On non-continuous T-norms

L.L. STACHÓ

As usually in fuzzy logics, by a T-norm we mean a binary operation $T : [0,1]^2 \to [0,1]$ satisfying the following axioms

- (T1) $T(y,x) = T(x,y) \le T(x',y)$ for any $0 \le x \le x'$ and $0 \le y \le 1$, (T2) T(x,T(y,z)) = T(T(x,y),z) for any $0 \le x, y, z \le 1$,
- (T3) T(0,x) = 0 and T(1,x) = x for any $0 \le x \le 1$.

Most authors include also the continuity of T into the definition, and actually there is a complete classification for the continuous T-norms. In this paper we focus to the case of non-continuous T-norms. In another terminology, (T1), (T2), (T3) mean that the algebraic structure $\mathbf{T} := ([0, 1], \overset{T}{\bullet}, \geq)$ with the binary operation

$$x \stackrel{T}{\bullet} y := T(x, y) , \qquad x, y \in [0, 1]$$

is an ordered Abelian semigroup on [0,1] with neutral element 1 and sink 0. Also, in accordance with the usual terminology, we say that the T-norm $\stackrel{T}{\bullet}$ is strict if

(T4) $T(x_1, y) < T(x_2, y)$ whenever $0 \le x_1 < x_2 \le 1$ and $0 < y \le 1$.

In the sequel we shall fix an arbitrary T-norm $\stackrel{T}{\bullet}$, and we shall write simply xy instead of $x \stackrel{T}{\bullet} y$ without danger of confusion with the notation of the usual numerical product of real numbers (which may appear only as a simple special case of continuous T-norm). Thus, in this terminology axioms (T1),...,(T4) mean simply

(T1)
$$xy = yx$$
, (T2) $x(yz) = (xy)z$, (T3) $0x = 0 \le 1x = x$, (T4) $x_1y < x_2y$ ($x_1 < x_2, y \ne 0$).

We shall also use the customary notation a^n for the *n*-th $\stackrel{T}{\bullet}$ -power $a^n = \underbrace{a \cdots a}_{n \ terms}$ which is

well-defined by the associativity (T2).

1.1. Definition. We introduce the binary relations \prec on the interval [0, 1] as follows

$$a \prec b \quad :\Leftrightarrow \quad \inf_n a^n \leq \inf_n b^n; \qquad a \sim b \quad :\Leftrightarrow \quad a \prec b \prec a.$$

1.2. Lemma. (1) The relation \prec is a linear ordering with $a \prec b$ for $a \leq b$. In particular, \sim is an equivalence relation whose equivalence classes are subintervals of [0, 1].

- (2) For any power N we have $a^N \sim a$.
- (3) We have $ab \sim \min a, b$.

Proof. As a consequence of axioms (T1)+(T3) the powers

$$T^{(n)}(x) := x^n$$
 $(n = 1, 2...)$

are increasing functions $[0,1] \to [0,1]$ with $T^{(1)} \ge T^{(2)} \ge T^{(3)} \ge \cdots$. Therefore their limit $T^{(\infty)}$ is a well-defined with

$$T^{(\infty)}(x) = \inf_n x^n \qquad (0 \le x \le 1).$$

By definition, we have $a \prec b$ iff $T^{(\infty)}(a) \leq T^{(\infty)}(b)$. Since the limit of increasing functions is increasing, statement (1) is immediate.

(2) We have $T^{(\infty)}(a^N) = \lim_n a^{Nn} = \lim_n a^n = T^{(\infty)}(a).$

(3) We may assume $a \leq b$ without loss of generality. Then $a^2 \leq ab \leq 1b = b$. Since $a \sim a^2$ by (2), and since the equivalence classes of \sim are intervals by (1), we conclude $a^2 \sim ab \sim a = \min\{a, b\}$.

Henceforth we introduce the notations

$$\mathcal{I} := \{ I_{\alpha} : \ \alpha \in A \} := \{ \{ x : \ x \sim a \} : \ a \in [0, 1] \}$$

for the family of all equivalence classes of the relation \sim . We know already that \mathcal{I} is a set of pairwise disjoint intervals forming a partition of [0,1] such that $I_{\prec} \leq I_{\beta}$ (i.e. $a \prec b$ for all couples $(a,b) \in I_{\alpha} \times I_{\beta}$) whenever $a \leq b$ for some $a \in I_{\alpha}$ and $b \in I_{\beta}$. we shall say simply that the point $e \in [0,1]$ is an *idempotent* if it is idempotent with respect to the product $\overset{T}{\bullet}$, that is $e^2 = e \overset{T}{\bullet} e = T(e,e) = e$.

1.3. Corollary. (1) If the equivalence class I_{α} is a left-closed interval then its initial point $e := \min I_{\alpha}$ is an idempotent.

(2) If I_{α} is a non-degenerate right-closed interval then its endpoint $f := \max I_{\alpha}$ is no idempotent, moreover $f > f^2 \ge f^3 \ge \cdots \rightarrow \inf I$.

(3) If I_{α} is a non-degenerate right-open interval then $f := \max I_{\alpha}$ is an idempotent.

(4) If $I_{\alpha_1} < I_{\alpha_2} < \cdots$ is an increasing sequence in \mathcal{I} then the point $g := \sup \left(\bigcup_n I_{\alpha_n} \right)$ is an idempotent.

Proof. (1) Assume $I = \{x : x \sim e\}$ with $e = \min I(\in I)$. Then $e = T^{(1)}(e) \ge T^{(2)}(e) = e^2$. By Lemma 1.2(3) we have $e^2 \sim e$ and hence $e^2 \in I$ with $e^2 \ge e = \min I$. However, in general $e = T^{(1)}(e) \ge T^{(2)}(e) = e^2$.

(2) Assume $I = \{x : x \sim e\}$ with $f = \max I(\in I)$. Given any element $x \in I$, by definition we have $x \sim e$ with $\inf_n x^n = T^{(\infty)}(x) = T^{(\infty)}(e)$. It follows

$$\inf\{x: x \sim f\} = \inf I = T^{(\infty)}(f).$$

Hence the case $f = f^2$ is impossible because this would imply $\inf I = T^{(\infty)}(f) = f$ contradicting the non-degeneracy of I. Thus necessarily $f = 1f > f^2 = 1f^2 \ge f^3 \ge T^{(\infty)}(f) = \inf I$.

(3) Assume $I = \{x : x \sim e\}$ with $\sup I = f \notin I$). By Lemma 1.2(3), the contrary $f^2 < f$ would imply the contradiction $f \sim f^2$ with $f \in I$.

(4) Assume the contrary that is let $g > g^2$. Then $f^2 < I_{\alpha_n} < f$ for some index n. However, by Lemma 1.2(1)+(2), then we would have $f^2 \sim x \sim f$ for all $x \in I_{\alpha_n}$ entailing the contradiction $I_{\alpha_n} > f \in I_{\alpha_n}$.

1.4. Lemma. Let $P : [0,1] \to [0,1]$ be an inceasing backward projection (that is $P(y) \leq P(x) = P(P(x)) \leq x$ whenever $0 \leq y \leq x \leq 1$) onto the set Ω . Then the complement $[0,1] \setminus \Omega$ is the union of a family of pairwise disjoint left-open intervals and

$$P(x) = \max\left(\Omega \cap [0, x]\right) \qquad (x \in [0, 1])$$

Proof. It suffices to see only that, given any point $x \in [0,1] \setminus \Omega$ with P(x) < x, every point y from the left-open interval (P(x), x] is mapped into P(x) by P. Let P(x) < y < x. By assumption, P is an increasing mapping with $P = P \circ P$. Hence the conclusion $P(x) = P^2(x) \le P(y) \le P(x)$ entailing P(y) = P(x) is immediate.

1.5. Lemma. Given a T-idempotent $e = e^2 < 1$, with its multiplication range $\Omega_e := \{ex : x \in [0,1]\}$ we have

$$ex = \max\left(\Omega_e \cap [0, x]\right) \qquad (0 \le x \le 1).$$

Also $e = \max \Omega_e$ and $[0,1] \setminus \Omega_e$ is the union of a disjoint family of left-open intervals.

Proof. According to (T1)+(T2), the mapping $P_e(x) := ex$ is an increasing backward projection of [0,1] onto Ω_e . Indeed, $ey \leq ex = (ee)x = e(ex)$ whenever $0 \leq x \leq y \leq 1$. Since $\omega = P_e(\omega) \leq P_e(1) = e \in \Omega_e$, necessarily $e = \max \Omega_e$. The remaining statements are immediate from Lemma 1.4.

1.6. Proposition. Let T be a strict T-norm. Then

- (1) the only idempotents are 0 and 1,
- (2) we have $\{1\} = \{x : x \sim 1\}$, the interval $\{x : x \sim 0\}$ is closed, and each interval $I_{\alpha} \in \mathcal{I}$ with $0, 1 \notin I_{\alpha}$ is non-degenerate, open from left and closed from right,
- (3) there is no infinite strictly increasing sequence $I_{\alpha_1} < I_{\alpha_2} < \cdots$ in \mathcal{I} .

Proof. (1) Assume $e \in (0, 1)$ would be an idempotent. Then, by Lemma 1.5, we would have ex = e for all $e < x \le 1$ contradicting the strictness of T.

- (2) is immediate from statement (1) and Corollary 1.3(1)+(3).
- (3) is immediate from from statement (1) and Corollary 1.3(4). \Box

Recall that a function $\varphi : [0,1]^N \to [0,1]$ is said to be *right* [*left*] semicontinuous if $\phi(x_n^{(1)}, \ldots, x_n^{(1)}) \to \phi(x^{(1)}, \ldots, x^{(1)})$ whenever $x_n^{(1)} \searrow x^{(1)}, \ldots, x_n^{(1)} \searrow x^{(1)}$ [resp. $x_n^{(1)} \nearrow x^{(1)}, \ldots, x_n^{(1)} \nearrow x^{(1)}$]. It is folklore that if ϕ is increasing then the right [left] semicontinuity of all the sections $x \mapsto \phi(a_1, \ldots, a_{k-1}, x, a_{k+1}, \ldots, a_N)$ implies the right [left] semicontinuity of ϕ .

1.7 Lemma. If N > 1 and $T^{(N)}$ is right semicontinuous (in particular if T is right semicontinuous) then all the intervals $I_{\alpha} \in \mathcal{I}$ are closed from left.

proof. Assume T(N) to be right semicontinuous and let $x \in I \in \mathcal{I}$. Define $e := \inf I$ and consider the sequence $x^N, x^{2N}, x^{3N}, \ldots$ By definition $x_n \searrow T^{(\infty)}(x) = e$. The right semicontinuity of $T^{(N)}$ entails $x^{nN} = T^N(x) \searrow T^{(N)}(e) = e^N$. However, since $(x_{nN})_{n=1}^{\infty}$ is a subsequence of $(x_n)_{n=1}^{\infty}$, we have $e = \lim_n x = \lim_n x^{Nn} = e^N$. Since $e \ge e^2 \ge \cdots \ge e^N$ it follows $e^2 = e$ and hence $e \in I$ by Corollary 1.4.

1.8 Corollary. If T is a right semicontinuous strict T-norm then $\mathcal{I} = \{[0,1), \{1\}\}$.

Proof. Immediate from Proposition 1.6 and Lemma 1.7.

- **1.9 Remark.** Assuming the operation T to be *continuous*, we can conclude the following.
- (1) The powers $T^{(n)}$ (n = 1, 2, ...) are continuous increasing functions and hence their infimum $T^{(\infty)}$ is *left semicontinuous* and increasing.
- (2) From (1) it readily follows that the intervals I_{α} are closed from left with idempotent initial point.
- (3) It is well-known that the idempotents of a continuous T-norm form a closed subset of [0, 1] whose complement is the union of a countable family of pairwise disjoint open intervals. Hence one can deduce that the intervals I_{α} are either closed from the left and open from right or consist of a single point which is necessarily an idempotent. The points of continuity of $T^{(\infty)}$ are exactly the idempotents of a continuous T-norm.

2. The structure of a \sim -equivalence interval

Henceforth let $\mathbf{S} := ([\omega, a], \cdot, \geq)$ be an ordered Abelian semigroup on the real interval $[a, \omega]$ such that

- (S1) $xy_1 \le xy_2$ whenever $y_1 \le y_2$,
- (S2) $a > a^2 > a^3 > \cdots$ and $a^n \searrow \omega \ (n \to \infty)$.

Since, by (S2), $(\omega, a]$ is the disjoint union of the intervals $(a^{n+1}, a^n]$ (n = 1, 2, ...), for any element $b \in (\omega, a]$ and for any index k = 1, 2, ... we can define

$$n_k(b) := [n: a^{n+1} < b^k \le a^n].$$

2.1 Lemma. Given any $b \in (\omega, a]$, the intervals $[n_k(b)/k, (n_k(b) + 1)/k], k = 1, 2, ...$ have a unique common point.

Proof. Since the for the lengths we have $\left| \left[n_k(b)/k, (n_k(b) + 1)/k \right] \right| = 1/k \to 0$ $(k \to \infty)$, at most one common point may exists. To establish its existence, according to

Helly's theorem, it suffices to see that each pair of them admits a non-empty intersection, that is

(2.2)
$$n_k(b)/k \le (n_\ell(b) + 1)/\ell$$
 for all $k, \ell = 1, 2, \dots$

Consider any couple of indices $k \neq \ell$. By definition, $a^{n_k(b)+1} < b^k \leq a^{n_k(b)}$ and hence, by (S1), also $a^{\ell(n_k(b)+1)} \leq b^{k\ell} \leq a^{\ell n_k(b)}$. Similarly $a^{k(n_\ell(b)+1)} \leq b^{k\ell} \leq a^{kn_\ell(b)}$. It follows $a^{k(n_\ell(b)+1)} \leq b^{k\ell} \leq a^{\ell n_k(b)}$ and hence by (S2) we conclude $k(n_\ell(b)+1) \geq \ell n_k(b)$ which is equivalent to (1.2).

2.3 Definition. Henceforth we write

$$L(b) := \left[t: \{t\} = \bigcap_{k=1}^{\infty} \left[n_k(b)/k, (n_k(b)+1)/k\right]\right] \quad \text{for any } b \in (\omega, a]$$

Furthermore $\Lambda := L((\omega, a])$ shall denote the rage of the function L.

- **2.4 Remarks.** (1) $n_k(b) \in \left[\lceil kL(b) \rceil 1, \lceil kL(b) \rceil + 1 \right]$ for all $k = 1, 2, \ldots$ and $b \in (\omega, a]$.
 - (2) If $b \in (a^{n+1}, a^n]$ then $L(b) \in [n, n+1]$. In particular $L(a^n) = n$ (n = 1, 2, ...).
 - (3) The mapping L is decreasing trivially, but not necessarily strictly decreasing. Example: $\mathbf{S} := ((-\infty, 1], \cdot, \geq)$ with $xy := \lceil x \rceil + \lceil y \rceil$ and $L(b) = \lfloor -b \rfloor$.

2.5 Lemma. We have L(bc) = L(b) + L(c) for all $b, c \in (\omega, a]$.

Proof. According to Remark 2.5(1), $L(bc) = \lim_{k\to\infty} n_k(bc)/k$. By definition, $a^{n_k(b)} \ge b^k > a^{n_k(b)+1}$ and $a^{n_k(c)} \ge c^k > a^{n_k(c)+1}$. Hence $a^{n_k(b)+n_k(c)} \ge (bc)^k \ge a^{n_k(b)+n_k(c)+2}$. By the definition of the value $n_k(bc)$ and axiom (T2) it follows $n_k(b) + n_k(c) - 1 \le n_k(bc) \le n_k(b) + n_k(c) + 3$. Therefore $L(b) + L(c) = \lim_{k\to\infty} (n_k(b) + n_k(c))/k = \lim_{k\to\infty} n_k(bc)/k = L(bc)$.

2.6 Corollary. (1) The range Λ of L is a subsemigroup of $([1,\infty),+)$.

- (2) In particular Λ is countable under the hypotheses that L is not strictly increasing and $(T1^*) xy_1 < xy_2$ whenever $y_1 \leq y_2$.
- (3) Λ is Lebesgue-measurable. If it has positive Lebesgue measure, for some n we have $[n, \infty) \subset \Lambda$.

Proof. (1) is immediate from Lemma 2.5.

(2) The inverse images $L^{-1}{\xi} := {b : L(b) = \xi}, \xi \in \Lambda$ are pairwise disjoint intervals since the function L is decreasing. If L is not strictly increasing, some interval $L^{-1}{\xi_0}$ has positive length. By 1.5 we have $L^{-1}{\xi_0 + \eta} \supset L^{-1}{\xi_0} + L^{-1}{\eta}$ and $L^{-1}{\xi_0 + \eta}$ is also a non-degenerate interval for any $\eta \in \Lambda$ if (T1^{*}) holds. Since there may only be countably many pairwise disjoint non-degenerate real intervals, we conclude (2).

(3) It is well-known that the range of a decreasing real function is a Borel set (actually a sequence of points added to an interval minus a countable union of intervals). In particular

$$\begin{split} &\Lambda = \operatorname{range}(L) \text{ is Borel measurable. Suppose } \operatorname{mes}(\Lambda) > 0 \text{ (mes denoting Lebesgue measure).} \\ &\text{Then almost every point of } \Lambda \text{ is a Lebesgue point. In particular, } \operatorname{mes}\left(\Lambda \cap [\alpha,\beta] > (\beta-\alpha)/2 \right) \\ &\text{for some } 1 \leq \alpha < \beta. \text{ Recall that given any set } \Omega \text{ of real numbers with density} > 1/2, \text{ the sum } \Omega + \Omega := \{\omega_1 + \omega_2 : \omega_1, \omega_2 \in \Omega\} \text{ contains an interval with positive length.}^* \text{ Hence we conclude that } \Lambda \supset \Lambda + \Lambda \supset (\Lambda \cap [\alpha,\beta]) + (\Lambda \cap [\alpha,\beta]) \text{ contains some interval } I \text{ of length } \delta > 0. \text{ It is immediate that } \Lambda \supset \Lambda + \cdots + \Lambda \text{ with } [1/\delta] \text{ terms contains the interval } J := I + \cdots + I \text{ with length } > 1. \text{ According to Remark } 2.4(2), \text{ we have } \{1, 2, \ldots\} \subset \Lambda. \text{ It follows } \Lambda \supset \bigcup_{k=0}^{\infty} k + J \supset [[\inf J], \infty). \end{split}$$

2.7 Lemma. (1) If the underlying product is left semicontinuous [i.e. $x_i y \nearrow xy$ whenever $x_i \nearrow x$] then its logarithm L is also left semicontinuous.

(2) If the product is right semicontinuous then L is right semicontinuous.

Proof. Assume the product is left semicontinuous. It is well-known that then we have even $x_iy_i \nearrow xy$ whenever $x_i \nearrow x$ and $y_i \nearrow y$. (Indeed, given any $\varepsilon > 0$, there exists j_0 with $xy \ge xy_{j_0} \ge xy - \varepsilon/2$. Also there exists $j_1 \ge j_0$ with $xy_{j_0} \ge x_{j_1}y_{j_0} \ge xy_{j_0} - \varepsilon/2$ and hence $xy \ge x_{j_1}y_{j_0} \ge xy - \varepsilon$. Given any couple $x_i \nearrow x$ resp. $y_i \nearrow y$ of sequences, for any $i \ge j_1$ we have $xy \ge x_iy_i \ge x_{j_1}y_{j_0} \ge xy - \varepsilon$.) In particular the powers $b \mapsto b^k$ $(k = 1, 2, \ldots)$ are left semicontinuous. It follows that, for any fixed k, the step function $b \mapsto n_k(b)$ is left semicontinuous. Proof: Fix k arbitrarily. Since the power $b \mapsto b^k$ is increasing, the function $n_k(\cdot)$ decreases. Consider a sequence $b_i \nearrow b > \omega$. Since $\omega < \inf_i b_i \le a$, the decreasing sequence $\{n_k(b_i) : i = 1, 2, \ldots\}$ is bounded. Since $n_k(\cdot)$ assumes integer values, there is i_0 with $n_k(b_i) = N := \lim_i n_k(b_i)$ for $i \ge i_0$. Then $a^{N+1} = a^{n_k(b_i)-1} < b_i^k \le a^{n_k(b_i)} = a^N$ for any $i \ge i_0$. It follows $a^{N+1} > b \ge a^N$ which means that $n_k(b) = N$ i.e. $n_k(b_i) \nearrow N = n_k(b)$. On the other hand the sequence $n_k(\cdot)/k$ $(k = 1, 2, \ldots)$ converges uniformly to $L(\cdot)$ (actually $\sup_b |L(b) - n_k(b)/k| \le 1/k$ for all k). Hence we deduce that left semicontinuity of L, because, in general, the uniform limit of τ -continuous functions is τ -continuous for any topology τ . Thus, in particular L is left semicontinuous. The proof of (2) is analogous with the step functions $\tilde{n}_k(b) := [n : a^n \le b^k < a^{n-1}]$ in place of $n_k(\cdot)$.

2.8 Lemma. For any $c \in (\omega, a]$, the functions $n_k^c(b) := [n : c^{n+1} < b^k \leq c^n]$ and $L^c(b) := \lim_k n_k^c(b)/k$ are well-defined, moreover we have $L^c = L(c)^{-1}L$ in terms of the logarithm function defined in 1.3.

Proof. $\mathbf{S}^c := ((\omega, c], \cdot, \geq)$ is an ordered subsemigroup of $\mathbf{S} = ((\omega, a], \cdot, \geq)$. Hence we can apply the previous arguments with c in place of a to establish that all the functions n_k^c

^{*} Proof. We may assume $\Omega \supset [\alpha,\beta] \setminus \bigcup_{k=1}^{\infty} I_k$ where I_1, I_2, \ldots are pairwise disjoint open intervals with $\sum_{k=1}^{\infty} \operatorname{mes}(I_k) = (\beta - \alpha)(1/2 - \varepsilon)$ for some $\varepsilon > 0$. The vertical resp. horizontal stripes $I_k \times [\alpha,\beta]$ and $[\alpha,\beta] \times I_k$, $k = 1, 2, \ldots$ cut at most $2(1/2 - \varepsilon)\sqrt{2}(\beta - \alpha)$ length from the diagonal segments $D_{\rho} := \{(\omega_1, \omega_2) : \alpha \leq \omega_1, \omega_2 \leq \beta, \omega_1 + \omega_2 = \rho\}$ which have length $>\sqrt{2}(\beta - \alpha - \varepsilon)$ whenever $\rho \in (\alpha + \beta - \varepsilon, \alpha + \beta + \varepsilon)$. Therefore $\Omega + \Omega \supset (\alpha + \beta - \varepsilon, \alpha + \beta + \varepsilon)$.

along with L^c are well-defined and decreasing. By definition we have $c^{n_k^c(b)+1} < b^k \leq c^{n_k^c(b)},$ whence

$$(n_k^c(b) + 1)L(c) = L(c^{n_k^c(b) + 1}) \ge L(b^k) = kL(b) \ge L(c^{n_k^c(b)}) = n_k^c(b)L(c).$$

Since $L^{c}(b) = \lim_{k} n_{k}^{c}(b)/k$, we get $L^{c}(b)L(c) \ge L(b) \ge L^{c}(b)L(c)$.