
On non-continuous T-norms

L.L. STACHÓ

As usually in fuzzy logics, by a T-norm we mean a binary operation T : [0, 1]2 → [0, 1]
satisfying the following axioms

(T1) T (y, x) = T (x, y) ≤ T (x′, y) for any 0 ≤ x ≤ x′ and 0 ≤ y ≤ 1,
(T2) T (x, T (y, z)) = T (T (x, y), z) for any 0 ≤ x, y, z ≤ 1,
(T3) T (0, x) = 0 and T (1, x) = x for any 0 ≤ x ≤ 1.

Most authors include also the continuity of T into the definition, and actually there is a
complete classification for the continuous T-norms. In this paper we focus to the case of
non-continuous T -norms. In another terminology, (T1),(T2),(T3) mean that the algebraic

structure T :=
(
[0, 1],

T•,≥ )
with the binary operation

x
T• y := T (x, y) , x, y ∈ [0, 1]

is an ordered Abelian semigroup on [0, 1] with neutral element 1 and sink 0. Also, in

accordance with the usual terminology, we say that the T-norm
T• is strict if

(T4) T (x1, y) < T (x2, y) whenever 0 ≤ x1 < x2 ≤ 1 and 0 < y ≤ 1.

In the sequel we shall fix an arbitrary T-norm
T•, and we shall write simply xy instead of

x
T• y without danger of confusion with the notation of the usual numerical product of real

numbers (which may appear only as a simple special case of continuous T-norm). Thus,
in this terminology axioms (T1),. . .,(T4) mean simply

(T1) xy=yx, (T2) x(yz)=(xy)z, (T3) 0x=0≤1x=x, (T4) x1y<x2y (x1 <x2, y 6=0).

We shall also use the customary notation an for the n-th
T•-power an = a · · · a︸ ︷︷ ︸

n terms

which is

well-defined by the associativity (T2).

1.1. Definition. We introduce the binary relations ≺ on the interval [0, 1] as follows

a ≺ b :⇔ infn an ≤ infn bn; a ∼ b :⇔ a ≺ b ≺ a.

1.2. Lemma. (1) The relation ≺ is a linear ordering with a ≺ b for a ≤ b. In particular,
∼ is an equivalence relation whose equivalence classes are subintervals of [0, 1].

(2) For any power N we have aN ∼ a.
(3) We have ab ∼ min a, b.

Proof. As a consequence of axioms (T1)+(T3) the powers

T (n)(x) := xn (n = 1, 2 . . .)
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are increasing functions [0, 1] → [0, 1] with T (1) ≥ T (2) ≥ T (3) ≥ · · ·. Therefore their limit
T (∞) is a well-defined with

T (∞)(x) = infn xn (0 ≤ x ≤ 1).

By definition, we have a ≺ b iff T (∞)(a) ≤ T (∞)(b). Since the limit of increasing functions
is increasing, statement (1) is immediate.

(2) We have T (∞)(aN ) = limn aNn = limn an = T (∞)(a).
(3) We may assume a ≤ b without loss of generality. Then a2 ≤ ab ≤ 1b = b. Since

a ∼ a2 by (2), and since the equivalence classes of ∼ are intervals by (1), we conclude
a2 ∼ ab ∼ a = min{a, b}.

Henceforth we introduce the notations

I :=
{
Iα : α ∈ A

}
:=

{{x : x ∼ a} : a ∈ [0, 1]
}

for the family of all equivalence classes of the relation ∼. We know already that I is a set
of pairwise disjoint intervals forming a partition of [0, 1] such that I≺ ≤ Iβ (i.e. a ≺ b for
all couples (a, b) ∈ Iα×Iβ) whenever a ≤ b for some a ∈ Iα and b ∈ Iβ . we shall say simply

that the point e ∈ [0, 1] is an idempotent if it is idempotent with respect to the product
T•,

that is e2 = e
T• e = T (e, e) = e.

1.3. Corollary. (1) If the equivalence class Iα is a left-closed interval then its initial
point e := min Iα is an idempotent.

(2) If Iα is a non-degenerate right-closed interval then its endpoint f := max Iα is no
idempotent, moreover f > f2 ≥ f3 ≥ · · · → inf I.

(3) If Iα is a non-degenerate right-open interval then f := max Iα is an idempotent.
(4) If Iα1 < Iα2 < · · · is an increasing sequence in I then the point g := sup

( ⋃
n Iαn

)
is an idempotent.

Proof. (1) Assume I = {x : x ∼ e} with e = min I(∈ I). Then e = T (1)(e) ≥
T (2)(e) = e2. By Lemma 1.2(3) we have e2 ∼ e and hence e2 ∈ I with e2 ≥ e = min I.
However, in general e = T (1)(e) ≥ T (2)(e) = e2.

(2) Assume I = {x : x ∼ e} with f = max I(∈ I). Given any element x ∈ I, by
definition we have x ∼ e with infn xn = T (∞)(x) = T (∞)(e). It follows

inf{x : x ∼ f} = inf I = T (∞)(f).

Hence the case f = f2 is impossible because this would imply inf I = T (∞)(f) = f
contradicting the non-degeneracy of I. Thus necessarily f = 1f > f2 = 1f2 ≥ f3 ≥→
T (∞)(f) = inf I.

(3) Assume I = {x : x ∼ e} with sup I = f 6∈ I). By Lemma 1.2(3), the contrary
f2 < f would imply the contradiction f ∼ f2 with f ∈ I.
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(4) Assume the contrary that is let g > g2. Then f2 < Iαn
< f for some index n.

However, by Lemma 1.2(1)+(2), then we would have f2 ∼ x ∼ f for all x ∈ Iαn entailing
the contradiction Iαn

> f ∈ Iαn
.

1.4. Lemma. Let P : [0, 1] → [0, 1] be an inceasing backward projection (that is P (y) ≤
P (x) = P (P (x)) ≤ x whenever 0 ≤ y ≤ x ≤ 1) onto the set Ω. Then the complement
[0, 1] \ Ω is the union of a family of pairwise disjoint left-open intervals and

P (x) = max
(
Ω ∩ [0, x]

)
(x ∈ [0, 1]).

Proof. It suffices to see only that, given any point x ∈ [0, 1]\Ω with P (x) < x, every
point y from the left-open interval (P (x), x] is mapped into P (x) by P . Let P (x) < y < x.
By assumption, P is an increasing mapping with P = P ◦ P . Hence the conclusion
P (x) = P 2(x) ≤ P (y) ≤ P (x) entailing P (y) = P (x) is immediate.

1.5. Lemma. Given a T-idempotent e = e2 < 1, with its multiplication range Ωe :=
{ex : x ∈ [0, 1]} we have

ex = max
(
Ωe ∩ [0, x] (0 ≤ x ≤ 1).

Also e = max Ωe and [0, 1] \ Ωe is the union of a disjoint family of left-open intervals.

Proof. According to (T1)+(T2), the mapping Pe(x) := ex is an increasing backward
projection of [0, 1] onto Ωe. Indeed, ey ≤ ex = (ee)x = e(ex) whenever 0 ≤ x ≤ y ≤ 1.
Since ω = Pe(ω) ≤ Pe(1) = e ∈ Ωe, necessarily e = max Ωe. The remaining statements are
immediate from Lemma 1.4.

1.6. Proposition. Let T be a strict T -norm. Then
(1) the only idempotents are 0 and 1,
(2) we have {1} = {x : x ∼ 1}, the interval {x : x ∼ 0} is closed, and each interval

Iα ∈ I with 0, 1 6∈ Iα is non-degenerate, open from left and closed from right,
(3) there is no infinite strictly increasing sequence Iα1 < Iα2 < · · · in I.

Proof. (1) Assume e ∈ (0, 1) would be an idempotent. Then, by Lemma 1.5, we
would have ex = e for all e < x ≤ 1 contradicting the strictness of T .

(2) is immediate from statement (1) and Corollary 1.3(1)+(3).
(3) is immediate from from statement (1) and Corollary 1.3(4).

Recall that a function ϕ : [0, 1]N → [0, 1] is said to be right [left] semicontinu-
ous if φ(x(1)

n , . . . , x
(1)
n ) → φ(x(1), . . . , x(1)) whenever x

(1)
n ↘ x(1), . . . , x

(1)
n ↘ x(1) [resp.

x
(1)
n ↗ x(1), . . . , x

(1)
n ↗ x(1)]. It is folklore that if φ is increasing then the right [left] semi-

continuity of all the sections x 7→ φ(a1, . . . , ak−1, x, ak+1, . . . , aN ) implies the right [left]
semicontinuity of φ.
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1.7 Lemma. If N > 1 and T (N) is right semicontinuous (in particular if T is right
semicontinuous) then all the intervals Iα ∈ I are closed from left.

proof. Assume T (N) to be right semicontinuous and let x ∈ I ∈ I. Define e := inf I
and consider the sequence xN , x2N , x3N , . . .. By definition xn ↘ T (∞)(x) = e. The right
semicontinuity of T (N) entails xnN = TN (x) ↘ T (N)(e) = eN . However, since

(
xnN

)∞
n=1

is
a subsequence of

(
xn

)∞
n=1

, we have e = limn x = limn xNn = eN . Since e ≥ e2 ≥ · · · ≥ eN

it follows e2 = e and hence e ∈ I by Corollary 1.4.

1.8 Corollary. If T is a right semicontinuous strict T-norm then I =
{
[0, 1), {1}}.

Proof. Immediate from Proposition 1.6 and Lemma 1.7.

1.9 Remark. Assuming the operation T to be continuous, we can conclude the following.
(1) The powers T (n) (n = 1, 2, . . .) are continuous increasing functions and hence their

infimum T (∞) is left semicontinuous and increasing.
(2) From (1) it readily follows that the intervals Iα are closed from left with idempotent

initial point.
(3) It is well-known that the idempotents of a continuous T-norm form a closed subset of

[0, 1] whose complement is the union of a countable family of pairwise disjoint open
intervals. Hence one can deduce that the intervals Iα are either closed from the left
and open from right or consist of a single point which is necessarily an idempotent.
The points of continuity of T (∞) are exactly the idempotents of a continuous T-norm.

2. The structure of a ∼-equivalence interval

Henceforth let S :=
(
[ω, a], ·,≥ )

be an ordered Abelian semigroup on the real interval
[a, ω] such that

(S1) xy1 ≤ xy2 whenever y1 ≤ y2,
(S2) a > a2 > a3 > · · · and an ↘ ω (n →∞).

Since, by (S2), (ω, a] is the disjoint union of the intervals (an+1, an] (n = 1, 2, . . .), for any
element b ∈ (ω, a] and for any index k = 1, 2, . . . we can define

nk(b) :=
[
n : an+1 < bk ≤ an

]
.

2.1 Lemma. Given any b ∈ (ω, a], the intervals
[
nk(b)/k, (nk(b) + 1)/k

]
, k = 1, 2, . . .

have a unique common point.

Proof. Since the for the lengths we have
∣∣[nk(b)/k, (nk(b) + 1)/k

]∣∣ = 1/k → 0
(k → ∞), at most one common point may exists. To establish its existence, according to
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Helly’s theorem, it suffices to see that each pair of them admits a non-empty intersection,
that is

(2.2) nk(b)/k ≤ (n`(b) + 1)/` for all k, ` = 1, 2, . . ..

Consider any couple of indices k 6= `. By definition, ank(b)+1 < bk ≤ ank(b) and hence,
by (S1), also a`(nk(b)+1) ≤ bk` ≤ a`nk(b). Similarly ak(n`(b)+1) ≤ bk` ≤ akn`(b). It follows
ak(n`(b)+1) ≤ bk` ≤ a`nk(b) and hence by (S2) we conclude k(n`(b) + 1) ≥ `nk(b) which is
equivalent to (1.2).

2.3 Definition. Henceforth we write

L(b) :=
[
t : {t} =

∞⋂

k=1

[
nk(b)/k, (nk(b) + 1)/k

]]
for any b ∈ (ω, a].

Furthermore Λ := L
(
(ω, a]

)
shall denote the rage of the function L.

2.4 Remarks. (1) nk(b) ∈ [dkL(b)e − 1, dkL(b)e+ 1
]

for all k = 1, 2, . . . and b ∈ (ω, a].
(2) If b ∈ (an+1, an] then L(b) ∈ [n, n + 1]. In particular L(an) = n (n = 1, 2, . . .).
(3) The mapping L is decreasing trivially, but not necessarily strictly decreasing.

Example: S :=
(
(−∞, 1], ·,≥ )

with xy := dxe+ dye and L(b) = b−bc.

2.5 Lemma. We have L(bc) = L(b) + L(c) for all b, c ∈ (ω, a].

Proof. According to Remark 2.5(1), L(bc) = limk→∞ nk(bc)/k. By definition,
ank(b) ≥ bk > ank(b)+1 and ank(c) ≥ ck > ank(c)+1. Hence ank(b)+nk(c) ≥ (bc)k ≥
ank(b)+nk(c)+2. By the definition of the value nk(bc) and axiom (T2) it follows nk(b) +
nk(c)−1 ≤ nk(bc) ≤ nk(b)+nk(c)+3. Therefore L(b)+L(c) = limk→∞

(
nk(b)+nk(c)

)
/k =

limk→∞ nk(bc)/k = L(bc).

2.6 Corollary. (1) The range Λ of L is a subsemigroup of
(
[1,∞), +

)
.

(2) In particular Λ is countable under the hypotheses that L is not strictly increasing and
(T1∗) xy1 < xy2 whenever y1 ≤ y2.

(3) Λ is Lebesgue-measurable. If it has positive Lebesgue measure, for some n we have
[n,∞) ⊂ Λ.

Proof. (1) is immediate from Lemma 2.5.
(2) The inverse images L−1{ξ} := {b : L(b) = ξ}, ξ ∈ Λ are pairwise disjoint intervals

since the function L is decreasing. If L is not strictly increasing, some interval L−1{ξ0}
has positive length. By 1.5 we have L−1{ξ0 + η} ⊃ L−1{ξ0} + L−1{η} and L−1{ξ0 + η}
is also a non-degenerate interval for any η ∈ Λ if (T1∗) holds. Since there may only be
countably many pairwise disjoint non-degenerate real intervals, we conclude (2).

(3) It is well-known that the range of a decreasing real function is a Borel set (actually a
sequence of points added to an interval minus a countable union of intervals). In particular
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Λ = range(L) is Borel measurable. Suppose mes(Λ) > 0 (mes denoting Lebesgue measure).
Then almost every point of Λ is a Lebesgue point. In particular, mes

(
Λ∩ [α, β] > (β−α)/2

for some 1 ≤ α < β. Recall that given any set Ω of real numbers with density> 1/2, the
sum Ω + Ω := {ω1 + ω2 : ω1, ω2 ∈ Ω} contains an interval with positive length.∗ Hence
we conclude that Λ ⊃ Λ + Λ ⊃ (

Λ ∩ [α, β]
)

+
(
Λ ∩ [α, β]

)
contains some interval I of

length δ > 0. It is immediate that Λ ⊃ Λ + · · ·+ Λ with d1/δe terms contains the interval
J := I + · · ·+ I with length > 1. According to Remark 2.4(2), we have {1, 2, . . .} ⊂ Λ. It
follows Λ ⊃ ⋃∞

k=0 k + J ⊃ [dinf Je,∞)
.

2.7 Lemma. (1) If the underlying product is left semicontinuous [i.e. xiy ↗ xy whenever
xi ↗ x] then its logarithm L is also left semicontinuous.

(2) If the product is right semicontinuous then L is right semicontinuous.

Proof. Assume the product is left semicontinuous. It is well-known that then we
have even xiyi ↗ xy whenever xi ↗ x and yi ↗ y. (Indeed, given any ε > 0, there exists
j0 with xy ≥ xyj0 ≥ xy−ε/2. Also there exists j1 ≥ j0 with xyj0 ≥ xj1yj0 ≥ xyj0−ε/2 and
hence xy ≥ xj1yj0 ≥ xy − ε. Given any couple xi ↗ x resp. yi ↗ y of sequences, for any
i ≥ j1 we have xy ≥ xiyi ≥ xj1yj0 ≥ xy−ε). In particular the powers b 7→ bk (k = 1, 2, . . .)
are left semicontinuous. It follows that, for any fixed k, the step function b 7→ nk(b) is
left semicontinuous. Proof: Fix k arbitrarily. Since the power b 7→ bk is increasing, the
function nk(·) decreases. Consider a sequence bi ↗ b > ω. Since ω < infi bi ≤ a, the
decreasing sequence {nk(bi) : i = 1, 2, . . .} is bounded. Since nk(·) assumes integer values,
there is i0 with nk(bi) = N := limi nk(bi) for i ≥ i0. Then aN+1 = ank(bi)−1 < bk

i ≤
ank(bi) = aN for any i ≥ i0. It follows aN+1 > b ≥ aN which means that nk(b) = N i.e.
nk(bi) ↗ N = nk(b). On the other hand the sequence nk(·)/k (k = 1, 2, . . .) converges
uniformly to L(·) (actually supb |L(b) − nk(b)/k| ≤ 1/k for all k). Hence we deduce that
left semicontinuity of L, because, in general, the uniform limit of τ -continuous functions is
τ -continuous for any topology τ . Thus, in particular L is left semicontinuous. The proof
of (2) is analogous with the step functions ñk(b) :=

[
n : an ≤ bk < an−1

]
in place of nk(·).

2.8 Lemma. For any c ∈ (ω, a], the functions nc
k(b) :=

[
n : cn+1 < bk ≤ cn

]
and

Lc(b) := limk nc
k(b)/k are well-defined, moreover we have Lc = L(c)−1L in terms of the

logarithm function defined in 1.3.

Proof. Sc :=
(
(ω, c], ·,≥) is an ordered subsemigroup of S =

(
(ω, a], ·,≥). Hence we

can apply the previous arguments with c in place of a to establish that all the functions nc
k

∗ Proof. We may assume Ω ⊃ [α, β] \ ⋃∞
k=1 Ik where I1, I2, . . . are pairwise disjoint

open intervals with
∑∞

k=1 mes(Ik) = (β − α)(1/2 − ε) for some ε > 0. The vertical resp.
horizontal stripes Ik × [α, β] and [α, β]× Ik, k = 1, 2, . . . cut at most 2(1/2− ε)

√
2(β − α)

length from the diagonal segments Dρ := {(ω1, ω2) : α ≤ ω1, ω2 ≤ β, ω1 + ω2 = ρ}
which have length >

√
2(β − α − ε) whenever ρ ∈ (α + β − ε, α + β + ε). Therefore

Ω + Ω ⊃ (α + β − ε, α + β + ε).
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along with Lc are well-defined and decreasing. By definition we have cnc
k(b)+1 < bk ≤ cnc

k(b),
whence

(nc
k(b) + 1)L(c) = L

(
cnc

k(b)+1
) ≥ L(bk) = kL(b) ≥ L

(
cnc

k(b)
)

= nc
k(b)L(c).

Since Lc(b) = limk nc
k(b)/k, we get Lc(b)L(c) ≥ L(b) ≥ Lc(b)L(c).
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