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Abstract-After the description of the models of Kubilius, Novoselov and Schwarz, and Spilker, 
respectively, a probability theory for finitely additive probability measures is developed by use of the 
Stone-Cech compactification of H. The new model is applied to the result of ErdBs and Wintner about 
the limit distribution of additive functions and to the famous result of Szemer&li in combinatorial 
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Ltd. All rights reserved. 
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1. A SHORT HISTORICAL RETROSPECTIVE VIEW 

Where are the roots of probabilistic number theory? Can they be found in the papers “Probabilite 
de certains faits arithmetiques” and “Eventualite de la division arithmetique” by Cesaro in 1884 
and 1889, respectively, or in the assertions of Gauss in 1791 (see [l]), when he writes’ 
“Primzahlen unter a(= co) 

a 
la 

Zahlen aus zwei Faktoren 

wahrscheinlich aus 3 Faktoren 

et sic in inf”? 

lla . a 

la 

1 (lla)% -- 
2 la 

If we say that probabilistic number theory is devoted to solving problems of arithmetic by 
using (ideas or) the machinery of probability, then the subject started not with Gauss, but cum 

lIn today’s notation, let 7~k(z) denote the number of natural numbers not exceeding I which are made up of k 
distinct prime factors. Then, the above assertion can be understood as 

7?&(Z) N 2- (loglogI)“-’ 
log 2 (k-l)! ’ (a:--+w) 
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grano salis with the paper “The normal number of prime factors of a number n” by Hardy and 
Ramanujan [2]. They considered the arithmetical functions w and R, where w(n) and R(n) denote 
the number of different prime divisors and of all prime divisors-i.e., counted with multiplicity- 
of an integer n, respectively. Introducing the concept “normal order”, Hardy and Ramanujan 
proved that w and R have the normal order “log log n”. Here we say, roughly, that an arithmetical 
function f has the normal order F, if f( n is approximately F(n) for almost all values of n2 ) 
More precisely, this means that 

(1 - &P’(n) < f(n) < Cl+ ~lJ’(n), 

for every positive E and almost all values of n. 
In 1934, Turban [3] gave a new proof of Hardy and Ramanujan’s result. It depended on the 

(readily obtained) estimate 

C(w(n) - loglogx)2 I cxloglogx. 
n<x 

This inequality-reminding us of Tschebycheff’s inequality3-had a special effect, namely giving 
Kac the idea of thinking about the role of independence in the application of probability to number 
theory. Making essential use of the notation of independent random variables, the central limit 
theorem and sieve methods, Kac, together with Erd&, proved this in 1939 [5] and 1940 [S]. For 
real-valued strongly additive functions f, let 

and 

A(z) := c + 
PIX 

( 1 
l/2 

B(x):= c T , 
PIT 

(2) 

Then, if 1 f @)I < 1 and if B(z) + CO as 5 + 03, the frequencies 

f(n) - A(z) < z 
B(z) - > 

converge weakly to the limit law 

G(z) := $& s -6, e-w2/2 dw, 

as x -+ CO (which will be denoted by writing F,(z) + G(z)). 
Thus, for f(n) = w(n), Erdijs and Kac obtained a much more general result than Hardy and 

Ramanujan. For, in this case, 

A(x) = loglogx + O(1) 

and 

B(x) = (1 + o(l))(loglogx)1’2, 

2A property E is said to hold for almost all n if lim3,- z-l # {n 5 r : E does not hold for n} = 0. 
3At that time, Turhn knew no probability (see [4, Chapter 12)). The first widely accepted axiomatic system for 
the theory of probability, due to Kolmogorov, had only appeared in 1933. 
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so that 
w(n) - log log Z 

Jl 

A second effect of the above-mentioned paper of Turan was that Erdds, adopting Turin’s method 
of proof, showed [7] that, whenever the three series 

converge, then the real-valued strongly additive function f possesses a limiting distribution F, 
i.e., 

Z-‘#{n < z : f(n) 5 z} + F(z), 

with some suitable distribution function F. It turned out [8] that the convergence of these three 
series was in fact necessary. 

All these results can be described as effects of the fusion of (intrinsic) ideas of probability 
theory and asymptotic estimates. In this context, divisibility by a prime p is an event A,, and all 
the {Ap} are statistically independent of one another, where the underlying “measure” is given 
by the asymptotic density 

6 (A,) := lim z-l# {n 5 2 : n E AP} = Jiirx-’ 
I--)00 

Pb 

(3) 

(If the limit 
M(f) := Jirirx-’ C f(n) 

n<x 

exists, then we say that the function f possesses an (arithmetical) mean-value M(f).) Then, for 
strongly additive functions f, 

f = c f (PI&P7 
P 

where .sP denotes the characteristic function of A, and M(E~) = l/p. 
The main difficulties concerning the immediate application of probabilistic tools arise from the 

fact that the arithmetical mean-value (3) defines only a finitely additive measure (or content, or 
pseudo-measure) on the family of subsets of N having an asymptotic density. To overcome these 
difficulties, one builds a sequence of finite, purely probabilistic models, which approximate the 
number theoretical phenomena, and then use arithmetical arguments for “taking the limit”. This 
theory, starting with the above-mentioned results of ErdGs, Kac and Wintner, 
Kubilius (91. He constructed finite probability spaces on which independent 
could be defined so as to mimic the behaviour of truncated additive functions 

was developed by 
random variables 

Cf(PkP. 
P<T 

This approach is effective if the ratio log r/ log x essentially tends to zero ss x runs to infinity. 
Then, Kubilius was able to give necessary and sufficient conditions in order that the frequencies 

x-‘#{n 5 x : f(n) - A(x) 5 zB(x)} 

converge weakly as x + 00, assuming that f belongs to a certain class of additive functions. This 
opened the door for the investigation of the renormalization of additive functions, i.e., determine 
when a given additive function f may be renormalized by functions o(x) and p(x), so that as 
x + co the frequencies 

possess a weak limit (see [4,9,10]). 
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All these methods have been developed for and adapted to the investigation of additive func- 
tions with their emphasis on sums of independent random variables. The investigation of (real- 
valued) multiplicative functions goes back to Bakstys [ll], Galambos [12], Levin et al. [IS], and 
uses Zolotarev’s result [14] concerning the characteristic transforms of products of random vari- 
ables. 

We reformulate as follows. A general problem of probabilistic number theory is to find appro- 
priate probability spaces where large classes of arithmetic functions can be considered as random 
variables. 

Let us now turn to combinatorial number theory, where we concentrate on van der Waerden’s 
theorem, and mention how, in this case, a probabilistic interpretation plays an essential role, too. 

The well-known theorem of van der Waerden states (in one of several equivalent formulations) 
that, if N is partitioned into finitely many classes N = Bi U Bz U . . . U Bh, then at least one class 
contains finite arithmetic progression of arbitrary length. To prove van der Waerden’s result, it 
clearly suffices to show that for each 1 = 2,3,. . . , some Bj contains an arithmetic progression of 
length 1 + 1; for some Bj will occur for infinitely many 1 and that will be the desired Bj. 

Van der Waerden’s theorem is one of a class of results in combinatorial number theory where a 
certain property is predicated of one of the sets of an arbitrary partition of N and these properties 
are translation invariant. And, in this case, one may conjecture that there is a measure of the 
size of a set that will guarantee the property. This was done in the 1930s by ErdGs and Turan. 
More precisely, their conjecture asserts that a set of positive upper density possesses arithmetic 
progressions of arbitrary length. Roth [15], using analytic methods, showed in 1952 that a set 
of positive upper density contains arithmetic progressions of length 3. In 1969, Szemeredi [16] 
showed that such sets contain arithmetic progressions of length 4, and finally in 1975 [17], he 
proved the full conjecture of ErdBs and Turbn. More precisely, he showed the following. 

Let B c N be such that for some sequence of intervals [a,, b,] with b, - a, -+ 00, #(B n 
[a,, b,l)l(bn - 4 -+ a > 0, then B contains arbitrarily long arithmetic progressions. 

Szemeredi used intricate combinatorial arguments for his proof. It turned out that the tool ap- 
propriate for handling Szemeredi’s theorem is the theory of measure preserving transformations. 
Proving a multiple recurrence of Poincare’s recurrence theorem allowed the proof of Szemeredi’s 
result and, in addition, a multidimensional analogue of Szemeredi’s theorem (see [l&19]). 

To end this introduction, we move to heuristic results about prime numbers. A statistical 
interpretation of the prime number theorem, 

T(X) := # {p 5 II: : p prime} N 5, 
log x 

aSX+CO, 

tells that the probability for a large number n being prime is l/logn. If the events that a 
random integer n and the integer n + 2 are primes were statistically independent, then it would 
follow that the pair (n, n + 2) are twin primes with probability l/(logn)2. Now, these events 
are not independent since, if n is odd, then n + 2 is odd, too, and so Hardy and Littlewood [20] 
conjectured that the correct probability should be 

where 

is the so-called twin prime constant, which is approximately 0.6601618.. . . The type of their 
arguments can be applied to obtain similar conjectural asymptotic formulae for the number of 
prime-triplets or longer block of primes, and then agree very closely with the results of counts. 

More general conjectures are due to Schinzel and Sierpinsky, and in 1962, Bateman et al. [21] 
indicated a quantitative form of these conjectures. 
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CONJECTURE. Let fl, f2,. . . , fs be irreducible polynomials, with integer coefficients and positive 
leading coefficients. If Q(N) denotes the number ofintegers 1 < n < N such that fl(n), . . . , fS(n) 
are all primes, then 

where 

1 
Q(N) N cfl’Js deg(f1) . . . deg(f,) $ (10gtN))~ ’ 

cjl...r. =$l-$q (l-;)Y 

here w(p) denotes the number of solutions of the congruence 

fl(x) . . . fs(z) E 0 (modp). 

As should be expected, the conjectures of Hardy and Littlewood, Schinzel and Sierpinsky, 
and Bateman and Horn inspired a considerable amount of computation, indeed to determine 
accurately the constants involved in the formulae, and to verify that the predictions fit well with 
the observations. 

The aim of the first part of this paper is to describe a new theory which solves the above- 
mentioned general problem of probabilistic number theory and shows how, for example, Sze- 
meredi’s result fits into the framework of this theory. 

In the second part, we focus on heuristic and computational results and sketch briefly how we 
could find the largest known twin primes. 

2. APPROXIMATION OF INDEPENDENCE 

In this section, we have in mind the idea of Kac that, suitably interpreted, divisibility of an 
integer by different primes represents independent events. At the beginning, we shall consider 
two examples of algebras of subsets of N. We denote by A1 the algebra generated by all residue 
classes in N, whereas A2 is defined as the algebra generated by the zero residue classes. On 
both algebras the asymptotic density is finitely but not countably additive. In the case of the 
algebra di, this difficulty will be overcome by the embedding of N into the polyadic numbers. 
Concerning the algebra dz, a solution of the problem will be given by the construction of the 
model of Kubilius. In Section 5, we shall formulate a general solution of both of these problems. 

For a natural number Q, let E(l,Q) denote the set of positive integers n which satisfy the 
relation n = 1 modQ where 1 assumes any value in the range 1 5 1 5 Q. Denote by Ai the 
algebra generated by all these arithmetic progressions E(1, Q) for Q = 1,2,. . . , and 1 5 1 5 Q. 
Observe that each member A E d1 possesses an asymptotic density 6(A) and 6 is fully determined 
by the values 

WXQ)) = ;, 

for each Q and all 1 5 1 5 Q. Then, S is finitely additive but not countably additive on the 
algebra di which will be shown by an example due to Manin (see [22, p. 1351). 

Let Qi = 3i, i = 1,2,. . . , and put El = E(O,Ql) and Ez = (l,Q2). For j > 3, choose lj 
to be the smallest positive integer not occurring in El U E2 U . . . U Ej-1. Put Ej = E(lj, Qj). 
It is clear that N = l_lz”=, Ei. Further, Ei TI Ej = 0 if i # j. For this, suppose j > i and 
l., + mjQ3 = li + rni&i. We see that lj = li + Qn(mr - 3jeirnj) and, since lj > li, lj E Ei, which 
contradicts the choice of lj. Since 

26(Ei)=F3-“=:<1=6 
i=l i=l 

the asymptotic density is not a measure on di. 
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Concerning the definition of As, we choose, for each prime p, the sets Aph = E(0, p”) of natural 
numbers which are divisible by p” (k = 1,2, . . . ). Then, A2 will be the smallest algebra containing 
all the sets Apk. Obviously, As is a subalgebra of di and the asymptotic density 6 is finitely 
additive. It is not difficult to show by an example that 6 is not countably additive on d2. 

In his book [9], Kubilius applies finite probabilistic models to approximate independence of 
the events A* for primes p. The study of arithmetic functions within the classical theory of 
probability, with its emphasis on sums and products of independent random variables, involves a 
careful balance between the convenience of a measure, with respect to which appropriate events 
are independent, and the loss of generality for the class of functions which may be considered. 

The models of Kubilius are constructed to mimic the behaviour of (truncated) additive func- 
tions by suitably defined independent random variables. The construction may run as follows 
(see [4, p. 1191). 

Let 2 5 T 5 2, let S:= {n : n 5 xc), and put D = &<,,p. For each prime p dividing D, let 

l?(p) := S n E(0, p) and E(p) = S \ E(p). If we define, for each positive integer k which divides D, 
the set 

Ek = n E(P) n fi:(P), 
plk d(Dlk) 

then these sets are disjoint for differing values of Ic. Further, if A denotes the o-algebra which is 
generated by the E(p), p 5 r, then each member of A is a union of finitely many of the &. On 
the algebra A, one defines a measure V. If 

A= fi&,, 
j=l 

then 

v(A) := g[Z]-’ I&.,. 1 . 
j=l 

Since v(S) = 1, the triple (S, A, V) forms a finite probability space. A second measure ~1 will be 
defined by 

IL(&):=; n (I-;), 
pl(Dlk) 

where k 1 D. It is clear that p(S) = 1, and thus, the triple (S,d,p) is also a finite probability 
space. By an application of the Selberg sieve method, one can show that 

v(A) = ~(-4) + O(L), 

holds uniformly for all sets A in the algebra A with 

L = exp 

An immediate consequence of the above construction is as follows. 

PROPOSITION 1. (See 14, Lemma 3.21.) Let r and x be real numbers, 2 5 r 5 x. Define the 
strongly additive function 

s(n) = c f(P), 
Pb 

PST 

where the f(p) assume real values. Define the independent random variables X, on a probability 
space (0, A, P), one for each prime not exceeding r, by 

f(P)7 
x, = 

with probability ;‘, , 

0, with probability 1 - i. 
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Then, the estimate 

x-l#{n 5 x : g(n) I z} = P (psr cxp I g +O(exp(-;$og(~))) +o(z’ll5) 

holds uniformly for all real numbers f(p), Z,Z(Z > 2) and r (2 5 r 5 x). 

The Kubilius model can be directly applied to obtain, in particular, the celebrated theorem 
of ErdGs and Kac. For this, we confine our attention for the moment to (real-valued) strongly 
additive functions f and recall definitions (1) and (2) of A(z) and B(z). Following Kubilius, we 
shall say that f belongs to the class H if there exists a function r = r(2) so that as z + co, 

logr ~ o B(r) 
log ’ 

, 1 

B(x) ’ 
B(x) + co. 

As an archetypal result, we mention the following (see [4, Theorem 12.11). 

PROPOSITION 2. (See 191.) Let f be a strongly additive function of class H. 

z-‘#{n 5 z : f(n) - A(z) 5 zB(s)} 

Then, the frequencies 

(4) 

converge to a limit with variance 1 as x + 00, if and only if there is a nondecreasing function K 
of unit variation such that at all points at which K(U) is continuous, 

as x + 00. When this condition is satisfied, the characteristic function I$ of the limit law will be 
given by Kolmogorov’s formula 

log4(t) = 
s 

cx) (eit” - 1 - its) U-~ dK(u), 
--oo 

and the limit law will have mean zero, and variance 1. Whether frequencies (4) converge or not, 

& c(f (n) - A(x)) -+ 0, 
n<x 

& x(f (n) - 4~))~ --+ 1, 
n<x 

(5) 

holds as x + 00. 

Bearing in mind that in the Kolmogorov representation of the characteristic function of the 
normal low with variance 1, we have 

2L K(u) 1, if 2 0, = 

0, if u < 0, 

we arrive at the following (see [4, Theorem 12.31). 

PROPOSITION 3. (See [5,6].) Let f be a real valued strongly additive function which satisfies 
If(p)1 5 1 for every prime p. Let B(x) + 00 as x + 03. Then, 

X-‘#{Tz 5 x : f(n) - A(x) I zB(x)} ===s -& 1’ e-W”2 dw. 
00 
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REMARK. The value distribution of positive-valued arithmetic h may be studied in terms of 

&#{n 5 z : log h(n) - o(x) I ZP(~)], 

with renormalizing constants Q(Z), P(X) > 0. For those functions which grow rapidly, there is 
another perspective. We say that the values of positive valued function h are uniformly distributed 
in (0, co) if h(n) tends to infinity as n + 03 and if there exists a positive constant c such that as 
II + oo. 
u 

N(h, y) := c 1 = (c + o(l))y. 

hdlzl 
General results for multiplicative functions h in connection with the existence of the limiting 
distribution of h/id can be found in [23]. A detailed account concerning multiplicative functions 
is given by Diamond et al. [24]. 

3. FIRST MOTIVATION: UNIFORM INTEGRABILITY. 
APPLICATION 

There are three results concerning the asymptotic behaviour of multiplicative functions g : 
N + Cc with ]g(n)] 5 1 for all n E N which have become classical. 

(1) 

(2) 

(3) 

Delange [25] proved that the mean value M(g) exists and is different from zero if and only 
if the series 

1 -g(P) 
c,_ 

(6) 
P 

converges, and for some positive T, g(2r) # -1. 
Assuming that g is real-valued and series (6) diverges, Wirsing [26] proved that g has 
mean-value M(g) = 0. In particular, this means that the mean value M(g) always exists 
for real-valued multiplicative functions of modulus < 1. 
Hal&sz [27] proved that the divergence of the series 

c 

1 - Reg(p)peit 

P 
P ’ 

for each t E W implies that a complex-valued multiplicative g has mean value M(g) = 0. 
Furthermore, he gave a complete description of the means M(g, Z) :=x-l C,<, g(n) as 
Z + co. 

REMARKS. If we set g(n) = p(n), the Mobius function, then we are precisely concerned with 
the case where the series C,p-l(l - g(p)) diverges. Moreover, the validity of the assertion 
M(p) = 0 was shown by Landau [28] to be equivalent to the prime number theorem. The 
(first) elementary proof of the prime number theorem by Selberg appeared in 1949. In 1943, 
Wintner [29], in his book on Erathostenian averages, asserted that if a multiplicative function 
g may have only values fl, then the mean value M(g) always existed. But, the sketch of 
his proof could not be substantiated, and the problem remained open as the ErdBs-Wintner 
conjecture. We shall not repeat the story concerning the prize which Erdijs offered for a solution 
of this problem (cf. [4, p. 254]), but in 1967, Wirsing, by his result mentioned earlier, solved 
this problem. His proof was done by elementary methods (and thus, he gave another elementary 
proof of the prime number theorem), but he could not handle the complex-valued case in its full 
generality. Only by an analytic method, found by Hal&z in 1968, and exposed by him in his 
paper [27], the asymptotic behaviour of En+ g(n) could be fully determined for all complex- 
valued multiplicative functions g of modulussmaller than or equal to one. As in the case of 
Wirsing’s proof of the ErdCis-Wintner conjecture, it took another 24 years until Daboussi et 
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al. [30] produced an elementary proof of Hal&z’s theorem. In a subsequent paper, Indlekofer [31], 
following the same lines of the proof, gave a more elegant version which served as a model in the 
book of Schwarz et al. [32]. This ends the remarks. 

The wish to abandon the restriction on the size of g led to the investigation of multiplicative 
functions which belong to the class CQ, q > 1. Here, for 1 5 q 5 co, 

CQ := {f : N --t cc, \lfllq < co) 

denotes the linear space of arithmetic functions with bounded seminorm 

l/q 

j]fj14 := limsup2-’ C lj(n)Iq 

1 

. 
n<x 1 

Obviously, the functions considered by Delange, Wirsing and Hal&z belong to every class LCQ. 
A characterization of multiplicative functions g E L’J (q > 1) which possess a nonzero mean- 

value M(g) was independently given by Elliott [33] and using a different method, by Daboussi 134). 
These results were the starting point for me to introduce the concept of uniformly summa& 
functions. 

The underlying motivations for this were the facts that 

(i) if the mean-value M(f) of an arithmetic function f corresponds to an integral over an 
(finite) integrable function, then it can be approximated by its truncation f~ at height K, 
i.e., 

f(n), if If(n)1 5 K, 
fK(n) = { o 

1 if If(n)1 > K, 
(ii) and, on the other hand, the partial sums {N-’ CnLN f(n)}Ncw converge to M(f). 

This suggested the involvement of the concept of uniform integrability. In 1980 [35], I intro- 
duced the following. 

DEFINITION. A function f E L1 is said to be uniformly summable if 

lim sup N-’ 
K-+,X NLl 

C If( = 0, 
n_<N 

If(n)l>K 

and the space of all uniformly summable functions is denoted by C* . 

It is easy to show that, if q > 1, 
cq c JY c L1. 

Further, we note that L* is nothing else but the 11 . III-closure of loo, the space of all bounded 
functions on N. In the same way, we can define the spaces 

fYq := )I . jJq - closure of 1”. 

The idea of uniform summability turned out to provide the appropriate tools for describing 
the mean behaviour of multiplicative functions and gave exact insight which additive functions 
belong to C’. As typical results, we mention generalizations of the results of Delange, Wirsing 
and Hal&z. 

PROPOSITION 4. (See 1351.) (A generalization of Delange’s result.) Let g : N -+ @ be multiplica- 
tive and q 2 1. Then, the following two assertions hold. 

(i) If g E 13’ fl LQ and if the mean-value M(g) := lim,,, z-l C,+ g(n) of g exists and is 
nonzero, then the series 

c b(P) - II2 

ldpA3/2 

P ’ 
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converge for all X with 1 I X 5 q, and, for each prime p, 

(8) 

(ii) If series (7) converge, then g E t* n Cq and the mean-values M(g), M( ]glx) exist for all X 
with 1 < A 5 q. If, in addition, (8) holds, then M(g) # 0. 

Note, that the membership of Lq n L* and the existence of a nonzero mean value are together 
equivalent to a set of explicit conditions on the prime powers. Further, observe that these 
conditions imply the existence of the mean values M(lglx) for all 1 5 X 5 q. 

PROPOSITION 5. (See [23].) (A g eneralization of Wirsing’s result.) Let g E L* be a real-valued 
multiplicative function. Then, the existence of the mean value M(lgl) implies the existence of 

M(g)* 
Note that Proposition 5 is the appropriate generalization of Wirsing’s result, for if g is multi- 

plicative and ]g] 5 1, the mean value of M(Jgl) always exists. 
In this connection, it is interesting to mention the following characterization of nonnegative 

multiplicative functions of L* (see [36]). 
Let E 2 0 and g E L l+E n C* be a nonnegative multiplicative function. If )jg(l1 > 0, then 

g l+E E L* and there exkt positive constants cl, c2 such that, as x + co, 

M (d+“, > = exP (c gl+E(op) - ’ \ (Cl + o(1)) = exp (c go_lj (c2 + o(l)), 
\PQ 

Y 
/ 

from which we deduce that the edstence of M(gl+“) 
A complete characterization of the means M(g, x) 

g E C* was given in 1980 by Indlekofer (see [36]). 
statement. 

implies the etistence of M(g). 
for complex-valued multiplicative functions 
As a special result, we have the following 

PROPOSITION 6. (A generalization of Hahkz’s result.) If the complex-valued multiplicative func- 
tion g belongs to C*, and for each t E R, the series 

c 1 - Redp) (ldp)lpit)-l 

llLJ(PAw 
P 

diverges, then g has mean value zero. 

Thus, the idea of uniformly summable functions proved to be a successful concept in the inves- 
tigation of multiplicative functions (and, in particular, of additive functions, too). To come back 
to the methodological aspect and as an a posteriori justification of the underlying motivation, 
we turn to the connections between mean values and integrals for multiplicative and additive 
functions (see [23,37]). 

PROPOSITION 7. (See 1231.) Let the real-valued multiplicative function g be uniformly summable. 
Then, 

(i) g possesses a limiting distribution G if and only if the mean value M(jgl) exists, and 
(ii) this limiting distribution is degenerate if and only if M( Igj) = 0. 

Moreover, in both cases, 

M(g) = w Y WY), J M(lgl) = J, IYI dG(y). 
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PROPOSITION 8. (See 1371.) Let q 1 1. For any (real-valued) additive function f, the following 
three propositions are equivalent. 

(i) The limiting distribution F off exists and 

J w IYI’~F(Y) < 03. 

(ii) f E L’J and the mean value M(f) of f exists. 
(iii) The series 

converge. 

Moreover, if one of the above conditions is satisfied, 

M(f) = w~W~h 
J 

Wf I”) = J, Ivlq OF. 

REMARK. The “reason” for the difference between the additive and multiplicative functions 
may be found in the fact that there is no additive function in L’ \ L*, but there are “many” 
multiplicative functions in L1 which are not uniformly summable. 

We do not want to obscure the leading thread of this section by a mass of details, but at the 
end, I would like to tell an anecdote about the encounter with a specific multiplicative function, 
Ramanujan’s r finction. 

In July 1983, my wife, my daughter, and I arrived in Urbana, Illinois for a visit of about three 
months. I was a guest at the Mathematical Department of the University of Illinois at Urbana- 
Champaign. In a series of lectures, I presented some of my results on multiplicative functions. 
As a specific example, I mentioned Ramanujan’s function T which is defined by the identity 

2 T(n)29 = 2 fi (1 - 2j)24. 
n=l j=l 

Putting g(n) := T(n) . n- ‘Ii2 leads to a real-valued multiplicative function g, satisfying the rela- 
tions 

and 

9 (PT+l) = g(p)g (P’) - g (P’_‘> I r 2 1, 

IS( 5‘2. 

The first relation was established by Mordell [38] in 1917, whereas the second one was demon- 
strated by Deligne [39] in 1974 as a consequence of his proof of the Weil conjecture. In 1939, 
Rankin [40] obtained the asymptotic formula 

1 r(n)2 = AsI + 0 (cI?~-~), 
n<z 

with some positive constants A, 6 which implies that g E .C2, M(g2) # 0, and c,p-‘(g2(p) - 1) 

converges. 
On Tuesday, July 26 of that year, I gave the second of the mentioned talks at the University 

of Illinois, Urbana-Champaign. By that time, matters had reached the stage that I could prove 
the following (cf. Proposition 5 and the following). 

(i) Let 0 < b 5 2. Then, M(lg16) exists. In particular, M(g) exists. 
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(ii) If M(/g16) # 0 f or some 0 < 6 < 2 or if g E LQ for some q > 2, then, for every positive /3, 
M( [g[@) exists and 

c lUP)lP - 1 

P 
P 

converges. 

During the question period at the end of the lecture, a member of the audience, Carlos Moreno, 
informed me that he and Shahidi had proved that the function CF=‘=, r(n)4n-22-s had a double 
pole at s = 1 and that 

dP14 - 2 
c P 

P 

converges. This yielded immediately the following result. 

PROPOSITION 9. Let g(n) = r(n)n-11j2, where r denotes Ramanujan’s function. Then, the 
mean values IM(1g16) are zero for 0 < b < 2, M(g2) # 0, and g 6 Cq for q > 2. 

There are further results (and conjectures) about finer behaviour of Ramanujan’s T function 
(see, for example, [41,42] for his encounters with Ramanujan’s function T(n)). 

I close this chapter with the conjecture of Lehmer [43] that T(n) # 0 for every n. This is 
equivalent to the nonvanishing of the Poincare series P, of weight 12 for every n. Serre [44] 
proved by an application of the Chebotarev density theorem that 

for some y > 0. He further showed that, if the generalized Riemann hypothesis for Artin L-series 
is assumed, then 

#{p I Z : 7(p) = 0) < x3’4. 

Both estimates imply that those integers n for which T(n) # 0 have asymptotic density a > 0. 
Lehmer’s conjecture is equivalent to Q: = 1 since T is multiplicative. 

4. POLYADIC NUMBERS: A FIRST ATTEMPT OF A 
GENERAL THEORY 

The ring of polyadic numbers was first introduced by Priifer [45]. We briefly recall its con- 
struction. 

Let Z denote the ring of integers. Then, the system c consisting of the ideals (m) := mZ 
can be taken as a complete system of neighborhoods of zero in the additive group of integers 
and it generates a topology which we denote by r. Obviously, the addition is continuous in 
this topology and the arithmetic progressions a + (m) (a E Z) build up a complete system of 
neighborhoods in Z. The multiplication is continuous in the topology, too. For, if a, b E Z and 
if W is any neighborhood of ab, for example, W = ab + (m), then one can choose U = a + (m) 
and V = b + (m) as neighborhoods of a and b, respectively, such that UV c W. Therefore, 
Z endowed with the topology T forms a topological ring (Z, T). The topological ring (Z, T) is 
metrizable. It is not difficult to show the result. 

PROPOSITION 10. The function Q : Z x Z + [0, 11, 

@(X,Y) = 2 f (7) 7 
m=l 

where (t) denotes the distance from t to the nearest integer, defines a metric on Z which 
metrizes (Z, 7). 
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Next, we give a short review of how the polyadic numbers can be defined. Let S be the set 
of sequences {a,} of integers such that, given E > 0, there exists an N such that Q(Q, oj) < E if 
both i, j > N. We call two such Cauchy sequences {ei} and {bi} equivalent if e(ai, bi) --) 0 as 
i -+ 03. We define the set S of polyadic numbers to be the set of equivalence classes of Cauchy 
sequences. 

One can define the sum (and the product) of two equivalence classes of Cauchy sequences 
by choosing a Cauchy sequence in each class, defining addition (and multiplication) term-by- 
term, and showing that the equivalence class of the sum (and the product) depends only on the 
equivalence class of the two summands (and of the two factors). This enables us to turn the 
set S of polyadic numbers into a ring. Z can be identified with a subring of S consisting of 
equivalence classes containing a constant Cauchy sequence. Finally, it is easy to prove that S is 
complete with respect to the (unique) metric which extends the metric Q on Z. S is a compact 
space since Z is totally bounded. Thus, on the additive group of the ring S, as a compact group 
there exists a normalized Haar measure P defined on a a-algebra A which contains the Bore1 sets 
in S such that (S, A, P) is a probability space. The measure of an arithmetic progression cy + PD 
where cr,p E S and D is a natural number, is l/D. Therefore, embedding Z in S eliminates 
the difficulty associated with the fact that asymptotic density is not countably additive. This 
enabled Novoselov [46] to develop an “integration theory” for arithmetic functions f which can 
be approximated by periodic functions with integer period. 

REMARK. The arithmetic in the ring S and certain aspects of polyadic analysis were investigated 
by Novoselov in a series of papers [46-501. 

REMARKS. An arithmetic function f is called 

r-periodic, 

r-even, 

if f(n + r) = f(n), for every n E N, 

if f(n) = f(gcd(n, r)), for every n E IV. 

It can be shown that the vector space B, of r-even functions can be generated by the Ramanujan- 
functions Cd defined by 

cd(n):= c @(F), 
tlgcd(d,n) 

where d 1 r, i.e., 
B, = h@[Cd : d 1 r], 

whereas each element of the vector space D, of r-periodic functions can be written as a linear 
combination of exponential functions, i.e., 

DT:= Lin@[e,,, : a = 1,2 ,..., r], 

where ealr is defined by 

We put 

B:= fiBT and D:= (j D,, 
r=l r-=1 

for the vector space of all even and all periodic functions, respectively. Finally, we define the 
vector space 

Obviously, 

A:= Lin@[e, : cx E [0, l)]. 

BcDcA. 
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The 1). II9 of B, D, and A leads to 
- the space of q-almost even functions, 
- the space of q-limit-periodic functions, and 
- the space of q-almost periodic functions, respectively. 

We note that Schwarz et al. [32,51] introduced a compactification N* of N by 

p prime 

where fip denotes the one-point-compactification of the discrete topological spaces Np = 

{LP,P2,. * * }. By this compactification, they could describe the “integration theory” of almost 
even functions. 

The above-mentioned construction of the polyadic numbers was used for the investigation 
of limit-periodic functions, whereas Mauclaire [52] used the Bohr compactification of Z for the 
corresponding investigation of almost periodic functions. In [32], Schwarz et al. presented another 
construction of the compact space R and the compact ring of polyadic numbers (or Priifer ring) 
via Gelfand’s theory of commutative Banach algebras. 

Some comments are called for in connection with these examples. First of all, the special role 
played by the asymptotic (or logarithmic) density should be emphasized. Further, it is important 
to note that despite the ad hoc construction of the compactifications, the “size” of these spaces 
is very restricted; the MGbius ~1 function, for example, is not an element of any of these spaces. 

To abandon all these restrictions, we shall make use of the Stone-tech compactification of N 
which enables us to deal with arbitrary algebras of subsets of N together with arbitrary additive 
functions on these algebras. 

5. SECOND MOTIVATION: PSEUDOMEASURES ON N AND 
THE STONE-CECH COMPACTIFICATION 

Suppose that A is an algebra of subsets of W, i.e., 

(i) N E A, 
(ii) A,BEA+AuBEA, 

(iii) A,BEd+A\BEd. 

Then, if E denotes the family of simple functions on N, the set 

&(A) := sEE,s=2 ajlAj;(YjE@,AjEd,j=l ,..., m 
j=l 

of simple functions on A is a vector space. In [53], I investigated the (1 I\,-closure of E(d), 
the space of C*q(d)-uniformly summable functions for the algebras A whose elements possess an 
asymptotic density. 

These results performed the initial steps towards the idea which can be described as follows: 
N, endowed with the discrete topology, will be embedded in a compact space PN, the Stone- 
Cech compactification of N, and then any algebra A in N with an arbitrary finitely additive set 
function, a content or pseudomeasure on W, can be extended to an algebra A in PW together 
with an extension of this pseudomeasure, which turns out to be a premeasure on A. The basic 
necessary concepts are summarized in the following three propositions. 

PROPOSITION 11. There exists a compactiiication PN of N with the following equivalent prop- 
erties. 

(i) Every mapping f from N into any compact space Y has a continuous extension f from 
ON into Y. 
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(ii) Every bounded function on N has an extension to a function in C(pN). 
(iii) For any two subsets A and B of N, 

AnB=iinB, 

where A = CIPNA and I? = clp~B are the closures of A and B in PN, respectively. 
(iv) Any two disjoint subsets of N have disjoint closures in PN. 

Stone and Cech (see, for example, [54]) have investigated the compactification OX for com- 
pletely regular spaces X. The above proposition contains their results for X = N. An immediate 
consequence of (iii) is the following statement. 

PROPOSITION 12. The compactification ,ON of N has the following property. 

(v) For any algebra A in N, the family 

A:= {ii : A E A} 

is an algebra in PN. This property I’S equivalent to Properties (i)-(iv) of Proposition II. 

It should be observed that PlV is unique in the following sense: if a compactification s of N 
satisfies any one of the listed conditions, then there exists a homeomorphism of /3N onto fi that 
leaves N pointwise fixed. 

As a consequence of Property (i), we obtain the following. 
The identity mapping L : N + @V is a continuous monomorphism, which sends N onto a dense 

subset of PIV, such that the adjoint homomorphism 

L* : C(PN) --+ c?(N), L* (fJ = fo L, 

maps C(@V) isomorphically and isometrically (relative to the uniform metric) onto @(N). 
We are now in position to formulate the following fundamental result. 

PROPOSITION 13. Let A be an algebra in N and S : A + [0, co) be a content on -4, (i.e., a finitely 
additive measure). Then, the map 

8 : A + [O, co), 8 (A) = S(A), 

is a-additive on A and can uniquely be extended to a measure on the minimal u-algebra o(A) 
over A. 

PROOF. Obviously, d is a content on 2. Therefore, we have to show only that 6 is continuous 
from above at the empty set 0. Suppose {A,},& E 2, is a monotone decreasing sequence 
converging to 0. Then, by the compactness of PFV, there exists 7~0 E N such that A, = 0 for all 
n 2 no, and thus, Proposition 13 holds. a 

The extension of 8 is also denoted by 8. We remark, as an immediate implication of the above 
construction, the following. 

THEOREM. 

(i) Every finitely additive function on an algebra A in N can be extended to a finitely additive 
function on the algebra of all subsets of N. 

(ii) Every linear functional on the vector space &(A) can be extended to a linear functional 
on l”(= Cb(N)). 

In the second part of this section, we shall concentrate on the following topics: 
- candidates for measures, 
- spaces of arithmetic functions, 
- integration theory for uniformly As-summable functions, 
- measure preserving systems. 

We should have in mind that these results can be generalized in many directions. 
Especially, we observe that the same integration theory can be done for any (infinite) set X 

(endowed with the discrete topology) and any pseudomeasure on X. 
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5.1. Candidates for Measures 

Let l? = (mk) be a Toeplitz matrix, i.e., an infinite matrix l? = (‘y,&)n&N with nonnegative 
real elements T,& satisfying the following conditions: 

6) suPn cE”=, ‘Ynk < W 

(ii) Y,& + 0, (n --+ co, k fixed), 
(iii) zE_%k --) 1, (n + co). 

For a given Toeplitz matrix l?, we define &(A) for A c N by 

S(A) :=&(A) := ;ic 5 ‘j’nklA@)r 

k=l 

if the limit exists. Then, if dAg is an algebra in N such that 6(A) exists for all A E As, the above 
construction leads to the probability space (PW, o(&), 8). We observe that 

defines a seminorm on the space of functions f for which 11 f )I < 03. 

REMARK. Toeplitz showed that (i)-(“‘) h m c aracterize all those infinite matrices which map the 
linear space of convergent sequences into itself, leaving the limits of each convergent sequence 
invariant. 

EXAMPLES. 

(i) Choosing 
1 
n’ 

if k I n, 
‘ynk = 

0, if k > n, 

defines Cesaro’s summability method and leads to asymptotic density and to the seminorm 

(ii) If we put 
1 1 -- 

logn k’ 
ifk<n, 

“ink := 

0, if k > n, 

we obtain logarithmic density with the seminorm 

- 

(iii) Let {In} be a sequence of nonempty intervals in N, 1, = [a,, b,J such that b, - a, 4 co, 
if n + 03. We define 1 

b,’ 
if k E I,, 

-hk = 
0, otherwise. 

If A c N is given and, for some sequences {In} of such intervals, the limit 

S(A):= ,Jem I@ n Ldl b _a 
7% n 

exists, we say that A possesses a Banach-density. 
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(iv) Let g : N --+ I[$ + be a nonnegative function with g(1) > 0. We put 

\ 0, ifk>n, 

and assume that “(nk --+ 0 as n + co (k fixed). If the limit 

exists, we say that f possesses a mean-value with weight g and denote this mean by MJ f). 

5.2. Spaces of Arithmetic Functions 

Let 6 be a set function defined by some Toeplitz matrix I and let A = dg be an algebra in N 
such that 6(A) is defined for all A E A, i.e., if l? = (mk), 

6(A) := &Xl_ 2 %kh(k) 
k=l 

exists for every A E A. Further, let I/ . 11 = 11 . Ilr be the corresponding seminorm. Then, we 
introduce the following spaces. 

DEFINITION 1. Denote by 13*l(d) the 11 1 II- J c osure of E(d). A function f E L*l(d) is called 
uniformly (A)-summable. By L*‘(d), we denote the quotient space C*‘(d) module null-functions 
(i.e., functions f with llfll = 0). 

DEFINITION 2. 

(i) A nonnegative arithmetic function f is called d-measurable in case each truncation fK = 
min(K, f) lies in C*‘(d) and f is tight, i.e., for every E > 0, the estimate 

limsup c ‘ynk < E 
n-03 

k=l 
tf(k)l>K 

holds for some K. 
(ii) A real-valued arithmetic function is called d-measurable in case its positive and negative 

parts f+ and f- axe d-measurable. 
(iii) A complex-valued arithmetic function f is called d-measurable in case Re f, Im f are 

d-measurable. The space of all d-measurable functions is denoted by L*(d). Further, we 
define L*(d) as f_*(d) module null-functions, i.e., functions f for which 6({m : f(m) # 
0)) = 0. 

5.3. Integration Theory for Uniformly A-Summable Functions 

A first consequence of Proposition 13 is that, for all s E &(A), 

&nrn F %kS(k) = 
J 

sd& 
k=l m 

where S : ,OW + C denotes the extension of s. 
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Starting from this, we consider measurable and integrable functions on the probability space 
(PlV, a(A), 6) and relate these to the functions from C*(d). 

The probability space (PN, g(A), 8) leads to the well-known space 

L (8) := L (PN, o (A) ,a) = {f : ,0N + @, o (A)-measurable} , 

modulo null-functions, and 

L1 (8) := L1 (PN,a (/I), 8) = {f : ,m -+ @, IlJll < oo} , 
modulo null-functions, with norm 

A connection between the spaces C*(d) and f?l(d) and the spaces L and L1, respectively, is 
given by the following statement. 

PROPOSITION 14. 

(i) There exists a vector-space isomorphism 

-:L*(d)-tL(& 

such that 
s = L*-i(s), for every s E &(A). 

(ii) There exists a norm-preserving vector-space isomorphism 

such that 
s = L*-i(s), for every s E &(A). 

PROOF. (i) By Definition 2, we may restrict to nonnegative functions. Assume that f E l*(d) 
is nonnegative, and let {s,} be a sequence of nonnegative simple functions from E(d) which 
define f (see Definition 2). Then, 8, converges on PlV to a &measurable function f, which is 
finite &almost everywhere. 

Therefore, by reducing modulo null-functions, one obtains a well-defined l-l linear map - : 
L*(A) -+ L(8) whose restriction to &(A) is given by ~*-l. The map - preserves the distribution 
function, which means that the (limit) distribution of f E L*(d) coincides with the distribution 
of j E L(d). Finally, in order to show that - is onto, we choose for a given nonnegative f E L(b) 
a sequence {&} of simple functions from &(A) such that 3, converges to f &everywhere. (This 
choice is possible because ~(3) is generated by A.) The restrictions s,, to N converge to some 
f E t*(d) and (i) is proved for nonnegative functions. The general case then follows immediately. 
The proof of (ii) runs on the same lines as above. The map - is constructed in the following way. 
Given f E L*(d), choose a sequence {s,} of simple functions from E(d) such that Ilf - s,IJ + 0 
as n + co. Then, the functions S, = L+-~ (s,) form a Cauchy sequence in L’ and the limit J is 
the desired image of f in L’. These remarks complete the proof of Proposition 14. I 

REMARK. Choosing the algebras di and dz of Section 2, together with the asymptotic den- 
sity 6, leads to the same spaces of arithmetic functions which are considered in the mentioned 
“integration theory” by Novoselov and Schwarz and Spilker, respectively. 
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5.4. Measure Preserving Systems 

Let 
S:N--+N, S(n) = 12 + 1, 

be the shift operator on N, and let S be its unique extension to DIV. If 6 is finitely additive on an 
algebra A and if b(SA) = S(A) f or every A E A, then the extension according to Proposition 14 
leads to the measure preserving system 

(PIK IY (A) ,& q . 

For this, we obtain the following by the mentioned result of Fiirstenberg. 
- - 

(9) 

PROPOSITION 15. (See [18,55].) Let 6(B) > 0. Then, for any k > 1, there exists n # 0 with 

d BnSn13r-l.. 
( 

. n $$k-‘)“B 
> 

> 0. 

This implies the following result. 

PROPOSITION 16. Let the measure preserving system (9) be given. If B is a subset of N with 
6(B) > 0, then B contains arbitrary long arithmetic progressions. 

Let B be a subset of N with positive upper Banach density, i.e., 

limsup v > 0, 
I~l--+c= 

where I ranges over intervals of N. Consider the algebra A, which is generated by the translations 

The algebra A is countable, 
b, - a, --+ 00 such that 

{PB : n = O,l, 2,. . . ,}. 

and thus, there exists a sequence of intervals {In}, 1, = [a,, b,], 

exists for all A E A. Then, Proposition 16 gives the earlier mentioned result of Szemeredi [17]. 

6. ADDITIONAL REMARKS 

The algebra AZ, introduced in Section 2, can be defined as the algebra in N which is generated 
by the sets 

A,,. := {n : p”Iln} 

(p prime, k = 1,2,. . . ), whereas the algebra di (lot. cit.) is generated by the sets 

A (l,p”) = 1+ Ap”, @prime, k=1,2 ,... ), 

with 1 = l,..., pk. In both cases, one can choose the asymptotic density 6 as a suitable pseu- 
domeasure. We concentrate on (AZ, 6) and observe that, if the real-valued additive function f is 
given, we can put 

f = C.fK)Y 
P 

where f, is defined by 

f,(n) = { ,” (pk)’ tt+;se 
1 
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Obviously, every f, is uniformly A-summable, and we denote by &, its unique extension to an 
integrable function on /3N. Then, {f}, prime is a set of independent random variables and C, fp 
converges, a.s., if and only if f possesses a limit distribution. This result can be seen as another 
a posterior-i justification of the already mentioned idea of Kac concerning the role of independence 
in probabilistic number theory. 

Concerning the renormalization of additive functions (see Proposition 2), we consider the 
increasing sequence a(A,) of a-algebras where 2, is generated by 

{Aph :pln,kEN}. 

Obviously, 

u f7 (A) = 0 (A) 
nEN 

Centering the independent random variables {f,} at expectations leads to the martingale 

{&Jn=i,2,..., where 

%=k(&; -E(&J). 
i=l 

Using the Lindeberg-Levy theorem for martingales, one can prove Proposition 2. In the case of 
multiplicative functions, we proceed in a similar manner. If a real-valued multiplicative function g 
is given, we put 

s=~sp, 
P 

9 (Pk> 7 
gp(n) = 1 

1, 

if pklln7 

otherwise. 

The unique extension & of gp builds a set {gp} of independent random variables, and an appli- 
cation of Zolotarev’s result gives necessary and sufficient conditions for the convergence of the 
product npgp which turns out to be equivalent to the existence of the limit distribution of g. 

The compactification of N which are given by N* and which are induced by the constructions 
of the polyadic numbers and by the Bohr compactification of Z, respectively, can be identified 
with compact subspaces of ,8N. 

7. PRIMES PLAY A GAME OF CHANCE 

This is the headline of Chapter 4 in Kac’s book [56], where he describes the statistics of Euler’s 
v-function and the function w. Keeping this picturesque language, one can say that the primes 
grow like weeds among the natural numbers, seeming to obey no other law than that of chance, 
and nobody can predict where the next one will sprout. On the other hand, there are laws 
governing their behaviour, and they obey these laws with almost military precision. 

One such law is intimately connected with the behaviour of X(Z), the number of primes not 
exceeding z (see the above-mentioned prime number theorem and its statistical interpretation). 
Euclid’s second theorem states that the number of primes is infinite, i.e., r(z) tends to infinity as 
2 + 00. Here, we offer an elementary “probabilistic” proof of this assertion. For this, we choose 
the algebra ds generated by {Api}& where A,, consists of all multiples of pi and the pis run 
through the set of all primes. This leads to the probability space (PN,o(&),$) where 8 is the 
extension of the asymptotic density 6. If A E a(&) and 8(a) > 0, then A obviously contains 
infinitely many natural numbers. 

Consider now the set A = Uz”=, Api. Since the family {&}gi of events is independent, we 
conclude that for any finite set J c { 1,2, . . . }, 

PN\ u A,~ = n (PN\A,,) 
iE.7 iu 
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and 

qfp\4d) =G(l-i) >O. 

The only natural number not belonging to A is 1. Hence, A is clearly not a finite union of 
the Apis, which proves that there is an infinity of primes. 

Let us now turn to the theme of the predictability of the prime numbers. As already mentioned, 
the probability for a number of the order of magnitude x to be prime roughly equals l/logz. 
An easy heuristic argument caused Hardy and Littlewood [20] to conjecture 2C2/(logz)2 as the 
expected probability for a twin prime (n, n + 2) when n is of the order of magnitude 2. That is, 
the number of primes and twin primes in an interval of length a about z should be approximately 
CL/ log 2 and 2aC2/(log ZE)~, respectively, at least if the interval is long enough to make statistics 
meaningful, but small in comparison to zr. 

Table I 

Primes Twin Primes 
Interval Expected Found Expected Found 

[108, 108 + 150000] 8142 8145 584 601 

[log, 109 + 150000] 7238 7242 461 466 

[lOlO, 10’0 + 150000] 6514 6511 374 389 

[lo”, 10” + 150000] 5922 5974 309 276 

(10’2,10’2 + 150000] 5429 5433 259 276 

[1013,10’3 + 150000] 5011 5065 221 208 

[ 10’4,10’4 + 150000] 4653 4643 191 186 

(10’5,10’5 + 150000] 4343 4251 166 161 

The data of Table 1 are due to Jones et al. [57]. 
As one can see, the agreement with the theory is extremely good. This is especially surprising 

in the case of the twin primes, since it is not known whether there is an infinity of such pairs. 

8. COMPUTATIONAL RESULTS (TOGETHER WITH JARAI) 

As a last illustration of the predictability of primes, we turn to the above-mentioned conjecture 
of Bateman and Horn. The simple idea of this conjecture is again that the probability of a large 
number n being prime is l/ logn. Thus, the probability that the large numbers jr(n), . . . , fs(n) 
are simultaneously prime is, if these events are independent, 

1 

1% fl (n) . . .log fs(n). 

However, the s-tuples (fr(n), . . . , fs(n)) are not random. The constant CfI,,,fq should be viewed 
as measuring the extent to which the above events are not independent. Hence, it is reasonable 
to state the probability that fr(n), . . . , fs(n) are simultaneously prime is 

CfI...f.” 
lwfl(n)~. . log.fs(n)’ 

Hence, the expected number &(a, b) of ns in [a, b) for which jr(n), . . . , fs(n) are simultaneously 
prime is 

1 

s b 

&(a, b) - cfl...r. 
du 

a log fl (u) .log fs (u) . (10) 
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We used this heuristic in a search for large prime pairs which was done in the frame of a project 
for parallel computing together with Jarai [58,59]. In these cases, the polynomials are linear. 
Hence, C_f,_.f* can easily be calculated from 

cs:= n l-S/P 
p>s (1 - l/PP * 

Clearly, Ci = 1, Cz = 0.6601. . . , and Cs x 0.635. 
In our case, the values of the functions fi, . . . , fs are very large. Hence, the logarithms are 

almost constant in the interval [a,b]. So, we used Simpson’s rule for the approximation of the 
integral in (10). 

As an example, we consider 

fi(n) = (3 + 30n)2 38880 + 1 and f2(n) = (3 + 30n)2 38880 _ 1 

If we plan the search for the interval [a, b) = [0, 227), then we expect 

J 22' Q (W27) N Cm 
du 

0 log A(n) f2(n) 

227 
= Cfl,fi $0.1376769251+ 4.0.1374695060 + 0.1374624404)10-* 

x Cfl,fi e 0.1845532660, 

twin primes. Here, 

Hence, 
Q (0, 227) x 2.4367. 

The search for the twin primes consisted then of the following steps. 

(1) Since ii(n) and fi(n) are coprime to 2, 3, and 5, we started by sieving the 227 values of 
fi(n) and fs(n), respectively, by factors from 7 up to 4400 x 225. After sieving, 594866 
candidates remained. 

(2) These candidates were tested by the probabilistic primality test of Miller and Rabin until 
a “probable twin prime pair” was found, and this happened already after the test of 55440 
candidates. 

(3) The “probable twin pair” was tested with exact tests, the -1 case by using a Lucasian 
type test and the +l case with the use of the test of Brillhart, Lehmer and Selfridge. 

The above heuristic suggests that, if we use the sieve with primes A 5 p < B, then the density 
of the prime s-tuples is increased by the factor 

gA,B 
fl...f. = 

.g, 1 - &PY _ 
and the number of candidates is decreased by this factor. In our cases, these products are reduced 
to the product 

DttB = ,$, & 
_ 

These products were calculated in the following way. For p < L = 1000000, we did the multipli- 
cation, and for the remaining part of the product, we used the approximation (log(B)/ log(L))“. 



This approximation is estimated 
ample, the “twin prime density” 
by the factor 
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to have relative error below 0.1%. In the above discussed ex- 
Q(0,227)/227 x 2.4367/227 x 1.815482974 x lo-’ is increased 

o7,44ooox 2= = 

flvfi n 
7<p<44OOOx2’” ’ -“/+ 

2 -z 

D2 

7,44000~2’~ ~ D7,1000000 
2 

> 

x 45.86172510 3 4.113596977 x 188.6566536, 

if we sieve with primes in the interval [A, B) = [7,44000 x 225). Hence, after sieving, we expect 
x 227/188.6566536 = 711439.1432 remaining numbers and an increased “twin prime density” 
M 188.6566536.1.815482974 x 1O-8 M 3.425029425 x 10m6. Testing 55440 numbers, we expect 
55440 x 3.425029425 x 10-s = 0.1899 twin primes. In 1994, we did searches for the following five 
sequences: 

(3 + 30h)23ss80 zt 1, 

(5775 + 30030h)21g380+’ f 1, 

(5775 + 30030h)25040+’ f 1, 

(5775 + 30030h)24g80+’ f 1, 

(21945 + 30030/~)2~‘~~+~ f 1. 

Table 2 compares the results of sieves with their expected values. In Table 3, we compare the 
computed number of primes and twins with their expected number. 

Table 2. 

Table 3. 

Exponent Tested Prime Expect. Twin Expect. 

38880 I 55440 I 99 1 102.6 1 1 1 0.1899 
19380 +l 182488 598 585.3 0 1.878 
5040 +1 449119 5452 5510 68 67.6 
4980 +l 448181 5646 5564 60 69.1 

I I 

1 5056 +l 1 215000 1 2819 1 2855 I 31 1 37.9 I 
I I I I I I I 

20000 1 
18000 

16000 

Indlckofcr, 
.1&i, 

WaSSillg 

Iudlckofer, I 

Indlekofer, 
Jdrai 

o/ I I I, / 1  I, i  I, / I I, 

1984 1985 1986 1987 1988 1989 1990 19911992 1993 1993 1994 1995 1996 1997 1998 1999 2000 

Figure 1. Twin prime records. 
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Indlekofer, 
J&i, 

Wassing 

16000 

Kerchner, Gallot 

01 I I I I I I 

1994 1995 1996 1997 1998 1999 2000 2001 

Figure 2. Sophie Germain primes 

Our search for primes and large Sophie Germain primes (i.e., primes p such that 2p + 1 is a 
prime, too) were performed in the Arbeitsgruppe Zahlentheorie at the University of Paderborn, 
Germany in the frame of a project for parallel computing in computational number theory. The 
“world records” we could obtain may be seen from the diagrams of Figures 1 and 2. 
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