On non-continuous T-norms
L.L. STACHO

As usually in fuzzy logics, by a T-norm we mean a binary operation T : [0,1]> — [0, 1]
satisfying the following axioms

(T1) T(y,x) =T (z,y) <T(2',y) forany0<z <z’ and0<y<I,

(T2) T(2,T(y,2)) =T(T(z,y),2) forany 0<wz,y,2<1,

(T3) T(0,z) =0 and T(l,z) =2 forany 0 <z <1.
Most authors include also the continuity of T into the definition, and actually there is a

complete classification for the continuous T-norms. In this paper we focus to the case of
non-continuous 7-norms. In another terminology, (T1),(T2),(T3) mean that the algebraic

T
structure T := ([0, 1], ¢, > ) with the binary operation

vey=T(zy), ayel0l]
is an ordered Abelian semigroup on [0,1] with neutral element 1 and sink 0. Also, in

. . T . . .
accordance with the usual terminology, we say that the T-norm e is strict if

(T4) T(x1,y) < T(x2,y) whenever 0 < z; <zy <land 0 <y < 1.

In the sequel we shall fix an arbitrary T-norm f, and we shall write simply xy instead of

T

x o y without danger of confusion with the notation of the usual numerical product of real
numbers (which may appear only as a simple special case of continuous T-norm). Thus,
in this terminology axioms (T1),...,(T4) mean simply

(T1) zy=yzx, (T2)z(yz)=(zy)z, (T3)0x=0<lz=x, (T4)zi1y<zoy (x1<z2, y#0).

. T . .
We shall also use the customary notation a™ for the n-th e-power a™ = a---a which is

n terms

well-defined by the associativity (T2).
1.1. Definition. We introduce the binary relations < on the interval [0, 1] as follows
a<b :& inf,a™ <inf,bd"™; a~b & a<b<a.

1.2. Lemma. (1) The relation < is a linear ordering with a < b for a < b. In particular,
~ is an equivalence relation whose equivalence classes are subintervals of [0, 1].
(2) For any power N we have a ~ a.

(3) We have ab ~ mina, b.
Proof. As a consequence of axioms (T1)+(T3) the powers

T (z) := 2" (n=1,2...)



are increasing functions [0,1] — [0,1] with T7(") > 72 > 7G) > ... Therefore their limit
T(*) is a well-defined with

T()(z) = inf, 2" (0<x <.

By definition, we have a < b iff T7(°)(a) < T(>)(b). Since the limit of increasing functions
is increasing, statement (1) is immediate.

(2) We have T()(aV) = lim,, a™" = lim,, a™ = T(*)(a).

(3) We may assume a < b without loss of generality. Then a? < ab < 1b = b. Since
a ~ a? by (2), and since the equivalence classes of ~ are intervals by (1), we conclude

a? ~ ab ~ a = min{a, b}.

Henceforth we introduce the notations
IT:={la: a€A}:={{z: z~a}: a€|0,1]}

for the family of all equivalence classes of the relation ~. We know already that 7 is a set
of pairwise disjoint intervals forming a partition of [0, 1] such that I < Ig (i.e. a < b for
all couples (a,b) € I, x Ig) whenever a < b for some a € I, and b € Ig. we shall say simply

that the point e € [0, 1] is an idempotent if it is idempotent with respect to the product e,

T
that ise? = e o e=T(e,e) =e.

1.3. Corollary. (1) If the equivalence class 1, is a left-closed interval then its initial
point e := min I, is an idempotent.

(2) If 1, is a non-degenerate right-closed interval then its endpoint f := max I, is no
idempotent, moreover f > f2 > f3 > ... —infI.

(3) If I, is a non-degenerate right-open interval then f := maxI, is an idempotent.

(4) If I, < Io, < ---is an increasing sequence in Z then the point g := sup (U, /a,)
is an idempotent.

Proof. (1) Assume I = {z : z ~ e} with e = minI(€ I). Then e = T(M(e) >
T®)(e) = e?. By Lemma 1.2(3) we have e ~ e and hence e? € I with > > ¢ = min I.
However, in general e = TN (e) > T2 (e) = €.

(2) Assume I = {z : x ~ e} with f = maxI(€ I). Given any element z € I, by
definition we have z ~ e with inf, 2™ = T(>) (z) = T()(e). It follows

inf{z: =~ f}=inf I =T0)(f).

Hence the case f = f? is impossible because this would imply infI = T(®)(f) = f
contradicting the non-degeneracy of I. Thus necessarily f = 1f > f2 = 1f2 > f3 >—
T (f) =inf 1.

(3) Assume I = {x : = ~ e} withsupl = f ¢ I). By Lemma 1.2(3), the contrary
f? < f would imply the contradiction f ~ f? with f € I.
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(4) Assume the contrary that is let ¢ > ¢g?. Then f? < I, < f for some index n.
However, by Lemma 1.2(1)+(2), then we would have f? ~ x ~ f for all z € I, entailing

the contradiction I,, > f € I,,, .

1.4. Lemma. Let P :[0,1] — [0,1] be an inceasing backward projection (that is P(y) <
P(z) = P(P(z)) < x whenever 0 < y < x < 1) onto the set Q. Then the complement
[0,1] \ Q is the union of a family of pairwise disjoint left-open intervals and

P(z) = max (2N [0, z]) (z €]0,1]).

Proof. Tt suffices to see only that, given any point z € [0,1]\ Q with P(z) < x, every
point y from the left-open interval (P(x), z] is mapped into P(z) by P. Let P(z) <y < z.
By assumption, P is an increasing mapping with P = P o P. Hence the conclusion
P(z) = P?(z) < P(y) < P(z) entailing P(y) = P(z) is immediate. L]

1.5. Lemma. Given a T-idempotent e = e? < 1, with its multiplication range Q. =
{ex: x €[0,1]} we have

ex = max (€ N[0, 2] (0<z<1).
Also e =max Q. and [0,1]\ Q. is the union of a disjoint family of left-open intervals.

Proof. According to (T1)+(T2), the mapping P.(z) := ex is an increasing backward
projection of [0,1] onto Q.. Indeed, ey < ex = (ee)x = e(ex) whenever 0 < x <y < 1.
Since w = P.(w) < P.(1) = e € €2, necessarily e = max 2. The remaining statements are

immediate from Lemma 1.4.

1.6. Proposition. Let T be a strict T-norm. Then

(1) the only idempotents are 0 and 1,

(2) we have {1} = {x : x ~ 1}, the interval {x : x ~ 0} is closed, and each interval
I, € T with 0,1 & I, is non-degenerate, open from left and closed from right,

(3) there is no infinite strictly increasing sequence I, < I, < --+ in Z.

Proof. (1) Assume e € (0,1) would be an idempotent. Then, by Lemma 1.5, we
would have ex = e for all e < z < 1 contradicting the strictness of 7T'.
(2) is immediate from statement (1) and Corollary 1.3(1)+(3).

(3) is immediate from from statement (1) and Corollary 1.3(4).

Recall that a function ¢ : [0,1]¥ — [0,1] is said to be right [leff] semicontinu-
ous if gb(xg),...,x,(ll)) — ¢(z™, ..., M) whenever 2D N, 2D, e N 2 M [resp.
pas M ,:1;;1) /" 2], Tt is folklore that if ¢ is increasing then the right [left] semi-
continuity of all the sections = — ¢(aq,...,a5—1,2,0k+1,-..,ay) implies the right [left]
semicontinuity of ¢.



1.7 Lemma. If N > 1 and TWN) is right semicontinuous (in particular if T is right
semicontinuous) then all the intervals I, € T are closed from left.

proof. Assume T'(N) to be right semicontinuous and let z € I € Z. Define e := inf I
and consider the sequence ™V, 22N 3N .. .. By definition z, \, T(®)(z) = e. The right
semicontinuity of TV entails 2™ = TN (z) \, TW)(e) = V. However, since (:an):;l is

(o @) . . .
a subsequence of (a:n) we have e = lim,, x = lim,, V™ = eN. Since e > €2 > ... > ¢V

n=1’

it follows e? = e and hence e € I by Corollary 1.4. ]

1.8 Corollary. If T is a right semicontinuous strict T-norm then I = {[0,1),{1}}.

Proof. Immediate from Proposition 1.6 and Lemma 1.7. ]

1.9 Remark. Assuming the operation T" to be continuous, we can conclude the following.

(1) The powers T(™ (n = 1,2,...) are continuous increasing functions and hence their
infimum 7() is left semicontinuous and increasing.

(2) From (1) it readily follows that the intervals I,, are closed from left with idempotent
initial point.

(3) It is well-known that the idempotents of a continuous T-norm form a closed subset of
[0, 1] whose complement is the union of a countable family of pairwise disjoint open
intervals. Hence one can deduce that the intervals I, are either closed from the left
and open from right or consist of a single point which is necessarily an idempotent.
The points of continuity of T(°°) are exactly the idempotents of a continuous T-norm.

2. The structure of a ~-equivalence interval

Henceforth let S := ([w,a], 5> ) be an ordered Abelian semigroup on the real interval
[a,w] such that

(S1) zy; <xys whenever y; < yo,
(S2) a>a?>>a®> -+ and a" \\w (n— ).

Since, by (S2), (w, a] is the disjoint union of the intervals (a™*!,a"] (n = 1,2,...), for any
element b € (w, a] and for any index k = 1,2,... we can define

ng(b) == [n: o™ < b <a"] .

2.1 Lemma. Given any b € (w,a], the intervals [ng(b)/k, (np(b) + 1)/k], k = 1,2,...
have a unique common point.

Proof. Since the for the lengths we have |[n(b)/k, (nx(b) + 1)/k]| = 1/k — 0
(k — 00), at most one common point may exists. To establish its existence, according to
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Helly’s theorem, it suffices to see that each pair of them admits a non-empty intersection,
that is

(2.2) ni(b)/k < (ne(b)+1)/¢  forall k,0=1,2,....

Consider any couple of indices k # £. By definition, a™®+! < pF < ) and hence,
by (S1), also a’®)+1) < pkt < ¢fre®) - Similarly ok O+ < pkt < ghne®) Tt follows
akne®)+1) < pkt < () and hence by (S2) we conclude k(ng(b) + 1) > ¢ny(b) which is
equivalent to (1.2). [

2.3 Definition. Henceforth we write

oo

L(b) == [t: = [nk(b)/k,(nk(b)+1)/k” for any b € (w,al.

k=1

Furthermore A := L((w, a]) shall denote the rage of the function L.

2.4 Remarks. (1) ng(b) € [[kL(b)] —1,[kL(b)] +1] forall k=1,2,... and b € (w,al.
(2) If be (a"t,a"] then L(b) € [n,n+ 1]. In particular L(a™) =n (n =1,2,...).
(3) The mapping L is decreasing trivially, but not necessarily strictly decreasing.
Example: S := ((—o0,1],-,> ) with 2y := [2] + [y] and L(b) = [-b].

2.5 Lemma. We have L(bc) = L(b)+ L(c) for allb,c € (w,al.

Proof. According to Remark 2.5(1), L(bc) = limg_ oo ni(bc)/k. By definition,
a™ ) > pko5 a0+l gnd gne(e) > ko> gne(OFl Hepce qne®)tnele) > (bc)k
a™(®)+nk(€)+2 By the definition of the value ny(bc) and axiom (T2) it follows ny(b)
ni(c)—1 < ng(be) < ng(b)+ny(c)+3. Therefore L(b)+L(c) = limy_.o0 (ni(b)+ni(c))/k

limg o0 ng (be) /k = L(be).

I+ v

2.6 Corollary. (1) The range A of L is a subsemigroup of ([1, 00), +).

(2) In particular A is countable under the hypotheses that L is not strictly increasing and
(T1*) zyy < zy2 whenever y; < ys.

(3) A is Lebesgue-measurable. If it has positive Lebesque measure, for some n we have
[n,00) C A.

Proof. (1) is immediate from Lemma 2.5.

(2) The inverse images L™1{&} := {b: L(b) = £}, £ € A are pairwise disjoint intervals
since the function L is decreasing. If L is not strictly increasing, some interval L=1{&}
has positive length. By 1.5 we have L™1{& +n} D L=H&} + L~ {n} and L=H{& + n}
is also a non-degenerate interval for any n € A if (T1*) holds. Since there may only be
countably many pairwise disjoint non-degenerate real intervals, we conclude (2).

(3) It is well-known that the range of a decreasing real function is a Borel set (actually a
sequence of points added to an interval minus a countable union of intervals). In particular
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A = range(L) is Borel measurable. Suppose mes(A) > 0 (mes denoting Lebesgue measure).
Then almost every point of A is a Lebesgue point. In particular, mes(AN[a, 8] > (3—a)/2
for some 1 < a < (3. Recall that given any set € of real numbers with density> 1/2, the
sum Q + Q := {w; + w2 1 wi,ws € Q} contains an interval with positive length.* Hence
we conclude that A D A+ A D (AN [a,B]) + (AN [, 3]) contains some interval I of
length 6 > 0. It is immediate that A D A+ ---+ A with [1/J] terms contains the interval
J :=1+---+ I with length > 1. According to Remark 2.4(2), we have {1,2,...} C A. It

follows A > Up— ok + J D [[inf J], 00). [

2.7 Lemma. (1) If the underlying product is left semicontinuous [i.e. x;y / xy whenever
x; /" x| then its logarithm L is also left semicontinuous.
(2) If the product is right semicontinuous then L is right semicontinuous.

Proof. Assume the product is left semicontinuous. It is well-known that then we
have even x;y; /" xy whenever x; /' x and y; /" y. (Indeed, given any ¢ > 0, there exists
Jo with zy > zy,, > xy—e/2. Also there exists j; > jo with xy;, > z;,vy;, > zy;, —¢/2 and
hence xy > x;,y;, > 2y — . Given any couple x; /" x resp. y; /" y of sequences, for any
i > j1 we have zy > z;y; > x;,yj, > xy—e). In particular the powers b +— b¥ (k =1,2,...)
are left semicontinuous. It follows that, for any fixed k, the step function b — n(b) is
left semicontinuous. Proof: Fix k arbitrarily. Since the power b — b* is increasing, the
function ng(-) decreases. Consider a sequence b; /' b > w. Since w < inf; b; < a, the
decreasing sequence {ng(b;) : i =1,2,...} is bounded. Since ny(-) assumes integer values,
there is ig with ng(b;) = N := lim; ng(b;) for i > ig. Then oVt = @™+ (®)~-1 < b <
a™ i) = N for any i > ig. It follows a™¥t! > b > o which means that ng(b) = N i.e.
ng(b;) /* N = ng(b). On the other hand the sequence ny(:)/k (k = 1,2,...) converges
uniformly to L(-) (actually sup, |L(b) — nk(b)/k| < 1/k for all k). Hence we deduce that
left semicontinuity of L, because, in general, the uniform limit of 7-continuous functions is
T-continuous for any topology 7. Thus, in particular L is left semicontinuous. The proof
of (2) is analogous with the step functions 7;,(b) := [n: a” < b* < a"~!] in place of ng(-).

]

2.8 Lemma. For any ¢ € (w,a], the functions ng(b) := [n : "t < b* < ¢"] and
LE(b) := limg n§(b)/k are well-defined, moreover we have L¢ = L(c)™'L in terms of the
logarithm function defined in 1.3.

Proof. S¢:= ((w,c],-,>) is an ordered subsemigroup of S = ((w,a],-,>). Hence we
can apply the previous arguments with ¢ in place of a to establish that all the functions ng

* Proof. We may assume Q O [a, 8] \ Up—; I where I, I5,... are pairwise disjoint
open intervals with >~ mes(I;) = (3 — a)(1/2 — ¢) for some £ > 0. The vertical resp.
horizontal stripes Ij, x [a, 8] and [, 8] X Ii, k = 1,2, ... cut at most 2(1/2 — £)v/2(8 — a)
length from the diagonal segments D, := {(wi,w2) : @ < wi,ws < B, wi +wy = p}
which have length >+v/2(3 — o — €) whenever p € (a + 3 —e,a + 3 + ¢). Therefore
Q+QD(a+6—¢c,a+p+¢).



along with L¢ are well-defined and decreasing. By definition we have ¢ ()41 < pb < k()
whence

(n§(b) + 1)L(c) = L™ ®TY) > L(6*) = kL(b) > L(c™®) = ng (b)L(c).

Since L¢(b) = limy n§.(b)/k, we get L°(b)L(c) > L(b) > L°(b)L(c). [



