = LipLjqLkrfpqr. Therefore fijk is a third-rank tensor. 
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Example 7.6 
If u is a vector, show that 8Ui/8xj is a second-rank tensor. 

Since u is a vector, u~ = LikUk. 

which is the transformation rule for a second-rank tensor. 

7.3.1 The quotient rule 

Tensors often appear as quantities relating two vectors, for example 

(7.15) 

The quotient rule states that if (7.15) holds in all coordinate systems and for 
any vector b the resulting quantity a is a vector, then Tij is a tensor. 

Proof 
The quotient rule is proved as follows: Since a is a vector, 

Since b is a vector, it obeys bj = Lmjb'm (note that this is the inverse trans­
formation, from the dashed to the un dashed frame, so the suffices of L are 
transposed). Substituting for bj gives 

But since (7.15) holds in all coordinate systems, 

a; = TImb~,. 

Subtracting these two results, 

If this result holds for any vector b, then the quantity in brackets must be zero, 
so 

TIm = LikLmjTkj. 

Therefore, Tij is a second-rank tensor. o 
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A more general form of the quotient rule also holds: if an mth rank tensor 
a is linearly related to an nth rank tensor b through a quantity T with m + n 

suffices, then T is a tensor of rank m + n. 

EXERCISES 

7.1 Show that the definition Lij = e~ . ej is consistent with the matrix 
given in (7.3). 

7.2 If u is a vector field, show that V . u is a scalar field. 
7.3 Given that a and b are vectors, show that the quantity aibj is a 

second-rank tensor. 
7.4 Show that in a two-dimensional Cartesian coordinate system (Xl, X2) 

the quantity 

is a tensor. 
7.5 If ¢ is a scalar field, show that the quantity 

is a second-rank tensor. 

02¢ 
Tj k = -=---::-­

OXjOXk 

7.6 If Tij is a tensor, show that Tii is a scalar. 
7.7 Write the divergence theorem in the form of suffix notation and 

hence obtain the analogue of the divergence theorem for a second­
rank tensor T ij : 

IIi ~~~ dV = ffs Tijnj dS. (7.16) 

7.8 Write down the transformation rule for a tensor of rank four. 
7.9 If Qijkl is a tensor of rank four, show that Qijjl is a tensor of rank 

two. 
7.10 A quantity Ui has the property that for any vector a, Uiai is a scalar. 

Show that the Ui are the components of a vector. (This is a form of 
the quotient rule.) 
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7.3.2 Symmetric and anti-symmetric tensors 

A second-rank tensor Tij is said to be symmetric if Tij = Tji and anti-symmetric 
if Tij = -Tji . A tensor of rank greater than two can be symmetric or anti­
symmetric with respect to any pair of indices. For example Oij is a symmetric 
tensor, while €ijk is anti-symmetric with respect to any two of its indices. 

It is important to verify that symmetry is a physical property of tensors, 
i.e. that if a tensor is symmetric in a Cartesian coordinate system it is also 
symmetric in other Cartesian coordinate systems. This can be confirmed as 
follows: suppose that Aij is a symmetric tensor, so Aij = A ji . Then in a 
rotated frame, 

A~j = LikLjmAkm = LjmLikAmk = Aji' 

so A~j is also symmetric. 

Example 7.7 

Show that any second-rank tensor Tij can be written as the sum of a symmetric 
tensor and an anti-symmetric tensor. 

For any tensor T ij , the tensor Sij = Tij + Tji is symmetric. Similarly, 
Aij = Tij - Tji is anti-symmetric. Since Sij + Aij = 2Tij , Tij can be written 
as Tij = Sij /2 + Aij /2. 

Example 7.8 

The second-rank tensor Tij obeys €ijkTjk = O. Show that Tij is a symmetric 
tensor. 

By expanding out the implied double sum, for i = 1 we have €123T23 + 
€132T32 = 0, which gives T 23 = T 32 . Similarly the other required results follow 
from taking i = 2 and i = 3. 

The same result may be obtained more elegantly by multiplying the given 
equation €ijkTjk = 0 by €mni: 

so Tmn = Tnm· 

o = €mni€ijkTjk 

= (OmjOnk - Omkonj)Tjk 

Tmn - T nm , 
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7.3.3 Isotropic tensors 

The two tensors 8ij and Eijk have a special property. Their components are 
the same in all coordinate systems. A tensor with this property is said to be 
isotropic. Isotropic tensors are of great importance physically, and it turns out 
that there are very few examples of isotropic tensors. This is illustrated by the 
following results. 

Theorem 7.1 

There are no non-trivial isotropic first-rank tensors. 

Proof 
Suppose that there exists an isotropic first-rank tensor (i.e. an isotropic vector), 
U = (UI' U2, U3). Now consider a rotation through 7f /2 about the x3-axis, which 
is given by the matrix 

L = (-~ ~ ~). 
001 

(7.17) 

If U is a first-rank tensor then u~ = Lijuj = (U2' -UI, U3). Now if u is isotropic, 
u~ = Ui, so UI = U2 and U2 = -Ul. Therefore Ul = U2 = 0. By considering a 
rotation about the xl-axis in a similar way, it can be shown also that U3 = 0, 
so the only solution is u = (0,0,0). 0 

Theorem 7.2 

The most general isotropic second-rank tensor is a multiple of 8ij . 

Proof 
Suppose that aij is an isotropic second-rank tensor. Consider the rotation 
through 7f /2 about the x3-axis given by (7.17). aij must obey a~j = LimLjnamn, 

which in terms of matrix multiplication is a' = LaLT. Carrying out these ma­
trix multiplications gives the result 

(7.18) 

This must be equal to aij if the tensor aij is i~otropic. The terms on the 
diagonal give all = a22. The other terms give a13 = a23 and a23 = -a13, from 
which al3 = a23 = 0. By considering the analogous rotations about the other 
coordinate axes it follows that all = a22 = a33 and that all the off-diagonal 
terms are zero, so aij = >"8ij , where>.. is an arbitrary constant. 0 
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Theorem 7.3 

The most general isotropic third-rank tensor is a multiple of fijk. 

Proof 
If aijk is an isotropic third-rank tensor, then 

(7.19) 

Consider the same rotation (7.17), for which the only non-zero elements of L 
are L12 = 1, L21 = -1 and L33 = 1. Therefore for any choice of i, j and k 

in (7.19), only one term on the r.h.s. is non-zero. Choosing (i, j, k) = (1,1,1) 
gives alll = a222 and the choice (i,j,k) = (2,2,2) gives a222 = -alll, so 
alll = a222 = o. A different choice of rotation matrix would yield a333 = O. 

By making further choices of (i,j, k) the following equations can be ob­
tained: all2 = -a221, a221 = a112, a122 = a211, a211 = -a122, a121 = -a212, 

a212 = a121· From these and the analogous equations involving the suffices 2 
and 3 it follows that all 18 elements with two suffices equal are zero. 

Finally, by considering the cases when i, j and k are all different, (7.19) 
gives a123 = -a213, a231 = -a132, a312 = -a321. The analogous equations for 
rotations about the other axes can be used to show that a123 = a231 = a312 = 
-a321 = -a132 = -a213, so that aijk = >'fijk for some constant >.. 0 

Theorem 7.4 
The most general isotropic fourth-rank tensor is 

aijkl = >.6ij15kl + J.L6ik6jl + V6il 6jk , 

where >., J.L and v are constants. 

Proof 
An isotropic fourth-rank tensor must obey 

(7.20) 

(7.21) 

Using the rotation (7.17), only one of the 81 terms in the implied sum on the 
r.h.s. is non-zero. Since L12 = 1, L21 = -1 and L33 = 1, a suffix 1 on the l.h.s. 
becomes a suffix 2 on the r.h.s., a suffix 2 on the l.h.s. becomes a suffix 1 on the 
r.h.s. and changes the sign, while a suffix 3 remains unchanged. By applying 
these rules, a1113 = a2223 = -a1113, so al113 = a2223 = O. Similarly, any other 
term with three suffices equal and the fourth one different must be zero. Also 
a2ll3 = -a1223 = -a2113 so a2ll3 = a1223 = 0 and all similar terms with only 
one pair of equal suffices are zero. 



7. Cartesian Tensors 125 

The only remaining terms are those with two pairs of equal suffices and 
those with all four suffices equal. Applying the rotation (7.17) to terms in 
which the first two suffices are equal and the last two suffices are equal gives 
al122 = a2211, a1133 = a2233 and a3322 = a3311. Using the rotations about the 
other coordinate axes it follows that these six terms are all equal. Similarly, 

a1212 = a2121 = a1313 = a2323 = a3131 = a3232 and a1221 = a2112 = a1331 = 
a2332 = a3U3 = a3223· The terms with all four suffices equal must obey allll = 
a2222 = a3333· Thus there can be at most four independent components of the 
tensor, aU22, a1212, a1221 and allU· 

To proceed it is necessary to consider a different rotation, for example the 
rotation through an arbitrary angle () about the x3-axis given by 

( 
cos() 

L = - sin~ 

sinO 
cosO 

o 
(7.22) 

Using this rotation, aUl1 is related to all the terms with suffices equal to 1 or 
2. Applying (7.21) gives 

aUl1 = cos4 0 auu + sin4 () a2222 

2 2 + sin 0 cos O(a1122 + a2211 + a1212 + a2121 + a1221 + a2112). 

Simplifying this equation and using the relations above, the trigonometric fac­
tors cancel out leaving 

a1111 = a1122 + a1212 + a1221, (7.23) 

so in fact there are only three independent components, which can be labelled 
a1122 = A, a1212 = IL, a1221 = v. The tensor aijkl can therefore be written in 
terms of A, IL and v in the form (7.20). Note that this ensures that (7.23) is 
satisfied. 

o 
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7.4 Physical examples of tensors 

Tensors appear in many contexts, including fluid mechanics, solid mechanics 
and general relativity. Some of these applications will be described in Chapter 
8. The following two sections briefly consider two other examples of tensors. 

7.4.1 Ohm's law 

Ohm's law states that there is a linear relationship between the electric current 
j flowing through a material and the electric field E applied to the material. 
This can be written 

j =aE, (7.24) 

where the constant of proportionality a is known as the conductivity (an inverse 
measure of electrical resistance). Note that (7.24) forces the vectors j and E to 
be parallel. For some materials, this may be true, but consider a substance with 
a layered structure made of different materials (Figure 7.2). For this material, 

Fig. 1.2. For a material made up of layers, the electric field E and the electric current 
j may not be parallel. 

current may flow more easily along the layers than across them. For example, 
if the substance is made of alternate layers of a conductor and an insulator, 
then current can only flow along the layers, regardless of the direction of the 
electric field. 

It is useful therefore to have an alternative to (7.24) in which j and E do 
not have to be parallel. This can be achieved by introducing the conductivity 
tensor, aik, which relates j and E through the equation 
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(7.25) 

Since j and E are vectors, it follows from the quotient rule that aik is a tensor. 
The values of aik depend on the properties of the material. For example, 

suppose that there are alternating layers of a conductor with conductivity ao 
and an insulator. If axes are chosen such that the X3 direction is perpendicular 
to the layers, then in this coordinate system 

Now suppose that the material has no such layered structure, so that there 
is no preferred direction and is made of a uniform material with conductivity 
ao. Such a material is said to be isotropic, meaning 'the same in all directions'. 
In this case a ik = ao <5ik , so 

and so the simple rule 
j = aoE 

holds. This is why <5ik is said to be an isotropic tensor: it represents the relation­
ship between two vectors that are always parallel, regardless of their direction. 

7.4.2 The inertia tensor 

Consider a body rotating with angular velocity Jl. Then, as shown in Section 
1.3.1, the velocity vector at the position vector r is 

v = Jl x r. 

The angular momentum of a particle of mass m is h = mr x v. The total angular 
momentum of a rotating body can then be determined as a volume integral, by 
considering dividing the body into small volume elements dV each with mass 
p dV, where p is the density of the body. The total angular momentum H is 
therefore given by 

Hi Iii p (r x V)i dV 

Iii p (r x (Jl x r))i dV 

Iii p {r2 Di - (r . Jl)ri) dV 
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Iii p (r2~ijflj - rjfljri) dV 

= Iii p (r2~ij - rirj) flj dV. 

Since flj is a constant it can be taken out of the integral, leaving the equation 

Hi = Iijflj , (7.26) 

where Iij is called the inertia tensor of the body and is defined by 

Iij = Iii p (r2~ij - rirj) dV. (7.27) 

Note that as in the previous example, the tensor appears as a quantity relating 
two vectors, and the quotient rule confirms that Iij is a tensor. The inertia 
tensor is an example of a symmetric tensor, since it is clear that Iij = I ji . 

Example 7.9 
Find the inertia tensor for a cube with sides of length 2a and constant density 
p, for rotations about its centre. 

To find Iij we need to compute two volume integrals. First, 

Iii pr2 dV = 1: 1: 1: p (x2 + y2 + Z2) dxdydz 

= 3p 1:1:1: x2dxdydz 

= 3p (2a)(2a) laa x2 dx 

= 8pa5 = Ma2 , 

where M = 8p a3 is the mass of the cube. The second volume integral is 

For i f:. j this is zero, since for example the integral of xy is zero since this is 
an odd function of x and y. For i = j, for example i = j = 1, we have 

Iii px2 dV = Ma2 /3 

from the working of the first integral. Putting the two parts together, 

2 2 2 2 
Iij = Ma ~ij - Ma 6ij /3 = 3Ma 6ij . 

Note that the inertia tensor is isotropic. This means that for a cube rotating 
about its centre, the rotation vector and angular momentum vector are always 
parallel. 
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Summary of Chapter 7 

• Under a rotation of coordinate axes from a frame with unit vectors ei to a 
frame with unit vectors e~, the coordinates of a point are related by 

where Lij = e~ . ej. 

• The inverse of the transformation is 

so L -1 = LT. Such a matrix is said to be orthogonal. In suffix notation, this 
result is written 

Lij Lkj = 8ik · 

• A scalar s has the same value in each frame, S' = s. 
• A vector v transforms according to the rule vi = Lijvj. 

• If a quantity Tij transforms according to the rule T:j = LikLjmTkm then Tij 

is a tensor of second rank. The rank of a tensor is the number of free suffices. 
Thus vectors are tensors of rank one and scalars are tensors of rank zero. 

• The quotient rule says that if ai = Tijb j and a is a vector for any choice of 
the vector b, then Tij is a tensor. 

• A tensor Tij is symmetric if Tij = Tji and anti-symmetric if Tij = -Tji . 

• 8ij and f.ijk are tensors of a special type known as isotropic tensors. This 
means that their components do not change when the coordinate axes are 
rotated. A second-rank isotropic tensor must be a multiple of 8ij and a third­
rank isotropic tensor must be a multiple of f.ijk. 

• In physical systems, tensors frequently arise as quantities relating two vec­
tors. This allows two vectors to be linearly related to each other without being 
parallel. Examples include the conductivity tensor and the inertia tensor. 
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EXERCISES 

7.11 B rs is an anti-symmetric tensor, so B rs = -Bsr . Show that the 
anti-symmetry persists in a rotated frame, i.e. B~s = -B~r. 

7.12 If B rs is an anti-symmetric tensor, show that Brr = O. 
7.13 The third-rank tensor A ijk is symmetric with respect to its first 

two suffices but anti-symmetric with respect to the second and third 
suffices. Show that all elements of A ijk must be zero. 

7.14 A quantity Aij is related to a vector B by Aij = EijkBk. 

(a) Show that Aij is a tensor and describe its symmetry property. 
(b) Find an equation for B in terms of Aij . 

7.15 Find an isotropic fourth-rank tensor that can be written in terms of 
Eijk. 

7.16 Write down an isotropic fifth-rank tensor. Show that the most gen­
eral isotropic fifth-rank tensor must have at least ten independent 
components. 

7.17 Show that the kinetic energy E of a body rotating with angular 
velocity {J is related to its inertia tensor Ijk by E = Ijk{}j{}k/2. 



8 
Applications of Vector Calculus 

This chapter provides a brief introduction to some of the many applications 
of vector calculus to physics. Each of these is a vast topic in itself and is the 
subject of numerous books and a great deal of current research, so it is not 
possible to go into any detail in this book. However, a number of important 
governing equations and results can be obtained using the methods described in 
the previous chapters. In particular, it will be seen that the equations describing 
the behaviour of physical quantities such as electric fields and the velocity of a 
fluid are written in terms of the gradient, divergence and curl operators. 

The following sections discuss the flow of heat within a body, the behaviour 
of electric and magnetic fields, the mechanics of solids and the mechanics of 
fluids. There are however several other subjects which use the language of vector 
calculus, including the theories of quantum mechanics and general relativity. 

P. C. Matthews, Vector Calculus
© Springer-Verlag London Limited 1998
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8.1 Heat transfer 

In this section the equation describing the flow of heat within a solid body 
is derived. The argument is based on the law of conservation of energy, so is 
similar to the argument for the conservation of mass for a fluid given in Section 
5.1.1. 

Consider a solid with a temperature T which depends on space and time 
and a thermal conductivity K. Then the heat flows from hot to cold at a 
rate proportional to the temperature gradient, so the heat flux q is given by 
q = - KVT. The minus sign appears here because the vector VT points in 
the direction of increasing temperature but the heat flows in the direction of 
decreasing temperature. 

Now consider an arbitrary region within the solid, denoted by a volume V 
with surface S and outward normal n. The thermal energy or heat content of 
a volume element dV is T c p dV where p is the density of the material and c is 
its specific heat. So the total heat content H of the volume V is 

H = iii TcpdV. 

The rate of change of this heat content must equal the rate at which heat flows 
into the volume v, assuming that there are no sources of heat within V. This 
rate of inflow of heat is the integral of the heat flux -q. n over the surface 
S, where the minus sign appears since for heat to flow in, q must point in the 
opposite direction to n. Equating the rate of change of heat content with the 
rate at which heat flows into V gives 

iii ~~ cpdV = fls - q. ndS = fls KVT· ndS. 

The surface integral on tJ:e r.h.s. can be converted to a volume integral using 
the divergence theorem, giving 

iii ~~ cpdV = iii v· (KVT)dV. (8.1) 

Finally, since the volume V is arbitrary, the volume integrals can be cancelled, 
giving 

aT 
CPFt = V· (KVT), (8.2) 

since if (8.2) were not true at any point in space, then introducing a small 
volume V around this point would contradict (8.1). 
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If the thermal conductivity K is independent of position, then (8.2) can be 
simplified to give 

(8.3) 

which is known as the heat equation or diffusion equation, and is of great im­
portance since it occurs in many other contexts besides heat conduction. Other 
applications include processes of molecular diffusion such as the transport of 
chemicals within a living cell. The parameter k = Kjcp is known as the ther­
mal diffusivity of the material. Note that the units of the diffusivity k are 
length2 jtime. 

If the system is steady, so that there is no dependence on time, then T 
obeys Laplace's equation, V 2T = O. 

The effect of the heat equation is to smooth out the distribution of temper­
ature within a body. This is illustrated by the following examples. 

Example 8.1 
The surface S of a body is maintained at a constant temperature To. Show that 
the temperature T within the body approaches To as t -+ 00. 

Define a new temperature () by () = T - To. Then since To is fixed, () obeys 
the heat equation 

8(} = kV2(} 
8t 

within the volume V of the body and () = 0 on the boundary S. Multiplying 
through by () gives 

Now integrating over the volume V and applying the divergence theorem gives 

IIi ~ 8!2 dV = k fls (}V() . n dS - k IIi IV()12 dV. 

The surface integral is zero since () = 0 on S, so 

~ ! III (}2 dV = -k III IV(}12 dV ::; 0, 

so the volume integral of (}2 decreases unless () is a constant. Since () = 0 on S 
the only possible value for this constant is zero, so the temperature decreases 
until () = 0, i.e. T = To everywhere. 
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Example 8.2 
Find a solution to the heat equation which is proportional to sin(ax), where a 

is a constant. 
Seek a solution to (8.3) of the form T(x, t) = f(t) sin(ax). Substituting into 

(8.3) gives 

: sin(ax) = -ka2 f sin(ax) ~ df = -ka2 f. 
dt 

The solution to this differential equation for f is f = fa exp( -ka2 t), where fa 
is a constant, so 

T(x, t) = fa exp( -ka2 t) sin(ax). 

Note that the amplitude of the solution decreases exponentially with time, and 
that shorter waves (larger a) decay more rapidly than longer waves (smaller a). 

8.2 Electromagnetism 

The fundamental equations describing the behaviour of an electric field E and 
a magnetic field B are written in terms of the divergence and curl of these 
vector fields: 

V·E P (8.4) 
fa 

V·B 0, (8.5) 

VxE BB 
(8.6) -Tt' 

VxB BE 
J-Loj + J-LOf0Tt, (8.7) 

where p is the density of electric charge, fa and J-Lo are positive constants and 
j is the electric current density. These are known as Maxwell's equations and 
from these many important properties of electric and magnetic fields can be 
derived. 

Each of the equations (8.4)-(8.7) can alternatively be written in an integral 
form. By integrating (8.4) over a volume V with surface S and applying the 
divergence theorem, we obtain 

ffs E . ndS = III ~ dV, 
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which is known as Gauss's law. In words, this states that the total flux of 
electric field out of the surface S is proportional to the amount of electric 
charge contained inside the surface. Similarly, from (8.5) it follows that 

ffs B . n dS = 0, 

so that the net flux of magnetic field through any closed surface is zero. By 
integrating (8.6) over a surface S and using Stokes's theorem, Faraday's law of 
electromagnetic induction is obtained: 

i E· dr = - ~ rr B· n dS. c at lls 
Finally, from (8.7) we obtain 

Ie B· dr = llo lis (i + fO ~~) . ndS 

which reduces to Ampere's law when there is no time dependence. 

8.2.1 Electrostatics 

Electrostatics is the study of steady electric fields. In a steady state, it follows 
from (8.6) that E is irrotational: 

v x E=O. 

Recall from Example 5.5 and Theorem 3.1 that this means that E is conserva­
tive and that E can be written as the gradient of a potential, E = - Vip. The 
choice of the minus sign here is merely a convention. 

Now applying (8.4), the potential ip must obey 

\l2ip=-V·E=-f!.... 
fO 

(8.8) 

This equation is known as Poisson's equation. If the charge density p is zero, 
then ip obeys Laplace's equation \l2ip = O. The problem of determining the 
electric field and potential due to a stationary distribution of electric charges 
reduces to the problem of solving Poisson's equation or Laplace's equation in 
the appropriate geometry. These problems are generally referred to as 'potential 
problems' and the associated theory is known as 'potential theory'. Some simple 
examples are given below. 
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Example 8.3 
A sphere of radius a contains a uniform distribution of electric charge p. De­
termine the electric field E and the potential tP both inside and outside the 
sphere. 

Since the charge distribution is uniform within a sphere, it is most appropri­
ate to use spherical polar coordinates and there is no preferred direction so both 
E and tP only depend on the radial coordinate r. Referring back to (6.24) for 
the formula for the Laplacian in spherical polar coordinates, Poisson's equation 
for the potential inside the sphere is 

Multiplying by r2 and integrating gives 

2 atP 3 
r ar = -pr /3€o + C, 

where C is a constant of integration, so 

atP 2 
ar = -pr/3€o + C/r = -Er , 

where Er is the component of E in the r direction. Now since the electric field 
is a physical, measurable quantity, the constant C must be zero to avoid a 
singularity at the centre of the sphere r = O. Within the sphere therefore the 
electric field and potential are: 

Er = pr/3€o, tP = -pr2/6€o + D, 

where D is an arbitrary constant which always appears in potentials. 
Outside the sphere, Laplace's equation holds, 

so 
atP / 2 - = C r = -Er . 
ar 

In this case the constant C cannot be set to zero since r = 0 is outside the 
region of consideration. Instead, C can be found by imposing that the electric 
field is continuous across the surface r = a. Equating the values of Er at r = a 
from the formulae for Er inside and outside the sphere gives 

Hence, outside the sphere 
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where the constant of integration associated with P has been set to zero. Note 
that the electric field obeys the inverse square law: Er is proportional to r-2. 

Example 8.4 

Find the electric field E and the potential P due to a point charge Q. 
This can be done using the result of the previous example, by considering 

a point charge as a small sphere of uniform charge density. The total electric 
charge Q contained within a sphere of radius a with uniform charge density p 

is just the density multiplied by the volume, Q = 4'Tra3 p/3. The electric field 
and potential can then be written in terms of Q as 

Q 
Er =-4 2' 'Trfor 

Q 
P= --. 

4'Trfor 

8.2.2 Electromagnetic waves in a vacuum 

In a vacuum, where there is no electric charge and no electric current, Maxwell's 
equations take a simple and symmetric form: 

V·E = 0, 

V·B = 0, 

VxE 8B 
= -7ft' 

VxB 8E 
/-LOf0{jt. 

Taking the curl of (8.11) and using (4.23) gives 

V x (V x E) = V(V . E} - '\72 E = - V x 88~' 

Now using (8.9) and (8.12) this can be written 

so E obeys 

-'\7 E = -- /-Lofo-2 8 ( 8E) 
8t at' 

82 E _ 2't"72E ---Cv 
at2 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

where c2 = 1/ /-LofO. This equation is called the wave equation since its solutions 
are waves travelling at speed c, as shown in the examples below. The constant 
c is the speed of light and the waves are known as electromagnetic waves. 
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Radio waves, light and X-rays are all examples of electromagnetic waves. These 
different types of waves have different frequencies but they all travel at the same 
speed c. 

Example 8.5 
Suppose that E = (J(x, t), 0, 0) in a Cartesian coordinate system so that the 
wave equation (8.13) becomes 

(8.14) 

Show that I(x, t} = sin k(x - ct} is a solution for any value of the constant k 
and interpret this solution physically. 

For the function I(x, t) = sink(x - ct), 

and fj2 I k2 ' k( ) ox2 = - sm x - ct , 

so I(x, t} = sin k(x - ct} obeys (8.14). Physically, this solution corresponds to 

f(x,O) f(x,t) 

, , 
\ 

\ 

\ / 

, " 

I 

I 
x 

Fig. 8.1. The solution I(x, t) = sin k(x - ct) of the wave equation, at t = 0 (solid 
line) and at some later time (dashed line). 

a sine wave travelling to the right at speed c. At t = 0, l(x,O} = sin kx which 
is a sine wave which has I = 0 at x = O. At a later time t, the point at which 
I = 0 has moved to the position x = ct, so the wave has moved to the right 
a distance ct (Figure 8.1). The speed of the wave is therefore c. Similarly, it 
can be shown that the function g(x, t) = sin k(x + ct) is a solution of (8.14), 
representing a sine wave travelling to the left at speed c. 
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Example 8.6 
Show that E = Eof(k·x -wt) is a solution to the wave equation (8.13), where 
Eo and k are constant vectors, f is any function and w = ±clkl· 

Let u = k· x - wt so that the solution under consideration is E = Eof(u). 

Then 
aE = Eo df au = -wEo df 
at du at du 

and similarly 
a2E ~f au 2 ~f 
at2 = -wEo du2 at = w Eo du2 . 

To find V'2 E, note that since Eo is constant, V'2(Eof(u)) = 
EoV· (Vf(u)). The gradient of feu) is 

df df 
V f (u) = du V (k . x - wt) = du k, 

and taking the divergence of this gives 

V' 2f(U)=V(df ) .k= (f2 f Vu . k = c.(2f 1kI 2. 
du du2 du2 

Therefore, the wave equation is obeyed provided that 

2 d2f 2 ~f 2 
wE cE Ikl ....... W2 =c2 IkI 2 . o du2 = 0 du2 .....,r 

So the function f is arbitrary and the only condition is that the frequency of 
the wave w must be related to the speed c and the constant vector k (which is 
known as the wave vector) by w = ±clkl. 

EXERCISES 

8.1 Use dimensional analysis to determine how the time taken for heat 
to diffuse through a body depends on the size L of the body and its 
thermal diffusivity k. Hence answer the following questions. 
(a) If it takes six hours to defrost a frozen chicken, how long would 
it take to defrost a woolly mammoth? 
(b) Cookery books state that the time taken to cook meat is, for 
example, twenty minutes per pound plus twenty minutes. Is this 
correct? 

8.2 Show directly from Maxwell's equations that the charge density p 
and the electric current density j obey the conservation law 

ap V . 
at + '1 = o. 
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8.3 Derive the formula for the electric field E due to a point charge Q 
using Gauss's law. 

8.4 Show from Maxwell's equations in a vacuum that the magnetic field 
B obeys the wave equation. 

8.5 For the electromagnetic wave in which the electric field is given by 
E = Eof(k . x - wt), calculate the corresponding magnetic field B. 
What can be deduced about the directions of the vectors E and B? 

8.6 Using Maxwell's equations in a vacuum, obtain an equation in the 
form of a conservation law for the rate of change of the energy w = 
IB12/2 + IE12/2c2 of an electromagnetic wave. 

8.3 Continuum mechanics and the stress tensor 

Continuum mechanics is the study of continuous media including solids, liquids 
and gases. Solids have the property that when acted on by a force they deform 
but then reach an equilibrium in which the internal forces within the material 
balance the imposed force; this behaviour is described in Section 8.4. Fluids, 
which include liquids and gases, move continuously when subjected to a force 
and so require a different treatment (Section 8.5). Common to both solids and 
fluids is the concept of stress and the stress tensor described below. 

Consider a small section of a surface, with area 8S and unit normal ft, 

within a material (Figure 8.2). The two sides of the material are labelled side 1 
and side 2, with n pointing in the direction of side 2. The material on side 2 
exerts a force 8F on the material on side 1 through the surface 8S '. due to 
interactions between the molecules of the material. Since the force is exerted 
through 8S, the magnitude of the force is proportional to the area 8S. The 
force is a vector quantity, and the only available vector is n, so 8F must be 
some quantity multiplied by n. However, 8F need not be parallel to n. The 
angle between 8F and n can be allowed to vary by using a tensor to relate 8F 
and n, 

(8.15) 

where Pij is known as the stress tensor of the material. Since 8F and n are 
vectors, it follows from the quotient rule that Pij is a tensor. 

Consider now the force exerted by side 1 on side 2. This is obtained by 
reversing the direction of the normal and using (8.15), so the force is - Pijnj 8S. 
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oS 2 

Fig. 8.2. A force dF is exerted on the material on side 1 through the surface dS. 

This is just -8Fi , so this is consistent with Newton's third law as the forces 
are equal and opposite. 

Now consider a region V within the material, with surface S and outward 
normal n (Figure 8.3). The total force exerted on this region by the surrounding 

of 

v 
S 

n 

Fig. 8.3. The total force on a volume V is found by integrating over the surface S. 

material is found by integrating the force due to all the surface elements over 
the surface S: 

Fi = ffs Pijnj dS = Iii ~~~ dV 

using the divergence theorem for tensors (7.16). In general there may be other 
forces acting on the volume V, for example the force due to gravity; such long­
range forces are known as body forces. Suppose, however, that body forces are 
negligible so that the only forces acting on the volume V are those exerted 
through the surface S. If the material is in equilibrium, then the total force 
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acting on the region must be zero. Since this must be true for any arbitrary 
volume V, the stress tensor Pij for a system in equilibrium must obey 

OPij = o. 
OXj 

An additional constraint on Pij comes from the consideration of the moment 
of the forces acting on a volume V. The moment of a force F about a point 0 
is r x F where r is the position vector of the point of application of the force 
relative to O. The total moment of the forces acting through the surface S is 
therefore 

ffs f.ijkXj dFk = ffs f.ijkXjPkmnm dS. 

Using the tensor form of the divergence theorem again, this can be written as 

Now for a body in equilibrium we have already shown that the second term in 
the bracket is zero. The total moment of the forces must also be zero (otherwise 
the body would start to rotate), and since the volume V is arbitrary it follows 
that 

f.ijkPkj = O. 

This means that the tensor Pkj is symmetric, as shown in Example 7.8. There­
fore the stress tensor for a material in equilibrium must obey the two constraints 

and (8.16) 

Example 8.7 

Suppose that a material is subjected to a body force b per unit volume. Find 
the total force f acting per unit volume. 

For a volume V the total force is the volume integral of f over V. This is 
made up of the volume integral of the body force b plus the surface integral of 
the forces due to the stress tensor: 

Since this is true for any volume V, 

(8.17) 
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8.4 Solid mechanics 

In the theory of the mechanics of a solid material it is generally assumed that 
there is a relationship between the stress tensor of the material and the strain 
of the material. The strain is the amount of stretching or deformation of the 
material. Suppose that, as a result of imposed forces, a material is deformed 
so that the material originally at position vector r is moved a distance v (r ). 
Then the strain tensor Eij is defined by 

Eij = ~ (aVi + aVj) . 
2 aXj aXi (8.18) 

The simplest assumption is that there is a linear relation between the stress 
tensor and the strain tensor. This is known as Hooke's law. Since the stress 
tensor and the strain tensor are both second-rank tensors, the quantity relating 
them will in general be a fourth-rank tensor. If a material obeys the linear 
relationship 

Pij = CijklEkl 

then it is said to be an ideal elastic solid. 

(8.19) 

If the further assumption is made that the material is isotropic, then the 
tensor Cijkl is isotropic, so from Section 7.3.3, 

Pij = (> .. Oijl5kl + /LOikOjl + VOilOjk )Ekl 

Mij Ekk + /LEij + v Eji 

)..oijEkk + (/L + v)Eij (8.20) 

since from its definition Eij is symmetric. There are therefore only two inde­
pendent constants in the relationship between stress and strain for an isotropic 
elastic solid. Since v is arbitrary, we may take v = /L to obtain 

(8.21) 

The two constants).. and /L are known as Lame's constants. The inverse rela­
tionship, giving the strain in terms of the stress, can be found by setting i = j, 
giving 

Pii = 3)"Ekk + 2/LEii = (3)" + 2/L)Ekk 

and then substituting Ekk = Pkk/(3)" + 2/L) in (8.21), giving 

1 MijPkk 
Eij = 2/L Pij - (2/L)(3).. + 2/L) . 



144 Vector Calculus 

Example 8.8 
Find the strain tensor and the stress tensor for an isotropic elastic material 
when it is subjected to 

(a) a stretching deformation v = (0,0, aX3)j 
(b) a shearing deformation v = (bX3,0,0). 

The two deformations are illustrated in Figure 8.4. 

(a) (b) 

Fig. 8.4. Deformation of a cube of material (dashed line) by (a) v = (0,0, aX3), (b) 
v = (bX3, 0, 0). 

(a) Here the only non-zero element of Eij is E33 = a. Hence Ekk = a and 
so the non-zero elements of Pij are P11 = P22 = Aa and P33 = (A + 2J.£)a. 

(b) In this case E31 = E 13 = b/2 and other elements of Eij are zero. Since 
Ekk = ° the only non-zero elements of Pij are P31 = P13 = J.£b. 

These two simple examples show that the diagonal components of Pij rep­
resent forces of stretching or compression of the material, while the off-diagonal 
components represent shearing forces. 

Example 8.9 
Show that the anti-symmetric tensor 

8ij = ! (aVi _ aVj) 
2 aXj aXi 

represents a rotation of the material. 
Since 8 ij is anti-symmetric, 8 11 = 8 22 = 8 33 = ° and 8ij has only three 

independent components, 812 , 8 23 and 831. The first of these is 

1 (aV1 aV2 ) 1 1 
812 = 2 8X2 - aXl = -2 [V x v13 = -2f12k [V X vlk · 

Similar equations hold for the other components, so 8ij is related to V x v by 
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(8.22) 

Thus the components of Sij depend only on V x v, which from Section 3.4.2 
represents a rotation of the body. 

Example 8.10 
Show that in an isotropic material Pij cannot depend on the anti-symmetric 
tensor Sij. 

Following the arguments above, if Pij = CijklSkl and the material is 
isotropic, then the analogue of (8.20) is 

Since Sij is anti-symmetric, Skk = O. This means that the symmetric tensor 
Pij is equal to a constant multiplied by the anti-symmetric tensor Sij, which 
is clearly a contradiction. 

8.5 Fluid mechanics 

An important property which distinguishes a fluid (such as a liquid or a gas) 
from a solid is that a fluid is unable to support a shear stress. This means 
that if a fluid is subject to a shear stress, such as in Example 8.8(b), the fluid 
will move continuously. For a fluid at rest, therefore, the stress tensor can only 
include diagonal elements. Furthermore, if the fluid is subjected to a stretching 
force, as in Example 8.8(a), the fluid will stretch and continue to move for as 
long as the force acts. This motion can only be avoided if the forces acting on 
the fluid are the same in all directions. Hence the stress tensor in a fluid at rest 
must be isotropic, 

(8.23) 

where p is the hydrostatic pressure of the fluid, which in general is a function 
of position. The pressure can then be defined in terms of the stress tensor by 

(8.24) 

Now suppose that the fluid is in motion, with a velocity given by the vector 
field u(r). In this case, there is an additional contribution to the stress tensor 
due to the motion, so 

(8.25) 
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where dij = 0 when the fluid is at rest. Since (8.25) does not uniquely define p 
and dij , it can be imposed that (8.24) holds for a fluid in motion, which means 
that djj = O. 

The tensor dij represents the forces due to the fluid motion. These forces 
arise due to friction between adjacent molecules of the fluid that are moving 
at different velocities. It is generally assumed that there is a linear relationship 
between dij and the tensor representing the difference in velocities, 8ui/8xj. A 
fluid behaving in this way is said to be Newtonian, and experiments show that 
this is a good approximation for most fluids. The analysis of the relationship 
between dij and 8ui/8xj now follows exactly as for the case of a solid (Section 
8.4). If it is assumed that the fluid is isotropic, then dij can only depend on 
the symmetric part of 8ui/ 8x j, 

.. _ 1 (8Ui 8Uj) 
e'J - -2 8 + 8 ' Xj Xi 

which is known as the rate-of-strain tensor. The argument of Example 8.10 
shows that dij cannot depend on the anti-symmetric part of 8ui/8xj. The 
form of the dependence of dij on eij is 

dij = )..c5ijekk + 2/-leij, (8.26) 

where, as in (8.21), ).. and /-l are constants. The constraint djj = 0 means that 
3)" + 2/-l = O. Eliminating ).., the form of the stress tensor for a Newtonian fluid 
is then 

2 
Pij = -pc5ij + 2/-leij - "j/-lc5ij ekk . (8.27) 

The constant /-l is the viscosity of the fluid, which represents the fluid's 'sticki-
ness' or friction. 

8.5.1 Equation of motion for a fluid 

Having obtained the formula for the stress tensor in a fluid, it is now possible 
to write down the equation of motion. The equation of motion is derived from 
Newton's second law, force = mass x acceleration. The force can be obtained 
from the stress tensor using (8.17). The force f per unit volume due to body 
forces b and the stress tensor Pij is 

f b 8Pij 
i .+-­, 8xj 

b P Ui Uj 2 Uj 8 ( 82 82 ) 82 = i - - + /-l + --- - -/-l---
8Xi 8xj 8xj 8xi8xj 3 8xi8xj 

8 82 82 b P Ui 1 Uj 
= i - 8Xi + /-l8x j 8xj + "jt-t 8Xi8xj . 
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In vector notation this can be written 

2 1 f = b - Vp + JLV' u + 3JLVV, u. 

To obtain the acceleration of a fluid particle, consider the change in veloc­
ity of a particle in a short time interval t5t. A particle at position r moving 
with velocity u(r, t) moves a distance u(r, t)t5t in this time. Therefore its new 
velocity is u(r + u(r, t)6t, t + t5t). The velocity is a function of four variables, 
u = u(x, y, z, t), so expanding this new velocity using Taylor's theorem gives 

u(r + u(r, t)6t, t + 6t) 
au au au au 

= u(r, t) + u x t5t ax + u y6t ay + u z t5t az + 6t Ft 
au 

u(r, t) + t5tu· Vu + t5t Ft . 

The acceleration a of the particle is the limit of the difference between the new 
and old velocities divided by t5t, so 

au 
a= -+u·Vu. 

at 

Since the mass per unit volume of the fluid is just the density p, the equation 
of motion is 

(au) 2 1 p - + U· Vu = b - Vp + JLV' u + -JLVV . u. 
~ 3 

(8.28) 

This important equation is known as the Navier-Stokes equation. 
From now on, assume that the fluid is of constant density, so that p does 

not depend on time or space. Then, from Section 5.1.1, where the equation for 
conservation of mass for a fluid was derived, the velocity field u obeys V· u = O. 
There are two more important equations of fluid mechanics that can be derived 
from the Navier-Stokes equation; these are described in the following sections. 

8.5.2 The vorticity equation 

Assume that the body force b is conservative, so that it may be written as the 
gradient of a potential, b = - VP. By using the vector identity 

u· Vu = V(luI 2 /2) - u x V xu 

which was derived in Example 4.14, the Navier-Stokes equation can be written 

(8.29) 
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where w = V x 1.1. is the vorticity of the fluid, which as shown in Section 3.4.2 
is proportional to the local rate of rotation of the fluid. Now by taking the curl 
of (8.29), the equation can be simplified considerably because the three terms 
involving grad will then disappear. The pressure and the body forces are then 
eliminated and an equation for the rate of change of the vorticity is obtained: 

ow _ V x (1.1. X w) = !!."\l2w 
ot P , 

(8.30) 

where we have made use of the fact that the order of the curl and Laplacian op­
erators may be interchanged. By expanding the curl of the cross product using 
(4.30) and noting that both 1.1. and ware solenoidal, (8.30) can be alternatively 
written 

aw M 2 
-+u·Vw-w·Vu= -"\l w. 
ot P 

(8.31) 

This is known as the vorticity equation. 

Example 8.11 
Obtain the simplified form of the vorticity equation for two-dimensional flow, 
u(r) = (u(x,y),v(x,y),O), of an incompressible fluid. 

If 1.1. = (u(x, y), v(x, y), 0), then the vorticity w is 

ov au 
w = V x 1.1. = (0,0, ox - ay) = (O,O,w(x,y)). 

Thus the vorticity vector has only one component, which is perpendicular to the 
plane of motion of the fluid. This means that the term w . Vu in the vorticity 
equation is zero, since w· Vu = wau/oz = o. The vorticity equation simplifies 
to the scalar equation 

aw M 2 
-+u·Vw=-"\lw. 
at p 

(8.32) 

Example 8.12 

An incompressible fluid flows along a straight two-dimensional channel and 
the velocity 1.1. is parallel to the walls of the channel. Show that the vorticity 
equation reduces to the diffusion equation. 

Choosing the x-axis to be parallel to the channel walls, the velocity 1.1. has 
the form 1.1. = (u, 0,0). As the fluid is incompressible, V .1.1. = ° so ou/ox = 0. 
Since u is independent of x, so is w, so the second term in (8.32) is 1.1. • Vw = 
uaw/ox = O. The vorticity equation is then 

ow = !!."\l2w 
at p , 

which is the same as the diffusion equation (8.3). 
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8.5.3 Bernoulli's equation 

A second important equation can be obtained by taking the dot product of u 
with (8.29). If the flow is steady, so the time derivative is zero, and the viscosity 
of the fluid is negligible, then 

u· V(pluI2 /2 + p + <l» = o. (8.33) 

This means that the quantity plul2 /2 + p + <l> does not change in the direction 
of u, so that it is constant along the path of a fluid particle. If in addition, the 
vorticity is zero, then (8.29) becomes 

V(pluI2/2 + P + <l» = 0 (8.34) 

so plul2 /2 + p+ <l> is constant everywhere. These two results are different forms 
of Bernoulli's equation. In words, Bernoulli's equation means that where the 
velocity of a fluid is high, its pressure is low. This important result can be used 
to explain a wide range of physical observations, including the swerving of a 
spinning ball and the lift generated by an aeroplane's wing. 

Example 8.13 

Why does a spinning ball swerve? 
Consider a ball travelling to the left with velocity u. Equivalently, the ball 

may be considered to be stationary, with air flowing past it with velocity v = 
-u. Now suppose that the ball is spinning anticlockwise, as shown in Figure 
8.5. As the ball spins, it drags air with it, rotating around the ball. The two 
components of the fluid motion due to the translation and the rotation are 
oppositely directed above the ball but point in the same direction below the 
ball. Therefore the total speed of the fluid is lower above the bail than below 
the ball. According to Bernoulli's equation, the pressure is greater above the 
ball than below. This pressure difference exerts a force on the ball which is 
directed downwards in Figure 8.5, causing the ball to swerve. 

Example 8.14 
To model the effect described qualitatively in the previous example, consider a 
cylinder of radius b and assume that in the frame of the cylinder the velocity 
at the surface of the cylinder is (v sin 0 - a )e8 in polar coordinates. Assuming 
that the viscosity is negligible and that Bernoulli's equation is valid, find the 
pressure at the surface and hence calculate the total force acting on the cylinder. 

If Bernoulli's equation holds and there are no body forces, then p = c­
plul2 /2 where c is constant, so 

p = c - p(v2 sin2 0 - 2avsinO + a2)/2. 
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Fig. 8.5. A ball moving to the left and spinning anticlockwise experiences a net 
downward force. 

Now if there is no viscosity the stress tensor is simply Pij = -peSij so the total 
force is 

Fi = fls Pijnj dS = fls - pni dS. 

In a Cartesian coordinate system (Xl, X2), n = (cos 0, sin 0) and the area ele­
ment dS is b dO per unit length of the cylinder. The force per unit length in the 
X2 direction is 

= 

= 

121f -(c - p(v2 sin2 0 - 2av sin 0 + a2 )/2) sin 0 b dO 

121f _ pav sin2 0 b dO 

= -7rpavb. 

The force in the X I direction is zero since the functions sin 2 0 cos 0, sin 0 cos 0 

and cos 0 all integrate to zero. This means that there is no drag force on the 
cylinder, which shows that this simple model is inadequate in some way. In fact 
it is the negl€ct of viscosity which is not valid. Even though the viscosity of a 
fluid such as air is small, it can have a large effect on the solution. 
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Summary of Chapter 8 

• Many important equations of mathematical physics are written in terms of 
grad, div and curl. 

• The heat equation, or diffusion equation, is 

~~ = k\12T. 

This describes heat transfer within a body and other physical processes in­
volving molecular diffusion. 

• Electric and magnetic fields obey Maxwell's equations (8.4)-(8.7). In a steady 
state the electric field is irrotational and its potential t/J obeys Poisson's 
equation \12t/J = -p/fO where p is the charge density and fO is a constant. 
In a vacuum, Maxwell's equations lead to the wave equation which describes 
the motion of electromagnetic waves. 

• In a continuous material such as a solid, a liquid or a gas, molecular forces 
are transferred through a surface 8S with normal n according to the formula 
8Fi = Pijnj 8S, where P ij is the stress tensor of the material. If the material 
is in equilibrium, Pij must obey 

aPij = 0 
aXj and 

• In an isotropic, ideal elastic solid with a deformation v(r) the strain tensor 
Eij and stress tensor P ij are given by 

E-. _ ~ (aVi aVj) 
t) - 2 a + a ' Xj Xi 

where .x and J.L are constants. 
• In a Newtonian fluid moving with velocity u(r), the rate-of-strain tensor eij 

and stress tensor Pij are 

where p is the pressure in the fluid and J.L is its viscosity. 
• If the fluid is incompressible then V . u = 0 and its equation of motion is the 

Navier-Stokes equation 

p (~: + u· vu) = b - Vp + J.L\12 u , 

where p is the density and b is the body force acting. 
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EXERCISES 

8.7 A material has a stress tensor Pij that takes the form 

in a Cartesian coordinate system (Xl, X2, X3). 

(a) If there are no body forces acting and the material is in equilib­
rium, find the values of the constants a, b, c, m and n. 
(b) For these values of the constants, find the magnitude and direc­
tion of the force exerted on the surface Xl = 1, 0 ::; X2, X3 ::; 1, by 
the material in the region Xl > l. 

8.8 Verify (8.22) by expanding the r.h.s. using suffix notation. 
8.9 Show that for an isotropic elastic solid in equilibrium, the deforma­

tion v must obey (,X + J.t)VV . v + J.t\l2v = o. 
8.10 An isotropic elastic solid with Lame constants ,X and J.t is subjected 

to a deformation VI = aXIX2, V2 = b(xi - x~), V3 = O. 
(a) Find the strain tensor E ij . 

(b) Find the stress tensor Pij. 

(c) Determine whether it is possible for the material to be in equi­
librium. 

8.11 A compressible fluid with negli)!;ible viscosity is initially at rest with 
uniform density Po and pressure Po, with no body forces. A small 
perturbation is then introduced· so that there is a velocity u(r, t) 
and the density becomes Po + PI (r, t). 
(a) Assuming that products of the small quantities u and PI can 
be neglected, show that the equation for conservation of mass (5.9) 
becomes 

api - + Po V . u = o. at (8.35) 

(b) Assuming that the perturbation PI to the pressure is related to 
PI by PI = api where a is constant, show that the Navier-Stokes 
equation reduces to 

(8.36) 

(c) Hence show that the density perturbation PI obeys the wave 
equation and interpret this result physically. 



Solutions 

Solutions to Exercises for Chapter 1 

1.1 Density and power are scalars; all the others are vectors. 
1.2 lal = V4 + ° + 9 = /13, Ibl = VI + 0 + 1 = y'2, a + b = (3,0,2), a - b = 

(1,0,4) and a· b = 2 + 0 - 3 = -1. To find the angle between a and b, use 
the formula a . b = lallbl cos e. Substituting the values already obtained, 
this becomes -1 = /13y'2cose, so cose ~ -0.196 and e ~ 101°. 

1.3 The component of u in the direction of v is u· v/lvl. For u = (1,2,2) 
and v = (-6,2,3), U·V = -6+4+6 = 4 and Ivl = V36+4+9 = 7, 
so the answer is 4/7. Similarly the component of v in the direction of u is 
U· v/lul = 4/3. 

1.4 The plane perpendicular to a = (1, 1, -1) is r . a = constant, so x + y - z = 
constant. If the plane passes through x = 1, y = 2, Z = 1 then the value of 
the constant is 1 + 2 - 1 = 2. 

1.5 Let two adjacent sides of the rhombus be the vectors a and b (as in Figure 
1.10). Then since the sides are of equal length, lal = Ibl. The diagonals 
of the rhombus are a + b and a-b. Taking the dot product of the two 
diagonals, (a + b) . (a - b) = a . a + b . a - a . b - b· b = lal2 - IW = 0, 
so the diagonals are perpendicular. 

1.6 Consider the unit cube, which has sides oflength 1 parallel to the coordinate 
axes. Two opposite vertices are the points (0,0,0) and (1,1,1), so one diag­
onal is the vector (1,1,1). Another diagonal runs from (0,0,1) to (1,1,0), 
so another diagonal is the vector (1,1, -1). Both diagonals have magnitude 
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J3 and their dot product is 1. Using the formula a· b = lallbl cos(} gives 
1 = 3cos(}, so (} = cos- 1 (1/3);:::: 70.5°. 

1.7 Choose the origin at one vertex of the triangle and let two of the sides be 
represented by the vectors a and b. Then the third side is represented by the 
vector b - a. The midpoint of the side opposite the origin has the position 

B 

o a A 

vector a + (b - a) /2 = (a + b) /2, so the line from the origin to the midpoint 
of the opposite side is given parametrically by r = -X(a+b)/2. Similarly the 
line from A to the midpoint of the opposite side is given parametrically by 
r = a+J.t(b/2-a). These two lines meet when -X(a+b)/2 = a+J.t(b/2-a). 
In this equation we can equate the terms in a and b. This gives the solution 
J.t = -X = 2/3 so the lines meet at the point with position vector (a + b)/3. 
Similarly, it can be found that the line from B to the midpoint of the 
opposite side meets the line from the origin to the midpoint of the opposite 
side at (a + b)/3, so all three lines pass through this point. 

1.8 The position vector (1, 1, 1) lies on the line and a vector along the line is 
(2,3,5) - (1,1,1) = (1,2,4). The parametricform is therefore r = (1,1,1)+ 
-X(I, 2, 4). The cross product form is found by taking the cross product of 
this equation with (1,2,4): r x (1,2,4) = (1,1,1) x (1,2,4) = (2, -3, 1). 

1.9 To prove the sine rule, use the fact that the area of the triangle is la x bl/2. 
Since this area is also equal to Ib x el/2 and Ie x al/2, 

absinC = be sin A = casinB, 

and dividing by abc gives the sine rule. 
The cosine rule follows from the magnitude of the vector e: 

c2 = lel 2 = e· e = (a - b)· (a - b) = a2 + b2 - 2a· b = a2 + b2 - 2ab cos C. 

1.10 (a) (i) For any two vectors a and b, a + b is a vector; (ii) a + (b + e) = 
(a + b) + e; (iii) a + 0 = 0 + a = a; (iv) a + (-a) = (-a) + a = O. Hence 
vectors and addition form a group. 
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(b) Vectors and the dot product do not form a group since a . b is not a 
vector. 
(c) Vectors and the cross product do not form a group because a x (b x c) i­
(a x b) x c. Also, there is no identity element. 

1.11 (a) la x bl 2 + (a· b)2 = (Iallbl sinB)2 + (Iallbl cosB)2 = lal 2lbl 2. 
(b) a x (b x (a x b)) = a x «b· b)a - (b· a)b) = -a' ba x b. 
(c) (a - b) . (b - c) x (c - a) = (a - b) . (b x c - b x a + c x a) 
a . b x c - b . c x a = O. 
(d) First consider (b x c) x (c x a). This can be written d x (c x a), where 
d = b x c, which using (1.9) is (d·a)c- (d·c)a = (b x c·a)c since d· c = O. 
Now take the dot product with (a x b), which gives the result «a x b)· c)2. 

1.12 Take the cross product of the second equation with a. Using (1.9) this 
can be written lal 2x - a . x a = a x b. Now using the first equation this 
simplifies to lal 2 x - a = a x b, which can be rearranged to solve for x: 

x = (a x b+a)/laI2. Geometrically, the two equations given in the question 
represent the equations of a plane and a line. The solution therefore is the 
point at which the line and plane meet. 

1.13 Multiply the first equation by b and the second by a, giving r· a b = band 
r . b a = a. Subtracting these two equations gives r . a b - r . b a = b - a, 
which can be written r x (b x a) = b - a. This is now in the form of the 
equation for a straight line. 

1.14 (a) Set a x b = aa + (3b + "(c. The coefficient a is found by taking the dot 
product with b x c, and similarly for (3 and ,,(, giving 

2 a (a·bb·c-a·clbl )/a·bxc, 
( 2 (3 = a·cb·a-b,clal )/a·bxc, 

"( = (lal2lbl2 - (a· b)2)/a· b x c. 

(b) Dot the equation obtained above with c and multiply through by a x b·c: 

(axb·c)2 = (a·bb·c-a,clbI 2 )a·c 

+(a· cb· a - b· claI 2)b· c + (lal 2lbl2 - (a· b)2)lcI 2 

lal21bl21cl2 - (a· c)21b1 2 - (a· b)21c1 2 - (b· c)21a1 2 

+2(a· b)(b· c)(a· c). 

(c) Since the faces of the tetrahedron are equilateral triangles, the dot 
product of any two vectors forming the edges is 1/2. The volume V is 
I(a x b·c)I/6, so 36V2 = 1-1/4-1/4-1/4+'1,/8 = 1/2 and V = 1/6V2 = 
.;2/12. 

1.15 The rate of change of h is 

ah ar av 
J'l = m!l x v + mr x !l' 
ut ut ut 
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The first term is zero since ar / at = v and v x v = o. The second term is also 
zero since av / at is the acceleration of the particle, which from Newton's 
second law is proportional to the force F which is proportional to r. 

1.16 The contour lines are x 2 - y = constant, i.e. y = x 2 + constant. These are 
parabolas, shifted by different amounts in the y direction, as shown below. 

x 

1.17 At the point (0,1), u(x, y) = (x + y, -x) = (1,0). At any other point on 
the y-axis, x = 0 so the y component of u is zero and the vector field points 
horizontally, to the right if y > 0 and to the left if y < O. Similarly, on the 
line x + y = 0 the vector field points vertically. By considering a few other 
points the vector field can be sketched, as shown in the following figure. 

y 

x 
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Solutions to Exercises for Chapter 2 

2.1 The parametric form of the curve is x = t, Y = tZ, z = tZ, so dr = 
(dx, dy, dz) = (1, 2t, 2t) dt and in terms of the parameter t the vector field 
F is F = (5t4, 2t, t + 2t2). So F· dr = 5t4 + 6t2 + 4t3 and the value of the 
integral is 

[ F . dr = 11 5t4 + 6tZ + 4t3 dt = 4. 

2.2 First the parametric form of the line joining the points (0,0,0) and (1,1,1) 
must be found. The generalform of the equation of a line is r = a+tu (1.6). 
Choosing t = ° to correspond to (0,0,0) gives a = 0 and choosing t = 1 to 
correspond to (1,1,1) gives u = (1, I, I), so the equation of the line is r = 
t(l, I, 1) and hence dr = dt(l, I, 1). The vector field F = (5z 2, 2x, x + 2y) 
can be written in terms of t as (5t2, 2t, 3t), so F . dr = 5t2 + 5t dt and the 
integral is 

I F. dr = 11 5tZ + 5tdt = 25/6. 
c 0 

Notice that the answer is different from the previous answer, even though 
the same vector field was used and the start and end points of the curve 
C are the same in each case. In other words, for this vector field the value 
of the line integral depends on the path chosen between the two points. 
Hence F is not a conservative vector field. 

2.3 Using x as the parameter to evaluate the integral, dr = (I, eX, eX) dx and 
u = (y2, x, z) = (e2x , x, eX), so u· dr = (2e2x + xeX) dx. The integral is 

fc u· dr = 11 2e2x + xeX dx = [e ZX + xeX - eX]~ = e2 

using integration by parts. 
2.4 The parametric form ofthe ellipse is x = a cos B, y = b sin B, z = 0, ° ~ B ~ 

2tr, so dr = (-asinB,bcos8,0) dB and r x dr = (O,O,ab)dB. This means 
that the integral fc r x dr only has a component in the z direction and 
the magnitude of the integral is 2trab. Note that this is twice the area of 
the ellipse. 

2.5 Since the surface is z = 0, the normal is n = (0,0,1). Hence u . n = x + y 

and the integral is 

lis u·ndS 
1 2 1 11 x+ydydx= 10 [xy+y2/2]~ dx 

= 112X+2dX= [xZ+2x]~=3. 
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Note that the y integral was carried out first. However, it is equally possible 
to carry out the x integral first, and this gives the same result. 

2.6 This surface integral has six parts, corresponding to the six faces of the 
cube shown below, which must be considered separately. On the surface 

z 

n n 

x 

x = 0, n = (-1,0,0) and u = r = (x,y,z) = (O,y,z) so u· n = ° and 
there is no contribution to the integral from this surface. By symmetry 
the same result holds for the surfaces y = ° and z = 0. On the surface 
x = 1, n = (1,0,0) and u . n = x = 1. Since this is a constant, the 
integral over this surface is just the value of the constant multiplied by the 
area of the surface, which gives 1. The same result holds on the surfaces 
y = 1 and z = 1, so the total value of the surface integral, adding the six 

contributions, is ° + ° + ° + 1 + 1 + 1 = 3. 
2.7 The two curves y = x 2 and x = y2 meet at (0,0) and (1,1). Doing the x 

integral first, the limits are y2 :s x :s ..jY and 0 :s y :s 1, so 

2.8 The surface is written parametrically as (x, y, X+y2), so two vectors parallel 
to the surface are (1,0,1) and (0, 1, 2y). By taking the cross product of these 
two vectors, n dB = (-1, - 2y, 1) dx dy. Since this has positive z component 
the direction of n must be changed, so n dS = (1, 2y, -1) dx dy and u . 
n dB = x dx dy. In terms of x and y the region of integration is x + y2 < 0, 
x> -1, so doing the x integral first, -1 < x < _y2 and -1 < y < 1, and 
the integral is 

1 y2 1 

ff u· ndS = 11- xdxdy = 1 y4/2 -1/2dy = 1/5 -1 = -4/5. lls -1 -1 -1 
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2.9 The required volume integral is 

I 2 3 1 i 1 x 2 + y2 + z2 dz dy dx 

I 2 1 i 3x2 + 3y2 + 9dydx 

11 [3x2y + y3 + 9y]~ dx 

11 3x2 + I6dx = 17. 
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2.10 Doing the integrals in the order z, y, x, the range of z between the two 
planes is -x - 1 < z < x + 1 and y ranges from -VI - x 2 to VI - x 2 at 
a fixed value of x. Finally, the limits on the outer x integral are -1 and 1. 
The volume is 

I I 1v'I=X2 1"'+1 dzdydx = 
-I -v'I-x 2 -",-I 

2.11 The edge of the pond is where z = 0, so x 2 + y2 = 1. The limits of the 
volume integral are obtained as follows. Doing the z integral first, at a fixed 
value of x and y, z ranges from ° to 1 - x 2 - y2. The limits on x and yare 
the same as in the previous exercise, so the volume V is 

V = [{{ dV = II 1v"f=X2 {1_",2_ y2 dz dy dx 
JJJv -I -~Jo 

I I 1v'1-",2 1 _ x 2 _ y2 dy dx 

-I -v'1-",2 

I I [ 2 3]~ 
-I Y - x Y - y /3 -v"f=X2 dx 

= ~/I (I-x2)JI-x2dx=1I"/2, 
3 -I 

where the results of Section 2.1.2 have been used to find the last integral. 
The volume of the pond is therefore approximately 1.57 m3 . 

In the case of a hemisphere, the volume is 211"/3, so the volume of the 
hemisphere is greater by a factor 4/3. 
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Solutions to Exercises for Chapter 3 

3.1 I = xyz, so VI = (yz,xz,xy). At the point (1,2,3) this has the value 
(6,3,2). The directional derivative in the direction of the vector (1,1,0) is 
found by taking the dot product of V I and the unit vector in this direction. 
This is (6,3,2) . (1,1, O)/v'2 = 9/v'2. 

3.2 First write the equation of the surface in the form I = constant, so I = 
y - x - z3 = o. A vector normal to the surface is V I = (-1, 1, -3z2). At 
the point (1,2,1) this is V I = (-1,1, -3). To find the unit normal, divide 
by the magnitude, so n = (-1,1, -3)/v'IT. The normal pointing in the 
opposite direction, (1, -1, 3)/v'IT, is an equally valid answer. 

3.3 1; = r = Irl = (x2 + y2 + Z2)1/2, so 

01; _ ~ 2 2 2 -1/2 _ x 
O - 2 (x + y + z ) 2x - (2 2 2)1/2· 

X X +y +z 

Similarly, 

01; z 
oz = (x2 + y2 + z2)1/2 . 

Hence V 1; = (x, y, Z )(x2 + y2 + z2) -1/2 which can also be written as r /r 
or as f, the unit vector in the direction of r. 
Geometrically, the level surfaces 1; = constant are concentric spheres cen­
tred at the origin. The vector V 1; points in a direction perpendicular to 
these surfaces, i.e. radially away from the origin. 

f= constant \If 

\If 
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3.4 The sphere and the cylinder intersect when x 2 +y2 +Z2 = 2 and x 2 +y2 = 1. 
Subtracting these two equations gives Z2 = 1, so the points of intersection 
are the two circles x 2 + y2 = 1, Z = ± 1. 
The angle between the two surfaces is the angle between the normals to the 
surfaces. By taking the gradients of the two surfaces, these normal vectors 
are nl = (2x, 2y, 2z) and nz = (2x, 2y, 0). The angle () between the normals 
is found using the dot product, nl . nz = \nl\\nZ\ cos(}. This gives 

4x2 + 4yZ = 2.../xz + yZ + Z2 2.../x2 + yZ cos(}. 

At a point of intersection this simplifies to 4 = 2V2 2 cos (), so cos () = 
1/V2 and hence () = 45°. Note that this is the same for all the points of 
intersection. 

3.5 V I = (2xy, x2 + 3y2 - 1). This is zero when xy = 0, so either x or y 
must be zero. Thus I has maxima, minima or saddle points at the points 
(±1,0), where I = 0; (0,1/'1/'3), where I = -2/3'1/'3 and (0, -1/'1/'3), where 
I = 2/3'1/'3. Since I == y(x2 + y2 - 1), the contour I = ° includes the line 
y = ° and the circle x2 + y2 == 1. This means that the points at (±1,0) 
must be saddle points. Putting together all this information, the sketch of 
I and its gradient is as shown below. Lines are contours I = constant and 
arrows are V I. 

3.6 I = a· r == alX + a2Y + a3Z, so VI = (al,a2,a3) == a. Geometrically, 
I == constant is the equation of a plane (1.3) which is perpendicular to the 
vector a. 

3.7 Proceeding as in Example 3.6, the vector field F = (siny,x,O) is conser­
vative if and only if there is a function </> satisfying F = V</>, so 
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8cjJ . 8cjJ 
8x =smy, 8y = x, 

8cjJ =0 
8z . 

Vector Calculus 

The first equation gives cjJ = x sin y + hey, z), where h is an arbitrary func­
tion of y and z. The second equation then becomes 

8h 
xcosy + 8y = x. 

This equation cannot be satisfied for all values of x, since the terms in­
volving x do not match and h does not depend on x. Hence F is not a 
conservative vector field. 

3.8 If F can be written as V cjJ then 

8cjJ _ I( 2 2) 
8x - Y x +y , 8cjJ I( 2 2) - = -x x +y , 

8y 

Integrating the first of these equations (using the substitution x = y tan B) 
gives cjJ = tan-l (xly) + h(y,z) for any function h. From the second and 
third equations it follows that h may be taken to be zero, so F = V cjJ where 
cjJ = tan-1(xjy). 
Now consider the line integral of F around the unit circle x2 + y2 = 1, 
z = 0, given parametrically by x = cose, y = sine, z = 0, 0 :::; e :::; 21T. 

i F . dr 1271" 

o (sin B, - cos B, 0) . ( - sin e, cos e, 0) dB 

1271" 

o -1 de = - 21T . 

At first sight this appears to contradict Theorem 3.1, since we have a non­
conservative vector field which can be written as the gradient of a potential. 
The resolution of the conflict is that both F and cjJ are undefined at the 
origin, so Theorem 3.1 does not apply. 

3.9 The components of V cjJ are just the partial derivatives of cjJ with respect 
to x, y and z, so for cjJ = x 2 + xy + yz2, VcjJ = (2x + y,x + z2,2yz). The 
Laplacian can be found either by taking the divergence of this vector, or the 
sum of the second partial derivatives of cjJ, giving the result '\l2cjJ = 2 + 2y. 

3.10 The gradient V cjJ is 

V cjJ = (k cos(kx) sin(ly) exp( Jp + [2 z), 

I sin(kx) cos(ly) exp( J p + 12 z), 

Jk2 + [2 sin(kx) sin(ly) exp( Jk2 + [2 z)) . 

Now take the divergence of this vector: 
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_k2 sin(kx) sin(ly) exp( vlk2 + [2 z) 

_12 sin(kx) sin(ly) exp( vlk2 + [2z) 

+(k2 + 12) sin(kx) sin(ly) exp( vip + [2 z) 

O. 
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This means that the function ¢ is a solution to the equation \;l2¢ = 0, 
which is Laplace's equation. 

3.11 The unit normal to the surface cjJ = constant is V¢/IV¢I. Here, cjJ = 
xy2 + 2yz so V¢ = (Y2,2xy + 2z,2y). At the point (-2,2,3), V¢ = 
(4, -2,4) which has magnitude v'16 + 4 + 16 = 6, so the unit normal is 
n = (2/3, -1/3, 2/3). 

3.12 For ¢(x, y, z) = x2 + y2 + z2 + xy - 3x, V ¢ = (2x + y - 3, 2y + x, 2z). ¢ has 
a minimum or maximum where V¢ = 0, which gives 2x + y = 3, 2y = -x, 
z = 0, so x = 2, y = -1, z = O. At this point the value of ¢ is -3. Since 
¢ becomes large and positive when x, y or z become large, this must be a 
minimum value. 

3.13 First find a normal to the surface. If f = x2 + y2 - 2z3 then V f = 
(2x, 2y, -6z2) so a normal to the surface at the point (1,1,1) is (2,2, -6). 
The equation of the plane is therefore 2x + 2y - 6z = constant, using (1.3). 
Imposing that the plane must pass through (1,1,1) gives the value of the 
constant to be -2. 

3.14 (a) For u = (y,z,x), 

ay az ax 
V . u = - + - + - = o. 

ax ay az 

V x u = (ax _ az ay _ ax az _ ay) = (-1 -1 -1) 
ay az' az ax' ax ay ". 

(b) For v = (xyz,z2,x - y), 

T"7 a(xyz) a(z2) a(x - y) 
v . V = -a;;- + BY + az = yz + 0 + 0 = yz. 

V xv = [a(x - y) a(Z2) a(xyz) a(x - y) a(z2) a(xyz)] 
ay - --a;-' --a;- - ax ' a;;- - fiiJ 

= (-1-2z,xy-1,-xz). 

3.15 These results follow directly from the linearity of the differential operator: 

a a a 
V . (cu + dv) = ax (CUI + dVI) + ay (CU2 + dV2) + az (CU3 + dV3) 

aUI daVI aU2 daV2 aU3 daV3 c-+ -+c-+ -+c-+ -
ax ax ay ay az az 

cV·u+dV·v, 
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and similarly for curl. 
3.16 u is irrotational if V xu = o. V x u = (1 - 1, ax - 2x, bcosx - cos x), so 

the solution is a = 2, b = 1. 
3.17 (a) V xu = (-2zsiny + 2yx + 2z sin y - 2xy,y2 - y2,2yz - 2yz) = 0 so 

u is irrotational. 
(b) The potential function ¢ for which u = V ¢ can be found using the 
step-by-step method of Example 3.6 or as follows: a¢/ax = y2 z suggests 
¢ = xy2 z. Taking V ¢ gives all the terms in u except the trigonometric 
terms. The z component suggests ¢ = Z2 cos Y + xy2 z. Taking the gradient 
of ¢ gives all the terms in u, so this (plus an arbitrary constant) is the 
potential function. 
(c) The line integral of u along the curve is just the difference between the 
values of ¢ at the endpoints. The endpoints are (0,0,0) and (1,0,1), so the 
line integral is ¢(1, 0,1) - ¢(O, 0, 0) = 1. 

Solutions to Exercises for Chapter 4 

4.1 fijkajbk + ajdjCi = ei. 
4.2 First, tidy up and rearrange the equation using (4.3) and the symmetry 

property fkji = fikj: Ci + fikjakbj = dlblemCmCi. Now this can be written 
as the vector equation c + a x b = (d· b)(e· c)c. 

4.3 [a x bl i = fijkajbk = -fikjajbk = -fikjbkaj = -[b x ali-
4.4 (a) tSijfijk: this expression is always zero, since if i = j then fijk = 0, while 

if i "# j then tSij = O. 
(b) fijkfilm = fjkifilm using (4.6). Using (4.12) this is tSj/tSkm - tSjmtSk/. 

(c) fijkfijm = tSjjtSkm - tSjmtSkj , using (b) with l = j. Usin~ tSjj = 3 and the 
substitution property of tSij this can be simplified to 3tSkm - tSkm = 2tSkm . 

(d) Using (c) with m = k, fijkfijk = 2tSkk = 6, as obtained in Example 4.9. 
4.5 Using suffix notation, 

a x b . ex d = fijkajbkfilmCldm 

= (tSj/tSkm - tSjmtSk,}ajbkC/dm 

= a/bmc/dm - amb/Cldm 

= (a· c)(b· d) - (a· d)(b· c). 

4.6 Let C = AB, so in suffix notation Cij = AikBkj . Then 

(AB)?; = Cl = Cji = AjkBki. 
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These two expressions are the same (recall that ordering of terms does not 
matter in suffix notation) so (AB)T = BT AT. 

4.7 The determinant of a 3 x 3 matrix M is 

Mu M12 M 13 

IMI = M21 M22 M 23 

M31 M32 M33 

Expanding this determinant, 

IMI = Mu(M22 M 33 - M Z3 M 32 ) + M12(M23M31 - M 21 M 33 ) 

+M13(M21M32 - M22M3r). (8.37) 

Now expand the suffix notation expression {ijkMliMzjM3k. Since i, j and 
k are repeated, there is a sum over all three indices, so 

333 

{ijkMliMZjM3k = L L L {ijkM1iM2jM3k. 

i=l j=l k=l 

Since only six of the 27 elements of {ijk are non-zero, there are six terms 
in this sum, and writing them out gives (8.37), so we have shown that 
IMI = {ijkMliM2jM3k. 

Now turn to the formula (4.10), {pqrlMI = {ijkMpiMqjMrk. First note that 
the formula is true for p = 1, q = 2 and r = 3, since in this case it reduces 
to the result shown above. Now consider the effect of interchanging p and 
q. The l.h.s. changes sign, since {pqr = -{qpr. The r.h.s. becomes 

so the r.h.s. also changes sign when p and q are interchanged. Similarly, 
both sides change sign when any two of p, q and r are interchanged. This 
suffices to prove the result, since both sides are zero when any two of p, q 
and r are equal and all permutations of 1, 2, 3 can be achieved by a suitable 
sequence of interchanges. 

4.8 Make use of {pqrlMI = {ijkMpiMqjMrk. 

(a) Multiplying both sides by {pqr and using the result of Example 4.9, 
61MI = {pqr{ijkMpiMqjMrk. Note that because of the six repeated suffices 
there are 36 = 729 terms in this sum! 
(b) Using the above result, 
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61MTI = fpqrfijkM'{;M'{;M;" = fp'lrfijkMipMjqMkr. 

Now since i, j, k, p, q and r are all dummy suffices, we can relabel i f-t p, 
j f-t q, k f-t r, so that the formula for IMTI is identical to that for IMI. 

(c) The formulae for IMI and INI are fpq,·IMI = fijkMpiMqjMrk , fpq,·INI = 
flmnNplNqmNrn. By multiplying these together, we obtain 

61MIINI = fijkflmnMpiNp/MqjNqmMrkNrn. 

Now MpiNpl = Mi~Npl = (MT N)il, so 

61MIINI = fijkflmn(MT N)il(MT N)jm(MT Nhn = 61MT NI, 

using the result of part (a). Thus we have shown that IMIINI = IMT NI, or 
equivalently IMTIINI = IMNI. Applying the result of part (b), it follows 

that IMIINI = IMNI· 
4.9 Since each term in the equation is a vector, we first introduce a free suffix 

i for each term: (a x b)i + Ci = (a· b)bi - di . Now we introduce dummy 
suffices for the dot and cross product, making sure that i is not reused: 

fijkajbk + Ci = ajbjbi - di· 
4.10 (a) Using (4.3) twice and (4.4), 

(b) Using (4.12), 

4.11 Using (4.3), 8ijajblCk8li = aibick. Here the i is a dummy suffix and the k 
is a free suffix, so the result is the k component of the vector (a· b)c. 

4.12 (a) V x (fV I) = V I x V I + IV x (V I), using (4.28). Each of these terms 
is zero since any vector crossed with itself gives zero and the combination 
curl grad is always zero. 
(b) V· (fV I) = V I· V I + IV· (V I), from (4.27). This can be simplified 
to V· (fVI) = IV/1 2 + 1'V2 I. 

4.13 u is solenoidal if its divergence is zero. 

V . u V . (V I x V g) 

(V x VI)· Vg - (V x Vg)· VI using (4.29) 

o using (3.23). 

4.14 Applying (4.35) with u = v, the second term is zero and the fifth and sixth 
terms cancel, leaving 

u· Vu = (V(u· u) - 2u x (V x u))/2 

which is (4.34). 
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4.15 (a) In suffix notation, 

Similarly, 
n 2v. _ f)2V . u f)2 aUi 
v u- - , 

aXjaXj aXjaXj aXi 
so the two expressions are equal since the order of partial derivatives can 
be interchanged. 
(b) Using (4.24), 

V· V'2u = V· (V (V . u) - V x (V xu)) 

= V· (V(V . u)) (since div curl is zero) 

V'2(V . u) (since V'2 = V . V). 

Note that the first V'2 acts on a vector but the second acts on a scalar, so 
they must be interpreted differently. 

4.16 Take the divergence of the equation: 

4.17 

V . u + V . V x w = V· V¢> + V· V'2u. 

The first term is zero as u is solenoidal. The second term is zero because 
the combination div curl is always zero. The last term is also zero since 
from the previous exercise, V· V'2u = V'2V·U = O. So the equation reduces 
to 0 = V . V¢> = V'2¢> which is Laplace's equation. 

[Vf(r)]i = af(r) = df(r) ar = J'(r)Xi, 
aXi dr aXi r 

using the usual rule for differentiating a function of a function together 
with the result t:i = x;jr from (4.19). Thus Vf(r) = J'(r)rlr. 

4.18 u = h(r)r. 
(a) V xu = V x (h(r)r) = Vh x r + hV x r = h'(r)r x rlr = 0, using 
the results of the previous exercise for V h. 

(b) V·u = V· (h(r)r) = Vh·r+hV·r = h'(r)r ·rlr +3h = rh'(r) +3h. 
So if V . u = 0, h(r) obeys the differential equation 

dh 
r dr + 3h = O. 

(c) Using the method of separation of variables, 

which gives log h = -3log r + c = log( r- 3 ) + c for some constant c. Taking 
the exponential of both sides, h = Alr3 where the constant A = expc. 
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4.19 (a) For a Beltrami field, V . u = V . (cV x u) = cV . (V xu) = 0. 
(b) Let v = V x u, so u = cv. Taking the curl of this equation, V xu = 
V x (cv) so v = cV xv. 
(c) Ifu = (siny,/,g), then u = cV x u gives the three equations 

sin y = c (~: - ~~) , / = c ( - ~~) , 9 = c (~~ - cos y) . 
Given that 9 is independent of x, it follows that / = 0, 9 = -ccosy and 
siny = c(csiny). Hence either c = 1, 9 = - cosy or c = -1, 9 = cosy. 

Solutions to Exercises for Chapter 5 

5.1 The surface integral is equal to the volume integral of V . u, but V . u = 
sin y + ° - sin y = 0, so the value of the integral is zero. 

5.2 u = (y, x, z - x), so V . u = 1. The volume integral is therefore 

iii V· udV = 111111 1dxdydz = 1. 

The surface integral has six parts from the six faces of the cube. On the 
face where x = 0, n = (-1,0,0) and so u . n = -yo Similarly, on the face 
where x = 1, n = (1,0, o) and u . n = y, so the surface integrals from 
these two faces cancel. The same argument holds for the faces y = ° and 
y = 1. On z = 0, n = (0,0, -I) and U· n = -z + x = x, while on z = 1, 
n = (0,0, 1) and u·n = z - x = 1- x. The integrals over these two surfaces 
then give 

11 11 X + 1- xdxdy = 1. 

Therefore, both the surface integral and the volume integral give the answer 
1 so the divergence theorem is verified. 

5.3 In order to use the divergence theorem, the volume integral must first be 
written in terms of a divergence. This can be done using (4.27): 

iii U· VifJdV = iii V· (ifJu) - ifJV ·udV. 

Now since the fluid is incompressible, V . u = 0. Applying the divergence 
theorem then gives 

Since it is given that u . n = 0 on 5, the value of the integral is zero. 
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5.4 This result follows directly from applying the divergence theorem to the 
vector field V j, since V . V j = \72 j = 9. 

5.5 To apply the divergence theorem, a closed surface must be used. Let 8' 
be the surface z = 0, x 2 + y2 < 1, forming the base of the hemisphere. 
The divergence theorem can now be applied over the entire closed surface 

z 

x 

8 + 8', giving 

Iii V· v dV = lis v . n d8 + lis, v . n d8. 

The surface integral over 8 can therefore be found by subtracting the sur­
face integral over 8' from the volume integral. 
For v = (x + y, Z2, x2 ), V . v = 1, so the volume integral is just the volume 
of the hemisphere, 211"/3. The surface integral over 8' is 

lis, V· nd8 = lis, _x2 d8 

since n = (0,0, -1) on 8'. This integral can be evaluated using polar 
coordinates (r,O), where x = rcosO, 0 :=; r :=; 1,0 :=; 0 :=; 211" and d8 = 
r dO dr (see Section 2.3.2). 

lis, _x2 d8 11 127r _r2 cos2 0 r dO dr 

= 11 -r311"dr 

= -11"/4. 

The required integral is then 

lis V· nd8 = 211"/3 + 11"/4 = 1l7r/12. 
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5.6 The argument follows that of Section 5.1.1 with p replaced by q and pu 
replaced by j, so the law of conservation of electric charge is 

8q V . 0 
8t+ .J=. 

5.7 Consider (5.13) in the case where the volume OV is small. The volume 
integral of V I is then approximately equal to V I times the volume: 

VI oV ~ If IndS. 
oS 

Dividing by the volume and taking the limit oV -+ 0 gives the definition 

. 1 If VI = hm 'V IndS, 
oV~O u oS 

which is analogous in form to the original definitions of div and curl. 
5.8 Using Stokes's theorem, 

i r . dr = lis V x r . n dS = 0 

since V x r = o. 
5.9 First consider the line integral around the circle x 2 + y2 = 1, evalu­

ated parametrically using x = cos 0, y = sin 0, 0 < 0 < 211", with 
dr = (- sin 0, cos 0,0). The value of the line integral is 

211" 1 (2 cos 0 - sin 0, - sin2 0, 0) . (- sin 0, cos 0,0) dO 

= 
(11" 

10 -2 cos 0 sin 0 + sin2 0 - sin2 0 cos 0 dO 

= 1211" _ sin 20 + (1 - cos 20) /2 - sin2 0 cos 0 dO 

11", 

since all terms except the 1/2 give zero when integrated between 0 and 211". 
Now to compute the surface integral we need (V x u)· n. The line integral 
was taken in an anti clockwise sense in the x,y plane, so the right-hand 
rule means that n points in the positive z direction, so (V x u) . n = 
(V x u) . e3 = 1. The value of the surface integral is then just the area of 
the surface, which is 11" since the surface is a disk of radius 1. Thus Stokes's 
theorem is verified since the surface integral and the line integral are both 
equal to 11". 
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5.10 Applying Stokes's theorem, 

Similarly, 

i fVg· dr = lis V x (fVg) . n dS 

= IIs(Vf x Vg+ fV x (Vg))·n dS 

= IIs(Vf x Vg)·n dS. 

i9Vf.dr= IIs(VgxvJ).nds=- IIs(Vfxvg).nds. 

Therefore 

ifVg.dr=- i9Vf.dr. 
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Alternatively, this result can be obtained by applying Stokes's theorem to 
the line integral of V (f g). 

5.11 If u is irrotational, V x u = 0 and so u x V f = -V x (fu). Applying 
Stokes's theorem, the surface integral is equal to fe - fu . dr. 

5.12 The rate of change of the total magnetic flux through a surface S is 

~ lis B . n dS = lis V x (u x B) . n dS = i u x B . dr. 

The curve C is a streamline so u is parallel to dr and hence the scalar 
triple product that appears in the line integral is zero. Therefore the flux 
of B through S does not change with time. 

5.13 Applying (5.18) with v = r gives 

[{ OXk nj _ OXk nk dS = [1 v x dr] . 
lls OXk OXj Ie j 

Using OXk/OXj = ~jk and ~jj = 3, this simplifies to 

For a flat surface nj is constant so the l.h.s. has the value 2Anj, giving the 
required result. 
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Solutions to Exercises for Chapter 6 

6.1 For Cartesian coordinates, Ui = Xi. The scale factor hI is, from (6.2), 

hI = ! ax! = !(aXI, aX2, aX3)! = 1(1,0,0)1 = l. 
aXI aXI aXI aXI 

By the same reasoning h2 and h3 are also l. 
6.2 (a) Using the definition of the scale factors, 

hu I(vw, v(1 - W2)1/2, u) I = (u2 + v2)1/2, 

hv = l(uw,u(I-W2)1/2,-v)I=(U2 +V2)1/2, 

hw = l(uv,-UVW(I-W2)-1/2,0)1 =uv/(I_W2)1/2. 

(b) To show that the (u, v, w) system is orthogonal we first need to compute 
the unit vectors. From (6.1) and the above results for the scale factors, these 
are 

e .. = (vw,v(l_w2)1/2,u)/(u2 +v2 )1/2, 

e" (uw, u(1 - w2)1/2, -v)/(u2 + V2 )1/2, 

e w = ((I_W2)1/2,_W,0). 

Now take the dot product of these unit vectors to check that they are 
orthogonal: 

and similarly e ... e w = ° and e" . e w = 0. 
(c) The volume element in the (u, v, w) system is 

dV = h1h2h3 dudvdw = (u2 + v2)uv/(I- W2)1/2 dudvdw. 

6.3 Following the approach of the previous exercise, the scale factors are found 
to be hu = (u2 + V2)1/2, h" = (u2 + V2)1/2 and hu = uv, so the volume 
element is dV = (u2 + v2 )uv. The volume V between the surfaces u = 1 
and v = 1 is therefore 

V = 1111 121< (u2 + v2 )uvdO dudv = 271" 11 [u4v/4 + U2V3 /2]~ dv 

which yields the result V = 71"/2. 
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6.4 In Cartesian coordinates, V f and el are 

so the component of V f in the el direction is 

el,Vf= -.!.. ( afaxi + af aX2 + af aX3) = -.!.. af. 
hI aXI aUI aX2 aUI aX3 aUI hI aUI 

Similar expressions for the e2 and e3 components follow, giving the formula 
(6.8) for V f in an orthogonal curvilinear coordinate system. 

6.5 Assume that the cylinder is aligned with the centre of the apple and that 
a < b. The volume integral can be carried out using either cylindrical 
or spherical coordinates. Using cylindrical coordinates, the limits on the 
coordinates Rand ¢ are ° < R < a, ° < ¢ < 27r. The limits on z are 
determined by the radius of the sphere, Z2 + R2 = b2, so the limits are 
-Jb2 - R2 < z < Jb2 - R2. The required volume is 

la!~127r 
o -~ 0 

Rd¢dzdR 27r loa 2RJb2 - R2 dR 

47r[ - (b2 - R 2)3/2 /3]~ 

47r(b3 - (b2 - a2)3/2) /3. 

The proportion of the apple removed is this volume divided by 47rb3/3, 
which is 1 - (1 - a 2 /b2 )3/2. 

6.6 The limits on the coordinates are 7r /3 ~ () ~ 27r /3, ° ~ ¢ < 27r, ° ~ r ~ a, 
where a is the radius of the Earth. The volume V is 

V = r27r 
/3 r27r r r2 sin () dr d¢ d() = 27r [r3 /3] ~ [- cos (}1!i~3 = 27ra3 /3, 

17r/3 10 10 
so exactly half of the Earth's volume is less than 30° away from the Equator. 

6.7 In spherical polar coordinates the divergence of e", is zero, using (6.23). 
The curl, from (6.25), is 

1 a sin () 1 ar cot () 1 
V x e", = -.---er - --eB = --er - -eB. 

r sm () a() r ar r r 

6.8 The formula u . Vu = V(luI2 /2) - u x (V x u) is used to find u . Vu. 
Since u is a unit vector, its magnitude is constant so V(luI 2 /2) = O. Using 
(6.17), V xu = ez/R, so u x (V x u) = (0,1,0) x (0,0, I/R) = (I/R,O,O). 
Therefore u . Vu = -eR/ R. 
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6.9 Recall that the definition of the Laplacian of a vector field is '\7 2v = VV . 
v - V x V x v. Using the formulae (6.14) and (6.15), the R component of 
VV· v is 

which can be expanded to give 

1 8VR VR 2 82vR 1 8vI/> 1 82vI/> 82v z 

R 8R - Ii + 8R2 - R2 8¢ + R 8¢8R + 8R8z' 

Computing the R component of V x V x v using (6.17) gives 

1 8 ( 8VI/» 1 8 2vR 82vR 8 2v z 

R28¢ vI/> + R 8R - R2 8¢2 - 8z2 + 8R8z' 

Subtracting these two quantities gives the R component of '\7 2v: 

2 1 8VR VR 82vR 2 8vI/> 1 8 2vR 82vR 
('\7 V)R = R 8R - R2 + 8R2 - R2 8¢ + R2 8¢2 + 8z2 . 

Note that this cannot be the Laplacian of the R component of v, since it 
involves vI/>' In fact ('\72V)R and '\72(VR) are related by 

2 2 VR 2 8vI/> 
('\7 V)R = '\7 (VR) - R2 - R2 8¢ . 

Solutions to Exercises for Chapter 7 

7.1 The definition Lij = e~ ·ej states that Lij is the cosine of the angle between 
the e~ and ej unit vectors. Referring to Figure 7.1, the cosine of the angle 
between e~ and el is cos 0, and the cosine of the angle between e; and e2 is 
the same. The cosine of the angle between e~ and e2 is cos(1r/2-0) = sinO, 
and the cosine of the angle between e; and el is cos(1r /2 + 0) = - sin O. 
These results agree with the matrix in (7.3). 

7.2 u is a vector, so ui = Lijuj. To show V· u is a scalar we need to compute 
its value in the dashed frame: 

( ) ' 8u: 8 8uj 8Xk 
V'u =-8' =-8 ,(LijUj) = L ij -8 -8" 

Xi Xi Xk Xi 

using the chain rule. Now using (7.8), 

( ) ' 8Uj £ 8Uj 8Uj 
V·u =Lij -8 Lik = Ujk-8 = -8 = V ·u. 

Xk Xk Xj 
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Thus V . u has the same value in the dashed and undashed frame, so V . u 
is a scalar. 

7.3 Since a and b are vectors, a~ = L;kak and bj = Ljmbm. Note that the 
suffices are carefully chosen to avoid repetition. Then 

This agrees with the transformation rule (7.13), so a;b j is a second-rank 
tensor. 

7.4 Note that Tij can be written as Tij = aibj where a is the position vector 
(XI,X2) and b = (x2,-xd which was shown to be a vector in Example 
7.3. Therefore Tij is a tensor by the result of the previous question. Al­
ternatively, the fact that Tij is a tensor can be confirmed by following the 
method of Example 7.3. 

7.5 Since ¢ is a scalar, ¢/ = ¢. The transformation rule for Tjk is 

, EP¢' 
Tjk = axjax~ 

so Tjk is a second-rank tensor. 
7.6 If Tij is a tensor, Tij obeys the rule 

Setting j = i in this formula, 

So the value of Tii is the same in the dashed and undashed frames, i.e. Tii 
is a scalar. 

7.7 In suffix notation, the divergence theorem (5.1) becomes 

iii ~:; dV = ffs Ujnj dS. 

This result holds if Uj is replaced by T Ij , T2j or T3j , giving the required 
result (7.16). 

7.8 If Qijkl is a tensor of rank four, 

7.9 Q;jkl obeys the above rule, so by setting k = j, 

so Qijjl obeys the transformation law for a tensor of rank two. 
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7.10 Given that Uiai is a scalar, 

so (u~ - UjLij )a~ = O. If this holds for any ai, then u~ = Lijuj, so Ui is a 
vector. 

7.11 B rs is an anti-symmetric tensor, so 

B~s = L~ •. L. .. B •••• = -L. .. L~ •• B •••• = -B~r' 

Hence B is also anti-syr 
7.12 If Brs is anti-symmetric, Ors = -Osr so Or,' = -Orr and hence Bn = O. 
7.13 A ijk has the properties A ijk = .1# and Aij~' = -Aikj . Repeatedly apply­

ing these rules alternately gives 

So any element of A ijk is equal to minus itself, hence all elements are zero. 
7.14 (a) Aij = fijkBk, so 

so Aij obeys the transformation rule for a second-rank tensor. Since fijk is 
anti-symmetric with respect to any two indices, Aij is antisymmetric. 
(b) Multiply through by fijm: 

making use of Exercise 4.4(c). Hence Bm = fijmAij/2. 

7.15 The most general isotropic fourth-rank tensor is aijkl = Mijl5kl + J.U5ik6j1 + 
v6i/6j k, from Theorem 7.4. From (4.12), the difference between products of 
6ij terms can be written in terms of a products of fijk terms. For example, if 
A = 1, J.L = -1, v = 0, we have the isotropic tensor aijkl = bijbkl - 8ik6jl = 

filmfmjk· 

7.16 Since bij and fijk are isotropic tensors, the combination aijklm = bijfklm 

is an isotropic fifth-rank tensor. Since any two of the five suffices can be 
chosen for the 6, for example aijklm = 6ik fjlm or aijklm = 6i/fjkm, the total 
number of different tensors of this type is the number of ways of choosing 
two objects from five, which is 5!/2!(5 - 2)! = 10. So there are at least ten 
different components in the most general isotropic fifth-rank tensor. 
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7.17 Following the approach of Section 7.4.2, the kinetic energy of a volume 
element dV is P Iv1 2dV/2 and v = n x r, so 

E = 1/2 IIi P Ivl2 dV 

= 1/2 IIi P€ijkfljrk€ilnJ1Ir m dV 

= 1/2 IIi p(fljfljrkrA' - fljrjflkrk) dV 

= 1/2 III P (6jk r2 - rjrk) fljflk dV 

1jk flj flk /2. 

Solutions to Exercises for Chapter 8 

8.1 The size of the body L is a length and the diffusivity k has units of 
length2 /time. The only combination of these which has the units of time is 
L2 /k. Therefore the time for heat to diffuse through a body is proportional 
to the square of the size of the body. 
(a) Assume that the mammoth is the same shape as the chicken, made of 
the same material (so the wooliness is ignored) and 20 times the length of 
the chicken. The defrosting time is therefore 202 x 6 hours which is 100 
days. 
(b) Assume that to cook properly, a certain temperature must be reached 
in the interior. The time required for this is proportional to L2. The mass 
M is proportional to L 3 , so L ex: M 1/ 3 • Therefore the cooking time should 
be proportional to the two-thirds power of the mass: t ex: M2/3. 

8.2 Using (8.4), 

8p 
8t 

8E = €oV·-
8t 

€oV· (V x B -/1-0j)/EO/1-0 from (8.7) 

-V·j 

since the combination div curl is always zero. 
8.3 Gauss's law says that the total flux of electric field through the surface is 

the total charge within the surface divided by EO. Taking the surface to 
be the surface of a sphere of radius r, with area 41Tr2, Gauss's law gives 
41Tr2 Er = Q / EO, which agrees with the result of Example 8.4. 
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8.4 Take the curl of (8.12): 

{)V x E 
V x (V x B) == /-Lofo {)t . 

Expanding the r.h.s. and using (8.10) and (8.11) gives 

2 {)2 B 
- V' B == -/-Lofo {)t2 ' 

so B obeys exactly the same wave equation as E. 
8.5 Given the electric field E == Eof(k·x -wt) == Eof(u) where u == k·x -wt, 

the magnetic field B can be found using (8.11): 

VxE V x (Eof(u)) 

Integrating with respect to t and changing the sign to find B gives 

1 1 
B == -k x Eof(k . x - wt) == -k x E. 

w w 
Hence the magnetic field B is perpendicular to the electric field E. 

8.6 The energy can be written w == B . B /2 + E . E /2c2 , so the rate of change 
of energy is 

{)w 
at = 

B . {)B + -.!:..E . {)E 
{)t c2 {)t 

= -B· V x E + E . V x B using (8.11) and (8.12) 

== -V· (E x B). 

This gives the conservation law 

{)w 
at+V.P==O 

where P = Ex B is known as the Poynting vector, representing the energy 
flux of the electromagnetic wave. 

8.7 (a) If the material is in equilibrium then the stress tensor must be symmet­
ric (8.16), so a == 0 and c == b. Also, {)Pij/{)Xj == O. For the first row (i = 1) 
this is satisfied. The second row (i = 2) gives mx~l-l + bX2 = 0, so m == 2 
and b = -2. From the third row, CX3 + nx~-l = 0, so n = 2 and c == -2. 
(b) For the surface Xl == 1 the normal is (1,0,0) (the normal points in 
the direction of the side which is exerting the force). Thus the force is 
Fi == Pijnj dB == P i1 dB. Since P ll = P 21 = 0 and P 31 = X2, the force is 
only in the X3 direction. Its magnitude is 

F3 == 11 11 X2 dX2 dX3 == 1/2. 
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8.8 The Lh.s. of (8.22) is 

-!f"k [V x v] 2 tJ k 

= 

1 aVm 
-"2fijkfklm aXI 

1 aVm 
-"2 (6il 6jm - oimojd aXI 

! (aVi _ aVj) = Sij. 
2 aXj aXi 

8.9 Applying the condition aPijjaXj = 0 and using (8.21), 
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8.10 (a) From the definition of the strain tensor, Ell = aX2, E12 = E2l = 
axI/2 + bXl, E22 = -2bx2 and the other components of Eij are zero. 
(b) Using (8.21), Pu = A(a - 2b)X2 + 2/LaX2, P12 = P2l = 2/L(axI/2 + bXl), 
P22 = A(a - 2b)X2 - 4/Lbx2, P33 = A(a - 2b)X2 and other components of Pij 
are zero. 
(c) Applying the equilibrium condition aPijjaXj = 0, this is identically 
satisfied for i = 1 and i = 3, but for i = 2, /La + 2/Lb + A(a - 2b) - 4/Lb = O. 
This is satisfied if a = 2b. 

8.11 (a) The term V· (pu) in (5.9) can be written u· V(po + PI) + (Po + pdV ·u. 
Now since Po is a constant and terms involving products of u and PI can be 
neglected, this simplifies to Po V· u, so (5.9) becomes apI/at + Po V· u = O. 
(b) In the Navier-Stokes equation (8.28) the product term u . Vu can be 
ignored and there is no body force b or viscosity /L, so the remaining terms 
are (Po + pd (au j at) = - V (Po + pd· The term involving PI and u can be 
ignored, Po is constant and PI = apI, so poau j at = -a V Pl· 
(c) The velocity u can be eliminated from (8.35) and (8.36) by taking the 
time derivative of (8.35): 

~~ ~ 2 
at2 = - Po V . at = a V . V PI = a V' PI' 

Hence the density perturbation obeys the wave equation (8.13). Physically, 
the waves are sound waves travelling through the fluid. 
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