C_{0}-SEMIGROUPS OF HOLOMORPHIC ENDOMORPHISMS

E Banach space, D bounded domain in \mathbf{E}
$d_{\mathbf{D}}:=[$ Carathéodory distance on $\mathbf{D}], \quad \operatorname{Hol}(\mathbf{D}):=\{$ holomorphic maps $\mathbf{D} \rightarrow \mathbf{D}\}$
Remark. $f \in \operatorname{Hol}(\mathbf{D})$ is a $d_{\mathbf{D}}$-contraction. Taylor series: $f(a+v)=\sum_{n=0}^{\infty}\left[D_{z=a}^{n} f(z)\right] v^{n}$.
Cauchy estimates: $\left\|\left[D_{z=a}^{n} f(z)\right] v^{n}\right\| \leq \operatorname{diam}(\mathbf{D}) \operatorname{dist}(a, \partial \mathbf{D})^{-(n+1)}\|v\|^{n}$.
f locally Lipschitzian, $K \subset \subset D$ convex $\Rightarrow \operatorname{Lip}(f \mid K) \leq \operatorname{diam}(\mathbf{D}) \operatorname{dist}(K, \partial \mathbf{D})^{-1}$;
$f_{j} \rightarrow f$ pointwise $\left.\left.\Longrightarrow\left[D^{n} f_{j}\right] v^{n}\right|_{K} \rightrightarrows\left[D^{n} f\right] v^{n}\right|_{K}$ on compact $K \subset \mathbf{D}, \forall n \forall v$.
Definition. [$\left.\Phi^{t}: t \in \mathbf{R}_{+}\right]$str.cont.1-prsg $\left(C_{0}\right.$-semigroup) in $\operatorname{Hol}(\mathbf{D})$ if
$\Phi^{0}=\mathrm{Id}, \quad \Phi^{t+h}=\Phi^{t} \circ \Phi^{h}\left(t, h \in \mathbf{R}_{+}\right), \quad t \mapsto \Phi^{t}(x)$ continuous $\forall x \in \mathbf{D}$.

The infinitesimal generator of $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right.$] is
$\Phi^{\prime}:=\left.\frac{d}{d t}\right|_{t=0+} \Phi^{t}, \quad \operatorname{dom}\left(\Phi^{\prime}\right)=\left\{x: \exists v \quad \Phi^{h}(x)=x+h v+o(h)\right\}$
Proposition. $x \in \operatorname{dom}\left(\Phi^{\prime}\right) \Longrightarrow t \mapsto \Phi^{t}(x)$ differentiable.

Proof. $\Phi^{h}(x)=x+h v+o(h) \Longrightarrow \Phi^{t+h}(x)-\Phi^{t}(x)=\Phi^{t}(x+h v+o(h))-\Phi^{t}(x)=$ $=h\left[D_{z=x} \Phi^{t}(z)\right] v+o(h) \quad$ In particular $x \in \operatorname{dom}\left(\Phi^{\prime}\right) \Rightarrow x \in \operatorname{dom}\left(\left.\frac{d}{d s}\right|_{s=t+0} \Phi^{s}\right)$ for $h \searrow 0$. For the left-derivatives:
given $t>0$ and $x \in \operatorname{dom}\left(\Phi^{\prime}\right)$ with $\phi^{h}(x)=x+h v+w_{h}, w_{h}=o(h)(h \searrow 0)$ we have

$$
\begin{aligned}
& {\left[\Phi^{t-h}(x)-\Phi^{t}(x)\right] /(-h)=\left[\Phi^{t-h}(x)-\Phi^{t-h}\left(x+h v+w_{h}\right)\right] /(-h)=} \\
& =\left[D_{x} \Phi^{t-h}\right] v+\left[D_{x} \Phi^{t-h}\right]\left(w_{h} / h\right)+\sum_{n>1} h^{n-1}\left[D_{x}^{n} \Phi^{t-h}\right]\left(v+w_{h} / h\right)^{n} .
\end{aligned}
$$

Since $\{x\}$ is compact, $\left[D_{x} \Phi^{t-h}\right] v \rightarrow\left[D_{x} \Phi^{t}\right] v$ as $h \searrow 0$.

By Cauchy estimates, with $\delta:=\operatorname{dist}\left(\left\{\Phi^{s}(x): 0 \leq s \leq t\right\}, \partial D\right)>0$, we have
$\left\|\left[D_{x} \Phi^{t-h}\right]\left(w_{h} / h\right)\right\| \leq \operatorname{diam}(D) \delta^{-1}\left\|w_{h} / h\right\| \rightarrow 0 \quad(h \searrow 0) \quad$ and
$\left\|\left[D_{x}^{n} \Phi^{t-h}\right]\left(v+w_{h} / h\right)\right\| \leq \operatorname{diam}(D) \delta^{n-1}\left\|v+w_{h} / h\right\|^{n}$
implying $\left\|\sum_{n>1} h^{n-1}\left[D_{x}^{n} \Phi^{t-h}\right]\left(v+w_{h} / h\right)\right\| \rightarrow 0 \quad(h \searrow 0) . \quad$ Q. e. d.
Remark. In course of the proof we have seen

$$
\frac{d}{d t} \Phi^{t}(x)=\Phi^{\prime}\left(\Phi^{t}(x)\right)=\left[D_{x} \Phi^{t}\right] \Phi^{\prime}(x) \quad\left(x \in \operatorname{dom}\left(\Phi^{\prime}\right)\right)
$$

Corollary. Given $x \in \operatorname{dom}\left(\Phi^{\prime}\right)$, the orbit $t \mapsto \Phi^{t}(x)$ is continuously differentiable. Thus

$$
\operatorname{dom}\left(\Phi^{\prime}\right)=\left\{x \in \mathbf{D}: t \mapsto \Phi^{t}(x) \text { is continuously diff. }\right\}
$$

Proof. Since $\{x\}$ is compact, the function $t \mapsto\left[D_{x} \Phi^{t}\right] v$ is continuous for any $v \in \mathbf{E}$.
Proposition. The graph of Φ^{\prime} is closed.

Let $x_{n} \in \operatorname{dom}\left(\Phi^{\prime}\right), v_{n}:=\Phi^{\prime}\left(x_{n}\right)(n=1,2, \ldots)$ and assume $x_{n} \rightarrow x \in \mathbf{D}, v_{n} \rightarrow v \in \mathbf{E}$.

$$
\begin{gathered}
\frac{\Phi^{h}\left(x_{n}\right)-x_{n}}{h}=\int_{s=0}^{h}\left[\frac{d}{d s} \Phi^{s}\left(x_{n}\right)\right] d s=\int_{s=0}^{h}\left[D_{x_{n}} \Phi^{s}\right] v_{n} d s=\int_{s=0}^{1}\left[D_{x_{n}} \Phi^{s h}\right] v_{n} d s, \\
{\left[D_{x_{n}} \Phi^{s}\right] v_{n}-v=\left[D_{x_{n}} \Phi^{s h}\right] v_{n}-\left[D_{x_{n}} \Phi^{0}\right] v=\left[D_{x_{n}} \Phi^{s h}\right]\left(v_{n}-v\right)+\left(\left[D_{x_{n}} \Phi^{s h}\right]-\left[D_{x_{n}} \Phi^{0}\right]\right) v .}
\end{gathered}
$$

Since $K:=\{x\} \cup\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbf{D}$ is compact, $\left[D \Phi^{s h}\right] v\left|K \rightrightarrows v=\left[D \Phi^{0}\right] v\right| K$ for $t \searrow 0$. Also $\left\|\left[D_{x_{n}} \Phi^{t}\right]\left(v_{n}-v\right)\right\| \leq M\left\|v_{n}-v\right\|$ with $M:=\operatorname{diam}(\mathbf{D}) \operatorname{dist}(K, \partial \mathbf{D})^{-1}$. Thus the functions $f_{n}(t):=\left[D_{x_{n}} \Phi^{t}\right] v_{n}$ satisfy $\left.\left\|f_{n}(t)-v\right\| \leq \max _{z \in K} \| v-D_{z} \Phi^{t}\right] v\|+M\| v_{-} v \|$. Hence $h^{-1}\left(\Phi^{h}(x)-x\right)=\lim _{n} h^{-1}\left(\Phi^{h}\left(x_{n}\right)-x_{n}\right)=\int_{s=0}^{1} f_{n}(s h) d s \rightarrow v$ as $h \searrow 0 . \quad$ Q. e. d.

Proposition. Let $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right],\left[\Psi^{t}: t \in \mathbf{R}_{+}\right]$be c_{0}-semigroups of holomorphic $\mathbf{D} \rightarrow \mathbf{D}$ maps with the same generator. Then they coincide on $\operatorname{dom}\left(\Phi^{\prime}\right)\left(=\operatorname{dom}\left(\Phi^{\prime}\right)\right)$.

Proof. For $t, s, h \geq 0$ with $t \geq s+h$ we have

$$
\begin{aligned}
& \frac{1}{h}\left[\Phi^{t-(s+h)}\left(\Psi^{s+h}(x)\right)-\Phi^{t-s}\left(\Psi^{s}(x)\right)\right]= \\
& =\frac{1}{h}\left[\Phi^{t-(s+h)}\left(\Psi^{s+h}(x)\right)-\Phi^{t-(s+h)}\left(\Psi^{s}(x)\right)\right]-\frac{1}{h}\left[\Phi^{t-(s+h)}\left(\Psi^{s}(x)\right)-\Phi^{t-s}\left(\Psi^{s}(x)\right)\right] ; \\
& \frac{1}{h}\left[\Phi^{t-(s+h)}\left(\Psi^{s+h}(x)\right)-\Phi^{t-(s+h)}\left(\Psi^{s}(x)\right)\right]=\frac{1}{h} \int_{u=0}^{1}\left[\frac{d}{d u} \Phi^{t-(s+h)}\left(\Psi^{s+u h}(x)\right)\right]= \\
& \quad=\int_{u=0}^{1}\left[\mathrm{D}_{\Psi^{s+u h}(x)} \Phi^{t-(s+h)}\right]\left[\frac{1}{h} \frac{d}{d u} \Psi^{s+u h}(x)\right] d u= \\
& \quad=\int_{u=0}^{1}\left[\mathrm{D}_{\Psi^{s+u h}(x)} \Phi^{t-(s+h)}\right] \Psi^{\prime}\left(\Psi^{s+u h}(x)\right) d u \xrightarrow{h \rightarrow 0} \\
& \quad \xrightarrow[h \rightarrow 0]{h \rightarrow}\left[\mathrm{D}_{\Psi^{s+u h}(x)} \Phi^{t-(s+h)}\right] \Psi^{\prime}\left(\Psi^{s}(x)\right) ; \\
& \frac{1}{h}\left[\Phi^{t-(s+h)}\left(\Psi^{s}(x)\right)-\Phi^{t-(s+h)}\left(\Psi^{s}(x)\right)\right]=-\frac{1}{h} \int_{u=0}^{1}\left[\frac{d}{d u} \Phi^{t-(s+h)}\left(\Phi^{h}\left(\Psi^{s}(x)\right)\right)\right]= \\
& \quad=-\int_{u=0}^{1}\left[\mathrm{D}_{\Psi^{s}(x)} \Phi^{t-(s+h)}\right]\left[\frac{1}{h} \frac{d}{d u} \Phi^{u h}\left(\Psi^{s}(x)\right)\right] d u \xrightarrow{h \rightarrow 0} \\
& \xrightarrow{h \rightarrow 0}-\left[\mathrm{D}_{\Psi^{s}(x)} \Phi^{t-(s+h)}\right] \Phi^{\prime}\left(\Psi^{s}(x)\right)
\end{aligned}
$$

because $(y, \tau, w) \mapsto\left[\mathrm{D}_{y} \Phi^{\tau}\right] w$ resp. $\quad(y, \tau, w) \mapsto\left[\mathrm{D}_{y} \Psi^{\tau}\right] w$ are continuous on domains $\mathbf{K} \times[0, t] \times \mathbf{W}$ with compact $\mathbf{K} \subset \mathbf{D}$ (actually $\left.\mathbf{K}:=\left\{\Psi^{s}(x): s \in[0, t]\right\}\right)$ and compact balanced $\mathbf{W} \subset \mathbf{E}$ with $\mathbf{K}+\mathbf{W} \subset \mathbf{D}$. It follows $\frac{d}{d s} \Phi^{t-s}\left(\Psi^{s}(x)\right)=\Psi^{\prime}\left(\Psi^{s}(x)\right)-\Phi^{\prime}\left(\Psi^{s}(x)\right)=$ 0 implying that $[0, t] \ni s \mapsto \Phi^{t-s}\left(\Psi^{s}(x)\right)$ is constant. In particular, by considering $s=0$ resp. $s=t$ we get $\Phi^{t}(x)=\Psi^{t}(x) . \quad$ Qu. e. d.

Open problem. \exists ? $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$nowhere diff. in t ?

HOLOMORPHIC CARATHÉODORY ISOMETRIES OF THE UNIT BALL

Definition. $\operatorname{Iso}_{h}(\mathbf{D}):=\left\{\right.$ holomorphic $d_{\mathbf{D}}$-isometries $\}$.
We write $\mathbf{B}:=\{x \in \mathbf{E}:\|x\|<1\}$ and $\partial \mathbf{B}:=\{x \in \mathbf{E}:\|x\|=1\}$ in the sequel.

The infinitesimal Carathéodory metric of \mathbf{D} at a point $a \in \mathbf{D}$ is
$\delta_{\mathbf{D}}(a, v):=\left.\frac{d}{d t}\right|_{t=0+} d_{\mathbf{D}}(a+t v, a)$.
Remark. In the case of the unit ball $(\mathbf{D}=\mathbf{B})$ we have
$d_{\mathbf{B}}(0, x)=\operatorname{arth}\|x\|(x \in \mathbf{B})$ and $\delta_{\mathbf{B}}(v)=\|v\|(v \in \mathbf{E})$.

Notation. Throughout this section we consider a holomorphic endomorphism $\Phi \in \operatorname{Iso}\left(d_{\mathbf{B}}\right)$ leaving the origin fixed: $0=\Phi(0)$. We write its Taylor series in the form $\Phi=U x+\Omega(x)=U x+\sum_{n=2}^{\infty} \Omega_{n}(x) \quad(x \in \mathbf{B})$. It is well-known [Vesentini-Franzoni] that the Fréchet derivatives $D_{a} \Psi=D_{z=a} \Psi(z): v \mapsto$ $\left.\frac{d}{d \zeta}\right|_{\zeta=0} \Psi(a+\zeta v)$ of a holomorphic $d_{\mathbf{D}_{1}} \rightarrow d_{\mathbf{D}_{2}}$ isometry $\Psi: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ between two bounded domains are (linear) $\delta_{\mathbf{D}_{1}}(a, \cdot) \rightarrow \delta_{\mathbf{D}_{2}}(\Psi(a), \cdot)$ isometries.

In particular U is necessarily an \mathbf{E}-isometry: $\|U x\|=\|x\|(x \in \mathbf{E}$.

Furthermore, since $\Phi \in \mathrm{Iso}_{\mathbf{B}}$, fo any $x \in \mathbf{B}$ we have
$\operatorname{arth}\|x\|=d_{\mathbf{B}}(0, x)=d_{\mathbf{B}}(\Phi(0), \Phi(x))=d_{\mathbf{B}}(0, \Phi(x))=\operatorname{arth}\|\Phi(x)\|$.

Thus Φ maps the spheres $\rho \partial \mathbf{B}=\{x:\|x\|=\rho\}$ resp. the balls $\rho \mathbf{B}=\{x:\|x\|<\rho\}$ ($0 \leq \rho<1$) into themselves.

Question. Under which hypothesis is Φ linear (i.e. $\Phi=U$)?

Lemma. If range $(\Phi) \subset \operatorname{range}(U)$ then $\Phi=U$.

Proof. By assumption, the map $\widetilde{\Phi}:=U^{-1} \circ \Phi$ is a well-defined $\mathbf{B} \rightarrow \mathbf{B}$ holomophy with $\widetilde{\Phi}(0)=0$ and $D_{0} \widetilde{\Phi}=U^{-1} D_{0} \Phi=U^{-1} U=\mathrm{id}_{\mathbf{E}}$. From the classical Cartan's Uniqueness Theorem it follows $\widetilde{\Phi}=\operatorname{id}_{\mathbf{B}}$ whence the statement is immediate.

Notation. Given a unit vector $y \in \partial \mathbf{B}$, we write $\mathcal{S}(y):=\{L \in \mathcal{L}(\mathbf{E}, \mathbf{C}): 1=\langle L, y\rangle=\|L\|\}$ for the family of all supporting \mathbf{C}-linear functionals of \mathbf{B} at its boundary point y.

Lemma. Given $x \in \partial \mathbf{B}$ along with a vector $v \in \mathbf{E}$ such that $x+\Delta v \subset \partial \mathbf{B}$, we have* $\langle L, \Phi(\zeta(x+\eta v))\rangle=1 \quad(\zeta, \eta \in \Delta)$ for all $L \in \mathcal{S}(U x)$.

Proof. Let $L \in \mathcal{S}(U x)$ and consider the holomorphic map $\Phi_{x, v}: \Delta^{2} \rightarrow \mathbf{C}$ defined as $\Phi_{x, v}(\zeta, \eta):=U(x+\eta v)+\sum_{n=2}^{\infty} \zeta^{n-1} \eta^{n} \Omega_{n}(\zeta(x+\eta v)) \quad(\zeta, \eta \in \Delta=\{\xi \in \mathbf{C}:|\xi|<1\})$.

Observe that, for any $0 \neq \zeta, \eta \in \Delta$, we have $\Phi_{x, v}(\zeta, \eta)=\zeta^{-1} \Phi(\zeta(x+\eta v))$ implying $\left\|\Phi_{x, v}(\zeta, \eta)\right\|=|\zeta|^{-1}\|\Phi(\zeta(x+\eta v))\|=|\zeta|^{-1}\|\zeta(x+\eta v)\|=\|\zeta(x+\eta v)\|=1$.

Thus $\Phi_{x, v . L}:(\zeta, \eta) \mapsto\left\langle L, \Phi_{x, v}(\zeta, \eta)\right\rangle$ is a holomorphic function on Δ^{2} with
$\left|\Phi_{x, v, L}(\zeta, \eta)\right| \leq\|L\|=1$ and $\Phi_{x, v, L}(0,0)=\lim _{0 \nLeftarrow, \eta \rightarrow 0} \Phi_{x, v, L}(\zeta, \eta)=\left\langle L, \Phi_{x, v}(0,0)\right\rangle=\langle L, U x\rangle=1$.
By the Maximum Principle, $\Phi_{x, v, L} \equiv 1$ which completes the proof.

Corollary. $\left\langle L, \Omega_{n}(U y)\right\rangle=0$ for all $y \in \partial \mathbf{B}$ and $L \in \mathcal{S}(U y)$.

Proof. Given $L \in \mathcal{S}(U y)$ where $y \in \partial \mathbf{B}$, for all $\zeta \in \Delta$ (even with $\zeta=0$) we have

$$
1 \equiv\left\langle L, \zeta^{-1} \Phi(\zeta y)\right\rangle=\Phi_{\zeta, 0}=\left\langle L, U y+\sum_{n=2}^{\infty} \zeta^{n-1} \Omega_{n}(U y)\right\rangle . \quad \text { Qu.e.d. }
$$

* $\bar{\Delta}:=\{\zeta \in \mathbf{C}:|\zeta|<1\}$ is the unit disc, $\mathbf{T}:=\{\zeta \in \mathbf{C}:|\zeta|=1\}=\partial \Delta$ is the unit circle.

Notation. In terms of the Taylor expansion $\Phi(x)=U x+\sum_{n=2}^{\infty} \Omega_{n}(x)$, let
$F(\zeta, x):=\zeta^{-1} \Phi(\zeta x), \quad F(0, x):=U x \quad(0 \neq \zeta \in \Delta, x \in \mathbf{B})$.
Remark. F is holomorphic around the origin: $F(\zeta, x)=U x+\sum_{n=1}^{\infty} \zeta^{n} \Omega_{n+1}(x) ; \operatorname{ran}(F) \subset \partial \mathbf{B}$.
Lemma. Let $\mathbf{K} \subset \partial \mathbf{B}$ be a convex subset of the unit sphere. Then the convex hull
$\operatorname{Conv}(F(\Delta, \mathbf{K})) \subset \partial \mathbf{B}$.

Proof. Assume $x_{1}, \ldots, x_{k} \in \mathbf{K}, \zeta_{1}, \ldots, \zeta_{k} \in \Delta$ and consider a convex combination $y:=\sum_{j=1}^{k} \lambda_{j} F\left(\zeta_{j}, x_{j}\right) \quad$ where $\quad \sum_{j=1}^{k} \lambda_{j}=1, \lambda_{1}, \ldots, \lambda_{k}>0$. We have to see that $y \in \partial \mathbf{B}$.
Consider the points $\quad y_{t}:=\sum_{j=1}^{k} \lambda_{j} F\left(e^{2 \pi i t} \zeta_{j}, x_{j}\right) \quad(t \in \mathbf{R})$.
We have $\left\|y_{t}\right\| \leq 1(t \in \mathbf{R})$ since F ranges in the unit sphere. On the other hand $\int_{0}^{1} y_{t} d t=\sum_{j=1}^{k} \lambda_{j} \int_{0}^{1}\left[U x_{j}+\sum_{n=1}^{\infty} e^{2 n \pi i t} \Omega_{n+1}\left(x_{j}\right)\right] d t=\sum_{j=1}^{k} \lambda_{j} U x_{j}=U \sum_{j=1}^{k} \lambda_{j} x_{j}$.
By assumption $x:=\sum_{j=1}^{k} \lambda_{j} x_{j} \in \mathbf{K}$ implying that $\|U x\|=1$ and necessarily $\left\|y_{t}\right\| \equiv 1$.
In particular $y=y_{0} \in \partial \mathbf{B}$.

Remark. The map Φ extends holomorphically to some spherical neighborhood of $\overline{\mathbf{B}}$ by a result of Kaup. We denote the extension also by Φ without danger of confusion.

Corollary. If \mathbf{F} is a face of \mathbf{B} then $\Phi(\mathbf{F})$ is contained in some face of \mathbf{B} again.

Proof. We can apply the arguments of the lemma with $\zeta_{j}=1$ and the extended Φ.

EXAMPLE OF A NON-LINEAR C0-SEMIGROUP OF d_{B}-ISOMETRIES

E complex Banach space
$\mathbf{X}:=C_{0}\left(\mathbf{R}_{+}, \mathbf{E}\right)=\left\{x: \mathbf{R}_{+} \rightarrow \mathbf{E} \mid t \mapsto x(t)\right.$ continuous, $\left.\lim _{t \rightarrow \infty} x(t)=0\right\}, \quad\|x\|=\max _{t \geq 0}\|x(t)\|$
Lemma. Let $\left[\varphi^{t}: t \in \mathbf{R}_{+}\right]$be a C0-semigroup of $B(\mathbf{E})$-contractions. Then the maps $\Phi^{t}: B(\mathbf{X}) \rightarrow \mathbf{X}\left(t \in \mathbf{R}_{+}\right)$defined by

$$
\Phi^{t}(x): \mathbf{R}_{+} \ni \tau \mapsto\left[\varphi^{t-\tau}(x(0)) \text { if } 0 \leq \tau \leq t, \quad x(\tau-t) \text { if } \tau \geq t\right]
$$

form a C0-semigroup of $B(\mathbf{X})$-isometries.

Proof. Consider any function $x \in B(\mathbf{X})$ and any parameter $t \in \mathbf{R}_{+}$. The function $\Phi^{t}(x)$ ranges in $B(\mathbf{X})$ with $\lim _{\tau \rightarrow \infty} \Phi^{t}(x)(\tau)=\lim _{\tau \rightarrow \infty} x(\tau-t)=0$. The continuity of $\Phi^{t}(x)$ on the intervals $[0, t]$ resp. $[t, \infty]$ is immediate by its definition. Hence $\Phi^{t}(x) \in \mathbf{X}$ with well-defined $\max _{\tau \geq 0}\|x(\tau)\|<1$. Given another function $y \in B(\mathbf{X})$, we have

$$
\begin{aligned}
& \left\|\Phi^{t}(x)-\Phi^{t}(y)\right\|=\max \left\{\max _{0 \leq \tau \leq t}\left\|\varphi^{t-\tau}(x(\tau))-\varphi^{t-\tau}(y(\tau))\right\|, \max _{\sigma \geq t}\|x(\sigma-t)-y(\sigma-t)\|\right\} \leq \\
& \left.\leq \max \left\{\max _{0 \leq \tau \leq t} \| x(\tau)-y(\tau)\right)\left\|, \max _{\sigma \geq t}\right\| x(\sigma-t)-y(\sigma-t) \|\right\} \leq \\
& \left.=\max _{\tau \geq 0} \| x(\tau)-y(\tau)\right)\|=\| x-y \|
\end{aligned}
$$

Since trivially

$$
\left.\left.\left\|\Phi^{t}(x)-\Phi^{t}(y)\right\| \geq \max _{\sigma \geq t}\|x(\sigma-t)-y(\sigma-t)\|\right\}=\max _{\tau \geq 0}\|x(\tau)-y(\tau)\|\right\}=\|x-y\|
$$

we conclude that each map Φ^{t} is a $B(\mathbf{X})$-isometry.

Next we check the semigroup property of $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$. Let $s, t \geq$. Then we have

$$
\begin{aligned}
\Phi^{s} & \circ \Phi^{t}(x): \tau \\
& \mapsto\left[\varphi^{s-\tau}\left(\Phi^{t}(x)(0)\right) \text { if } \tau \leq s, \quad \varphi^{t}(x)(\tau-s) \text { if } \tau \geq s\right] \\
\Phi^{s+t}(x): \tau & \mapsto\left[\varphi^{(s+t)-\tau}(x(0)) \text { if } \tau \leq s+t, \quad x(\tau-(s+t)) \text { if } \tau \geq s+t\right] .
\end{aligned}
$$

Thus if $0 \leq \tau \leq s$ then

$$
\begin{aligned}
\Phi^{s} \circ \Phi^{t}(x)(\tau) & =\varphi^{s-\tau}\left(\Phi^{t}(x(0))\right)=\varphi^{s-\tau}\left(\varphi^{t}(x(0))\right)= \\
& =\varphi^{s-\tau} \circ \varphi^{t}(x(0))=\varphi^{(s+t)-\tau}(x(0))=\Phi^{s+t}(x)(\tau) .
\end{aligned}
$$

If $s \leq \tau \leq s+t$ then

$$
\begin{aligned}
\Phi^{s} \circ \Phi^{t}(x)(\tau) & =\Phi^{t}(x)(\tau-s)=^{\tau-s \leq t}=\varphi^{t-(\tau-s)}(x(0))= \\
& =\varphi^{(s+t)-\tau}(x(0))=\Phi^{s+t}(x)(\tau) .
\end{aligned}
$$

If $s+t \leq \tau$ then

$$
\Phi^{s} \circ \Phi^{t}(x)(\tau)=\Phi^{t}(x)(\tau-s)=^{\tau-s \geq t}=x((\tau-s)-t)=\Phi^{s+t}(x)(\tau)
$$

We complete the proof by checking strong continuity, that is that $\left\|\Phi^{t}(x)-\Phi^{s}(x)\right\| \rightarrow 0$
whenever $s \rightarrow t$ in \mathbf{R}_{+}. Recall that the moduli of continuty

$$
\Omega(z, \delta):=\max _{\left|t_{1}-t_{2}\right| \leq \delta}\left\|z\left(t_{1}\right)-z\left(t_{2}\right)\right\|, \quad \omega(e, \delta):=\max _{\left|t_{1}-t_{2}\right| \leq \delta}\left\|\varphi^{t_{1}}(e)-\varphi^{t_{2}}(e)\right\|
$$

of any function $z \in \mathbf{X}$ resp. any vector $e \in \mathbf{E}$ are well-defined and converge to 0 as $\delta \searrow 0$.

Let $0 \leq t_{1} \leq t_{2}$. Then we have

$$
\Phi^{t_{1}}(x)-\Phi^{t_{2}}(x)= \begin{cases}\varphi^{t_{2}-\tau}(x(0))-\varphi^{t_{1}-\tau}(x(0)) & \text { if } \tau \leq t_{1}, \\ \varphi^{t_{2}-\tau}(x(0))-x\left(\tau-t_{1}\right) & \text { if } t_{1} \leq \tau \leq t_{2} \\ x\left(\tau-t_{2}\right)-x\left(\tau-t_{1}\right) & \text { if } t_{2} \leq \tau .\end{cases}
$$

Therefore

$$
\left\|\Phi^{t_{1}}(x)-\Phi^{t_{2}}(x)\right\| \leq \begin{cases}\omega\left(x(0), t_{2}-t_{1}\right) & \text { if } \tau \leq t_{1} \\ \left\|\varphi^{t_{2}-\tau}(x(0))-x(0)\right\|+\left\|x\left(\tau-t_{1}\right)-x(0)\right\| \leq & \\ \quad \leq \omega\left(x(0), t_{2}-t_{1}\right)+\Omega\left(x, t_{2}-t_{1}\right) & \text { if } t_{1} \leq \tau \leq t_{2} \\ \Omega\left(x, t_{2}-t_{1}\right) & \text { if } t_{2} \leq \tau\end{cases}
$$

Hence we see the uniform continuity of the function $t \mapsto \Phi^{t}(x)$ with modulus of continuity $\delta \mapsto \omega(x(0), \delta)+\Omega(x, \delta)$.

Remark. The conclusion of the above Lemma holds even if \mathbf{E} is assumed to be a normed space and not necessarily a Banach space.

Corollary. If the maps φ^{t} are holomorphic then each Φ^{t} is a holomorphic $d_{B(\mathbf{X})}$-isometry because $d_{B(\mathbf{X})}(x, y)=\max _{\tau \geq 0} d_{\Delta}(x(\tau), y(\tau))$ and the maps φ^{t} are $d_{B(\mathbf{E}) \text {-contractions. }}$.

Remark. It is well-known [Federer, Geometric measure theory?] that, given a continuously differentiable function $f: \mathbf{R}_{+} \rightarrow \mathbf{E}$ where \mathbf{E} is a Banach space, we have

$$
\frac{d^{+}}{d t}\|f(t)\|:=\limsup _{h \searrow 0}[\|f(t+h)\|-\|f(t)\|] / h=\sup _{L \in \mathcal{S}(f(t))} \operatorname{Re}\left\langle L, f^{\prime}(t)\right\rangle
$$

in terms of the family of supporting bounded linear functionals

$$
\mathcal{S}(y):=\left\{L \in \mathbf{E}^{*}:\|L\|=1,\langle L, y\rangle=\|y\|\right\} \quad(y \in \mathbf{E})
$$

In particular f is non-icreasing whenever $\operatorname{Re}\left\langle L, f^{\prime}(t)\right\rangle \leq 0$ for any $t \in \mathbf{R}_{+}$and for any functional $L \in \mathcal{S}(f(t))$.

Lemma. Let $V: U \rightarrow \mathbf{E}$ be a bounded continuously differentiable map (regarded as a vector field) on some open neighborhood U of the closed unit ball $\overline{B(\mathbf{E})}$ with $V(0)=0$
and let $\mu \geq \sup _{e_{1}, e_{2} \in B(\mathbf{E})}\left\|V\left(e_{1}\right)-V\left(e_{2}\right)\right\|$. Then the maximal flow of the vector field $W: B(\mathbf{E}) \ni e \mapsto V(e)-\mu e$ is a well-defined uniformly continuous one-parameter semigroup $\left[\varphi^{t}: t \in \mathbf{R}_{+}\right]$consisting of contractive (non-expansive) self maps of $B(\mathbf{E})$.

Proof. By definition, any flow of W is a family $\left[\varphi^{t}: t \in I\right]$ of self maps $\varphi^{t}: B(\mathbf{E}) \rightarrow B(\mathbf{E})$ where I is some (relatively) open subinterval of \mathbf{R}_{+}and, for any point $e \in B(\mathbf{E})$, the fuction $I \ni t \mapsto \varphi^{t}(e)$ is the solution of the initial value problem $(*) \frac{d}{d t} z(t)=W(z(t))$, $z(0)=e$. By writing I_{e} for the maximal solution of $(*)$, it is well-known that $\sup I_{e}>0$ in any case, furthermore we have $\lim _{t \rightarrow \sup } I_{e}\|z(t)\|=1$ whenever $\sup I_{e}<\infty$.

Let $e_{1}, e_{2} \in B(\mathbf{E})$ and consider the function $f(t):=\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)$ defined on the interval $I_{e_{1}} \cap I_{e_{2}}$. Observe that, given any functional $L \in \mathcal{S}\left(\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right)$, we have

$$
\begin{aligned}
& \operatorname{Re}\left\langle L, f^{\prime}(t)\right\rangle=\operatorname{Re}\left\langle L, W\left(\varphi^{t}\left(e_{1}\right)\right)-W\left(\varphi^{t}\left(e_{2}\right)\right)\right\rangle= \\
& =\operatorname{Re}\left\langle L, V\left(\varphi^{t}\left(e_{1}\right)\right)-V\left(\varphi^{t}\left(e_{2}\right)\right)\right\rangle-\mu \operatorname{Re}\left\langle L, \varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\rangle= \\
& =\operatorname{Re}\left\langle L, V\left(\varphi^{t}\left(e_{1}\right)\right)-V\left(\varphi^{t}\left(e_{2}\right)\right)\right\rangle-\mu\left\|\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\| \leq \\
& \leq \mu\left\|\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\|-\mu\left\|\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\|=0 .
\end{aligned}
$$

Hence we conclude that the fuction $t \mapsto f(t)$ is decreasing, in particular we have the contraction property $\left\|\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\| \leq\left\|\varphi^{0}\left(e_{1}\right)-\varphi^{0}\left(e_{2}\right)\right\|=\left\|e_{1}-e_{2}\right\|$ for $t \in I_{e_{1}} \cap I_{e_{2}}$. By assumption $W(0)=V(0)=0$ implying $\varphi^{t}(0) \equiv 0$ with $I_{0}=[0, \infty)=\mathbf{R}_{+}$. Hence we see also that $\left\|\varphi^{t}(e)\right\|=\left\|\varphi^{t}(e)-\varphi^{t}(0)\right\| \leq\|e-0\|=\|e\|<1$ for all $e \in B(\mathbf{E})$ and $t \in I_{e}$. This is possible only if $\sup I_{e}=\infty$. Therefore the maximal flow of W is defined for all (time) parameters $t \in \mathbf{R}_{+}$and consists of $B(\mathbf{E})$-contractions φ^{t}.

It is well-known that flows parametrized on \mathbf{R}_{+}are strongly continuous semigroups automatically. The uniform continuity of in our case is a consequence of the fact that $\left\|\varphi^{t_{2}}(e)-\varphi^{t_{1}}(e)\right\| \leq \int_{t_{1}}^{t_{2}}\left\|\frac{d}{d t} \varphi^{t}(e)\right\| d t=\int_{t_{1}}^{t_{2}}\left\|W\left(\varphi^{t}(e)\right)\right\| d t \leq \int_{t_{1}}^{t_{2}} 4 \mu d t \quad\left(0 \leq t_{1} \leq t_{2}\right)$, which shows that $\omega(e, \delta) \leq 4 \mu \delta \quad\left(e \in B(\mathbf{E}), \delta \in \mathbf{R}_{+}\right)$.

Example. Let $\mathbf{E}:=\mathbf{C}$ with $B(\mathbf{E})=\Delta=\{\zeta \in \mathbf{C}:|\zeta|<1\}$ and let $V(z) \equiv z^{2}$. Since $\left|z_{1}^{2}-z_{2}^{2}\right|=\left|z_{1}-z_{2}\right| \cdot\left|z_{1}+z_{2}\right| \leq 2\left|z_{1}-z_{2}\right|$, we can apply the above Lemma with $W(z):=z^{2}-2 z$. For the flow $\left[\varphi^{t}: t \in \mathbf{R}_{+}\right]$of W we obtain the holomorphic maps

$$
\varphi^{t}(z)=\frac{2 z}{\left(1-e^{2 t}\right) z+2 e^{2 t}} \quad(z \in \Delta, t \geq 0)
$$

Indeed, the solution of the initial value problem $(* *) \frac{d}{d t} x(t)=x(t)^{2}-2 x(t), x(0)=z$ is $x(t)=2 z /\left[\left(1-e^{2 t}\right) z+2 e^{2 t}\right]$ as one can check by direct computation. As for heuristics, we get a real valued solution with real calculus for ($* *$) with initial values $-1<z<1$, and the obtained formula extends holomorphically to Δ.

Theorem. Given a complex Banach space \mathbf{E}, there is a C0-semigroup of non-linear holomorphic 0-preserving norm and Carathéodory isometries of the open unit ball of the function space $\mathbf{X}:=C_{0}\left(\mathbf{R}_{+}, \mathbf{E}\right)$.

Proof. We can apply the construction of the first Lemma with a semigroup [$\varphi^{t}: t \in \mathbf{R}_{+}$] obtained with the construction of the 2nd Lemma with any E-polynomial vector field V.

Example. Let $\mathbf{E}:=\mathbf{C}$ and $\mathbf{X}:=C_{0}\left(\mathbf{R}_{+}, \mathbf{C}\right)$. Then the maps

$$
\Phi^{t}(x): \mathbf{R}_{+} \ni \tau \mapsto\left[\frac{2 x(0)}{\left(1-e^{2(t-\tau)}\right) x(0)+2 e^{2(t-\tau)}} \text { if } \tau \leq t, \quad x(\tau-t) \text { if } \tau \geq t\right]
$$

form a C0-semigroup of non-linear holomorphic 0-preserving norm and Carathéodory isometries of the unit ball $B(\mathbf{X})$.

Question. Is any holomorphic norm-isometry of the unit ball of a complex Banach space automatically a Carathéodory isometry as well?

Analogous construction in $\mathbf{E}=\mathcal{L}(\mathbf{H})$

$\mathbf{H}:=L^{2}\left(\mathbf{R}_{+}\right), \quad\langle f \mid g\rangle:=\int_{0}^{\infty} f(x) \overline{g(x)} d x$
$S^{t} f:=[x \mapsto f(x-t)$ if $x \geq t, 0$ else $] \quad\left(t \in \mathbf{R}_{+}, f \in \mathbf{H}\right)$
$\left(S^{t}\right)^{*} g=[x \mapsto f(x+t)] \quad\left(t \in \mathbf{R}_{+}, g \in \mathbf{H}\right)$
S^{t} lin. non surjective $\mathbf{H} \rightarrow \mathbf{H}$ isometry:
$\left(S^{t}\right)^{*} S^{t}=\operatorname{Id}_{\mathbf{H}}, \quad S^{t}\left(S^{t}\right)^{*} g=[x \mapsto g(x)$ if $x \geq t, \quad 0$ else $]$.
$P_{t}:=\operatorname{Pr}_{[0, t] \mathbf{H}}=\left[f \mapsto 1_{[0, t]} f\right], \quad \bar{P}_{t}:=1-P_{t}=S^{t}\left(S^{t}\right)^{*}=\left[f \mapsto 1_{(t, \infty)} f\right]$
Notation. $\mathbf{E}:=\mathcal{L}(\mathbf{H}), \quad \mathbf{E}_{0}:=\bigcup_{t>0} \mathbf{F}_{t}$ where

$$
\mathbf{F}_{t}:=\left\{A \in \mathbf{E}: P_{t} A \bar{P}_{t}=\bar{P}_{t} A P_{t}=0, P_{t} A P_{t}=\int_{0}^{t} \psi(s) d P_{s} \text { with } \psi \in \mathcal{C}[0, t]\right\}
$$

$\Lambda_{0} \in \mathbf{E}^{*}$ lin. functional with norm 1 , such that

$$
\Lambda_{0}(A):=\psi(0) \quad \text { whenever } \quad A \in \mathbf{F}_{t} \text { with } P_{t} A P_{t}=\int_{0}^{t} \psi(s) d P_{s}, \psi \in \mathcal{C}[0, t]
$$

Lemma. Λ_{0} is well-defined.

Proof. Immediate from the observations that

1) if $0<t_{1} \leq t_{2}$ and $A \in \mathbf{F}_{t_{k}}$ with $P_{t_{k}} A P_{t_{k}}=\int_{0}^{t_{k}} \psi_{k}(s) d P_{s}$ then $A \in \mathbf{F}_{t_{1}}$ with $P_{t_{1}} A P_{t_{1}}=\int_{0}^{t_{1}} \psi_{k}(s) d P_{s}(k=1,2) ;$
2) $A \in \mathbf{F}_{t}$ with $P_{t} A P_{t}=\int_{0}^{t} \psi_{1}(s) d P_{s}=\int_{0}^{t} \psi_{2}(s) d P_{s}, \psi_{1}, \psi_{2} \in \mathcal{C}[0, t] \quad$ implies $\quad \psi_{1}=\psi_{2}$ due to continuity of the functions ψ_{k}.

Definition. $\Lambda:=\left[\right.$ a Hahn-Banach extension of Λ_{0} to \mathbf{E} with norm 1]

CARTAN TYPE LINEARITY THEOREMS WITH NON-SURJECTIVE MAPS

\mathbf{E} Banach space, \mathbf{B} its open unit ball, $\Phi: \mathbf{B} \rightarrow \mathbf{B}$ holomorhic

Assumption. $\Phi(0)=0, \quad\|\Phi(x)\|=\|x\| \quad(x \in \mathbf{B})$.
Remark. If $\Psi \in \operatorname{Iso}\left(d_{\mathbf{B}}\right)$ and $\Psi(0)=0$ then necessarily $\|\Psi(x)\|=\tanh d_{\mathbf{B}}(\Psi(x), 0)=$ $\tanh d_{\mathbf{B}}(x, 0)=\|x\|(x \in \mathbf{B})$. However, it is not known in general whether $\Phi \in \operatorname{Iso}\left(d_{\mathbf{B}}\right)$. This latter holds if \mathbf{E} is a JB*-triple.

As for the Taylor series of Φ, we can write

$$
\Phi(x)=U x+\sum_{n=2}^{\infty} \Omega_{n}(x) \quad(x \in \mathbf{B})
$$

where each term Ω_{n} is a homogeneous polynomial $\mathbf{E} \rightarrow \mathbf{E}$ of n-th degree and
U is a linear isometry of \mathbf{E} since

$$
\begin{gathered}
\|U x\|=\lim _{t \rightarrow 0+}\|\Phi(t x)\|=\lim _{t \rightarrow 0+} d_{\mathbf{B}} \tanh d_{\mathbf{B}}(\Phi(t x), \Phi(0))= \\
=\lim _{t \rightarrow 0+} \tanh d_{\mathbf{B}}(t x, 0)=\lim _{t \rightarrow 0+} d_{\mathbf{B}}\|t x\|=\|x\| .
\end{gathered}
$$

As an easy consequence of Cartan's Uniqueness Theorem, if range $(\Phi) \subset U \mathbf{B}$ then necessarily $\Phi=\left.U\right|_{\mathbf{B}}$. Indeed, the mapping $\Psi(x):=U^{-1} \Phi(x)(x \in \mathbf{B})$ is a well-defined holomorphic self-map of \mathbf{B} with $\Psi^{\prime}(0)=\operatorname{Id}_{\mathbf{E}}$ and hence $\Psi=\operatorname{Id}_{\mathbf{B}}$ with $\Phi=U \Psi=\left.U\right|_{\mathbf{B}}$.

On the other hand, there is a rather simple example for a non-linear map Φ satisfying our assumptions: If we take the classical sequence space $\mathbf{E}=c_{0}=\left\{\left(\zeta_{0}, \zeta_{1}, \ldots\right): \lim _{n} \zeta_{n}=0\right\}$ with $\left\|\left(\zeta_{n}\right)_{n=0}^{\infty}\right\|:=\max _{n}\left|\zeta_{n}\right|$ then the mapping $\Phi(\zeta)_{n=0}^{\infty}:=\left(\zeta_{0}^{2}, \zeta_{0}, \zeta_{1}, \zeta_{2}, \ldots\right)$ is clearly a norm preservig holomorphic self-map of the unit ball.

Conjecture. If the underlying space \mathbf{B} is reflexive then necessarily $\Phi=\left.U\right|_{\mathbf{B}}$.

We achieved the following result which implies the conjecture for uniformly convex spaces:

Theorem. If we have sup $\operatorname{dim}\{$ faces of $\mathbf{B}\}<\infty$ then $\Phi=\left.U\right|_{\mathbf{B}}$.

Recall that by a face of \mathbf{B} we mean a non-empty convex subset of $\partial \mathbf{B}:=\{x \in \mathbf{E}:\|x\|=1\}$. A norm exposed face of \mathbf{B} is a non empty intersection of a real affine subspace passing outside the open unit ball with the closed unit ball, i.e. any non-empty set of the form $\bigcap_{\mu \in \mathcal{M}}\{x \in \mathbf{E}:\|x\|=1=\langle\mu, x\rangle\}$ with a family \mathcal{M} of norm-one real-linear functionals $\mathbf{E} \rightarrow \mathbf{R}$. By a norm exposed complex face of \mathbf{B} we mean a non empty intersection of the form $\bigcap_{L \in \mathcal{L}}\{x \in \mathbf{E}:\|x\|=1=\langle L, x\rangle\}$ with a family \mathcal{L} norm-one complex-linear functionals $\mathbf{E} \rightarrow \mathbf{C}$. Notice that norm exposed (complex-)faces are automatically convex subsets of the unit sphere $\partial \mathbf{B}$ ab being the intersection of the closed unit ball witt a real (complex) affine subspace of \mathbf{E}.

Given any unit vector $x \in \partial \mathbf{B}$, we shall write $\mathcal{S}_{x}\left(\mathbf{B}:=\left\{L \in \mathbf{E}^{*}:\|x\|=\langle L, x\rangle=1\right\}\right.$ for the family of all supporting linear functionals of the unit ball at the point x. By the aid of these terms we introduce the notations
$\operatorname{Face}_{x}(\mathbf{B}):=\bigcap_{L \in \mathcal{S}_{x}(\mathbf{B})}\{y \in \partial \mathbf{B}: \operatorname{Re}\langle L, y\rangle=1\}, \quad \operatorname{Face}_{x}^{\mathbf{C}}(\mathbf{B}):=\bigcap_{L \in \mathcal{S}_{x}(\mathbf{B})}\{y \in \partial \mathbf{B}:\langle L, y\rangle=1\}$ for the minimal real resp. complex norm exposed face at the point x.

Lemma. Suppose $\Psi: \mathbf{D} \rightarrow \mathbf{E}$ is a holomorphic map from a domain (open connected set)
\mathbf{D} in some Banach space into \mathbf{E} such that $\operatorname{range}(\Psi)(=\Psi(\mathbf{D})) \subset \partial \mathbf{B}$. Then range (Ψ) is contained in some norm exposed complex face of \mathbf{B}.

Proof. Let $z_{0} \in \mathbf{D}$ be any point and define $x_{0}:=\Psi(z)$. Given any support linear functional $L \in \mathcal{S}_{x_{0}}(\mathbf{B})$, we have

$$
|\langle L, \Psi(z)\rangle| \leq\|L\|\|\Psi(z)\|=1=\left|\left\langle L, \Psi\left(z_{0}\right)\right\rangle\right| \quad(z \in \mathbf{D})
$$

That is the modulus of the holomorphic scalar valued function $L \Psi: z \mapsto\langle L, \Psi(z)\rangle$ assumes its maximum value $(=1)$ at the inner point z_{0} of the (open) domain D. Hence, by the Maximum Priciple, necessarily $L \Psi \equiv L \Psi\left(z_{0}\right)=1$ and therefore range $(\Psi) \subset\{y \in \partial \mathbf{B}$: $\langle L, y\rangle=1\}$. By the arbitrariness of the choice for $z_{0} \in \mathbf{D}$, we conclude that range $(\Psi) \subset$ $\bigcap_{z_{0} \in \mathbf{D}} \bigcap_{L \in \mathcal{S}_{\Psi\left(z_{0}\right.}}\{y \in \partial \mathbf{B}:\langle L, y\rangle=1\}=\operatorname{Face}_{\Psi\left(z_{0}\right)}^{\mathbf{C}}(\mathbf{B})$.

Corollary. We have $\operatorname{Face}_{\Psi\left(z_{0}\right)}^{\mathbf{C}}(\mathbf{B})=\operatorname{Face}_{\Psi\left(z_{1}\right)}^{\mathbf{C}}(\mathbf{B}) \supset \operatorname{range}(\Psi) \quad\left(z_{0}, z_{1} \in \mathbf{D}\right)$.
Proof. It suffices to see that $\mathcal{S}_{\Psi\left(z_{0}\right)}(\mathbf{B})=\mathcal{S}_{\Psi\left(z_{0}\right)}(\mathbf{B}) \quad\left(z_{0}, z_{1} \in \mathbf{D}\right)$.
Let $z_{0}, z_{1} \in \mathbf{D}$ and $L \in \mathcal{S}_{\Psi\left(z_{0}\right)}(\mathbf{B})$. Since $L \Psi \equiv 1$, we have $1=\left\langle L, \Psi\left(z_{1}\right)\right\rangle=\left\|\Psi\left(z_{1}\right)\right\|$ that is also $L \in \mathcal{S}_{\Psi\left(z_{1}\right)}(\mathbf{B})$. By the arbitrariness of L in $\mathcal{S}_{\Psi\left(z_{0}\right)}(\mathbf{B})$ we see $\mathcal{S}_{\Psi\left(z_{0}\right)}(\mathbf{B}) \subset \mathcal{S}_{\Psi\left(z_{1}\right)}(\mathbf{B})$. With the change $z_{0} \leftrightarrow z_{1}$ in the argument, we get the converse inclusion as well.

Proposition. All the polynomial maps

$$
\Psi_{N, \delta}: x \mapsto U x+\frac{\delta}{2} \Omega_{N}(x) \quad(|\delta| \leq 1 ; N=2,3, \ldots)
$$

are norm-preserving on the closed unit ball $\overline{\mathbf{B}}$.

Proof. Let $x \in \partial \mathbf{B}$ be fixed arbitrarily and consider the holomorphic map

$$
\Phi_{x}(\zeta):=U x+\sum_{n=2}^{\infty} \zeta^{n-1} \Omega_{n}(x) \quad(\zeta \in \Delta)
$$

Actually $\quad \Phi_{x}(\zeta):=\zeta^{-1} \Phi(\zeta x) \quad(0 \neq \zeta \in \Delta) \quad$ while $\quad \Phi_{x}(0):=U x$. Let us choose a supporting (continuous complex-)linear) functional $L \in \mathcal{S}(U x, \mathbf{B}):=\left\{L \in \mathbf{E}^{*}: 1=\|L\|=\right.$ $|\langle L, x\rangle|\}$. Since $\|U x\|=\|x\|=1$, this can be done due to the Hahn-Banach Theorem. Since for $\zeta \neq 0$ we have $\left\|\Phi_{x}(\zeta)\right\|=|\zeta|^{-1}\|\Phi(\zeta x)\|=|\zeta|^{-1}\|\zeta x\|=\|x\|=1$ implying $\left|\left\langle L, \Phi_{x}(\zeta)\right\rangle\right| \leq\|L\| \cdot\left\|\Phi_{x}(\zeta)\right\|=1=\left\langle L, \Phi_{x}(0)\right\rangle$, the absolute value of the holomorphic function $\Delta \ni \zeta \mapsto\left\langle L, \Phi_{x}(\zeta)\right\rangle$ assumes its maximum at tha origin. Thus, by the Schwarz Lemma, $\left|\left\langle L, \Phi_{x}(\zeta)\right\rangle\right| \equiv 1$ that is the set $\Phi_{x}(\Delta)\left(=\left\{\Phi_{x}(\zeta):|\zeta|<1\right\}\right)$ is contained in the norm exposed face $\operatorname{Face}_{U x}(\mathbf{B}):=\bigcap_{L \in \mathcal{S}(U x, \mathbf{B})}\{y \in \overline{\mathbf{B}}:\langle L, y\rangle=1\}$ at $U x$ in $\partial \mathbf{B}$. Since Face $_{U x}(\mathbf{B})$ is a convex closed subset of \mathbf{E} containing the point $U x$, even the closed convex hull of $\Phi_{x}(\Delta)$ has the same property

$$
\overline{\operatorname{Conv}}\left(\Phi_{x}(\Delta)\right) \subset \text { Face }_{U x}(\mathbf{B})
$$

In particular, by weighting with any non-negative continuous function $\lambda: \Delta \rightarrow \mathbf{R}_{+}$we have

$$
\left[\int_{\zeta \in \Delta} \lambda(\zeta) \operatorname{area}(d \zeta)\right]^{-1} \int_{\zeta \in \Delta} \lambda(\zeta) \Phi_{x}(\zeta) \operatorname{area}(d \zeta) \in \operatorname{Face}_{U x}(\mathbf{B})
$$

Given N and δ as in the statement of the Proposition, consider this relation with the functions

$$
\lambda_{m}\left(\rho e^{i \varphi}\right):=\rho^{m}[1+\delta \cos ((N-1) \varphi)] \quad(0 \leq \rho<1 ; 0 \leq \varphi<2 \pi ; m=1,2, \ldots) .
$$

Since $\int_{\zeta \in \Delta}|\zeta|^{k} \zeta^{n} \operatorname{area}(d \zeta)=\int_{\rho=0}^{1} \int_{\varphi=0}^{2 \pi} \rho^{k} \rho^{n} e^{i n \varphi} d \varphi \rho d \rho=[2 \pi /(k+n+2)$ if $n=0,0$ else $]$, furthermore $\lambda_{m}(\zeta)=|\zeta|^{m}\left[1+(\delta / 2)|\zeta|^{1-N}\left(\zeta^{N-1}+\zeta^{1-N}\right)\right]$ and $\Phi_{x}(\zeta)=U x+\sum_{n>1} \zeta^{n-1} \Omega_{n}(x)$, hence we conclude that

$$
U x+\frac{\delta}{2} \frac{2 \pi /(m+N+1)}{2 \pi /(m+2)} \Omega_{N}(x) \in \operatorname{Face}_{U x}(\mathbf{B}) \quad(m=1,2, \ldots ; 0 \leq \delta \leq 1)
$$

By passing to the limit $m \rightarrow \infty$, it follows

$$
U x+\frac{\delta}{2} \Omega_{N}(x) \in \text { Face }_{U x}(\mathbf{B}) \quad(\|x\|=1 ; 0 \leq \delta \leq 1)
$$

Given any $0 \neq y \in \overline{\mathbf{B}}$, consider the boundary point $x:=y /\|y\|$ with the constant $\delta^{\prime}:=$ $\|y\|^{N-2} \delta \in[0,1]$. We have $\|y\|^{-1} U y+\left(\delta^{\prime} / 2\right)\|y\|^{1-N} \Omega_{N}(y) \in \operatorname{Face}_{U x}(\mathbf{B}) \subset \partial \mathbf{B}$ whence $1=\| \| y\left\|^{-1} U y+\left(\delta^{\prime} / 2\right)\right\| y\left\|^{1-N} \Omega_{N}(y)\right\|$ i.e. $\quad\|y\|=\left\|U y+\left(\|y\|^{2-N} \delta^{\prime} / 2\right) \Omega_{N}(y)\right\|=\| U y+$ $(\delta / 2) \Omega_{N}(y) \|$. Qu.e.d.

Lemma. Assume $v_{0}, v_{1}, \ldots, v_{n} \in[\mathbf{E} \backslash \operatorname{range}(U)] \cup\{0\}$ and $\sum_{j=0}^{n} U^{j} v_{j} \in \operatorname{range}\left(U^{n+1}\right)$. Then necessarily $v_{0}=v_{1}=\cdots=v_{n}=0$.

Proof. We proceed by contradiction and let k be the least index with $v_{k} \neq 0$ i.e. $v_{k} \notin$ $\operatorname{range}(U)$. Then $\sum_{j=k}^{n} U^{j} v_{j}=U^{n+1} w$ that is $U^{k}\left[v^{k}+U v_{k+1}+\cdots+U^{n-k} v_{v}-U^{n-k+1} w\right]=0$ for some $w \in \mathbf{E}$. Since U is an isometry, it follows $v^{k}+U v_{k+1}+\cdots+U^{n-k} v_{n}-U^{n-k+1} w=0$ which leads to the contradiction $v_{k}=U\left[\sum_{\ell: 0<\ell \leq n-k} U^{\ell-1} v_{k+\ell}-U^{n-k}\right] \in \operatorname{range}(U)$.

Lemma. Let $P: \Delta^{n} \rightarrow \mathbf{E}, P\left(\delta_{1}, \ldots, \delta_{n}\right):=\sum_{j_{1}, \ldots, j_{n} \in\{0, \ldots, K\}} \delta_{1}^{j_{1}} \cdots \delta_{n}^{j_{n}} p_{\left[j_{1}, \ldots, j_{n}\right]}$ with vector coefficients $p_{\left[j_{1}, \ldots, j_{n}\right]} \in \mathbf{E}$ be a bounded holomorphic map. Then for any constant
$\delta \in \bar{\Delta}$ and for any coefficient multiindex $\left[k_{1}, \ldots, k_{n}\right] \neq[0, \ldots, 0]$ we have

$$
p_{0}+\frac{\delta}{2} p_{\left[k_{1}, \ldots, k_{n}\right]} \in \overline{\operatorname{Conv}}\left(P\left(\Delta^{n}\right)\right) .
$$

Proof. Notice that given any non-vanishing bounded continuous function $\lambda: \Delta^{n} \rightarrow \mathbf{R}_{+}$, $\int_{\xi_{1}+i \eta} \lambda(\xi+i \eta) P(\xi+i \eta) d \xi_{1} \ldots d \xi_{n} d \eta_{1} \ldots d \eta_{n}$

$$
\begin{equation*}
\frac{\xi_{1}+i \eta_{1}, \ldots, \xi_{n}+i \eta_{n} \in \Delta}{\int_{\xi_{1}+i \eta_{1}, \ldots, \xi_{n}+i \eta_{n} \in \Delta} \lambda(\xi+i \eta) d \xi_{1} \ldots d \xi_{n} d \eta_{1} \ldots d \eta_{n}} \in \overline{\operatorname{Conv}}\left(P\left(\Delta^{n}\right)\right) . \tag{*}
\end{equation*}
$$

Let us fix any $\delta \in \bar{\Delta}$ and any pair of non-negative multiindices $\left[m_{1}, \ldots, m_{n}\right],\left[k_{1}, \ldots, k_{n}\right] \neq$ 0 and consider the above relation with the choice

$$
\lambda\left(\rho_{1} e^{i \varphi_{1}}, \ldots, \rho_{n} e^{i \varphi_{n}}\right):=\left[\prod_{j=1}^{n} \rho_{j}^{m_{j}}\right] \cdot\left[2+\bar{\delta} \prod_{j=1}^{n} e^{i k_{j} \varphi_{j}}+\delta \prod_{j=1}^{n} e^{-i k_{j} \varphi_{j}}\right]
$$

Observe that $\lambda\left(\Delta^{n}\right) \geq 0$ and

$$
\lambda\left(\delta_{1}, \ldots, \delta_{n}\right)=2 \prod_{j=1}^{n}\left|\delta_{j}\right|^{m_{j}}+\bar{\delta} \prod_{j=1}^{n}\left|\delta_{j}\right|^{m_{j}-k_{j}} \delta_{j}^{k_{j}}+\delta \prod_{j=1}^{n}\left|\delta_{j}\right|^{m_{j}+k_{j}} \delta_{j}^{-k_{j}}
$$

In general, with polar coordinate integration we get

$$
\begin{aligned}
& \quad \int_{\delta_{1}=\xi_{1}+i \eta_{1} \in \Delta} \cdots \int_{\delta_{n}=\xi_{n}+i \eta_{n} \in \Delta} \prod_{j=1}^{n}\left|\delta_{j}\right|^{r_{j}} \delta_{j}^{s_{j}} d \xi_{1} \ldots d \xi_{n} d \eta_{1} \ldots d \eta_{n}= \\
& =\int_{\rho_{1}=0}^{1} \cdots \int_{\rho_{n}=0}^{1} \int_{\varphi_{1}=0}^{2 \pi} \cdots \int_{\varphi_{n}=0}^{2 \pi} \prod_{j=1}^{n} \rho_{j}^{r_{j}} \rho_{j}^{s_{j}} e^{i s_{j} \varphi_{j}} \rho_{j} d \varphi_{n} \cdots d \varphi_{1} d \rho_{n} \cdots d \rho_{1}= \\
& =\left[\frac{(2 \pi)^{n}}{\prod_{j=1}^{n}\left(r_{j}+2\right)} \text { if } s_{1}=\cdots=s_{n}=0,0 \quad \text { else }\right] .
\end{aligned}
$$

In particular, for any non-negative multiindex $\left[t_{1}, \ldots, t_{n}\right]$,

$$
\begin{aligned}
& \quad \int_{\delta_{1}=\xi_{1}+i \eta_{1} \in \Delta} \ldots \int_{\delta_{n}=\xi_{n}+i \eta_{n} \in \Delta} \lambda\left(\delta_{1}, \ldots, \delta_{n}\right) \prod_{j=1}^{n} \delta_{j}^{t_{j}} d \xi_{1} \ldots d \xi_{n} d \eta_{1} \ldots d \eta_{n}= \\
& =\int_{\delta_{j}=\xi_{j}+i \eta_{j} \in \Delta} \cdots \int_{j=1}^{n}\left[2 \prod_{j=1}^{n}\left|\delta_{j}\right|^{m_{j}} \delta_{j}^{t_{j}}+\bar{\delta} \prod_{j=1}^{n}\left|\delta_{j}\right|^{m_{j}-k_{j}} \delta_{j}^{t_{j}+k_{j}}+\delta \prod_{j=1}^{n}\left|\delta_{j}\right|^{m_{j}+k_{j}} \delta_{j}^{t_{j}-k_{j}}\right] d \xi_{1} \cdots d \eta_{n}= \\
& =\left[\frac{2 \cdot(2 \pi)^{n}}{\prod_{j=1}^{n}\left(m_{j}+2\right)} \text { if } t=0\right]+\left[\frac{(2 \pi)^{n} \delta}{\prod_{j=1}^{n}\left(m_{j}+k_{j}+2\right)} \text { if } t=k, 0 \quad \text { else }\right]
\end{aligned}
$$

Since the Taylor series of P coverges locally uniformly, it follows that

$$
\int_{\xi_{1}+i \eta_{1}, \ldots, \xi_{n}+i \eta_{n} \in \Delta} \lambda(\xi+i \eta) d \xi_{1} \ldots d \xi_{n} d \eta_{1} \ldots d \eta_{n}=\frac{2 \cdot(2 \pi)^{n}}{\prod_{j=1}^{n}\left(m_{j}+2\right)}
$$

and

$$
\begin{aligned}
& \quad \int_{\xi_{1}+i \eta_{1}, \ldots, \xi_{n}+i \eta_{n} \in \Delta} \lambda(\xi+i \eta) P(\xi+i \eta) d \xi_{1} \ldots d \xi_{n} d \eta_{1} \ldots d \eta_{n}= \\
& =\frac{2 \cdot(2 \pi)^{n}}{\prod_{j=1}^{n}\left(m_{j}+2\right)} p_{[0, \ldots, 0]}+\frac{(2 \pi)^{n} \delta}{\prod_{j=1}^{n}\left(m_{j}+k_{j}\right)} p_{\left[k_{1}, \ldots, k_{n}\right]} .
\end{aligned}
$$

Hence and from $(*)$ the statement of the Lemma is immediate by passing to the limits $m_{1}, \ldots, m_{n} \rightarrow \infty$.

Lemma. Given any index $N>1$, for any unit vector $x \in \partial \mathbf{B}$ we have

$$
\begin{equation*}
(\Delta / 2) U^{n-k} \Omega_{N}\left(U^{k} x\right) \subset \operatorname{Face}_{U^{n+1} x}(\mathbf{B}) \quad(0 \leq k \leq n=0,1, \ldots, n) \tag{*}
\end{equation*}
$$

Proof. We proceed by induction on n. The case $n=0$ is immediate by the Proposition.

Assume that $(\Delta / 2) U^{n-k} \Omega_{N}\left(U^{k} x\right) \subset \operatorname{Face}_{U^{n+1} x}(\mathbf{B}) \quad(x \in \partial \mathbf{B})$ holds for some (k, n). Since U is a (complex-)linear E-isometry, it follows

$$
(\Delta / 2) U^{n+1-k} \Omega_{N}\left(U^{k} x\right)=U\left[(\Delta / 2) U^{n+1-k} \Omega_{N}\left(U^{k} x\right)\right] \subset U\left[\operatorname{Face}_{U^{n+1} x}(\mathbf{B})\right] \subset \operatorname{Face}_{U^{n+2} x}(\mathbf{B}) .
$$

On the other hand, by replacing x with $U x$, we get
$(\Delta / 2) U^{n-k} \Omega_{N}\left(U^{k+1} x\right)=(\Delta / 2) U^{n-k} \Omega_{N}\left(U^{k}(U x)\right) \subset \operatorname{Face}_{U^{n+1}(U x)}(\mathbf{B})=\operatorname{Face}_{U^{n+2} x}(\mathbf{B})$
which completes the induction argument and hence the proof.

Proof of the Theorem. We show that the assumption $\Omega \not \equiv 0$ leads to contradction.

Assume there is a homogeneous polynomial $\Omega_{N} \not \equiv 0$ (with $N>1$) in the Taylor expansion of Ω. It is well-known that then the set $\mathcal{N}\left(\Omega_{N}\right):=\left\{x \in \mathbf{E}: \Omega_{N}(x)=0\right\}$ is nowhere dense in \mathbf{E}. Since U is an isometry, also all the sets

CASE OF JB*-TRIPLES WITH FINITE RANK

$(\mathbf{E},\{\ldots\})$ is a JB^{*} triple with $\quad \operatorname{rank}(\mathbf{E})=r<\infty \quad$ in this section.

Remark. E is reflexive and is a finite ℓ^{∞}-direct sum of finitely many Cartan factors of which only the types $\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ and Spin factors can be infinite dimensional [Kaup, 1981]. By [Edwards-Rüttiman] or [Peralta-Stachó], the norm exposed faces of the unit ball \mathbf{B} are in a natural one-to-one correspondance with the tripotents of \mathbf{E} as being of the form

$$
\begin{aligned}
\operatorname{Face}(\mathbf{B}, e) & =\{y \in \partial \mathbf{B}:\langle L, y\rangle=1 \text { for all } L \in \mathcal{S}(e)\}= \\
& =\left\{e+v: v \perp^{\mathrm{Jordan}} e,\|v\| \leq 1\right\} \quad(e \in \operatorname{Trip}(\mathbf{E})) .
\end{aligned}
$$

Lemma. Let $a, b \in \partial \mathbf{B}$ be unit vectors such that $\|\alpha a+\beta b\|=\max \{|\alpha|,|\beta|\}(\alpha, \beta \in \mathbf{C})$.

Then

$$
a=e+a_{0}, \quad a_{0}, b \perp^{\text {Jordan }} e, \quad b=f+b_{0}, \quad b_{0}, a \perp^{\text {Jordan }} f, \quad e \perp^{\text {Jordan }} f
$$

with suitable tripotents $e, f \in \operatorname{Trip}(\mathbf{E})$ and vectors $a_{0}, b_{0} \in \overline{\mathbf{B}}$.

Proof. Since $a, b \in \partial \mathbf{B}$, we have

$$
a \in \operatorname{Face}(\mathbf{B}, e), a=a_{0}+e, a_{0} \perp^{\text {Jordan }} e \quad \text { resp. } \quad b \in \operatorname{Face}(\mathbf{B}, f), b=b_{0}+e, b_{0} \perp^{\text {Jordan }} f
$$

with suitable tripontents e, f and vectors $a_{0}, b_{0} \in \overline{\mathbf{B}}$. By assumption $\|a+\beta b\|=1$ whenever $|\beta| \leq 1$. That is the disc $a+\Delta b=a+a_{0}+\Delta b$ is also contained in the face $\operatorname{Face}(\mathbf{B}, e)$ of the point a. Similarly (with the chages $a \leftrightarrow b, e \leftrightarrow f, a_{0} \leftrightarrow b_{0}$), $b+\Delta a \subset \operatorname{Face}(\mathbf{B}, f)$. It follows

$$
e \perp^{\text {Jordan }} b=f+b_{0}, \quad f \perp^{\text {Jordan }} a=e+a_{0}
$$

implying (with the standard notation $L(x, y): z \mapsto\left\{x y^{*} z\right\}$)

$$
\begin{aligned}
& L\left(e, f+b_{0}\right)=L\left(f+b_{0}, e\right)=0 \text { i.e. } L(e, f)=-L\left(e, b_{0}\right), L(f, e)=-L\left(b_{0}, e\right) ; \\
& L\left(f, e+a_{0}\right)=L\left(e+a_{0}, f\right)=0 \text { i.e. } L(f, e)=-L\left(f, a_{0}\right), L(e, f)=-L\left(a_{0}, f\right) ; \\
& L(e, f)=-L\left(e, b_{0}\right)=-L\left(a_{0}, f\right), \quad L(f, e)=-L\left(f, a_{0}\right)=-L\left(b_{0}, e\right)
\end{aligned}
$$

Since $a_{0} \perp^{\text {Jordan }} e$, hence we get

$$
-L(f, e) e=-L\left(f, a_{0}\right) e=\left\{f a_{0} e\right\}=\left\{e a_{0} f\right\}=L\left(e, a_{0}\right) f=0
$$

which means the Jordan-orthogonality $\{f e e\}=0$ of the tripotents e, f. Qu.e.d.
Corollary. If $a_{1}, \ldots, a_{r} \in \mathbf{E}$ have the property $\left\|\sum_{k=1}^{r} \alpha_{k} a_{k}\right\|=\max _{k=1}^{r}\left|\alpha_{k}\right|\left(\alpha_{1}, \ldots, \alpha_{m} \in \mathbf{C}\right)$, then necessarily a_{1}, \ldots, a_{r} are pairwise Jordan-orthogonal tripotents.

Proof. Recall that $r=\operatorname{rank}(\mathbf{E})$ is the maximal number of pairwise Jordan-ortogonal non-zero vectors in \mathbf{E}. By the previous lemma, we can write

$$
a_{k}=e_{k}+a_{k 0}, \quad a_{k} \perp^{\text {Jordan }} e_{j}(j \neq k)
$$

with a maximal Jordan-orthogonal family of tripotents $\left\{e_{1}, \ldots, e_{r}\right\}$ and suitable vectors $a_{10}, \ldots, a_{r 0} \in \overline{\mathbf{B}}$ such that $a_{k 0} \perp^{\text {Jordan }} e_{k}(k=1, \ldots, r)$. The property $a_{k} \perp^{\text {Jordan }} e_{j}(j \neq$ k) along with the maximality of $\left\{e_{1}, \ldots, e_{r}\right\}$ implies that, for any index k, necessarily $a_{k} \in \mathbf{C} e_{k}$ and hence even $a_{k}=\varepsilon_{k} e_{k} \in \operatorname{Trip}(\mathbf{E})$ with $\left|\varepsilon_{k}\right|=1$ (because $\left\|a_{k}\right\|=1$). Qu.e.d. Theorem. The 0-preserving holomorphic Carathéodory isometries of the unit ball of a JB*-triple of finite rank are linear triple product homomorphisms.

Proof. Let $(\mathbf{E},\{\ldots\})$ be a JB*-triple with rank $r<\infty$ and let $\Phi=U+\Omega \in \operatorname{Iso}\left(d_{\mathbf{B}}\right)$ with $U:=D_{0} \Phi$ and $\Omega(0)=0$. According to the results of the previous section, the linear term U is a \mathbf{E}-isometry. Consider a maximal family $x_{1}, \ldots, x_{r} \in \operatorname{Trip}(\mathbf{E})$ of pairwise orthogonal tripotents. It is well-known that $\left\|\sum_{k=1}^{r} \alpha_{k} x_{k}\right\|=\max _{k=1}^{r}\left|\alpha_{k}\right|\left(\alpha_{1}, \ldots, \alpha_{r} \in \mathbf{C}\right)$ in this case. Thus the vectors $a_{k}:=U x_{k}$ satisfy the hypothesis of the Lemma and its Corollary, giving rise to the conclusion that $U x_{1}, \ldots, U x_{r}$ form also a maximal family of (minimal) tripotents in \mathbf{E}. Therefore (by Kaup's description of the extreme points of B), all the vectors $u_{\zeta_{1}, \ldots, \zeta_{r}}:=\sum_{k=1}^{r} \zeta_{k} U x_{k}$ with $\left|\zeta_{k}\right|=1$ are extreme points of \mathbf{B} with $\operatorname{Face}\left(\mathbf{B}, u_{\zeta_{1}, \ldots, \zeta_{r}}\right)=\left\{u_{\zeta_{1}, \ldots, \zeta_{r}}\right\}$. According to the last corollary of the previous section, $\Omega\left(u_{\zeta_{1}, \ldots, \zeta_{r}}\right)=\sum_{n=0}^{\infty} \Omega_{n}\left(u_{\zeta_{1}, \ldots, \zeta_{r}}\right) \underset{L \in \mathcal{S}\left(u_{\zeta_{1}, \ldots, \zeta_{r}}\right)}{ } \operatorname{ker}(L)=\{0\}$ implying even $\Omega\left(\sum_{k=1}^{r} \zeta_{k} U x_{k}\right)=0$ for $\left|\zeta_{1}\right|, \ldots,\left|\zeta_{r}\right| \leq 1$. Since every point of the ball \mathbf{B} is a finite linear combination of extreme points (because \mathbf{E} is of finite rank), necessarily $\Phi=U \mid \mathbf{B}$ is a linear isometry. Observe that $\operatorname{range}(U)$ is a subtriple of \mathbf{E} : if $y=U x$ then $x=\sum_{k=1}^{r} \zeta_{k} e_{k}$ with suitable orthogonal min tripotens e_{k}; by the lemma, also $f_{k}:=U e_{k}$ are orthogonal tripotens and hence $\left\{y y^{*} y\right\}=\left\{\left(\sum_{k} \zeta_{k} f_{k}\right)\left(\sum_{k} \zeta_{k} f_{k}\right)^{*}\left(\sum_{k} \zeta_{k} f_{k}\right)\right\}=\sum_{k}\left|\zeta_{k}\right|^{2} \zeta_{k} f_{k} \in U \mathbf{E}$.

It is well-known [Kaup, Horn] that linear isometries between JB*-triples are triple product homomorphisms.

Lemma. An endomorphism $U \in \mathcal{L}(\mathbf{E})$ of the triple product maps Cartan factors of \mathbf{E} into Cartan factors.

Proof. First observe that any minimal tripotent (atom) e of \mathbf{E} is mapped into a minimal tripotent by U and $U e$ belongs to some Cartan factor of \mathbf{E}. Indeed, we can find a maximal Jordan-orthogonal system e_{1}, \ldots, e_{r} (where $\left.r=\operatorname{rank}(\mathbf{E})\right)$ of minial tripotents with $e=e_{1}$. The vectors $U e_{k}$ form again a maximal Jordan-orthogonal system of (necessarily minimal) tripotents by the definition of $\operatorname{rank}(\mathbf{E})$. The stetement follows hence because the factor components of any tripotent form a Jordan-orthogonal system of tripotents.

Let \mathbf{F} be a Cartan factor of \mathbf{E} and consider two minimal tripotents in $e_{1}, e_{2} \in \mathbf{F}$. It suffices to see that $U e_{1}$ and $U e_{2}$ belong to the same Cartan factor of \mathbf{E}. Suppose the contrary. Then we wotld have $U e_{1} \in \mathbf{F}_{1} \perp \operatorname{Jordan} \mathbf{F}_{2} \ni U e_{2}$ with some Cartan factors $\mathbf{F}_{1} \neq \mathbf{F}_{2}$. However, even if $e_{1} \perp^{\text {Jordan }} e_{2}$, there exists a minimal tripotent $f \in \mathbf{F}$ with $f \not \chi^{\text {Jordan }} e_{1}, e_{2}$. (this can be seen elementarily, knowing the structures of Cartan factors) and the relations lead to the contradiction $U e_{k} \not \chi^{\text {Jordan }} U f$ implying $U e_{k}, f \in \mathbf{F}_{k}(k=1,2)$.

Corollary. Given a strongly continuous one-parameter family (not necessarily semigroup) $\left[U_{t}: t \in \mathbf{R}_{+}\right]$of linear maps in $\operatorname{Iso}\left(d_{\mathbf{B}}\right)$ (thus necessarily $\{\ldots\}$-homomorphisms), there exists $\varepsilon>0$ such that $U_{t} \mathbf{F} t \in[0, \varepsilon]$ for every Cartan factor of \mathbf{E}.

Proof. E is a finite Jordan-orthogonal direct sum of its Cartan factors. Let \mathbf{F} be any of them and consider any minimal tripotent $(0 \neq) e \in \mathbf{F}$. Since each U_{t} is a $\{\ldots\}$ homomorphism, the vectors $U_{t} e$ are minimal tripotents. By assumption $U_{t} e \rightarrow e=U_{0} e$ $(t \searrow 0)$. Therefore there exists $\varepsilon_{\mathbf{F}, e}>0$ with $U_{t} e \not \not \chi^{\text {Jordan }} e\left(t \in\left[0, \varepsilon_{\mathbf{F}, e}\right]\right)$. Proof:
$\left\{\left[U_{t} e\right]\left[U_{t} e\right] e\right\} \rightarrow\{e e e\}=e \neq 0$ as $t \searrow 0$. As we have noticed, non-orthogonal minimal tripotents belong to the same Cartan factor. In particular $U_{t} e \in \mathbf{F}\left(t \in\left[0, \varepsilon_{\mathbf{F}, e}\right]\right)$. Since each U_{t} maps Cartan factors into Cartan factors, hence also $U_{t} \mathbf{F} \subset \mathbf{F} \quad\left(t \in\left[0, \varepsilon_{\mathbf{F}, e}\right]\right)$. Qu.e.d.

Question. Can we extend the arguments to ℓ^{∞}-sums of finite rank Cartan factors?

Counter-example. $\mathbf{E}:=c_{0}\left(=\left\{\left(\zeta_{0}, \zeta_{1}, \ldots\right): \mathbf{C} \ni \zeta_{n} \rightarrow 0\right\}\right),\left\|\left(\zeta_{0}, \zeta_{1}, \ldots\right)\right\|:=\max _{n}\left|\zeta_{n}\right|$ with $d_{\mathbf{B}}\left(\left(\zeta_{0}, \zeta_{1}, \ldots\right),\left(\eta_{0}, \eta_{1}, \ldots\right)\right)=\max _{n} d_{\Delta}\left(\zeta_{n}, \eta_{n}\right)$.

Let $\Phi\left(\zeta_{0}, \zeta_{1}, \ldots\right):=\left(\zeta_{0}^{2}, \zeta_{0}, \zeta_{1}, \ldots\right)$.
Clearly $\Phi: \mathbf{B} \rightarrow \mathbf{B}$ holomorphically, with $\Phi(0)=0$. Since $\zeta \mapsto \zeta^{2}$ is d_{Δ}-contractive,

$$
\begin{aligned}
d_{\mathbf{B}}\left(\Phi\left(\zeta_{0}, \zeta_{1}, \ldots\right), \Phi\left(\eta_{0}, \eta_{1}, \ldots\right)\right) & =\max \left\{d_{\Delta}\left(\zeta_{0}^{2}, \eta_{0}^{2}\right), \max _{n} d_{\Delta}\left(\zeta_{n}, \eta_{n}\right)\right\}= \\
& \left.=\max _{n} d_{\Delta}\left(\zeta_{n}, \eta_{n}\right)=d_{\mathbf{B}}\left(\zeta_{0}, \zeta_{1}, \ldots\right),\left(\eta_{0}, \eta_{1}, \ldots\right)\right)
\end{aligned}
$$

Non-commutative version. $\mathbf{E}:=\mathcal{L}(\mathbf{H}),\left\{e_{0}, e_{1}, \ldots\right\}$ orthn.basis in \mathbf{H},
$\Phi(x):=(p x p)^{2}+u x u^{*}$ where $u: e_{0} \mapsto e_{1} \mapsto \cdots$ unilateral shift, $p:=\operatorname{Proj}_{\mathbf{C}}^{e_{0}}$.
$\Phi(x)$ is reduced by the subspace $\mathbf{K}:=\operatorname{Span}_{n>0} e_{n}$
i.e. $p x p: \mathbf{C} e_{0}=\mathbf{K}^{\perp} \rightarrow \mathbf{K}^{\perp}, \mathbf{K} \rightarrow 0$ and $u x u^{*}: \mathbf{K} \rightarrow \mathbf{K}, \mathbf{K}^{\perp} \rightarrow 0$.

It follows $\|\Phi(x)\|=\max \left\{\left\|(p x p)^{2}\right\|,\left\|u x u^{*}\right\|\right\}=\|x\|$.
Matrix form (wrt. $\left.\left[e_{k}\right]_{k=0}^{\infty}\right)$: for $x:=\left[\xi_{k, \ell}\right]_{k, \ell=0}^{\infty}, \Phi(x)=\left[\begin{array}{cccc}\xi_{00}^{2} & 0 & 0 & \cdots \\ 0 & \xi_{00} & \xi_{01} & \cdots \\ 0 & \xi_{10} & \xi_{11} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]$.

MÖBIUS TRANSFORMATIONS

Definition. The Möbius transformations are maximal holomorphic continuations
of holomorphic automorphisms of the unit ball \mathbf{B} of a JB*-triple $(\mathbf{E},\{\ldots\})$
$\Phi \in \operatorname{Aut}(\mathbf{B})$ extends holomorphically to a neighborhood of $\overline{\mathbf{B}}$.

Canonical form [Kaup MathZ. 1983]: $\quad \Phi=M_{a} \circ U$
$M_{a}(x)=a+\operatorname{Bergman}(a)^{1 / 2}[1+L(x, a)]^{-1} x, U$ surj.lin E-isom.

Faces: If $\mathbf{E} \mathrm{JBW}^{*}$-triple and \mathbf{F} is a (norm-exposed) face of $\partial \mathbf{B}$ then
$\exists e$ TRIP in $\mathbf{E} \quad \mathbf{F}=\{x \in \partial \mathbf{B}: x-e \perp e\}=\left\{M_{c}(e): c \perp e,\|c\| \leq 1\right\}$.

Tripotents: $e=\{e e e\} \in \partial \mathbf{B}$

Möbius equivalence: $\Phi \sim \Psi$ if $\exists \Theta$ Möbius trf. with $\Psi=\Theta \circ \Phi \circ \Theta$

Definition. In general, $\quad \operatorname{Iso}_{h}(\mathbf{D}):=\left\{\right.$ holomorphic $d_{\mathbf{D}}$-isometries $\}$.

Remark. [Vesentini, 1980] $\Rightarrow\left\{\left.\Theta\right|_{\mathbf{B}}: \Theta\right.$ Möbius trf. $\}=\left\{\Phi \in \operatorname{Iso}_{h}(\mathbf{B}): \phi(\mathbf{B})=\mathbf{B}\right\}$

Proposition. The 0-preserving holomorphic Carathéodory isometries Θ of \mathbf{B} are linear provided $\operatorname{range}(\Theta) \subset \operatorname{range}\left(D_{z=0} \Theta(z)\right)$.

Proof. Let $\Theta:=U+\Omega \in \operatorname{Isom}\left(d_{\mathbf{B}}\right)$ where U is linear and Ω is holomorphic with Taylor series $\Omega(x)=\sum_{n=2}^{\infty} \Omega_{n}(\underbrace{x, \ldots, x}_{n})$ around 0 . For any vector $v \in \mathbf{B}$ we have $d_{\mathbf{B}}(0, v)=$ $\operatorname{artanh}\|v\|$ and $d_{\mathbf{B}}(0, v)=d_{\mathbf{B}}(0, \Theta(v))$ implying $\|v\|=\|\Theta(v)\|$. Hence, for any $v \in \mathbf{E}$ with $t \searrow 0$ we get
$\|v\|=t^{-1}\|t v\|=t^{-1}\|U(t v)+\Omega(t v)\|=\left\|t^{-1} U(t v)+t^{-1} \Omega(t v)\right\|=\left\|U v+t^{-1} o\left(t^{2}\right)\right\|=\|U v\|$.

Since range $(\Theta) \subset \operatorname{range}(U)$, the mapping $\Psi:=U^{-1} \Theta$ is a well-defined holomorphic 0preserving Carathéodory isometry of \mathbf{B} with $D_{z=0} \Psi(z)=U^{-1} U=1\left(=\operatorname{id}_{\mathbf{E}}\right)$. According to Cartan's Uniqueness Theorem, $\Psi=\mathrm{id}_{\mathbf{B}}$.

Remark. $\operatorname{Iso}_{h}(\mathbf{B}) \supset\left\{M_{a} \circ U: a \in \mathbf{B}, U\right.$ lin. E-isom. $\}$ since both Möbius transformations and linear isometries are $d_{\mathbf{B}}$-preserving.

Remark. If V is a linear E-isometry and $a \in \mathbf{B}$ then
$V \circ M_{a}=M_{V_{a}} \circ \underbrace{M_{V a}^{-1} \circ V \circ M_{a}}_{0 \mapsto 0}=M_{V_{a}} \circ U \quad$ with the linear E-isometry $U:=D_{z=0}\left[M_{V a}^{-1} \circ V \circ M_{a}\right]=\left[D_{z=0} M_{V a}(z)\right]^{-1} V\left[D_{z=0} M_{a}(z)\right]=$ $=\operatorname{Bergman}(V a)^{-1 / 2} V \operatorname{Bergman}(a)^{1 / 2}$.

C_{0}-SEMIGROUPS IN $\operatorname{Iso}_{h}\left(d_{\mathbf{B}}\right)$ FOR REFLEXIVE JB*-TRIPLES

Assumption 0:

We consider strongly cont. 1-pr.semigroups
$\left[\Phi^{t}: t \in \mathbf{R}_{+}\right], \quad \Phi^{t}=M_{a(t)} \circ U_{t}, \quad U_{t}: \mathbf{E} \rightarrow \mathbf{E}$ lin. isometry, such that
(1) $\operatorname{dom}\left(\Phi^{\prime}\right) \cap \mathbf{B} \neq \emptyset$ or (up to Möbius equ.) $0 \in \operatorname{dom}\left(\Phi^{\prime}\right), t \mapsto a(t) \operatorname{diff}$.

Lemma. $x \in \operatorname{dom}\left(\Phi^{\prime}\right) \Longleftrightarrow t \mapsto U_{t} x$ diff. $\quad\left(U_{h} x \in \operatorname{dom}\left(\Phi^{\prime}\right)\right)$.

Proof. $U_{t} x=M_{-a(t)} \underbrace{\Phi^{t}}_{M_{a(t)} \circ U_{t}}(x) . \quad(a, z) \mapsto M_{a}(z)$ real-anal.
$M_{c+h v+o(h)}(u+h w+o(h))=$
$=(c+h v+o(h))+B(c+h v+o(h))^{1 / 2}(1+L(u+h w+o(h), c+h v+o(h)))^{-1}(u+h w+o(h))=$ $=M_{c}(u)-h(L(w, c)+L(u, v)) u+h(1+L(u, c))^{-1} w+o(h)$.

Assumption 1: Hencforth $(\mathbf{E},\{\ldots\})$ is a reflexive JB*-triple.

Remark. Reflexive JB*-triples are finite direct sums of copies of spin factors, $\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{\mathbf{2}}\right)$ spaces with $\operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$ and some finite dimensional Cartan factors.
(?) A str.cont. family $\left[V_{t}: t \in \mathbf{R}_{+}\right]$with $V_{0}=$ id of lin. isometries $\mathbf{E} \rightarrow \mathbf{E}$ maps each factor into itself.

Lemma. The linear isometries of a spin factor \mathbf{E} are necessarily JB*-endomorphisms.

Proof. This is contained implicitly in [Apazoglou-Peralta, Quart. J. Math. 65 (2014), 485-503] (even for real setting). Actually there is a simple geometric argument based on the well-known facts [Neher, Edwards] that

1) any $v \in \mathbf{E}$ is a real-linear combination of an orthogonal couple of minimal tripotens, and the JB^{*}-subtriple $\mathcal{C}_{0}(v)$ generated by v is their (\mathbf{C})-linear span.
2) $e \in \mathbf{E}$ is a minimal tripotent iff $e=a+i b$ with $a, b \in \operatorname{Re}(\mathbf{E}),\langle a \mid b\rangle=0,\langle a\rangle^{2}=\langle b\rangle^{2}=1 / 2$, $\left.2^{\prime}\right) e, f$ is an orthogonal couple of minimal tripotens iff $e=a+i b, f=a-i b \quad$ with $\quad a, b \in \operatorname{Re}(\mathbf{E}),\langle a \mid b\rangle=0,\langle a\rangle^{2}=\langle b\rangle^{2}=1 / 2$,
3) the (norm exposed) faces of \mathbf{B} are either extreme points or 1-dimensional closed discs of the form $\mathbf{F}=\{e+\zeta f:|\zeta| \leq 1\}$ with an orthogonal couple of minimal tripotens.

Thus, given an isometry $U \in \mathcal{L}(\mathbf{E})$, by 1), it suffices to see that the U preserves the linear spans of orthogonal couples of minimal tripotents. Let e, f be an orthogonal couple of minimal tripotents and consider the face $\mathbf{F}:=\{e+\zeta f:|\zeta| \leq 1\}$. Since U is a linear isometry, $U \mathbf{F}$ is a 1-dimensional disc with radius 1 in the unit sphere $\partial \mathbf{B}$. Thus, according to 3), $U \mathbf{F}$ is also a face of \mathbf{B} and therefore $U \mathbf{F}=\{\widetilde{e}+\zeta \widetilde{f}:|\zeta| \leq 1\}$ for some orthogonal couple of minimal tripotents $\widetilde{e}, \widetilde{f}$. The middle point e of \mathbf{F} is mapped into the middle point of $U \mathbf{F}$ whence necessarily $\widetilde{e}=U e$. On the other hand, $\widetilde{f}=(\widetilde{e}+\widetilde{f})-\widetilde{e} \in \mathbf{F}-\mathbf{F} \subset \operatorname{range}(U)$. Hence the statement is immediate. Qu.e.d.

Proposition. The the factor preserving linear isometries $\mathbf{E} \rightarrow \mathbf{E}$ of any reflexive JB*triple \mathbf{E} are JB*-homomorhisms.

Proof. 1) The linear isometries of finite dimensional factors are surjective and hencwe necessarily automorphisms of the triple product.
2) [Vesentini 1994] established that, for $\mathbf{E}=\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{\mathbf{2}}\right)$ with $\operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$ we have $\operatorname{Iso}\left(d_{\mathbf{B}}\right) \cap\{L \mid \mathbf{B}: L \in \mathbf{E}\}=\{[X \mapsto u X v]: u, v$ linear isometries $\}$.
3) The case of spin factors is setteled by the previous Lemma. Qu.e.d.

Corollary. $\operatorname{dom}\left(\Phi^{\prime}\right)$ is closed with respect to the Jordan-prod. $\{\ldots\}$

Proof. $x, y, z \in \operatorname{dom}\left(\Phi^{\prime}\right) \Rightarrow t \mapsto U_{t}\{x y z\}=\left\{\left(U_{t} x\right)\left(U_{t} y\right)\left(U_{t} z\right)\right\}$ diff.
Remark: In particular $\operatorname{dom}\left(\Phi^{\prime}\right)=[$ Jordan subtriple $] \cap \overline{\mathbf{B}}$ and $\left\{\Phi^{t}(0): t \in \mathbf{R}\right\} \subset \operatorname{dom}\left(\Phi^{\prime}\right)$.

Lemma. $x \in \operatorname{dom}\left(\Phi^{\prime}\right) \Longrightarrow U_{h} x \in \operatorname{dom}\left(\Phi^{\prime}(h \in \mathbf{R})\right.$.

Proof. $U_{h} x \in \operatorname{dom}\left(\Phi^{\prime} \Longleftrightarrow t \mapsto U_{h} U_{t} x\right.$ diff.
$\Phi^{t+h}(x)=\Phi^{t} \circ \Phi^{h}(x)=M_{a(t)} \circ U_{t} \circ M_{a(h)} \circ U_{h} x={ }^{U \circ M_{a} \circ U^{-1}=M_{U a}}$

$$
=M_{a(t)} \circ M_{U_{t} a(h)} \circ U_{t} U_{h} x
$$

$U_{t} U_{h} x=M_{-U_{t} a(h)} \circ M_{-a(t)} \circ \Phi^{t+h}(x), \quad a(h) \in \operatorname{dom}\left(\Phi^{\prime}\right) \Rightarrow t \mapsto U_{t} a(h)$ diff.
$t \mapsto \Phi^{t}$ diff., $\quad t \mapsto a(t)$ diff., $\quad(a, b) \mapsto M_{a} \circ M_{b}$ real-anal. $; \Longrightarrow t \mapsto U_{t} U_{h} x$ diff.

Notation: $\mathbf{D}:=\overline{\operatorname{dom}\left(\Phi^{\prime}\right)}$ closure in $\mathbf{E}, \quad \mathbf{F}:=\operatorname{Span}(\mathbf{D})$
Proposition. We have seen: \mathbf{F} closed JB*-subtriple in $\mathbf{E}, \quad \mathbf{D}=\overline{\operatorname{Ball}(\mathbf{F})}$, $\left\{U_{t} \mid \mathbf{F}: t \in \mathbf{R}\right\} \subset \operatorname{Aut}(\mathbf{F},\{\ldots\}), \quad\left\{M_{a(t)} \mid \mathbf{D}: t \in \mathbf{R}\right\} \subset \operatorname{Aut}_{\mathrm{hol}}(\mathbf{D})$.

Remark. In case of groups $\left[\Phi^{t}: t \in \mathbf{R}\right]$,

$$
\begin{aligned}
{\left[\Phi^{t}\right]^{-1}=\Phi^{-t} } & \Longleftrightarrow U_{t}^{-1} M_{-a(t)}=M_{a(-t)} \circ U_{-t} \\
& \Longleftrightarrow M_{-U_{t}^{-1} a(t)} \circ U_{t}^{-1}=M_{a(-t)} \circ U_{-t} \\
& \Longleftrightarrow U_{t}^{-1}=U_{-t} \text { and }-U_{t}^{-1} a(t)=a(-t)
\end{aligned}
$$

Lemma. $\mathbf{F}^{\perp \text { Jordan }}=0$.

Proof. Given $\Phi^{t}=M_{a(t)} \circ U_{t}$, we have $M_{a(t)} \mid \mathbf{F} \cap \mathbf{B}=\mathrm{id}$ and $U_{t}: \mathbf{F} \rightarrow \mathbf{F}$ for every $t \in \mathbf{R}_{+}$. Hence $U_{t+h} \mid \mathbf{F}=\left[U_{t} \mid \mathbf{F}\right] \circ\left[U_{h} \mid \mathbf{F}\right]\left(t, h \in \mathbf{R}_{+}\right)$. Thus $\left[U_{t} \mid \mathbf{F}: t \in \mathbf{R}_{+}\right]$is a str.conr. 1-pr. semigroup and, by the Hille-Yosida theorem, the generator $\Phi^{\prime}\left|\mathbf{F}=U^{\prime}\right| \mathbf{F}$ is dense in \mathbf{F}. By definition, $\Phi^{\prime} \mid \mathbf{F}=\{0\}$, which is possible only if $\mathbf{F}=\{0\}$.

STR.CONT.1-PRSG. WITH COMMON FIXED POINT

Assumption 2 (without loss of generality for reflexive \mathbf{E}):
(2) $e=\Phi^{t}(e) \quad \forall t \in \mathbf{R}_{+} \quad$ common fixed point
$\Lambda^{t}:=\mathrm{D}_{e} \Phi^{t}\left(:\left.z \mapsto \frac{d}{d t}\right|_{t=0} \Phi^{t}(e+t z)\right) \quad$ Fréchet derivative
$\Lambda_{t} z=(2 \pi i)^{-1} \int_{|\zeta|=1} \zeta^{-1} \Phi^{t}(e+\zeta z) d \zeta \quad$ with $z \in \mathbf{B}, \operatorname{dom}\left(M_{a(t)}\right) \supset 2 \overline{\mathbf{B}}$.
$\left[\Lambda^{t}: t \in \mathbf{R}\right]$ str.cont.1prg LIN $\quad \mathbf{Z}:=\operatorname{dom}\left(\Lambda^{\prime}\right)$ dense lin. in \mathbf{E}
$\Phi=M_{a} U\left(=M_{a} \circ U\right) \quad t$ FIX, $\quad w:=w(z)=\Phi(z)-e$
$w+e=\Phi(e+z)=M_{a}(U z+U e)$
$w+e=a+B(a)^{1 / 2}[1+L(U e+U e, a)]^{-1}(U z+U e)$
$[1+L(U z+U e, a)] B(a)^{-1 / 2}(w+(e-a))=U z+U e$
$\Phi(e)=e \Longleftrightarrow[1+L(U e, a)] B(a)^{-1 / 2}(e-a)=U e$
$[1+L(U z+U e, a)] B(a)^{-1 / 2}(w+(e-a))-[1+L(U e, a)] B(a)^{-1 / 2}(e-a)=U z$
$[1+L(U z+U e, a)] B(a)^{-1 / 2} w+L(U z, a) B(a)^{-1 / 2}(e-a)=U z$
$w=B(a)^{1 / 2}[1+L(U z+U e, a)]^{-1}\left[U z-L(U z, a) B(a)^{-1 / 2}(e-a)\right]$
$\Phi(z+e)-e=w=\left(A_{z}+B\right)^{-1} C z$
$A_{z}=L(U z, a) B(a)^{-1 / 2}, \quad B=[1+L(U e, a)] B(a)^{-1 / 2}, \quad C=U+L(U \bullet, a) B(a)^{-1 / 2}(a-e)$
$\Lambda z=\mathrm{D}_{e} \Phi=\left.\frac{d}{d z}\right|_{z=0}\left(A_{z}+B\right)^{-1} C z=B^{-1} C z$
Proposition. As a consequence, under hypothesis (0)+(3) we have
$\Phi^{t}(z+e)-e=B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} z+U_{t} e, a_{t}\right)\right]^{-1}\left[U_{t} z+L\left(U_{t} z, a_{t}\right) B\left(a_{t}\right)^{-1 / 2}\left(a_{t}-e\right)\right]$,
$\Lambda^{t} z=B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1}\left[U_{t} z+L\left(U_{t} z, a_{t}\right) B\left(a_{t}\right)^{-1 / 2}\left(a_{t}-e\right)\right]$.
$\Lambda^{t} e=B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1}\left[U_{t} e+L\left(U_{t} e, a_{t}\right) B\left(a_{t}\right)^{-1 / 2}\left(a_{t}-e\right)\right]$
Proposition $\Longrightarrow \quad 1) t \mapsto U_{t} z$ diff. $\Rightarrow t \mapsto \Lambda^{t} z$ diff.
2) $t \mapsto \Lambda^{t} z$ diff. $\Rightarrow t \mapsto U_{t} z$ diff. at 0

Proof:
$\left[1+L\left(U_{t} e, a_{t}\right)\right] B\left(a_{t}\right)^{1 / 2} \Lambda^{t} z=U_{t} z+L\left(U_{t} z, a_{t}\right) B\left(a_{t}\right)^{-1 / 2}\left(a_{t}-e\right)$
$U_{t} z=\left[1+L\left(U_{t} e, a_{t}\right)\right] B\left(a_{t}\right)^{1 / 2} \Lambda^{t} z-L\left(U_{t} z, a_{t}\right) B\left(a_{t}\right)^{-1 / 2}\left(a_{t}-e\right)$
Suppose $z \in \operatorname{dom}\left(\Lambda^{\prime}\right)$ i.e. $\left.\frac{d}{d t}\right|_{t=0+} \Lambda^{t}$ exits and
$\Lambda^{t} z=z+t z^{\prime}+o(t)(t \searrow 0)$ for some $z^{\prime} \in \mathbf{E}$

We know also: $U_{t} e=e+t e^{\prime}+o(t), a_{t}=t a^{\prime}+o(t), U_{t} z=z+o(1)$

Thus

$$
\begin{aligned}
U_{t} z= & {\left[1+L\left(e+t e^{\prime}+o(t), t a^{\prime}+o(t)\right)\right][1+o(t)]\left(z+t z^{\prime}+o(t)\right)-} \\
& \quad-L\left(z+o(1), t a^{\prime}+o(t)\right)[1+o(t)]\left(t a^{\prime}+o(t)-e\right)= \\
= & z+t L\left(z, a^{\prime}\right) z+t L\left(z, a^{\prime}\right) e+o(t)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\operatorname{Id}+L\left(e+t e^{\prime}+o(t), t a^{\prime}+o(t)\right)\right][\operatorname{Id}+o(t)]\left(z+t z^{\prime}+o(t)\right)=} \\
& \quad=U_{t} z+L\left(z+o(1), a+t a^{\prime}+o(t)\right)[\operatorname{Id}+o(t)]\left(t a^{\prime}-e\right) \\
& {\left[1+L\left(e+t e^{\prime}, t a^{\prime}\right)\right]\left(z+t z^{\prime}\right)+o(t)=U_{t} z+L\left(z+o(1), t a^{\prime}\right)\left(t a^{\prime}-e\right)+o(t)} \\
& {\left[1+t L\left(e, a^{\prime}\right)+t^{2} L\left(e^{\prime}, a^{\prime}\right)\right]\left(z+t z^{\prime}\right)+o(t)=} \\
& \quad=U_{t} z+t^{2} L\left(z, a^{\prime}\right) a^{\prime}+t L\left(o(t), a^{\prime}\right)-t L\left(U_{t} z, a^{\prime}\right) e+o(t)
\end{aligned}
$$

$z+t z^{\prime}+t L\left(e, a^{\prime}\right) z+o(t)=U_{t} z-t L\left(U_{t} z, a^{\prime}\right) e+o(t)$

Assumption 3:

(3) $e \in \mathbf{Z}=\operatorname{dom}\left(\Lambda^{\prime}\right), \quad t \mapsto \Lambda^{t} e$ diff.

Remark. We intend to see: $(0)+(2) \Rightarrow(3)$ up to Möbius equiv.
$\Lambda^{t} e=B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1}\left[U_{t} e+L\left(U_{t} e, a_{t}\right) B\left(a_{t}\right)^{-1 / 2}\left(a_{t}-e\right)\right]$
$e \operatorname{FIXP}(2): \quad e=\Phi^{t}(e)=M_{a_{t}}\left(U_{t} e\right)=a_{t}+B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1} U_{t} e$

$$
\begin{aligned}
\Lambda^{t} e & =e-a_{t}+B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1} L\left(U_{t} z, a_{t}\right) B\left(a_{t}\right)^{-1 / 2}\left(a_{t}-e\right)= \\
& =B\left(a_{t}\right)^{1 / 2}\left\{-1+\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1} L\left(U_{t} z, a_{t}\right)\right\} B\left(a_{t}\right)^{-1 / 2}\left(a_{t}-e\right)= \\
& =B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1}\left\{-1-L\left(U_{t} z, a_{t}\right)+L\left(U_{t} z, a_{t}\right)\right\} B\left(a_{t}\right)^{-1 / 2}\left(a_{t}-e\right)= \\
& =B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1} B\left(a_{t}\right)^{-1 / 2}\left(e-a_{t}\right)
\end{aligned}
$$

Another formula for $\Lambda^{t} e$:
$\Phi^{t}(e)=e \Longrightarrow \quad e=a_{t}+B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1} U_{t} e$
$a_{t}-e=-B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1} U_{t} e$
$\Lambda^{t} e=$
$=B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1}\left[U_{t} e+L\left(U_{t} e, a_{t}\right) B\left(a_{t}\right)^{-1 / 2}\left(-B\left(a_{t}\right)^{1 / 2}\right)\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1} U_{t} e\right]=$ $=B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-1}\left[1-L\left(U_{t} e, a_{t}\right)\left[1+L\left(U_{t} e, a_{t}\right)^{-1}\right] U_{t} e=\right.$ $=\underline{B\left(a_{t}\right)^{1 / 2}\left[1+L\left(U_{t} e, a_{t}\right)\right]^{-2} U_{t} e}$
since $1-L(1+L)^{-1}=(1+L)^{-1}[(1+L)-L]=(1+L)^{-1}$.
Question: (3) $\Rightarrow^{?}(2) \quad t \mapsto \Lambda^{t} e$ diff. $\Rightarrow^{?} t \mapsto a_{t}$ diff.
$U_{t} e=M_{a_{t}}^{-1}(e)=M_{-a_{t}}(e)\left(=-a_{t}+B\left(a_{t}\right)^{1 / 2}\left[1-L\left(e, a_{t}\right)\right]^{-1} e\right)$
Define: $\quad F(a):=B(a)^{1 / 2}\left[1+L\left(M_{-a}(e), a\right)\right]^{-1} B(a)^{-1 / 2}(e-a)$

Proposition. (2) $+(3) \Rightarrow \operatorname{dom}\left(\Phi^{\prime}\right)=[$ dense Jordan subtriple $\cap \overline{\mathbf{B}}]$.
Proof. $\quad F$ real-analytic, $\quad \Lambda^{t} e=F\left(a_{t}\right)$.

Lemma 1. $(2)+(3) \Rightarrow 0 \in \operatorname{dom}\left(\Phi^{\prime}\right)$.

Proof 1: For $a \rightarrow 0$ we have

$$
\begin{aligned}
& B(a)=1-2 L(a, a)+Q_{a}^{2}=1+O\left(\|a\|^{2}\right)=1+o(\|a\|) \text { wrt. norm in } \mathcal{L}(\mathbf{E}) \\
& \begin{aligned}
B(a)^{ \pm 1 / 2}=1+o(\|a\|)
\end{aligned} \\
& \begin{aligned}
M_{-a}(e) & =-a+B(a)^{1 / 2}[1-L(e, a)]^{-1} e=-a+[1-L(e, a)]^{-1} e+o(\|a\|)= \\
& =-a+[1+L(e, a)] e+o(\|a\|)=-a+\{e a e\}+o(\|a\|) \\
F(a)= & {\left[1+L\left(M_{-a}(e), a\right)\right](e-a)+o(\|a\|)=} \\
\quad= & {\left[1+L\left(-a+Q_{e} a, a\right)\right](e-a)+o(\|a\|)=e-a+o(\|a\|) }
\end{aligned}
\end{aligned}
$$

Implicit Funct. Thm. $\Longrightarrow F$ is invertible real-analytically in a nbh. of $a=0$
$t \mapsto a_{t}=\Phi^{t}(0)$ diff. at $t=0 \Longrightarrow t \mapsto a_{t}$ diff. \quad Q.e.d.

Strategy. Assume $c \in \mathbf{B}, V \in \mathcal{L}(\mathbf{E})$ unitary. Let

$$
\begin{aligned}
& \Theta:=M_{c} \circ V, \quad \widetilde{\Phi}^{t}:=\Theta^{-1} \circ \Phi^{t} \circ \Theta, \\
& \widetilde{a}_{t}:=\widetilde{\Phi}^{t}(0), \quad \widetilde{e}:=\Theta^{-1}(e), \quad \widetilde{\Lambda}^{t}:=\mathrm{D}_{e} \widetilde{\Phi}^{t}:\left.v \mapsto \frac{d}{d s}\right|_{s=0} \widetilde{\Phi}^{t}(\widetilde{e}+s v) .
\end{aligned}
$$

We know: $t \mapsto \widetilde{a}_{t}$ diff. $\Longleftrightarrow t \mapsto \widetilde{\Lambda}^{t} \widetilde{e}$ diff. Try to find a suitable Θ with $t \mapsto \widetilde{\Lambda}^{t} \widetilde{e}$ diff. so that we have properties (2),(3) for [$\left.\widetilde{\Phi}^{t}: t \in \mathbf{R}_{+}\right]$,
on the basis of the fact that $\operatorname{dom}\left(\Lambda^{\prime}\right)$ is a dense linear submanifold in \mathbf{E}.

Lemma 2: $t \mapsto \widetilde{\Lambda}^{t} \widetilde{e}$ diff. $\Longleftrightarrow\left[\mathrm{D}_{M_{c}(e)}\right] M_{-c}(e) \in \operatorname{dom}\left(\Lambda^{\prime}\right)$.

Thus, if $\left[\mathrm{D}_{M_{c}(e)}\right] M_{-c}(e) \in \operatorname{dom}\left(\Lambda^{\prime}\right)$ for some $c \in \mathbf{B}$ then $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$is Möbius equivalent to str.cont.1pr. semigroup $\left[\widetilde{\Phi}^{t}: t \in \mathbf{R}_{+}\right]$with $\operatorname{Fix}\left[\widetilde{\Phi} \widetilde{\Phi}^{t}: t \in \mathbf{R}_{+}\right] \neq \emptyset$ and $t \mapsto \widetilde{\Phi}^{t}(0)$ diff. and, in particular, $\operatorname{dom}\left(\Phi^{\prime}\right)$ dense in the ball \mathbf{B}, which completes the proof of the Proposition.

Proof 2: $\quad \widetilde{\Phi}^{t}(\widetilde{e})=\Theta^{-1} \Phi^{t} \Theta\left(\Theta^{-1}(e)\right)=\Theta^{-1} \Phi^{t}(e)=\widetilde{e}$
$\widetilde{\Lambda}^{t}=\mathrm{D}_{e} \widetilde{\Phi}^{t}=\mathrm{D}_{\Theta^{-1}(e)}\left[\Theta^{-1} \Phi^{t} \Theta\right]=$ chain rule

$$
\begin{aligned}
& =\left[\mathrm{D}_{\Phi^{t} \Theta(\widetilde{e})} \Theta^{-1}\right]\left[\mathrm{D}_{\Theta(\widetilde{e})} \Phi^{t}\right]\left[\mathrm{D}_{e} \Theta\right] \\
\Theta: & \widetilde{e} \mapsto e, \quad \Theta^{-1}: e \mapsto \widetilde{e}, \quad \mathrm{D}_{e} \Theta=\left[\mathrm{D}_{e} \Theta^{-1}\right]^{-1}
\end{aligned}
$$

$$
\mathrm{D}_{\Theta(\widetilde{e})} \Phi^{t}=\mathrm{D}_{e} \Phi^{t}=\Lambda^{t}, \quad \mathrm{D}_{\Phi^{t} \Theta(\widetilde{e})} \Theta^{-1}=\mathrm{D}_{\Phi^{t}(e)} \Theta^{-1}=\mathrm{D}_{e} \Theta^{-1}
$$

$$
\widetilde{\Lambda}^{t}=\left[\mathrm{D}_{e} \Theta^{-1}\right] \Lambda^{t}\left[\mathrm{D}_{e} \Theta^{-1}\right]^{-1}=\left[V^{-1} \mathrm{D}_{e} M_{-c}\right] \Lambda^{t}\left[V^{-1} \mathrm{D}_{e} M_{-c}\right]^{-1}
$$

$$
\widetilde{\Lambda}^{t} \widetilde{e}=V^{-1}\left[\mathrm{D}_{e} M_{-c}\right] \Lambda^{t}\left[\mathrm{D}_{e} M_{-c}\right]^{-1} V V^{-1} M_{-c}(e)=V^{-1}\left[\mathrm{D}_{e} M_{-c}\right] \Lambda^{t}\left[\mathrm{D}_{e} M_{-c}\right]^{-1} M_{-c}(e)
$$

$$
\left[\mathrm{D}_{e} M_{-c}\right]^{-1}={ }^{\left[\mathrm{D}_{p} F\right]^{-1}}=\mathrm{D}_{F(p)} F^{-1}=\mathrm{D}_{M_{-c}(e)} M_{c}
$$

Hence $\quad \widetilde{\Lambda}^{t} \widetilde{e}=[\operatorname{LINOP}] \Lambda^{t}\left[\mathrm{D}_{M_{-c}(e)} M_{c}\right] M_{-c}(e) \Rightarrow$ statement \quad Qu.e.d.

Remark. Analogously as the underlined formula for $\Lambda^{t} e$ was obtained, we get

$$
\begin{aligned}
& {\left[\mathrm{D}_{M_{-c}(e)} M_{c}\right] M_{-c}(e)=\left[\mathrm{D}_{f} M_{c}\right] f=\left.\frac{d}{d s}\right|_{s=0} M_{c}(f+s f)=\left.\frac{d}{d s}\right|_{s=1} M_{c}(s f)=} \\
& \quad=\left.\frac{d}{d s}\right|_{s=1}\left\{c+B(c)^{1 / 2}[1+L(s f, c)]^{-1} s f\right\}=B(c)^{1 / 2}[1+L(f, c)]^{-2} f= \\
& \quad=\underline{B(c)^{1 / 2}\left[1+L\left(M_{-c}(e), c\right)\right]^{-2} M_{-c}(e)}
\end{aligned}
$$

Since $\operatorname{dom}\left(\Lambda^{\prime}\right)$ is dense in \mathbf{E}, if the Fréchet derivative $\mathrm{D}_{c} G(c)=\left[\left.v \mapsto \frac{d}{d s}\right|_{s=0} G(c+s v)\right]$
with $G(c):=B(c)^{1 / 2}\left[1+L\left(M_{-c}(e), c\right)\right]^{-2} M_{-c}(e)$ is an invertible operator for some $c \in \mathbf{B}$ then $\operatorname{ran}(G) \cap \operatorname{dom}\left(\Lambda^{\prime}\right) \neq \emptyset$ implying that $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$is Möbius equivalent to some str.cont. 1pr.sg. with properties (2)+(3)

Corollary. We have
$0 \in \operatorname{dom}\left(\Phi^{\prime}\right) \Longleftrightarrow \exists e \in \operatorname{Fix}(\Phi) \quad e \in \operatorname{dom}[\underbrace{D_{e} \Phi}_{\Lambda}]^{\prime} \Longleftrightarrow \forall e \in \operatorname{Fix}(\Phi) \quad e \in \operatorname{dom}[\underbrace{D_{e} \Phi}_{\Lambda}]^{\prime}$.
Therefore $\quad c=M_{c}(0) \in \operatorname{dom}\left(\Phi^{\prime}\right) \Longleftrightarrow 0 \in \operatorname{dom}\left[M_{-c} \circ \Phi \circ M_{c}\right]^{\prime}$
because, with $M_{-c}(e) \in \operatorname{Fix}\left(M_{-c} \circ \Phi \circ M_{c}\right)$ we have
$c=M_{c}(0) \in \operatorname{dom}\left(\Phi^{\prime}\right) \Longleftrightarrow\left[t \mapsto \Phi^{t} M_{c}(0)\right]$ diff. $\Longleftrightarrow\left[t \mapsto M_{-c} \Phi^{t} M_{c}(0)\right]$ diff. and
$0 \in \operatorname{dom}\left[M_{-c} \circ \Phi \circ M_{c}\right]^{\prime} \Longleftrightarrow M_{c}(e) \in \operatorname{dom}\left(\left[D_{M_{-c}(e)} M_{-} c \circ \Phi \circ M_{c}\right]^{\prime}\right)$.

Notation. Henceforth

$$
G(c):=B(c)^{1 / 2}\left[1+L\left(M_{-c}(e), c\right)\right]^{-2} M_{-c}(e)
$$

Lemma. $\mathrm{D}_{c=0} G(c)=-[1+Q(e)]$
Proof. We have to see (with real differentiation $\left.\frac{d^{+}}{d \tau}\right|_{0}=\left.\frac{d}{d \tau}\right|_{\tau=0+}$) that

$$
\begin{gathered}
\left.\frac{d^{+}}{d \tau}\right|_{0} G(\tau c)=\left.\frac{d^{+}}{d \tau}\right|_{0}\left\{B(\tau c)^{1 / 2}\left[1+L\left(M_{-\tau c}(e), \tau c\right)\right]^{-2} M_{-\tau c}(e)\right\}=-c-\{e c e\} . \\
B(\tau c)^{1 / 2}=\left(1+\tau^{2}\left[-2 L(c)+\tau^{2} Q(c)^{2}\right]\right)^{1 / 2}=1-\frac{\tau^{2}}{2}\left[-2 L(c)+\tau^{2} Q(c)^{2}\right]+o\left(\tau^{2}\right)=1+o(\tau), \\
M_{-\tau c}(e)=-\tau c+B(\tau c)^{1 / 2}[1-\tau L(e, c)]^{-1} e= \\
=-\tau c+[1+o(\tau)][1+\tau L(e, c)+o(\tau)] e=e+\tau[-c+L(e, c) e]+o(\tau)=e-\tau[1-Q(e)] c+o(\tau) \\
G(\tau c)=\{1+o(\tau)\}\{1+\tau L(e-\tau[1-Q(e)] c, c)+o(\tau)\}^{-2}\{e-\tau[1-Q(e)] c+o(\tau)\}= \\
\quad=\{1-2 \tau L(e, c)+o(\tau)\}\{e-\tau[1-Q(e)] c+o(\tau)\}=e-\tau[1-Q(e)] c-2 \tau L(e, c) e+o(\tau)=
\end{gathered}
$$

$$
=e-\tau[1+Q(e)] c+o(\tau) . \quad \text { Qu.e.d. }
$$

Lemma. e TRIP $\Longrightarrow \quad G(\lambda e)=\frac{|1-\lambda|^{2}}{1-|\lambda|^{2}} e$,

$$
\left[\mathrm{D}_{\lambda e} G\right] e=-\frac{2 \operatorname{Re}\left[(1-\lambda)^{2}\right]}{\left(1-|\lambda|^{2}\right)^{2}} e, \quad\left[\mathrm{D}_{\lambda e} G\right](i e)=\frac{4 \operatorname{Re}(1-\lambda) \operatorname{Im} \lambda}{\left(1-|\lambda|^{2}\right)^{2}} e
$$

Proof. Let e TRIP. With the Peirce proj. $P_{k}(e): \mathbf{E} \rightarrow \mathbf{E}_{k}(e):=\{x:\{e e x\}=k x / 2\}$
$L(\lambda e)=\frac{|\lambda|^{2}}{2} P_{1}(e)+|\lambda|^{2} P_{2}(e), \quad Q(\lambda e)^{2}=|\lambda|^{4} P_{2}(e) \quad$ whence
$B\left(\lambda(e) \mid \mathbf{E}_{2}(e)=\left[1-2|\lambda|^{2}+|\lambda|^{4}\right]\right.$ id, $\quad[1-L(e, \lambda e)] \mid \mathbf{E}_{2}(e)=[1-\bar{\lambda}] \mathrm{id} ;$
$M_{-\lambda e}(e)=-\lambda e+B(-\lambda e)^{1 / 2}[1+L(-\lambda e)]^{-1} e=\left[-\lambda+\frac{1-|\lambda|^{2}}{1-\bar{\lambda}}\right] e=\frac{1-\lambda}{1-\bar{\lambda}} e$,
$G(\lambda e)=B(\lambda e)^{1 / 2}\left[1+L\left(M_{-\lambda e}(e), e\right)\right]^{-2} M_{-\lambda e}(e)=$

$$
=\left(1-|\lambda|^{2}\right) \frac{(1-\lambda) /(1-\bar{\lambda})}{[1+\bar{\lambda}(1-\lambda) /(1-\bar{\lambda})]^{2}} e=\frac{\left(1-|\lambda|^{2}\right)(1-\lambda)(1-\bar{\lambda})}{\left(1-|\lambda|^{2}\right)^{2}} e
$$

Thus $G(\lambda e)=g(\lambda) e \quad$ with $\quad g(\lambda):=\frac{(1-\lambda)(1-\bar{\lambda})}{1-\lambda \bar{\lambda}}=\frac{|1-\lambda|^{2}}{1-|\lambda|^{2}}$.
With straightforward calculation, $\quad \frac{\partial g}{\partial \lambda}=-\frac{(1-\bar{\lambda})^{2}}{\left(1-|\lambda|^{2}\right)^{2}}, \quad \frac{\partial g}{\partial \bar{\lambda}}=-\frac{(1-\lambda)^{2}}{\left(1-|\lambda|^{2}\right)^{2}} . \quad$ Hence

$$
\begin{aligned}
& {\left[\mathrm{D}_{\lambda e} G\right] e=\left.\frac{d^{+}}{d \tau}\right|_{0} G(\lambda+\tau)=\left.\frac{d^{+}}{d \tau}\right|_{0} g(\lambda+\tau) e=\frac{\partial g}{\partial x} e=\frac{\partial g}{\partial \lambda}+\frac{\partial g}{\partial \bar{\lambda}}=-2 \operatorname{Re}\left(\frac{(1-\lambda)^{2}}{\left(1-|\lambda|^{2}\right)^{2}}\right),} \\
& {\left[\mathrm{D}_{\lambda e} G\right](i e)=\left.\frac{d^{+}}{d \tau}\right|_{0} G(\lambda+i \tau)=\left.\frac{d^{+}}{d \tau}\right|_{0} g(\lambda+i \tau) e=\frac{\partial g}{\partial y} e=i \frac{\partial g}{\partial \lambda}-i \frac{\partial g}{\partial \bar{\lambda}}=-2 \operatorname{Re}\left(i \frac{(1-\lambda)^{2}}{\left(1-|\lambda|^{2}\right)^{2}}\right) .}
\end{aligned}
$$

Lemma. e TRIP, $L(e) v=\kappa v, Q(e) v=\varepsilon v,|\lambda|<1 \Longrightarrow$ for $\quad w:=\left[\mathrm{D}_{c=\lambda_{e}} G(c)\right] v \quad$ we also have $L(e) w=\kappa w, Q(e) w=\varepsilon w$.

Proof. Let us write $\mathcal{J}_{k, \ell}$ for the family of all possible Jordan triple product expressions with k terms v and ℓ terms e. E.g.
$\mathcal{J}_{1,4}=\{\{\{v e e\} e e\},\{\{e v e\} e e\},\{\{e e v\} e e\},\{e\{v e e\} e\}, \ldots,\{e e\{e e v\}\}\}$ has 9 elements.
By definition, $\left[\mathrm{D}_{c=\lambda e} G(c)\right] v=\left.\frac{d^{+}}{d \tau}\right|_{0} G(\lambda e+\tau v)=$
$=\left.\frac{d^{+}}{d \tau}\right|_{0}\left\{B(\lambda e+\tau v)^{1 / 2}\left[1+L\left(M_{-\lambda e-\tau v}(e), \lambda e+\tau v\right)\right]^{-2} M_{-\lambda e-\tau v}(e)\right\}$.
Observe that $B(\lambda e+\tau v)^{1 / 2}=\sum_{n=0}^{\infty}\binom{1 / 2}{n}\left[-2 L(\lambda e+\tau v)+Q(\lambda e+\tau v)^{2}\right]^{n} \quad$ is a series of Jordan multiplications of the form $\{e e \cdot\},\{e \cdot e\}$ i.e. a power series of the commuting real linear operators $L(e), Q(e)$ acting as muliples of the identity on the Peirce spaces $\mathbf{E}_{\kappa}^{(\varepsilon)}(e)$.

Also in general we can write $[1+L(x, y)]^{-r} z=\sum_{n=0}^{\infty}\binom{-r}{n} L(x, y)^{n} z=$ $=\sum_{k, \ell=0}^{\infty} \mu_{k, \ell}^{(r)}[$ Jordan expression with k terms x, ℓ terms y and one term $z]$ such that $\exists \delta^{(r)}>0$ with $\sum_{k, \ell=0}^{\infty}\left|\mu_{k, \ell}^{(r)}\right|\|x\|^{k}\|y\|^{\ell}<\infty$ whenever $\|x\|,\|y\|<\delta^{(r)}$.

Hence we see that $\left[\mathrm{D}_{c=\lambda e} G(c)\right] v$ admits an expansion of the form

$$
\left[\mathrm{D}_{c=\lambda e} G(c)\right] v=\sum_{j, k=0}^{\infty} \sum_{J \in \mathcal{J}_{k, \ell}} \gamma_{J} \tau^{k} J
$$

such that $\exists \delta>0$ with $\sum_{k, \ell=0}^{\infty} \sum_{J \in \mathcal{J}_{k, \ell}} \mid \gamma_{J} \tau^{k}\|v\|^{k}<\infty$ whenever $0 \leq \tau\|v\|<\delta$.
In terms of this expansion we have

$$
\left[\mathrm{D}_{c=\lambda_{e}} G(c)\right] v=\left.\frac{d^{+}}{d \tau}\right|_{0} \sum_{j, k=0}^{\infty} \sum_{J \in \mathcal{J}_{k, \ell}} \gamma_{J} \tau^{k} J=\sum_{\ell=0}^{\infty} J \in \mathcal{J}_{1, \ell} \gamma_{J} J .
$$

Our closing observation is that the value of any product $J \in \mathcal{J}_{1, \ell}$ containg only one term v must be a real multiple of v if $\{e e v\}=\kappa v$ and $\{e v e\}=\varepsilon v$.

Corollary. e TRIP $\Longrightarrow \exists \rho_{0}, \rho_{1}, \rho_{2}^{(1)}, \rho_{2}^{(-1)}:\{\lambda:|\lambda|<1\} \rightarrow \mathbf{R}$ real-analytic $\mathrm{D}_{\lambda e} G=\sum_{k, \varepsilon} \rho_{k}^{(\varepsilon)}(\lambda) P_{k}^{(\varepsilon)}$ with Peirce proj. $P_{k}^{(\varepsilon)}: \mathbf{E} \rightarrow \mathbf{E}_{k}^{(\varepsilon)}(e):=\left\{x: L(e) x=\frac{k}{2} x, Q(e) x=\varepsilon x\right\}$.

Proof. We know that the linear operators $L(e), Q(e)$ commute. [Indeed, with $\mathcal{K}:=$ $\{(1,1),(1,-1),(1 / 2,0),(0,0)\}$ and the Peirce spaces $\mathbf{E}_{(\kappa, \varepsilon)}:=\{x: L(e) x=\kappa x, Q(e) x=$ $\varepsilon x\}$ we have $\mathbf{E}=\oplus_{(\kappa, \varepsilon) \in \mathcal{K}} \mathbf{E}_{(\kappa, \varepsilon)}$. Given $x \in \mathbf{E}_{(\kappa, \varepsilon}, L(e) Q(e) x=Q(e) L(e) x=\kappa \varepsilon x$.] Hence
given any $J \in \mathcal{J}_{1, \ell}$ we can write $J=Q(e)^{m} L(e)^{\ell / 2-m} v=\varepsilon^{m} \kappa^{\ell / 2-m} v$ independently of the choice of $v \in \mathcal{E}_{\kappa, \varepsilon)}$.

Proposition. Assume e TRIP and $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$str.cont.1-prg. in Aut(B) with $e \in$ $\bigcap_{t \in \mathbf{R}_{+}} \operatorname{Fix}\left(\Phi^{t}\right) . \quad$ Then $\operatorname{dom}\left(\Phi^{\prime}\right)$ is dense in \mathbf{B}.

Proof. With the previous notations, it suffices to see only that range (G) contains an inner point. By the Inverse Mapping Theorem, to this it is enough that the Fréchet derivative $\mathrm{D}_{c=\lambda e} G(c)$ is an invertible operator for some λ with $|\lambda|<1$.

By the previous corollary, with real-analytic coefficient functions, we have
$\mathrm{D}_{c=\lambda e} G(c)=\rho_{0}\left(\lambda P_{0}+\rho_{1}(\lambda)_{1}+\rho_{2}^{(+)}(\lambda) P_{2}^{(+)}+\rho_{2}^{(+)}(\lambda) P_{2}^{(+)}\right.$.
By the first lemma, $\mathrm{D}_{c=0} G(c)=-[1+Q(e)]=-P_{0}-\frac{1}{2} P_{1}-2 P_{2}^{+)}$that is $\rho_{0}(0)=-1$, $\rho_{1}(0)=-1 / 2, \rho_{2}^{(+)}(0)=-2, \rho_{2}^{(-)}(0)=0$.

Observation: $\quad \rho_{2}^{(-)}(\lambda) e=P_{2}^{(-)}\left[\mathrm{D}_{c=0} G(c)\right](i e)$.
By the second Lemma, $\left[\mathrm{D}_{c=0} G(c)\right](i e)=\frac{4 \operatorname{Re}(1-\lambda) \operatorname{Im} \lambda}{\left(1-|\lambda|^{2}\right)^{2}}$
that is $\quad \rho_{2}^{(-)}(\lambda)=\frac{4 \operatorname{Re}(1-\lambda) \operatorname{Im} \lambda}{\left(1-|\lambda|^{2}\right)^{2}} \neq 0$ for $0 \neq|\lambda|<1$.
By the continuity of the functions $\rho_{k}^{(\pm)}$, for some $\delta \in(0,1)$ (in particular around $\lambda=0$), we have $\quad \rho_{0}(\lambda), \rho_{1}(\lambda), \rho_{2}^{(+)}(\lambda), \rho_{2}^{(-)}(\lambda) \neq 0$,
implying the invertibility of $\mathrm{D}_{c=\lambda e} G(c)=\sum_{(k, \varepsilon)} \rho_{k}^{(\varepsilon)}(\lambda) P_{k}^{(\varepsilon)}$ whenever $0 \neq|\lambda|<\delta$. Qu.e.d.
Remark. We can calculate the precise form of the functions $\rho_{k}^{ \pm}$as follows.
Recall that $\mathbf{E}=\oplus_{(\kappa, \varepsilon) \in \mathcal{K}} \mathbf{E}_{2 \kappa}^{(\varepsilon)}(e)$ for the Peirce spaces
$\mathbf{E}_{2 \kappa}^{\varepsilon}(e):=\{x \in \mathbf{E}: L(e) x=\kappa e, Q(e) x=\varepsilon x\}, \quad \mathcal{K}:=\left\{(0,0),\left(\frac{1}{2}, 0\right),(1,1),(1,-1)\right\}$.
Fix $(\kappa, \varepsilon) \in \mathcal{K}$ and $v \in \mathbf{E}_{2 \kappa}^{(\varepsilon)}(e)$ arbitrarily. Define
$B_{\lambda, \tau}:=B(\lambda e+\tau v)^{1 / 2}, B_{\lambda}^{\prime}:=\left.\frac{d^{+}}{d \tau}\right|_{0} B_{\lambda, \tau}, b_{\lambda}^{\prime}:=B_{\lambda, \tau}^{\prime} e$,
$M_{\lambda, \tau}:=M_{-(\lambda e+\tau v)}, \quad m_{\lambda, \tau}:=M_{\lambda, \tau}(e), \quad m_{\lambda}^{\prime}:=\left.\frac{d^{+}}{d \tau}\right|_{0} m_{\lambda, \tau},$,
$R_{\lambda, \tau}:=L\left(m_{\lambda, \tau}, \lambda e+\tau v\right), \quad R_{\lambda}^{\prime}:=\left.\frac{d^{+}}{d \tau}\right|_{0} R_{\lambda, \tau}$
Notice that by Peirce arithmetics, for some scalars,
$B_{\lambda, 0} e=\beta_{\lambda} e, \quad B_{\lambda, 0} v=\widetilde{\beta}_{\lambda} v, \quad B_{\lambda}^{\prime} e=\left.\frac{d^{+}}{d \tau}\right|_{0} B(\lambda e+\tau v) e=\beta_{\lambda}^{\prime} v$,
$m_{\lambda, 0}=\mu_{\lambda} e, \quad m_{\lambda}^{\prime}=\mu_{\lambda}^{\prime} v, \quad R_{\lambda, 0} e=\rho_{\lambda} e, \quad R_{\lambda, 0} v=\widetilde{\rho}_{\lambda} v, \quad R_{\lambda}^{\prime} e=\rho_{\lambda}^{\prime} v$.

With the rule of product differentiation we get
$\mathrm{D}_{\lambda e} G=B_{\lambda}^{\prime}\left[1+R_{\lambda, 0}\right]^{-2} m_{\lambda, 0}+B_{\lambda, 0}\left\{\left.\frac{d}{d \tau}\right|_{\tau=0}\left[1+R_{\lambda, \tau}\right]^{-2}\right\} m_{\lambda, 0}+B_{\lambda, 0}\left[1+R_{\lambda, 0}\right]^{-2} m_{\lambda}^{\prime}$
where $\left.\frac{d^{+}}{d \tau}\right|_{0}\left[1+R_{\lambda, \tau}\right]^{-2}=-\left[1+R_{\lambda, 0}\right]^{-2} R_{\lambda}^{\prime}\left[1+R_{\lambda, 0}\right]^{-1}-\left[1+R_{\lambda, 0}\right]^{-1} R_{\lambda}^{\prime}\left[1+R_{\lambda, 0}\right]^{-2}$.
It follows

$$
\begin{aligned}
& {\left[\mathrm{D}_{\lambda e} G\right] v=B_{\lambda}^{\prime}\left[1+R_{\lambda, 0}\right]^{-2} \mu_{\lambda} e-B_{\lambda, 0}\left[1+R_{\lambda, 0}\right]^{-2} R_{\lambda}^{\prime}\left[1+R_{\lambda, 0}\right]^{-1} \mu_{\lambda} e-} \\
& \quad-\left[1+R_{\lambda, 0}\right]^{-1} R_{\lambda}^{\prime}\left[1+R_{\lambda, 0}\right]^{-2} \mu_{\lambda} e+B_{\lambda, 0}\left[1+R_{\lambda, 0}\right]^{-2} \mu_{\lambda}^{\prime} v= \\
& =B_{\lambda}^{\prime} \frac{\mu_{\lambda}}{\left(1+\rho_{\lambda}\right)^{2}} e-B_{\lambda, 0}\left[1+R_{\lambda, 0}\right]^{-1} R_{\lambda}^{\prime} \frac{\mu_{\lambda}}{\left(1+\rho_{\lambda}\right)^{2}} e-B_{\lambda, 0}\left[1+R_{\lambda, 0}\right]^{-2} R_{\lambda}^{\prime} \frac{\mu_{\lambda}}{1+\rho_{\lambda}} e+ \\
& \quad+B_{\lambda, 0} \frac{\mu_{\lambda}^{\prime}}{\left(1+\widetilde{\rho}_{\lambda}\right)^{2}} v \quad \text { and continuing similarly } \\
& {\left[\mathrm{D}_{\lambda e} G\right] v=} \\
& \frac{\beta_{\lambda}^{\prime} \mu_{\lambda}}{\left(1+\rho_{\lambda}\right)^{2}} v-\frac{\widetilde{\beta}_{\lambda}^{\prime} \rho_{\lambda}^{\prime} \mu_{\lambda}}{\left(1+\widetilde{\rho}_{\lambda}\right)\left(1+\rho_{\lambda}\right)^{2}} v-\frac{\widetilde{\beta}_{\lambda} \rho_{\lambda}^{\prime} \mu_{\lambda}}{\left(1+\widetilde{\rho}_{\lambda}\right)^{2}\left(1+\rho_{\lambda}\right)} v+\frac{\widetilde{\beta}_{\lambda} \mu_{\lambda}^{\prime}}{\left(1+\widetilde{\rho}_{\lambda}\right)^{2}} v .
\end{aligned}
$$

Here we caculate the constants as follows.
$\mu_{\lambda}=\frac{1-\lambda}{1-\bar{\lambda}} \quad$ because $\quad m_{\lambda, 0}=M_{-\lambda e}(e)=-\lambda e+\left[1-2 L(e)+Q(e)^{2}\right]^{1 / 2}[1+L(e,-\lambda e)]^{-1} e=$
$=-\lambda e+\left[1-2 L(\lambda e)+Q(\lambda e)^{2}\right]^{1 / 2} \frac{1}{1-\bar{\lambda}} e=\left[-\lambda+\frac{1}{1-\bar{\lambda}}\left[1-2|\lambda|^{2}+|\lambda|^{4}\right]^{1 / 2}\right] e=\frac{1-\lambda}{1-\bar{\lambda}} e$
Next we determine β^{\prime} along with β_{λ} and $\widetilde{\beta}_{\lambda}$:
$B(\lambda e+\tau v) x=1-2\{(\lambda e+\tau v)(\lambda e+\tau v) x\}+\{(\lambda e+\tau v)\{(\lambda e+\tau v) x(\lambda e+\tau v)\}(\lambda e+\tau v)\}$,
In particular $B(\lambda e) e=\left(1-2|\lambda|^{2}+|\lambda|^{4}\right) e \quad B(\lambda e) v=\left(1-2|\lambda|^{2} \kappa+|\lambda|^{4} \varepsilon^{2}\right) v, \quad$ whence $\beta_{\lambda} e=B(\lambda e)^{1 / 2} e=\left(1-|\lambda|^{2}\right) e, \quad \widetilde{\beta}_{\lambda} v=B(\lambda e)^{1 / 2} v=\left[1-2|\lambda|^{2} \kappa+|\lambda|^{4} \varepsilon^{2}\right]^{1 / 2} v$.
$\left.\frac{d^{+}}{d \tau}\right|_{0} B(\lambda e+\tau v) x=$
$=-2 \bar{\lambda}\{v e x\}-2 \lambda\{e v x\}+\bar{\lambda}^{2} \lambda\{v\{e x e\} e\}+\lambda \bar{\lambda} \lambda\{e\{v x e\} e\}+\lambda \bar{\lambda} \lambda\{e\{e x v\} e\}+\lambda \bar{\lambda}^{2}\{e\{e x e\} v\}=$ $=2\left[-\bar{\lambda} L(v, e)-\lambda L(e, v)+\bar{\lambda}^{2} \lambda Q(v, e) Q(e)+\lambda^{2} \bar{\lambda} Q(e) Q(v, e)\right] x$
$\left.\frac{d^{+}}{d \tau}\right|_{0} B(\lambda e+\tau v) e=\left.\frac{d^{+}}{d \tau}\right|_{0}\left[B(\lambda e+\tau v)^{1 / 2}\right]^{2} e=\left[B_{\lambda}^{\prime} B_{\lambda, 0}+B_{\lambda, 0} B_{\lambda}^{\prime}\right] e=$ $=\beta_{\lambda} B_{\lambda}^{\prime} e+\beta_{\lambda}^{\prime} B_{\lambda, 0} v=\beta_{\lambda}^{\prime} \beta_{\lambda} v+\beta_{\lambda}^{\prime} \widetilde{\beta}_{\lambda} v \quad$ that is
$\beta_{\lambda}^{\prime}\left(\beta_{\lambda}+\widetilde{\beta}_{\lambda}\right) v=\left.\frac{d^{+}}{d \tau}\right|_{0} B(\lambda e+\tau v) e=$
$=-2 \bar{\lambda}\{v e e\}-2 \lambda\{e v e\}+\bar{\lambda}^{2} \lambda\{v\{e e e\} e\}+\lambda \bar{\lambda} \lambda\{e\{v e e\} e\}+\lambda \bar{\lambda} \lambda\{e\{e e v\} e\}+\lambda \bar{\lambda}^{2}\{e\{e e e\} v\}=$
$=2\left[-\bar{\lambda} \kappa-\lambda \varepsilon+|\lambda|^{2} \bar{\lambda} \kappa+|\lambda|^{2} \lambda \kappa \varepsilon\right] v$,
$\beta_{\lambda}^{\prime}=2 \frac{-\lambda \varepsilon-\bar{\lambda} \kappa+|\lambda|^{2} \kappa(\bar{\lambda}+\lambda \varepsilon)}{\left(1-|\lambda|^{2}\right)+\left(1-2|\lambda|^{2} \kappa+|\lambda|^{4} \varepsilon^{2}\right)^{1 / 2}}$
In terms of β_{λ}^{\prime}, we get $\quad \mu_{\lambda}^{\prime}=-1+\frac{\beta_{\lambda}^{\prime}}{1-\bar{\lambda}}+\frac{\widetilde{\beta}_{\lambda} \varepsilon}{(1-\bar{\lambda} \kappa)(1-\bar{\lambda})}$
since $\quad m_{\lambda}^{\prime}=\left.\frac{d^{+}}{d \tau}\right|_{0}\left\{-(\lambda e+\tau v)+B_{\lambda, \tau}[1-L(e, \lambda e+\tau v)]^{-1} e\right\}=-v+$
$+B_{\lambda}^{\prime}[1-L(e, \lambda e)]^{-1} e+\left.B_{\lambda, 0} \frac{d^{+}}{d \tau}\right|_{0}[1-L(e, \lambda e+\tau v)]^{-1} e$ where $B_{\lambda}^{\prime}[1-L(e, \lambda e)]^{-1} e=\frac{\beta_{\lambda}^{\prime}}{1-\bar{\lambda}} v$,

$$
\begin{aligned}
& \left.\frac{d^{+}}{d \tau}\right|_{0}[1-L(e, \lambda e+\tau v)]^{-1} e=-[1-L(e, \lambda e)]^{-1}\left\{\left.\frac{d^{+}}{d \tau}\right|_{0}[1-L(e, \lambda e+\tau v)]\right\}[1-L(e, \lambda e)]^{-1} e= \\
& \quad=[1-\bar{\lambda} L(e)]^{-1} L(e, v) \frac{1}{1-\bar{\lambda}} e=[1-\bar{\lambda} L(e)]^{-1} \frac{\varepsilon}{1-\bar{\lambda}} v=\frac{\varepsilon}{(1-\bar{\lambda} \kappa)(1-\bar{\lambda})} v
\end{aligned}
$$

Finally, for the constants $\rho_{\lambda}, \widetilde{\rho}_{\lambda}, \rho_{\lambda}^{\prime}$, in terms of $\mu_{\lambda}, \mu_{\lambda}^{\prime}$ we obtain
$\rho_{\lambda}=\bar{\lambda} \mu_{\lambda}, \quad \widetilde{\rho}_{\lambda}=\bar{\lambda} \mu_{\lambda} \kappa, \quad \rho_{\lambda}^{\prime}=\bar{\lambda} \mu_{\lambda}^{\prime} \kappa+\mu_{\lambda} \varepsilon \quad$ because
$R_{\lambda, 0} e=L\left(m_{\lambda}, \lambda e\right) e=\mu_{\lambda} \bar{\lambda} L(e) e=\bar{\lambda} \mu_{\lambda} e, \quad R_{\lambda, 0} v=\mu_{\lambda} \bar{\lambda} L(e) v=\bar{\lambda} \mu_{\lambda} \kappa v$,
$\left.\frac{d^{+}}{d \tau}\right|_{0} R_{\lambda, \tau} e=\left.\frac{d^{+}}{d \tau}\right|_{0} L\left(m_{\lambda}, \lambda e+\tau v\right) e=L\left(m_{\lambda}^{\prime}, \lambda e\right) e+L\left(m_{\lambda}, v\right) e=\mu_{\lambda}^{\prime} \bar{\lambda} L(v, e) e+\mu_{\lambda} L(e, v) e$.
In particular, hence we can get reasonably simple formulas for the following cases:
(1) if $\mu(=\lambda) \in \mathbf{R}$ and $v \in \mathbf{E}_{\kappa}^{(\varepsilon)}(e)$ then
(1a) $\left[\mathrm{D}_{\mu e} G\right] v=-v$ for $(\kappa, \varepsilon)=(0,0)$,
(1b) $\left[\mathrm{D}_{\mu e} G\right] v=-\frac{1}{1+\mu}$ for $(\kappa, \varepsilon)=(1 / 2,0)$,
(1c) $\left[\mathrm{D}_{\mu e} G\right] v=-\frac{2}{(1+\mu)^{2}}$ for $(\kappa, \varepsilon)=(1,1)$,
(1d) $\left[\mathrm{D}_{\mu e} G\right] v=0$ for $(\kappa, \varepsilon)=(1,-1)$;
(2) if $i \nu(=\lambda) \in i \mathbf{R}$ and $v \in \mathbf{E}_{\kappa}^{(\varepsilon)}(e)$ then
(2a) $\left[\mathrm{D}_{\text {ive }} G\right] v=-v$ for $(\kappa, \varepsilon)=(0,0)$,
(2b) $\left[\mathrm{D}_{i \nu e} G\right] v=-\frac{1+i \nu}{1-\nu^{2}}$ for $(\kappa, \varepsilon)=(1 / 2,0)$,
(2c) $\left[\mathrm{D}_{i \nu e} G\right] v=-\frac{2}{1-\nu^{2}}$ for $(\kappa, \varepsilon)=(1,1)$,
(2d) $\left[\mathrm{D}_{i \nu e} G\right] v=-\frac{4 i \nu}{\left(1-\nu^{2}\right)^{2}}$ for $(\kappa, \varepsilon)=(1,-1)$.
Theorem. If $0 \in \operatorname{dom}\left(\Phi^{\prime}\right)$ and $\bigcap_{t \in \mathbf{R}_{+}} \operatorname{Fix}\left(\Phi^{t}\right) \neq \emptyset$ then the generator Φ^{\prime} is of Kaup's type: $\operatorname{dom}\left(\Phi^{\prime}\right)$ is a subtriple in $\mathbf{E}, \quad \Phi^{\prime}(z)=a-\{z a z\}+i A z$ closed.

Proof. $\operatorname{dom}\left(\Phi^{\prime}\right)=\left\{x: t \mapsto U_{t} x\right.$ diff. $\}=\operatorname{dom}\left(\Lambda^{\prime}\right)$ dense in $\mathbf{E}, \Lambda^{\prime}$ closed lin. op.
$\Phi^{t}(z+e)-e=\left(A_{t, z}+B_{t}\right)^{-1} C_{t} z$
$\Psi^{\prime}(z+e)=-\left.\left(A_{t, z}+B_{t}\right)^{-1}\left[\frac{d}{d t}\left(A_{t, z}+B_{t}\right)\right]\left(A_{t, z}+B_{t}\right)^{-1} C_{t}\right|_{t=0}+\left.\left(A_{t, z}+B_{t}\right)^{-1} \frac{d}{d t} C_{t} z\right|_{t=0}$
$\Lambda^{\prime}(z)=-\left.B_{t}^{-1}\left[\frac{d}{d t} B_{t}\right] B_{t}^{-1} C_{t}\right|_{t=0}+\left.B_{t}^{-1}\left[\frac{d}{d t} B_{t}\right]\right|_{t=0}$
Let $x_{n} \rightarrow x, \Psi^{\prime}\left(x_{n}\right) \rightarrow y$.
$z_{n}:=x_{n}-e$,

Let $x \in \operatorname{dom}\left(\Psi^{\prime}\right), \quad\|x\|=1, \varphi \in \mathbf{E}^{*},\langle\varphi, x\rangle=\|\varphi\|=1$
Φ^{\prime} is a TANGENT vector field to $\partial \mathbf{B}$
$0=\operatorname{Re}\left\langle\varphi \circ \bar{\kappa}, \Phi^{\prime}(\kappa x)\right\rangle \quad \Leftarrow|\kappa|=1$
$\zeta \mapsto\left\langle\varphi, \Phi^{\prime}(\zeta x)\right\rangle=\sum_{n=0}^{\infty} \alpha_{n} \zeta^{n}$ holomorphic
$\operatorname{Re}\left(\bar{\kappa} \sum_{n=0}^{\infty} \alpha_{n} \kappa^{n}\right)=0$
$\sum_{n=0}^{\infty}\left(\alpha_{n} \kappa^{n-1}+\overline{\alpha_{n}} \kappa^{1-n}\right)=0 \quad(|\kappa|=1)$
$\sum_{n=-\infty}^{\infty} \beta_{n} \kappa^{n}=0 \quad \beta_{n}=\alpha_{n+1}(n \geq 2), \quad \beta_{n}=\overline{\alpha_{1-n}}(n \leq-2)$,

$$
\beta_{1}=\alpha_{2}+\overline{\alpha_{0}}, \quad \beta_{-1}=\alpha_{0}+\overline{\alpha_{2}}, \quad \beta_{0}=\alpha_{1}+\overline{\alpha_{1}}
$$

$\alpha_{n}=0(|n| \geq 2), \quad \alpha_{1}+\overline{\alpha_{1}}=0, \quad \alpha_{2}=-\overline{\alpha_{0}}$
CONSIDER $\Omega(x):=\Phi^{\prime}(x)-\{x b x\}$ INSTEAD OF $\Phi^{\prime}, \quad b:=\Psi^{\prime}(0)=\left.\frac{d}{d t} a(t)\right|_{t=0}$
This is also tangent to $\partial b f B$ with $\Omega(0)=0$
$\Omega(\zeta x)=\zeta \Omega(x)$ HOMOGENITY

SPIN FACTORS

$(\mathbf{H},\langle\cdot \mid \cdot\rangle)$ Hilbert space, $\quad x \mapsto \bar{x}$ conjugation, $\quad\langle x \mid y\rangle^{-}=\langle\bar{x} \mid \bar{y}\rangle$
$\mathcal{S}:=\mathcal{S}\left(\mathbf{H},{ }^{-}\right)$is the JB^{*}-triple with the triple product
$\{x a y\}=\langle x \mid a\rangle y+\langle y \mid a\rangle x-\underbrace{\langle x \mid \bar{y}\rangle}_{\langle y \mid \bar{x}\rangle} \bar{a}$
$[$ TRIPOTENTS $]=\{\lambda e: e \in \operatorname{Re}(\mathbf{H}), \lambda \in \mathbf{T},\langle e \mid e\rangle=1\} \cup$

$$
\cup\{u+i v: u, v \in \operatorname{Re}(\mathbf{H}),\langle u \mid u\rangle=\langle v \mid v\rangle=1 / 2,\langle u \mid v\rangle=0\}
$$

$U_{t}=\kappa_{t} V_{t}: \quad V_{t} \quad$ real $\langle\cdot \mid \cdot\rangle$-unitary, $\operatorname{Re}(\mathbf{E}) \rightarrow \operatorname{Re}(\mathbf{H}), \kappa_{t} \in \mathbf{T}$.

Norm formula. Given $a=x+i y \in \mathbf{H}$ with $x=\bar{x}, y=\bar{y}$, by writing $\langle z\rangle^{2}:=\langle z \mid z\rangle$,
$\|a\|=\|x+i y\|=\left[\left[\langle x\rangle^{2}+\langle y\rangle^{2}\right]+2\left[\langle x\rangle^{2}\langle y\rangle^{2}-\langle x \mid y\rangle^{2}\right]^{1 / 2}\right]^{1 / 2}$
Direct proof: By [Kaup, 1983], since $\operatorname{Span}\left\{L(a)^{n} a: n=1,2, \ldots\right\}=\mathbf{C} a+\mathbf{C} \bar{a}$,
$\|a\|^{2}=\operatorname{radSp}(L(a))=\operatorname{radSp}(L(a) \mid \mathbf{C} a+\mathbf{C} \bar{a})=\operatorname{radSp}(L(x+i y) \mid \mathbf{C} x+\mathbf{C} y)$.

Here we have $L(a) z=\langle a \mid a\rangle z+\langle z \mid a\rangle a-\langle z \mid \bar{a}\rangle \bar{a}$, that is
$L(a)=\left[\langle x\rangle^{2}+\langle y\rangle^{2}\right] \mathrm{id}+a \otimes a^{*}-\bar{a} \otimes \bar{a}^{*}=\left[\langle x\rangle^{2}+\langle y\rangle^{2}\right] \mathrm{id}+2 i\left[y \otimes x^{*}-x \otimes y^{*}\right]$ and
$L(a) x=\left[\langle x\rangle^{2}+\langle y\rangle^{2}\right] x+2 i\left[\langle x\rangle^{2} y-\langle x \mid y\rangle x\right], \quad L(a) y=\left[\langle x\rangle^{2}+\langle y\rangle^{2}\right] y+2 i\left[\langle x \mid y\rangle y-\langle y\rangle^{2} x\right] ;$
$\operatorname{Sp}(L(a) \mid \mathbf{C} x+\mathbf{C} y)=\left[\langle x\rangle^{2}+\langle y\rangle^{2}\right]+2 i \operatorname{Sp}\left[\begin{array}{cc}-\langle x \mid y\rangle & -\langle y\rangle \\ \langle x\rangle^{2} & \langle x \mid y\rangle\end{array}\right]=$
$=\left[\langle x\rangle^{2}+\langle y\rangle^{2}\right]+2 i \operatorname{roots}\left(\lambda^{2}-\langle x \mid y\rangle^{2}+\langle x\rangle^{2}\langle y\rangle^{2}\right)=\left[\langle x\rangle^{2}+\langle y\rangle^{2}\right] \pm 2\left[\langle x\rangle^{2}\langle y\rangle^{2}-\langle x \mid y\rangle^{2}\right]^{1 / 2}$.
Unit ball: $\left\{z \in \mathbf{H}:\langle z\rangle^{2}<\frac{1}{2}\left(1+|\langle z \mid \bar{z}\rangle|^{2}\right)<1\right\}$.

Str.cont one-parameter semigroups in $\operatorname{Iso}\left(d_{\mathbf{B}(\mathcal{S})}\right)$

$\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$str.cont.1-prsg in $\operatorname{Iso}\left(d_{\mathbf{B}(\mathcal{S})}\right)$

Vesentini (1992)*: $\exists M_{t} \in \operatorname{Re}(\mathcal{L}(\mathbf{H})) \exists b_{1}^{t}, b_{2}^{t}, c_{1}^{t}, c_{2}^{t} \in \operatorname{Re}(\mathbf{H}) \exists E^{t} \in \operatorname{Mat}(2,2, \mathbf{R})$
$\Phi^{t}(x)=F^{t}(x) / \varphi^{t}(x) \quad$ where \quad (with transposition $X^{\mathrm{T}}:=\overline{X^{*}}$)
$F^{t}(x)=\left(b_{1}^{t}-i b_{2}^{t}\right)+2 M_{t} x+\left(x^{\mathrm{T}} x\right)\left(b_{1}^{t}+i b_{2}^{t}\right)$
$\varphi^{t}(x)=\left(E_{11}^{t}+E_{22}^{t}-i E_{12}^{t}+i E_{21}^{t}\right)+2\left(c_{1}^{t}+i c_{2}^{t}\right)^{\mathrm{T}} x+\left(E_{11}^{t}-E_{22}^{t}+i E_{12}^{t}+i E_{21}^{t}\right) x^{\mathrm{T}} x$
such that, with $B_{t}:=\left[b_{1}^{t}, b_{2}^{t}\right], C_{t}:=\left[c_{1}^{t}, c_{2}^{t}\right]$, the matrices
$G^{t}=\left[\begin{array}{cc}M_{t} & B_{t} \\ C_{t}^{\mathrm{T}} & E^{t}\end{array}\right] \quad\left(t \in \mathbf{R}_{+}\right)$
form a str.cont.1prsg. such that
$\left[G^{t}\right]^{*} \operatorname{diag}\left(I,-I_{2}\right) G^{t}=\operatorname{diag}\left(I,-I_{2}\right), \operatorname{det}\left(E^{t}\right)>0 \quad\left(t \in \mathbf{R}_{+}\right), \quad$ that is
$C_{t} E^{t}=M_{t}^{\mathrm{T}} B_{t}, \quad M_{t}^{\mathrm{T}}=I+C_{t} C_{t}^{\mathrm{T}}, \quad\left[E^{t}\right]^{\mathrm{T}} E^{t}=I_{2}+B_{t}^{\mathrm{T}} B_{t}$.

Remark. In Rend.Sem.Mat.Univ Pol.Torino, there is a misprint on p. 438 line 11: it should be " $\delta G(X)=2\left(X \mid C_{1}-i C_{2}\right)+\cdots$ " instead of " $\delta G(X)=2\left(X \mid C_{1}-C_{2}\right)+\cdots "$. It also seems that Vesentini's results rely upon the tacitly used hypothesis that the origin belongs to the domain of the holomorphic infinitesimal generator Φ^{\prime} of $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$.

* Note di Mat. 9-Suppl.(1989)123-144; Ann.Mat.Pura Appl., 161/4(1992)281-297, Rend. Mat.Acc.Lincei, 3/9(1992)287-294. Rend.Sem.Mat.Univ Pol.Torino, 50/4(1992)427-455. Forerunners: U. Hierzbruch, Math Ann., 152 (1964) 395-417; L.A. Harris, Lecture Notes in Math. (Springer , 1974), Proc. London Math. Soc., 42/3 (1981) 331-361.

With the convention $Z^{\prime}:=\left.\frac{d}{d t}\right|_{t=0+} Z^{t}\left(\right.$ or $\left.Z_{t}\right)$, we calculate the infinitesimal generator Φ^{\prime} in terms of G^{\prime} that is of $M^{\prime}, B^{\prime}, C^{\prime}, E^{\prime}$, respectively (provided $\left.0 \in \operatorname{dom}\left(\Phi^{\prime}\right)\right)$.
$\Phi^{\prime}:=\left.\frac{d}{d t}\right|_{t=0+} \frac{F^{t}}{\varphi^{t}}=-\frac{\varphi^{\prime}}{\left(\varphi^{0}\right)^{2}} F^{0}+\frac{1}{\varphi^{0}} F^{\prime} \quad$ where, for $x \in \operatorname{dom}\left(G^{\prime}\right)$.

Since $G^{0}=\operatorname{Id}_{\mathbf{H} \oplus \mathbf{C}^{2}}=\operatorname{diag}\left(I, I_{2}\right)$, we have
$M_{0}=I, \quad b_{k}^{0}=c_{k}^{0}=E_{12}^{0}=E_{21}^{0}=0, \quad E_{11}^{0}=E_{22}^{0}=1$,
$0=\left(C_{t} E^{t}-M_{t}^{\mathrm{T}} B_{t}\right)^{\prime}=C^{\prime}-B^{\prime}, \quad 0=I^{\prime}=\left(M_{t}^{\mathrm{T}} M_{t}-C_{t}^{\mathrm{T}}\right)^{\prime}=\left[M^{\prime}\right]^{\mathrm{T}}+M^{\prime}$,
$\left.0=I_{2}^{\prime}=\left(\left[E^{t}\right]^{\mathrm{T}} E^{t}\right)-B_{t}^{\mathrm{T}} B_{t}\right)^{\prime}=\left[E^{\prime}\right]^{\mathrm{T}}+E^{\prime} \quad$ i.e. $E_{11}^{\prime}=E_{22}^{\prime}=0, E_{12}^{\prime}=-E_{21}^{\prime}$.
It follows $\quad \varphi^{0}(x)=\left(E_{11}^{0}+E_{22}^{0}-i E_{12}^{0}+i E_{21}^{0}\right)=2, \quad F^{0}(x)=2 M_{0} x=2 x$,
$F^{\prime}(x)=\left(b_{1}^{\prime}-i b_{2}^{\prime}\right)+2 M^{\prime} x+x^{\mathrm{T}} x\left(b_{1}^{\prime}+i b_{2}^{\prime}\right)$,
$\varphi^{\prime}(x)=\left(E_{11}^{\prime}+E_{22}^{\prime}-i E_{12}^{\prime}+i E_{21}^{\prime}\right)+2\left(c_{1}^{\prime}+i c_{2}^{\prime}\right)^{\mathrm{T}} x+\left(E_{11}^{\prime}-E_{22}^{\prime}+i E_{12}^{\prime}+i E_{21}^{\prime}\right) x^{\mathrm{T}} x=$ $=2 i E_{21}^{\prime}+2\left(b_{1}^{\prime}+i b_{2}^{\prime}\right)^{\mathrm{T}} x$,
$\Phi^{\prime}(x)=-\frac{1}{4}\left[2 i E_{21}^{\prime}+2\left(b_{1}^{\prime}+i b_{2}^{\prime}\right)^{\mathrm{T}} x\right] 2 x+\frac{1}{2}\left[\left(b_{1}^{\prime}-i b_{2}^{\prime}\right)+2 M^{\prime} x+x^{\mathrm{T}} x\left(b_{1}^{\prime}+i b_{2}^{\prime}\right)\right]=$ $=-i E_{21}^{\prime} x-\left[\left(b_{1}^{\prime}+i b_{2}^{\prime}\right)^{\mathrm{T}} x\right] x+\frac{1}{2}\left(b_{1}^{\prime}-i b_{2}^{\prime}\right)+M^{\prime} x+\frac{1}{2} x^{\mathrm{T}} x\left(b_{1}^{\prime}+i b_{2}^{\prime}\right)=$ $=\left[\frac{1}{2}\left(b_{1}^{\prime}-i b_{2}^{\prime}\right)\right]+\left[M^{\prime}-i E_{21}^{\prime}\right] x-\left[x\left(b_{1}^{\prime}+i b_{2}^{\prime}\right)^{\mathrm{T}} x-\frac{1}{2}\left(b_{1}^{\prime}-i b_{2}^{\prime}\right) x^{\mathrm{T}} x\right]$.

Proposition. If $0 \in \operatorname{dom}\left(\Phi^{\prime}\right)$ i.e. Φ^{\prime} is of Kaup's type as $\Phi^{\prime}(x)=a+i A x-\left\{x a^{*} x\right\}$ with $a:=\Phi^{\prime}(0)$ and some \mathcal{S}-Hermitian $A \in \mathcal{L}(\mathbf{H})$ then $G^{\prime}=\left[\begin{array}{ccc}i A-i \varepsilon I & 2 \operatorname{Re}(a) & -2 \operatorname{Im}(a) \\ 2 \operatorname{Re}(a)^{\mathrm{T}} & 0 & -\varepsilon \\ -2 \operatorname{Im}(a)^{\mathrm{T}} & \varepsilon & 0\end{array}\right] \quad$ where $\quad \varepsilon:=E_{21}^{\prime}$
and $\quad i A=M+i \varepsilon I$ with $M=-M^{\mathrm{T}}: \operatorname{Re}(\mathbf{H}) \rightarrow \operatorname{Re}(\mathbf{H})$.

Coordinatization, Möbius transformations

Recall that, by means of SVD-decomposition, we can write
$B=\left[b_{1}^{\prime}, b_{2}^{\prime}\right]=Q_{1}\left[\begin{array}{cc}0 & 0 \\ \lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] Q_{2}^{\mathrm{T}}$ where $Q_{1} \in \operatorname{QRT}\left(\operatorname{Re}(\mathbf{H}), Q_{2} \in \operatorname{ORT}\left(\mathbf{R}^{2}\right), \lambda_{1} \geq \lambda_{2} \geq 0\right.$.
Hence with the real orthogonal operator matrix $Q:=Q_{1} \oplus Q_{2}=\left[\begin{array}{cc}Q_{1} & 0 \\ 0 & Q_{2}\end{array}\right]$,
$G^{t}=Q_{1} \widetilde{G}^{t} Q_{2}^{\mathrm{T}} \quad\left(t \in \mathbf{R}_{+}\right) \quad$ where $\quad \widetilde{G}^{\prime}:=\operatorname{gen}\left[\widetilde{G}^{t}: t \in \mathbf{R}_{+}\right]$has the form
$\widetilde{G}^{\prime}=\left[\begin{array}{ccc}\widetilde{M}_{11}^{\prime} & \widetilde{M}_{12}^{\prime} & 0 \\ \widetilde{M}_{21}^{\prime} & {\left[\begin{array}{cc}0 & -\nu \\ \nu\end{array}\right]} & {\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]} \\ 0 & {\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]} & {\left[\begin{array}{cc}0 & -\varepsilon \\ \varepsilon & 0\end{array}\right]}\end{array}\right]$.
Continuing with a similar transformation $\widehat{G}^{\prime}:=\widehat{Q} \widetilde{G}^{\prime} \widehat{G}^{\mathrm{T}}$ where $\widehat{Q}=I_{1} \oplus I_{2} \oplus I_{2}$ with suitable real orthogonal \widehat{Q}_{1}, with QR-decomposition we can achieve the form
$\widehat{G}^{\prime}=\left[\begin{array}{cccc}\widehat{M}_{11} & \widehat{M}_{12} & 0 & 0 \\ -\widehat{M}_{12}^{\mathrm{T}} & \widehat{M}_{22} & L & 0 \\ 0 & -L & \widetilde{M}_{22} & \Lambda \\ 0 & 0 & \Lambda^{\mathrm{T}} & E\end{array}\right], \quad \begin{aligned} & \widetilde{M}_{22}, \widehat{M}_{22}, E \text { antisymm. } \\ & \Lambda \text { pos.diag., } L \text { lower triangular } 2 \times 2 \text { real matr. }\end{aligned}$
Question. Can we further eliminate Λ in entry $(2,3)$ with a transform $X \mapsto S X S^{-1}$?

In particular the Möbius transformations in a spin factor are the maps arising from integrating the vector fields corresponding to generators of the form with $M^{\prime}=0$. Thus they are contructed as follows. Take an operator matrix of the form
$G^{\prime}=\left[\begin{array}{cc}0 & B^{\prime} \\ {\left[B^{\prime}\right]^{\mathrm{T}}} & 0\end{array}\right]=\left[\begin{array}{ccc}0 & b_{1}^{\prime} & b_{2}^{\prime} \\ {\left[b_{1}^{\prime}\right]^{\mathrm{T}}} & 0 & 0 \\ {\left[b_{2}^{\prime}\right]^{\mathrm{T}}} & 0 & 0\end{array}\right]=Q_{1}\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & {\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]} \\ 0 & {\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]} & 0\end{array}\right] Q_{2}^{\mathrm{T}}$.
Since G^{\prime} is a bounded operator in this cases, its integration is simply

$$
\begin{aligned}
& G^{t}=\exp \left(t G^{\prime}\right)=\sum_{n=0}^{\infty} n!^{-1} t^{n}\left[G^{\prime}\right]^{n}= \\
& =\sum_{k=0}^{\infty} \frac{t^{2 k}}{(2 k)!}\left[\begin{array}{cc}
\left(B^{\prime}\left[B^{\prime}\right]^{\mathrm{T}}\right)^{k} & 0 \\
0 & \left(\left[B^{\prime}\right]^{\mathrm{T}} B^{\prime}\right)^{k}
\end{array}\right]+\sum_{k=0}^{\infty} \frac{t^{2 k+1}}{(2 k+1)!}\left[\begin{array}{cc}
0 & \left(B^{\prime}\left[B^{\prime}\right]^{\mathrm{T}}\right)^{k} B^{\prime} \\
{\left[B^{\prime}\right]^{\mathrm{T}}\left(B^{\prime}\left(\left[B^{\prime}\right]^{\mathrm{T}}\right)^{k}\right.} & 0
\end{array}\right]=
\end{aligned}
$$

giving rise to
$M_{a(t)}(x)=\Phi^{t}(x)=F^{t}(x) / \varphi^{t}(x) \quad$ where
$F^{t}(x)=\left(b_{1}^{t}-i b_{2}^{t}\right)+2 M_{t} x+\left(x^{\mathrm{T}} x\right)\left(b_{1}^{t}+i b_{2}^{t}\right)$
$\varphi^{t}(x)=\left(E_{11}^{t}+E_{22}^{t}-i E_{12}^{t}+i E_{21}^{t}\right)+2\left(c_{1}^{t}+i c_{2}^{t}\right)^{\mathrm{T}} x+\left(E_{11}^{t}-E_{22}^{t}+i E_{12}^{t}+i E_{21}^{t}\right) x^{\mathrm{T}} x$

$E^{t}=Q_{2}\left[\cosh \left(\left[\begin{array}{cc}\lambda_{1} t & 0 \\ 0 & \lambda_{2} t\end{array}\right]\right)\right] Q_{2}^{\mathrm{T}}$.

Remark. The maximal faces of the unit ball of a spin factor are discs of the form
$\mathbf{B}_{e}:=e+\{\zeta \bar{e}:|\zeta| \leq 1\} \quad$ where $e=\frac{1}{2} u+\frac{i}{2} v$ with $u \perp v \in \operatorname{Re}\left(\mathbf{H},\langle u\rangle^{2}=\langle v\rangle^{2}=1\right.$.

Lemma. Given a tripotent e as above, for the Möbius group $\left[M_{a(t)}: t \in \mathbf{R}\right]$ integrating the vector field $M^{\prime}: z \mapsto 2 \bar{e}-\left\{z(2 \bar{e})^{*} z\right\}$ corresponding to the generator $G^{\prime}:=\left[\begin{array}{ccc}0 & u & -v \\ u^{\mathrm{T}} & 0 & 0 \\ -v^{\mathrm{T}} & 0 & 0\end{array}\right]$ we have
$M^{\prime}(e+\zeta \bar{e})=2\left(1-\zeta^{2}\right) \bar{e}, \quad M_{a(t)}(e+\zeta \bar{e})=e+\frac{\zeta+\tanh (t)}{1+\tanh (t) \zeta} \bar{e} \quad(|\zeta| \leq 1)$.
Proof. Since $e \perp \bar{e}$ and $\langle e\rangle^{2}=\langle\bar{e}\rangle^{2}=1 / 2$, we have
$M^{\prime}(e+\zeta \bar{e}) / 2=\bar{e}-2\langle e+\zeta \bar{e} \mid \bar{e}\rangle(e+\zeta \bar{e})+\langle e+\zeta \bar{e} \mid e-\zeta \bar{e}\rangle e=\bar{e}-\zeta \bar{e}$.
Thus the vector field M^{\prime} is tangent to the complex line $\mathbf{L}_{e}:=e+\mathbf{C} \bar{e}$ and, in terms of the trivial coordinatization $Z(e+\zeta \bar{e}):=\zeta$ it has the form $Z_{\#} M^{\prime}: \zeta \mapsto 1-\zeta^{2}$ whose integration gives the classical Möbius group $[(\zeta+\tanh (t)) /(1+\zeta \tanh (t)): t \in \mathbf{R}]$

Triangularization with fixed points

Assume $e \in \partial \mathbf{B}$ is a common fixed point of [$\Phi^{t}: t \in \mathbf{R}_{+}$] represented with the c_{0}-sgr. of operator matrices $\left[G^{t}: t \in \mathbf{R}_{+}\right.$] (in Vesentini's sense). Consider the corresponding generators
$\Phi^{\prime}(x)=a+i A x-\left\{x a^{*} x\right\}=\left(\frac{1}{2} b_{1}-\frac{i}{2} b_{2}\right)+M x+i \varepsilon x-\left\langle x \mid b_{1}-i b_{2}\right\rangle x+\langle x \mid \bar{x}\rangle\left(\frac{1}{2} b_{1}+\frac{i}{2} b_{2}\right)$, $G^{\prime}=\left[\begin{array}{ccc}M & b_{1} & b_{2} \\ b_{1}^{\mathrm{T}} & 0 & -\varepsilon \\ b_{2}^{\mathrm{T}} & \varepsilon & 0\end{array}\right] \quad$ where $\quad b_{1}:=2 \operatorname{Re}(a), b_{2}:=-2 \operatorname{Im}(a), \quad M=\bar{M}=-M^{\mathrm{T}}, \varepsilon \in \mathbf{R}$.

We may assume without loss of generality (by means of Möbius equivalence) that e is a tripotent, that is we have either

1) $e=\bar{e},\langle e \mid e\rangle=1$ (real extreme point), or
2) $e \perp \bar{e},\langle e \mid e\rangle=\frac{1}{2}$ (face middle point).

In any case, $\Phi^{\prime}(e)=0$.

Case (1) $0=\Phi^{\prime}(e)=a+i A e-\left\{e a^{*} e\right\}=$

$$
=\left(\frac{1}{2} b_{1}-\frac{i}{2} b_{2}\right)+M e+i \varepsilon e-\left\langle e \mid b_{1}-i b_{2}\right\rangle e+\langle e \mid e\rangle\left(\frac{1}{2} b_{1}+\frac{i}{2} b_{2}\right) .
$$

With the orthogonal decompositions $b_{j}:=\rho_{j} e+x_{j}$ (i.e. $\rho_{j} \in \mathbf{R}, x_{j} \perp e$), we have
$0=i\left(\varepsilon-\rho_{2}\right) e+x_{1}+M e \quad$ implying $\quad \rho_{2}=\varepsilon$ and $M e=-x_{1}$.

Hence, with the restricted operator $M_{0}:=\mathrm{P}_{e^{\perp}} M \mid e^{\perp}$,
$G^{\prime}=\left[\begin{array}{ccc}M & b_{1} & b_{2} \\ b_{1}^{\mathrm{T}} & 0 & -\varepsilon \\ b_{2}^{\mathrm{T}} & \varepsilon & 0\end{array}\right]=\left[\begin{array}{cccc}0 & -(M e)^{\mathrm{T}} & \rho_{1} & -\varepsilon \\ M e & M_{0} & -M e & y \\ \rho_{1} & -(M e)^{\mathrm{T}} & 0 & -\varepsilon \\ -\varepsilon & y^{\mathrm{T}} & \varepsilon & 0\end{array}\right]=\left[\begin{array}{cccc}0 & x_{1}^{\mathrm{T}} & \rho_{1} & -\varepsilon \\ -x_{1} & M_{0} & x_{1} & x_{2} \\ \rho_{1} & x_{1}^{\mathrm{T}} & 0 & -\varepsilon \\ -\varepsilon & x_{2}^{\mathrm{T}} & \varepsilon & 0\end{array}\right]$.

An almost triagular similar matrix can be obtained with the operator matrices

$$
T:=\left[\begin{array}{cccc}
1 / 2 & 0 & 0 & 1 \\
0 & I_{0} & 0 & 0 \\
-1 / 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad T^{-1}=\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & I_{0} & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

as

$$
T^{-1} G^{\prime} T=\left[\begin{array}{cccc}
-\rho_{1} & 0 & 0 & 0 \\
-x_{1} & M_{0} & x_{2} & 0 \\
-\varepsilon & x_{2}^{T} & 0 & 0 \\
0 & x_{1}^{T} & -\varepsilon & \rho_{1}
\end{array}\right]
$$

Remark. M_{0} is a possibly unbounded skew symmetric closed real-linear operator defined on a dense linear submanifold of e^{\perp}. For heuristics see vazlat6.mws.

Case (2) $0=\Phi^{\prime}(e), e \perp \bar{e},\langle e\rangle^{2}=1 / 2$ of face middle points. Then
$0=\Phi^{\prime}(e)=\left(\frac{1}{2} b_{1}-\frac{i}{2} b_{2}\right)+M e+i \varepsilon e-\left\langle e \mid b_{1}-i b_{2}\right\rangle e$.

We assume without loss of generality that
$e=\frac{1}{2} u+\frac{i}{2} v$ where $u \perp v, u=\bar{u}, v=\bar{v}$ and $\langle u\rangle^{2}=\langle v\rangle^{2}=1$.
Since M is real antisymmetric i.e. $M=\bar{M} \subset-M^{\mathrm{T}}=-\bar{M}^{*}=-\overline{M^{*}}$ along with $\operatorname{dom}(M)=$ $\overline{\operatorname{dom}(M)}$, we have $u, v \in \operatorname{dom}(M)$ with $\langle M u \mid u\rangle=\langle M v \mid v\rangle=\langle M u \mid v\rangle+\langle M v \mid u\rangle=0$ and $\langle M e \mid e\rangle=-\frac{i}{2}\langle M u \mid v\rangle$ resp. $\langle M e \mid \bar{e}\rangle=0$.

Hence, using the identities $\left\langle b_{j} \mid u\right\rangle=\left\langle u \mid b_{j}\right\rangle$ resp. $\left\langle b_{j} \mid v\right\rangle=\left\langle v \mid b_{j}\right\rangle$, we get
$0=\left\langle\Phi^{\prime}(e) \mid e\right\rangle=\left\langle\left.\frac{1}{2} b_{1}-\frac{i}{2} b_{2} \right\rvert\, e\right\rangle+\langle M e \mid e\rangle+\frac{i}{2} \varepsilon-\left\langle e \left\lvert\, \frac{1}{2} b_{1}-\frac{i}{2} b_{2}\right.\right\rangle=\frac{i}{2}\left[\varepsilon-\langle M u \mid v\rangle-\left\langle b_{1} \mid v\right\rangle-\left\langle b_{2} \mid u\right\rangle\right]$,
$0=\left\langle\Phi^{\prime}(e) \mid \bar{e}\right\rangle=\left\langle\left.\frac{1}{2} b_{1}-\frac{i}{2} b_{2} \right\rvert\, \bar{e}\right\rangle=\frac{1}{4}\left[\left\langle b_{1} \mid u\right\rangle+\left\langle b_{2} \mid v\right\rangle+i\left\langle b_{1} \mid v\right\rangle-i\left\langle b_{2} \mid u\right\rangle\right]$.

Considering the real and imaginary parts, therefore
$\left\langle b_{1} \mid u\right\rangle=-\left\langle b_{2} \mid v\right\rangle, \quad\left\langle b_{1} \mid v\right\rangle=\left\langle b_{2} \mid u\right\rangle, \quad\langle M u \mid v\rangle=\varepsilon-\left\langle b_{1} \mid v\right\rangle-\left\langle b_{2} \mid u\right\rangle=\varepsilon-2\left\langle b_{2} \mid u\right\rangle$.

Thus in terms of the orthogonal decompositions
$b_{j}=\rho_{j} u+\sigma_{j} v+x_{j},\left(\right.$ where $\left.x_{1}, x_{2} \perp\{u, v\}\right)$
and with $\mu:=\langle M u \mid v\rangle$ we have
$\sigma_{2}=-\rho_{1}, \quad \sigma_{1}=\rho_{2}, \quad \mu=\varepsilon-2 \rho_{2}$.

Hence, with the notations $P:=\mathrm{P}_{\{u, v\}^{\perp}}, M_{0}:=P M \mid\{u, v\}^{\perp}, q_{1}:=P M u, q_{2}:=P M v$, we can write
$G^{\prime}=\left[\begin{array}{ccc}M & b_{1} & b_{2} \\ b_{1}^{\mathrm{T}} & 0 & -\varepsilon \\ b_{2}^{\mathrm{T}} & \varepsilon & 0\end{array}\right]=\left[\begin{array}{ccccc}0 & -\mu & -q_{1}^{\mathrm{T}} & \rho_{1} & \rho_{2} \\ \mu & 0 & -q_{2}^{\mathrm{T}} & \rho_{2} & -\rho_{1} \\ q_{1} & q_{2} & M_{0} & x_{1} & x_{2} \\ \rho_{1} & \rho_{2} & x_{\mathrm{T}}^{\mathrm{T}} & 0 & -\varepsilon \\ \rho_{2} & -\rho_{1} & x_{2}^{\mathrm{T}} & \varepsilon & 0\end{array}\right]=\left[\begin{array}{cccc}0 & 2 \rho_{2}-\varepsilon & x_{1}^{\mathrm{T}} & \rho_{1} \\ \varepsilon-2 \rho_{2} & 0 & -x_{2} & \rho_{2} \\ -\rho_{1} & \rho_{2} & M_{0} & x_{1} \\ x_{1} & x_{2} \\ \rho_{1} & \rho_{2} & x_{\mathrm{T}}^{\mathrm{T}} & 0 \\ \rho_{2} & -\rho_{1} & x_{2}^{\mathrm{T}} & \varepsilon\end{array}\right]$
because from the relation
$0=P \Phi^{\prime}(e)=P\left[\left(\frac{1}{2} b_{1}-\frac{i}{2} b_{2}\right)+M e+i \varepsilon e-\left\langle e \mid b_{1}-i b_{2}\right\rangle e\right]=\frac{1}{2}\left[x_{1}-i x_{2}+P M(u+i v)+0\right]$
we infer also $q_{1}=-x_{1}$ and $q_{2}=x_{2}$.

Intergration of the almost triangular systems

Case (1) For short we write $\rho:=\rho_{1}, x:=x_{1}, y:=x_{2}$. We determine the c_{0}-semigroup $\left[U^{t}: t \in \mathbf{R}_{+}\right], U^{t}:=(T S)^{-1} G^{t}(T S)$ with the generator $A+B$ where
$A:=\left[\begin{array}{cccc}-\rho & 0 & 0 & 0 \\ -x & M_{0} & 0 & 0 \\ -\varepsilon & y^{\mathrm{T}} & 0 & 0 \\ 0 & x^{\mathrm{T}} & -\varepsilon & \rho\end{array}\right], \quad B:=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
It is well-known [Engel-Nagel] that, in terms of the c_{0}-semigroup $\left[T^{t}: t \in \mathbf{R}_{+}\right.$] with generator $A=S_{0}^{\prime}$ which consits of lower triangular operator matrices, we have the convolution equation of Volterra type

$$
\begin{equation*}
U^{t}=\int_{s=0}^{t} T^{t-s} B U^{s} d s+T^{t} \quad\left(t \in \mathbf{R}_{+}\right) \tag{V}
\end{equation*}
$$

and also $\quad U^{t}=\sum_{n=0}^{\infty} S_{n}(t) \quad$ with the recursion $\quad S_{0}(t):=T^{t}, S_{n+1}(t)=\int_{0}^{t} T^{t-s} B S_{n}(s) d s$. The so-called Dyson-Phillips series $\sum_{n=0}^{\infty} S_{n}(t)$ converges locally uniformly in norm. In terms of the entries, we can write
$T^{t-s} B=\left[\begin{array}{llll}T_{11}^{t-s} & & & \\ T_{21}^{t-s} & T_{22}^{t-s} & & \\ T_{31}^{t-s} & T_{32}^{t-s} & T_{33}^{t-s} & \\ T_{41}^{t-s} & T_{42}^{t-s} & T_{43}^{t-s} & T_{44}^{t-s}\end{array}\right]\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & T_{22}^{t-s} y & 0 \\ 0 & 0 & T_{32}^{t-s} y & 0 \\ 0 & 0 & T_{42}^{t-s} y & 0\end{array}\right]$
and
$T^{t-s} B U^{s}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ {\left[T_{k, 2}^{t-s} y U_{3, \ell}^{s}\right]_{\substack{2 \leq k \leq 4 \\ 1 \leq \ell \leq 4}}}\end{array}\right], \quad T^{t-s} B S_{n}(s)=\left[\begin{array}{ccc}0 & 0 & 0 \\ {\left[T_{k, 2}^{t-s} y\left[S_{n}(s)\right]_{3, \ell}\right]_{\substack{2 \leq k \leq 4 \\ 1 \leq \ell \leq 4}}}\end{array}\right]$.
It follows
$\left(\mathrm{V}^{\prime}\right) \quad U_{1, \ell}^{t} \equiv T_{1, \ell}^{t}, \quad U_{k, \ell}^{t}=\int_{s=0}^{t} T_{k, 2}^{t-s} y U_{3, \ell}^{s} d s+T_{k, \ell}^{t} \quad\left(t \in \mathbf{R}_{+} ; \quad k=1,2,3 ; \ell=1,2,3,4\right)$.
At this point, one more reduction is easily available: Since the matrices T^{t} are lower triangular, we have $T_{34}^{t} \equiv 0$ with the consequence that the solution U_{34}^{t} of the homogeneous Volterra equation $U_{34}^{t}=\int_{s=0}^{t} T_{3,2}^{t-s} y U_{3,4}^{s}+T_{34}^{t}$ is necesarily $U_{34}^{t} \equiv 0$ and hence also $U_{k, 4}^{t}=\int_{s=0}^{t}\left[T_{k, 2}^{t-s} y\right] U_{34}^{s} d s+T_{k, 2}^{t} \equiv T_{k, 4}^{t} \quad(k=2,3,4)$, $U_{1,4}^{t}=U_{2,4}^{t}=U_{3,4}^{t} \equiv 0, \quad U_{4,4}^{t} \equiv T_{4,4}^{t}=e^{\rho t} \quad$ and also $U_{1,1}^{t} \equiv T_{1,1}^{t}=e^{-\rho t}, U_{1,2}^{t}=U_{1,3}^{t} \equiv 0$.

For the remaining cases $(k>1, \ell<4)$ we obtain the following crucial Volterra equations which can control the entries $U_{k, \ell}^{t}$ by the third row via $\left(\mathrm{V}^{\prime}\right)$ completely:

$$
U_{3, \ell}^{t}=\int_{r=0}^{t}\left[T_{32}^{t-r} y\right] U_{3, \ell}^{r} d r+T_{3, \ell}^{t} \quad\left(t \in \mathbf{R}_{+} ; \ell=1,2,3\right)
$$

Notice that the matrices $T_{32}^{t-r} y$ are of type 1×1, thus the effect of left multiplication with them is simply a scalar multiplication. Also the submatrices $T_{k, \ell}^{t}, U_{k, \ell}^{r}$ with $(k, \ell)=$ $(3,1),(3,3)$ are of type 1×1.

Since $\left[T^{t-s} B S_{n}(s)\right]_{3, \ell}=T_{32}^{t-s} y\left[S_{n}(s)\right]_{3, \ell}$, in terms of convolutions with the functions $w(t):=T_{32}^{t} y, \quad V_{\ell}(t):=T_{3, \ell}^{t} \quad\left(t \in \mathbf{R}_{+}, \ell=1,2,3\right)$,
with uniform convergence on bounded intervals $(t \leq M)$, we have

$$
\begin{aligned}
U_{3, \ell}^{t} & =T_{3, \ell}^{t}+\sum_{n=1}^{\infty} S_{n}(t)_{3, \ell}=V_{\ell}(t)+\left\{w * V_{\ell}\right\}(t)+\sum_{n=2}^{\infty}\{\underbrace{w * \cdots * w}_{n \text { terms }} * V_{\ell}\}(t)= \\
& =\left\{W * V_{\ell}\right\}(t) \quad \text { where } \quad W:=1+w+\sum_{n=2}^{\infty} \underbrace{w * \cdots * w}_{n \text { terms }}=\sum_{n=0}^{\infty} w^{* n} .
\end{aligned}
$$

Remark. We can achieve useful structure formulas for the functions $w^{* n}$ above by means of the Laplace transform
$\mathcal{L} v=\mathcal{L}_{t}\{v(t)\}: s \mapsto \int_{t=0}^{\infty} e^{-s t} V(t) d t, \quad \operatorname{dom}(\mathcal{L} v)=\left\{s \in \mathbf{C}: \int_{t=0}^{\infty}\left|e^{-s t} v(t)\right| d t<\infty\right\}$
and its inverse
$\mathcal{L}^{-1} V: 0 \leq t \mapsto \frac{1}{\pi} \int_{\sigma=-\infty}^{\infty} e^{(\Omega+i \sigma) t} V(\Omega+i \sigma) d \sigma$ with $\Omega>0$ satisfying $\int_{\sigma=-\infty}^{\infty} e^{\Omega t}|V(\Omega+i \sigma)| d \sigma<\infty$. It is well-known [Deddens, Stachó JMAA] that the c_{0}-semigroup $\left[U_{0}^{t}: t \in \mathbf{R}_{+}\right.$] of reallinear isometries $\mathbf{H}_{0} \rightarrow \mathbf{H}_{0}$ with generator M_{0} embeds into a c_{0}-group of isometries of some covering real Hilbert space which can be regarded as the real part of the complexified Hilbert space $\widehat{\mathbf{H}}:=\mathbf{H}_{0} \oplus i \mathbf{H}_{0}$ with conjugation $\tau: x \oplus i y \mapsto x \oplus(-i) y \quad\left(x, y \in \mathbf{H}_{0}\right)$. Thus
$U_{0}^{t} z=\int_{\lambda \in \mathbf{R}} e^{i \lambda t} P(d \lambda) z \quad(z \in \operatorname{Re}(\mathbf{H}))$
in terms of a spectral measure
$P: \Lambda(\subset \mathbf{R}$ Borelian $) \rightarrow\{$ orthogonal projections on $\widehat{\mathbf{H}}\}$.
Since the operators $\widehat{U}_{0}^{t}:=\int_{\lambda \in \mathbf{R}} e^{i \lambda t} P(d \lambda)$ leave the eigenspace $\mathbf{H}_{0}=\{\widehat{x}: \tau \widehat{x}=\widehat{x}\}$ invariant, we have
$\tau \widehat{U}_{0}^{t} \equiv \widehat{U}_{0}^{t} \tau$ i.e. $\widehat{U}_{0}^{t} \equiv \tau \widehat{U}_{0}^{t} \tau \quad(t \in \mathbf{R})$.
Hence necessarily
$\int_{\lambda \in \mathbf{R}} e^{i \lambda t} P(d \lambda)=\tau \int_{\lambda \in \mathbf{R}} e^{i \lambda t} P(d \lambda) \tau=\int_{\lambda \in \mathbf{R}} e^{-i \lambda t} \tau P(d \lambda) \tau=\int_{\lambda \in \mathbf{R}} e^{i \lambda t} \tau P(-d \lambda) \tau \quad(t \in \mathbf{R})$.
This implies the following symmetry of $P(\cdot)$:
$P(\Lambda)=\tau P(-\Lambda) \tau$ i.e. $P(-\Lambda)=\tau P(\Lambda) \tau \quad(\Lambda \subset \mathbf{R}$ Borelian $)$.
It is immediate that

$$
\begin{aligned}
w(t) & =T_{32}^{t} y=y^{\mathrm{T}} \int_{r=0}^{t} U_{0}^{r} d r y=\left\langle y \mid \int_{r=0}^{t} U_{0}^{r} d r y\right\rangle=\int_{r=0}^{t}\left\langle y \mid \int_{\lambda \in \mathbf{R}} e^{i \lambda r} P(d \lambda) y\right\rangle d r= \\
& =\left\langle y \mid \int_{\lambda \in \mathbf{R}} \int_{r=0}^{t} e^{i \lambda r} d r P(d \lambda) y\right\rangle=\int_{\lambda \in \mathbf{R}}\left[\int_{r=0}^{t} e^{-i \lambda r} d r\right]\langle y \mid P(d \lambda) y\rangle= \\
& =\left[\int_{\lambda<0}+\int_{\lambda=0}+\int_{\lambda>0}\right] \frac{1-e^{-i \lambda t}}{i \lambda}\langle y \mid P(d \lambda) y\rangle= \\
& =t P\{0\}+\int_{\lambda \in \mathbf{R}_{++}} \frac{1-e^{-i \lambda t}}{i \lambda}\langle y \mid P(d \lambda) y\rangle+\int_{\lambda \in \mathbf{R}_{++}} \frac{1-e^{i \lambda t}}{(-i) \lambda}\langle y \mid \tau P(-d \lambda) y\rangle .
\end{aligned}
$$

Since $P(-\Lambda) \equiv \tau P(\Lambda) \tau, \quad y=\tau y \in \mathbf{H}_{0}$ and $\langle\tau \hat{u} \mid \tau \widehat{v}\rangle=\langle\widehat{u} \mid \widehat{v}\rangle^{-}=\langle\widehat{v} \mid \hat{u}\rangle$, it follows
$0 \leq\langle y \mid P(-\Lambda) y\rangle=\langle\tau y \mid \tau P(\Lambda) y\rangle=\langle y \mid P(\Lambda) y\rangle^{-}=\langle y \mid P(\Lambda) y\rangle$.
Thus we get even
$w(t)=t P\{0\}+\int_{\lambda \in \mathbf{R}_{++}}\left(\frac{1-e^{-i \lambda t}}{i \lambda}+\frac{1-e^{i \lambda t}}{(-i) \lambda}\right) p(d \lambda)=\int_{\lambda \in \mathbf{R}_{+}} \frac{\sin (\lambda t)}{\lambda} d p(\lambda)$
in terms of the non-negative real valued measure
$p(\Lambda):=2\langle y \mid P(\Lambda) y\rangle \quad\left(\Lambda \subset \mathbf{R}_{++}\right.$Borelian $), \quad p(\{0\}):=\langle y \mid P(\{0\}) y\rangle$
on \mathbf{R}_{+}with total mass
$p\left(\mathbf{R}_{+}\right)=p(\{0\})+2 p\left(\mathbf{R}_{++}\right)=p(\{0\})+p\left(\mathbf{R}_{++}\right)+p\left(-\mathbf{R}_{++}\right)=\langle y \mid P(\mathbf{R}) y\rangle=\langle y \mid y\rangle=\|y\|^{2}<1$.
For its Laplace transform we have

$$
\begin{gathered}
\mathcal{L} w(s)=\int_{t=0}^{\infty} e^{-s t} \int_{\lambda \in \mathbf{R}_{+}} \frac{\sin (\lambda t)}{\lambda} d p(\lambda) d t=\int_{\lambda \in \mathbf{R}_{+}} \int_{t=0}^{\infty} e^{-s t} \frac{\sin (\lambda t)}{\lambda} d t d p(\lambda)= \\
=\int_{\lambda \in \mathbf{R}_{+}} \mathcal{L}_{t}\{\sin (\lambda t) / \lambda\}(s) d p(\lambda)=\int_{\lambda \in \mathbf{R}_{+}} \frac{1}{s^{2}+\lambda^{2}} d p(\lambda) .
\end{gathered}
$$

Hence
$\mathcal{L} w^{* n}=[\mathcal{L} w]^{n}=\left[\int_{\lambda \in \mathbf{R}_{+}} \frac{1}{s^{2}+\lambda^{2}} d p(\lambda)\right]^{n} \quad(n=1,2, \ldots)$,
$w^{* n}=\frac{1}{\pi} \int_{\sigma=-\infty}^{\infty} e^{(\Omega+i \sigma) t}\left[\int_{\lambda \in \mathbf{R}_{+}} \frac{d p(\lambda)}{(\Omega+i \sigma)^{2}+\lambda^{2}}\right]^{n} d \sigma \quad$ for sufficiently large $\Omega>0$.
We can calculate $w^{* n}$ in terms of the product measure $d p^{\otimes n}(\lambda):=d p\left(\lambda_{1}\right) \cdots d p\left(\lambda_{n}\right)$ as
follows. Since $w(t)=\int_{\lambda \in \mathbf{R}_{+}} s_{\lambda}(t) d p(\lambda)$, by induction on n we can see that
$w^{* n}(t)=\int_{\lambda_{1} \in \mathbf{R}_{+}^{n}} s_{\lambda_{1}} * \cdots * s_{\lambda_{n}}(t) d p\left(\lambda_{n}\right) \cdots d p\left(\lambda_{1}\right)=\int_{\lambda \in \mathbf{R}_{+}^{n}} s_{\lambda_{1}} * \cdots * s_{\lambda_{n}}(t) d p^{\otimes n}(\lambda)$.
For the functions
$s_{\lambda}(t):=\frac{\sin \lambda t}{\lambda} \quad(0 \neq \lambda \in \mathbf{R}) ; \quad s_{0} \equiv t$
we have (with computer algebra MAPLE vazlat5.mws)
$s_{\alpha} * s_{\beta}(t)=\int_{s=0}^{t} s_{\alpha}(s) s_{\beta}(t-s) d s=-\frac{\sin \alpha t}{\alpha\left(\alpha^{2}-\beta^{2}\right)}-\frac{\sin \beta t}{\beta\left(\beta^{2}-\alpha^{2}\right)}$.
Using this identity, by induction on n we obtain that
$s_{\lambda_{1}} * \cdots * s_{\lambda_{n}}(t)=\sum_{k=1}^{n} \alpha_{k}^{(n)} \sin \lambda_{k} t \quad$ where $\quad \alpha_{k}^{(n)}=\alpha_{k}^{(n)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{\lambda_{k}} \prod_{j: k \neq j \leq n} \frac{1}{\lambda_{j}^{2}-\lambda_{k}^{2}}$.
Indeed, for every n with this property, also

$$
\begin{array}{rl}
s_{\lambda_{1}} & * \cdots * s_{\lambda_{n+1}}(t)=\sum_{k=1}^{n} \alpha_{k}^{(n)} \lambda_{k} s_{\lambda_{k}} * s_{\lambda_{n+1}}= \\
& =\sum_{k=1}^{n} \alpha_{k}^{(n)} \lambda_{k}\left[\frac{\sin \lambda_{k} t}{\lambda_{k}\left(\lambda_{n+1}^{2}-\lambda_{k}^{2}\right)}+\frac{\sin \lambda_{n+1} t}{\lambda_{n+1}\left(\lambda_{k}^{2}-\lambda_{n+1}^{2}\right)}\right]= \\
& =\sum_{k=1}^{n}\left[\frac{1}{\lambda_{k}} \prod_{k \neq j \leq n} \frac{1}{\lambda_{j}^{2}-\lambda_{k}^{2}}\right] \frac{\sin \lambda_{k} t}{\left(\lambda_{n+1}^{2}-\lambda_{k}^{2}\right)}+\sum_{k=1}^{n}\left[\frac{1}{\lambda_{k}} \prod_{k \neq j \leq n} \frac{1}{\lambda_{j}^{2}-\lambda_{k}^{2}}\right] \frac{\sin \lambda_{n+1} t}{\lambda_{n+1}\left(\lambda_{k}^{2}-\lambda_{n+1}^{2}\right)}=
\end{array}
$$

$$
=\sum_{k=1}^{n} \alpha_{k}^{(n+1)} \sin \lambda_{k} t+\sum_{k=1}^{n} \beta\left(\lambda_{1}, \cdots, \lambda_{n+1}\right) \sin \lambda_{n+1} t .
$$

We need no direct algebraic argument to prove that $\alpha_{n+1}^{(n+1)}=\beta\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$ in the second sum. Namely the commutativity of the convolution implies that for any permutation γ of the indices $\{1, \ldots, n+1\}$ we can write

$$
\begin{aligned}
& \sum_{k \leq n} \alpha_{k}^{(n+1)}\left(\lambda_{1}, \ldots, \lambda_{n+1}\right) \sin \lambda_{k} t+\beta\left(\lambda_{1}, \ldots, \lambda_{n+1}\right) \sin \lambda_{n+1} t \equiv \\
& \equiv \sum_{k \leq n} \alpha_{k}^{(n+1)}\left(\lambda_{\gamma(1)}, \ldots, \lambda_{\gamma(n+1)}\right) \sin \lambda_{\gamma(k)} t+\beta\left(\lambda_{\gamma(1)}, \ldots, \lambda_{\gamma(n+1)}\right) \sin \lambda_{\gamma(n+1)} t
\end{aligned}
$$

Comparing the coefficients of $\sin \lambda_{1} t, \ldots, \sin \lambda_{n+1} t$, respectively, we conclude that $\alpha_{k}^{(n+1)}\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)=\alpha_{m}^{(n+1)}\left(\lambda_{\gamma(1)}, \ldots, \lambda_{\gamma(n+1)}\right) \quad$ if $k \leq n$ and $\gamma(k)=m \leq n$, $\beta\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)=\alpha_{k}^{(n+1)}\left(\lambda_{\gamma(1)}, \ldots, \lambda_{\gamma(n+1)}\right) \quad$ if $k \leq n$ and $\gamma(k)=n+1$.

In particular (with γ transposing 1 and $n+1$),
$\beta\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)=\alpha_{1}^{(n+1)}\left(\lambda_{n+1}, \lambda_{2}, \ldots, \lambda_{n}, \lambda_{1}\right)=\frac{1}{\lambda_{n+1}} \prod_{j: j \neq n+1} \frac{1}{\lambda_{n+1}^{2}-\lambda_{j}^{2}}$.
We check from the definitions, that also $\alpha_{n+1}^{(n+1)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{\lambda_{n+1}} \prod_{j: j \neq n+1} \frac{1}{\lambda_{n+1}^{2}-\lambda_{j}^{2}}$ which completes the induction argument.

Remark. The equations ($\mathrm{V}^{\prime \prime}$) can be solved by means of the Laplace transform $\mathcal{L} V=\mathcal{L}_{t}\{V(t)\}: 0<s \mapsto \int_{t=0}^{\infty} e^{-s t} V(t) d t$
well-defined for bounded(?) continuous functions $V: \mathbf{R}_{++}(=\{t \in \mathbf{R}: t>0\}) \rightarrow \mathbf{Z}$ ranging in Banach spaces with finite norm integral $\left(\int_{0}^{\infty}\|V(t)\| d t<\infty\right)$.

Namely, for the convulution $w * V: 0<t \mapsto \int_{s=0}^{t} w(t-s) V(s) d s=\int_{s=0}^{t} w(s) V(t-s) d s$ of any couple $w \in \mathcal{C}_{\text {bded }}\left(\mathbf{R}_{++}, \mathbf{C}\right), V \in \mathcal{C}_{\text {bded }}\left(\mathbf{R}_{++}, \mathbf{Z}\right)$ we always have $\mathcal{L}(w * V)=(\mathcal{L} w)(\mathcal{L} V)$.

It is well-known that the operator valued functions $\left[t \mapsto U^{t}\right],\left[t \mapsto T^{t}\right]$ satisfy

$$
\begin{equation*}
\|V(t)\| \leq M e^{\Omega t} \quad\left(t \in \mathbf{R}_{++}\right) \quad \text { for some } M, \Omega>1 \tag{L}
\end{equation*}
$$

Thus, in view of $\left(\mathrm{V}^{\prime \prime}\right)$, for the scaled functions
$\widetilde{w}(t):=e^{-\Omega t} w(t)=e^{-\Omega t}\left[T_{32}^{t} y\right], \quad \widetilde{U}_{\ell}(t):=e^{-\Omega t} U_{3, \ell}^{t}, \quad \widetilde{V}_{\ell}(t):=e^{-\Omega t} T_{3, \ell}^{t}$
we have

$$
\begin{aligned}
\widetilde{U}_{\ell}(t) & =e^{-\Omega t} U_{3, \ell}^{t}=e^{-\Omega t} \int_{s=0}^{t}\left[T_{32}^{t-s} y\right] U_{3, \ell}^{s} d s+T_{3, \ell}^{t}= \\
& =\int_{s=0}^{t}\left[e^{-\Omega(t-s)} T_{32}^{t-s} y\right]\left[e^{-\Omega s} U_{3, \ell}^{s}\right] d s+e^{-\Omega t} T_{3, \ell}^{t}= \\
& =\int_{s=0}^{t} \widetilde{w}(t-s) \widetilde{U}_{\ell}(s) d s+\widetilde{V}_{\ell}(t)=\left[\widetilde{w} * \widetilde{U}_{\ell}\right](t)+\widetilde{V}_{\ell}(t)
\end{aligned}
$$

with the consequence that $\mathcal{L} \widetilde{U}_{\ell}=(\mathcal{L} \widetilde{w})\left(\mathcal{L} \widetilde{U}_{\ell}\right)+\mathcal{L} \widetilde{V}_{\ell}, \mathcal{L} \widetilde{U}_{\ell}=(1-\mathcal{L} \widetilde{w})^{-1} \mathcal{L} \widetilde{V}_{\ell}$. That is $\mathcal{L}_{t}\left\{e^{-\Omega t} U_{3, \ell}^{t}\right\}=\frac{\mathcal{L}_{t}\left\{e^{-\Omega t} T_{3, \ell}^{t}\right\}}{1-\mathcal{L}_{t}\left\{e^{-\Omega t} T_{32}^{t} y\right\}} \quad(\ell=1,2,3)$.
We shall see that actually $w(t)=\int_{r=0}^{t} y^{\mathrm{T}} U_{0}^{r} y d r \quad\left(t \in \mathbf{R}_{+}\right)$where the operators U_{0}^{r} are linear isometries. Thus we can choose the scaling factor $\Omega>1$ to be so large that $\max _{t}\|\widetilde{w}(t)\|<1$ along with $\int_{t=}^{\infty}\|\widetilde{w}(t)\| d t<1$. Then we may apply the inverse of \mathcal{L} with the result
$\widetilde{U}_{\ell}(t)=\mathcal{L}^{-1}\left(\frac{\mathcal{L} \widetilde{V}_{\ell}}{1-\mathcal{L} \widetilde{w}}\right)=\mathcal{L}_{s}^{-1}\left(\frac{e^{-\omega s} \mathcal{L} \widetilde{V}^{\prime}(s)}{e^{-\omega s}[1-\mathcal{L} \widetilde{w}(s)]}\right)=\lim _{\omega \rightarrow 0+} \mathcal{L}_{s}^{-1}\left(\frac{e^{-\omega s}}{1-\mathcal{L} \widetilde{w}(s)}\right) * \mathcal{L}_{s}^{-1}\left(e^{\omega s} \widetilde{V}_{\ell}(s)\right)$.

Next we establish finite explicit formulas for T^{t}. It is convenient to use the block partitions $T^{t}=\left[\begin{array}{cc}\widetilde{T}_{11}^{t} & 0 \\ \widetilde{T}_{21}^{t} & \widetilde{T}_{22}^{t}\end{array}\right]$ where $\widetilde{T}_{11}^{t}=\left[\begin{array}{ll}T_{11}^{t} & T_{12}^{t} \\ T_{21}^{t} & T_{22}^{t}\end{array}\right], \quad \widetilde{T}_{21}^{t}=\left[\begin{array}{ll}T_{31}^{t} & T_{32}^{t} \\ T_{41}^{t} & T_{42}^{t}\end{array}\right], \quad \widetilde{T}_{22}^{t}=\left[\begin{array}{ll}T_{33}^{t} & T_{34}^{t} \\ T_{43}^{t} & T_{44}^{t}\end{array}\right]$,
$A=\left[\begin{array}{cc}\widetilde{A}_{11} & 0 \\ \widetilde{A}_{21} & \widetilde{A}_{22}\end{array}\right]$ where $\widetilde{A}_{11}=\left[\begin{array}{cc}-\rho & 0 \\ -x & M_{0}\end{array}\right], \quad \widetilde{A}_{21}=\left[\begin{array}{cc}-\varepsilon & y^{\mathrm{T}} \\ \rho & x^{\mathrm{T}}\end{array}\right], \quad \widetilde{A}_{22}=\left[\begin{array}{cc}0 & 0 \\ -\varepsilon & \rho\end{array}\right]$.
Notice that $\left[\widetilde{T}_{11}^{t}: t \in \mathbf{R}_{+}\right]$and $\left[\widetilde{T}_{22}^{t}: t \in \mathbf{R}_{+}\right]$are c_{0}-semigroups with the lower triangular generators \widetilde{A}_{11} resp. \widetilde{A}_{22}. Furthermore $[-\rho]=\operatorname{gen}\left[e^{-\rho t}: t \in \mathbf{R}_{+}\right]$and $M_{0}=\operatorname{gen}\left[U_{0}^{t}: t \in \mathbf{R}_{+}\right]$.

Therefore, according to [Stachó JMAA, Lemma],

$$
\begin{aligned}
& \widetilde{T}_{11}^{t}=\left[\begin{array}{cc}
e^{-\rho t} & 0 \\
-\int_{s=0}^{t}\left[e^{-\rho(t-s)} U_{0}^{s} x\right] d s & U_{0}^{t}
\end{array}\right], \\
& \widetilde{T}_{22}^{t}=\left[\begin{array}{cc}
1 & 0 \\
-\int_{s=0}^{t} e^{\rho(t-s)} \varepsilon d s & e^{\rho t}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\rho^{-1}\left(1-e^{\rho t}\right) \varepsilon & e^{\rho t}
\end{array}\right] \text {, } \\
& \widetilde{T}_{21}^{t}=\int_{s=0}^{t} \widetilde{T}_{22}^{t-s} \widetilde{A}_{21} \widetilde{T}_{11}^{s} d s=\int_{s=0}^{t} \widetilde{T}_{22}^{t-s}\left[\begin{array}{cc}
-\varepsilon & y^{\mathrm{T}} \\
\rho & x^{\mathrm{T}}
\end{array}\right] \widetilde{T}_{11}^{s} d s= \\
& =\int_{s=0}^{t}\left[\begin{array}{cc}
1 & 0 \\
\rho^{-1}\left(1-e^{\rho(t-s)}\right) \varepsilon & e^{\rho(t-s)}
\end{array}\right]\left[\begin{array}{c}
-e^{-\rho s} \varepsilon-y^{\mathrm{T}}\left(\int_{r=0}^{s} e^{-\rho(s-r)} U_{0}^{r} d r\right) x \\
e^{-\rho s} \rho-x^{\mathrm{T}}\left(U_{0}^{s}\right. \\
\left.\int_{r=0}^{s} e^{-\rho(s-r)} U_{0}^{r} d r\right) x
\end{array} x^{\mathrm{T}} U_{0}^{s} .\right] d s .
\end{aligned}
$$

In particular

$$
\begin{aligned}
T_{31}^{t} & =\left[\widetilde{T}_{21}^{t}\right]_{11}=\int_{s=0}^{t}(-\varepsilon) e^{-\rho s} d s-y^{\mathrm{T}}\left(\int_{s=0}^{t} \int_{r=0}^{s} e^{-\rho(s-r)} U_{0}^{r} d r d s\right) x= \\
& =\varepsilon \rho^{-1}\left(e^{-\rho t}-1\right)-y^{\mathrm{T}}\left(\int_{r=0}^{t} \int_{s=t-r}^{t} e^{-\rho(s-r)} U_{0}^{r} d s d r\right) x, \\
T_{32}^{t} & =\left[\widetilde{T}_{21}^{t}\right]_{12}=\int_{s=0}^{t}\left[y^{\mathrm{T}} U_{0}^{s}\right] d s=y^{\mathrm{T}}\left[\int_{s=0}^{t} U_{0}^{s} d s\right], \\
T_{41}^{t} & =\left[\widetilde{T}_{21}^{t}\right]_{21}=\int_{s=0}^{t}\left[\rho^{-1}\left(1-e^{\rho(t-s)}\right) \varepsilon\left(-e^{-\rho s} \varepsilon\right)+e^{\rho(t-s)} e^{-\rho s} \rho\right] d s- \\
& -\int_{s=0}^{t}\left[\rho^{-1}\left(1-e^{\rho(t-s)}\right) \varepsilon y^{\mathrm{T}}\left(\int_{r=0}^{s} e^{-\rho(s-r)} U_{0}^{r} d r\right) x+e^{\rho(t-s)} x^{\mathrm{T}}\left(\int_{r=0}^{s} e^{-\rho(s-r)} U_{0}^{r} d r\right) x\right] d s= \\
& =\rho^{-1} t+\rho^{-2}\left(\varepsilon^{2}+\rho\right)\left(e^{\rho t}-e^{-\rho t}\right) / 2-y^{\mathrm{T}}\left[\int_{r=0}^{t} \int_{s=t-r}^{t} \rho^{-1}\left(1-e^{\rho(t-s)}\right) \varepsilon e^{-\rho(s-r)} U_{0}^{r} d s d r\right] x-
\end{aligned}
$$

$$
\begin{gathered}
-x^{\mathrm{T}}\left[\int_{r=0}^{t} \int_{s=t-r}^{t} e^{\rho(t-s)} e^{-\rho(s-r)} U_{0}^{r} d s d r\right] x=, \\
T_{42}^{t}= \\
{\left[\widetilde{T}_{21}^{t}\right]_{22}=\int_{s=0}^{t}\left[\rho^{-1}\left(1-e^{\rho(t-s)}\right) \varepsilon y^{\mathrm{T}}+e^{\rho(t-s)} x^{\mathrm{T}}\right] U_{0}^{s} d s=} \\
=y^{\mathrm{T}}\left[\int_{s=0}^{t} \varepsilon \rho^{-1}\left(1-e^{\rho(t-s)}\right) U_{0}^{s} d s\right]+x^{\mathrm{T}}\left[\int_{s=0}^{t} e^{\rho(t-s)} U_{0}^{s} d s\right] .
\end{gathered}
$$

It is well-known [Deddens, Stachó JMAA] that $\left[U_{0}^{t}: t \in \mathbf{R}_{+}\right.$] embeds into a c_{0}-group of isometries of some covering complex Hilbert space $\widehat{\mathbf{H}} \supset \mathbf{H}$ with conjugation. Thus
$U_{0}^{t} z=\int_{\lambda \in \mathbf{R}} e^{i \lambda t} d P(\lambda) z \quad(z \in \operatorname{Re}(\mathbf{H}))$
in terms of a spectral measure $P: \Lambda(\subset \mathbf{R}$ Borelian $) \rightarrow\{$ orthogonal projections on $\widehat{\mathbf{H}}\}$.
Since the operators $U_{0}^{t} \equiv \overline{U_{0}^{t}} \quad\left(t \in \mathbf{R}_{+}\right)$are real and unitary, necessarily
$\int_{\lambda \in \mathbf{R}} e^{i \lambda t} d P(\lambda)=\int_{\lambda \in \mathbf{R}} e^{-i \lambda t} \overline{d P(\lambda)}=\int_{\lambda \in \mathbf{R}} e^{i \lambda t} d \overline{P(-\lambda)} \quad$ for all $\quad t \geq 0$.
We achieve formulas suitable for treating the entries $T_{k, \ell}^{t}$ which involve integrations of [$\left.U_{0}^{t}: t \in \mathbf{R}_{+}\right]$with the aid of the Laplace transform in terms of the functional calculus [Halmos] $\mathcal{F}_{P}: \mathcal{C}(\mathbf{R}) \rightarrow \mathcal{L}(\mathbf{H})$,

$$
\mathcal{F} \varphi:=\int_{\lambda \in \mathbf{R}} \varphi(\lambda) d P(\lambda), \quad \mathcal{F}_{\lambda} \Phi(\lambda, t):=\int_{\lambda \in \mathbf{R}} \phi(\lambda, t) d P(\lambda) .
$$

Carrying out the integrations \int_{s}, \int_{r}, it is immediate that

$$
\begin{aligned}
& T^{t}=\left[\begin{array}{ccc}
e^{-\rho t} & 0 & 0 \\
{\left[\mathcal{F} \tau_{12}^{t}\right] x} & {\left[\mathcal{F} \lambda e^{i \lambda t}\right]} & 0 \\
\tau_{31}^{t, 0}+y^{\mathrm{T}}\left[\mathcal{F} \tau_{31}^{t, 1}\right] & y^{\mathrm{T}}\left[\mathcal{F} \tau_{32}^{t}\right] x & 0 \\
\tau_{41}^{t, 0}+x^{\mathrm{T}}\left[\mathcal{F} \tau_{41}^{t, 1}\right]+y^{\mathrm{T}}\left[\mathcal{F} \tau_{41}^{t, 2}\right] & x^{\mathrm{T}}\left[\mathcal{F} \tau_{42}^{t, 1}\right]+y^{\mathrm{T}}\left[\mathcal{F} \tau_{42}^{t, 2}\right] & \left(1-e^{\rho t}\right) \frac{\varepsilon}{\rho}
\end{array} e^{\rho t}\right] \\
& \tau_{21}^{t}=-\int_{s=0}^{t} e^{-\rho(t-s)} e^{i \lambda s} d s=-e^{-\rho t} \frac{\left(e^{i \lambda t}-1\right)}{i \lambda}, \\
& \tau_{31}^{t, 0}(\lambda)=\varepsilon \frac{\left(e^{-\rho t}-1\right)}{\rho}, \\
& \tau_{31}^{t, 1}(\lambda)=-\frac{\left(e^{-\rho t}+e^{(\rho+i \lambda) t}-2 e^{i \lambda}\right)+i \lambda e^{i \lambda t}\left(e^{\rho t}-1\right) / \rho}{(2 \rho+\lambda i)(\rho+\lambda i)}, \\
& \tau_{32}^{t}(\lambda)=\frac{e^{i \lambda t}-1}{i \lambda}, \\
& \tau_{41}^{t, 0}(\lambda)=\frac{t}{\rho}+\frac{\left(\varepsilon^{2}+\rho\right)\left(e^{\rho t}-e^{-\rho t}\right)}{2 \rho^{2}}, \tau_{41}^{t, 1}(\lambda)=\frac{\rho\left(3 e^{i \lambda t}-2 e^{-\rho t}-e^{(2 \rho+i \lambda) t}\right)+i \lambda e^{i \lambda t}\left(1-e^{2 \rho t}\right)}{2 \rho(\rho+\lambda i)(3 \rho+\lambda i)}
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{41}^{t, 2}(\lambda)= \varepsilon \frac{12 i \rho^{3}\left(1-e^{i \lambda t}\right)+\rho^{2} \lambda\left(4 e^{-\rho t}-6 e^{\rho t}+2+e^{i \lambda t}\left(2 e^{2 \rho t}-6 e^{\rho t}+4\right)\right)}{2 \rho^{2} \lambda(i \lambda+2 \rho)(i \lambda-\rho)(i \lambda+3 \rho)}+ \\
&+\varepsilon \frac{i \rho \lambda^{2}\left(e^{i \lambda t}\left(-3-e^{2 \rho t}+4 e^{\rho t}\right)-5 e^{\rho t}-3 e^{-\rho t}+8\right)}{2 \rho^{2} \lambda(i \lambda+2 \rho)(i \lambda-\rho)(i \lambda+3 \rho)}+ \\
&+\varepsilon \frac{\lambda^{3}\left(e^{\rho t}-2+e^{-\rho t}+e^{i \lambda t}\left(e^{2 \rho t}-2 e^{\rho t}+1\right)\right)}{2 \rho^{2} \lambda(i \lambda+2 \rho)(i \lambda-\rho)(i \lambda+3 \rho)}, \\
& \tau_{42}^{t, 1}=\frac{e^{\rho t}-e^{i \lambda t}}{\rho-i \lambda}, \quad \tau_{42}^{t, 1}=\varepsilon \frac{-i \rho I-\lambda+\lambda e^{\rho t}+i \rho e^{\lambda t}}{\lambda(i \lambda-\rho) \rho} .
\end{aligned}
$$

Finally we calculate the terms $U_{3, \ell}$ from $(*)$ and substitute them into $\left(\mathrm{V}^{\prime \prime}\right)$ to achieve the closing result.

Theorem. Let [$\Psi^{t}: t \in \mathbf{R}_{+}$] be a c_{0}-semigroup of holomorphic Carathéodory isometries of the unit ball of the spin factor $\mathcal{S}:=\operatorname{SPIN}\left(\mathbf{H},{ }^{\cdot}\right)$ such that $\Phi^{t}(e)=e\left(t \in \mathbf{R}_{+}\right)$for some extreme point e of the unit ball. Then there exists a c_{0}-group $\left[\widehat{\Psi}^{t}: t \in \mathbf{R}\right]$ of holomorphic Carathéodory isometries of the unit ball of a spin factor $\widehat{\mathcal{S}}:=\operatorname{SPIN}(\widehat{\mathbf{H}}, \stackrel{-}{)}$ with $\widehat{\mathbf{H}} \supset \mathbf{H}$ and with conjugation extending that in \mathcal{S} with the dilation property
$\Psi^{t}=\widehat{\Psi}^{t} \mid \mathbf{H} \quad\left(t \in \mathbf{R}_{+}\right)$.

Furthermore the dilation group [$\widehat{\Psi}^{t}: t \in \mathbf{R}_{+}$] is Möbius equivalent to a a c_{0}-group with

Vesentini-generator of the form
$G^{\prime}=W\left[\begin{array}{cccc}-\rho & 0 & 0 & 0 \\ -x & \widehat{M}_{0} & y & 0 \\ -\varepsilon & y^{\mathrm{T}} & 0 & 0 \\ \rho & x^{\mathrm{T}} & -\varepsilon & \rho\end{array}\right] W^{-1} \quad$ with $\quad W:=\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & \bar{I}_{0} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
where $\widehat{M}_{0}=-\left[\widehat{M}_{0}\right]^{\mathrm{T}}$ is a possibly unbounded skew-selfadjoint extension of the operator M_{0} to $\widehat{\mathbf{H}}$ and $\widehat{I}_{0}:=\operatorname{Id}_{\widehat{\mathbf{H}} \ominus \mathbf{C e}}$. In terms of the spectral decomposition $\widehat{M}_{0}=\int_{\lambda \in \mathbf{R}}(i \lambda) d P(\lambda)$, the maps Φ^{t} can be written as finite rational expressions of the terms
$z, e^{\varepsilon t}, e^{\rho t}, x, y, x^{T}, y^{\mathrm{T}}, \int_{\lambda \in \mathbf{R}} \tau_{k, \ell}^{t, j} d P(\lambda)$, Laplace ${ }^{-1}\left(\right.$ Laplace $\left(w_{\Omega}\right) /\left[1-\operatorname{Laplace}\left(w_{\Omega}\right)\right)$ with a function $w_{\Omega}(t):=e^{-\Omega t} \int_{s=0}^{t} \int_{\lambda \in \mathbf{R}} e^{i \lambda s} d\langle y \mid P(\lambda) y\rangle d s$ for suitable large Ω.

Case (2) As we have seen, up to Möbius equivalence, we may assume that the Vesentini
generator G^{\prime} has the form
$G^{\prime}=\left[\begin{array}{ccccc}0 & 2 \rho_{2}-\varepsilon & x_{1}^{\mathrm{T}} & \rho_{1} & \rho_{2} \\ \varepsilon-2 \rho_{2} & 0 & -x_{2}^{\mathrm{T}} & \rho_{2} & -\rho_{1} \\ -x_{1} & x_{2} & M_{0} & x_{1} & x_{2} \\ \rho_{1} & \rho_{2} & x_{1}^{\mathrm{T}} & 0 & -\varepsilon \\ \rho_{2} & -\rho_{1} & x_{2}^{\mathrm{T}} & \varepsilon & 0\end{array}\right]$.
We can take it into a convenient quasi lower triagular form as
$T^{-1} G^{\prime} T=\left[\begin{array}{ccccc}-\rho_{1} & \varepsilon-\rho_{2} & 0 & 2 \varepsilon & 0 \\ \rho_{2}-\varepsilon & -\rho_{1} & 0 & 0 & 2 \varepsilon \\ x_{2} & -x_{1} & M_{0} & 0 & 0 \\ \rho_{1} & \rho_{1} & x_{1}^{T} & \rho_{1} & -\varepsilon-\rho_{2} \\ -\rho_{1} & -\rho_{2} & x_{2}^{T} & \rho_{2}+\varepsilon & \rho_{1}\end{array}\right] \quad$ with $\quad T:=\left[\begin{array}{ccccc}0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & I_{0} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.

In terms of $\left(\mathbf{C}^{2} \oplus \mathbf{H} \ominus[\mathbf{C} u \oplus \mathbf{C} v] \oplus \mathbf{C}^{2}\right)$-blocking,
$T^{-1} G^{\prime} T=\left[\begin{array}{ccc}-\rho & 0 & 0 \\ x & M_{0} & 0 \\ \mu & x^{T} & \rho\end{array}\right]$ with $\rho:=\left[\begin{array}{cc}\rho_{1} & \varepsilon-\rho_{2} \\ -\left(\varepsilon-\rho_{2}\right) & \rho_{1}\end{array}\right], \mu:=\left[\begin{array}{cc}\rho_{1} & \rho_{2} \\ \rho_{2} & -\rho_{1}\end{array}\right]$.
It follows (from the triangular lemma [Stachó JMAA]) that

$$
G^{t}=\left[\begin{array}{ccc}
\exp (-t \rho) & 0 & 0 \\
G_{21}^{t} & U_{0}^{t} & 0 \\
G_{31}^{t} & G_{32}^{t} & \exp (t \rho)
\end{array}\right] \quad \text { with }
$$

$G_{21}^{t}=\int_{s=0}^{t} U_{0}^{s} x \exp ((s-t) \rho) d s, \quad G_{32}^{t}=\int_{s=0}^{t} \exp ((t-s) \rho) x^{\mathrm{T}} U_{0}^{s} d s$,
$\left[\begin{array}{ll}G_{31}^{t} & G_{32}^{t}\end{array}\right]=\int_{r=0}^{t} G_{33}^{t-r}\left[\begin{array}{ll}\mu & x^{\mathrm{T}}\end{array}\right]\left[\begin{array}{cc}G_{11}^{r} & 0 \\ G_{21}^{r} & G_{22}^{r}\end{array}\right] d r \quad$ i.e. $\quad G_{31}^{t}=\int_{r=0}^{t} G_{33}^{t-r}\left[\mu G_{11}^{r}+x^{\mathrm{T}} G_{21}^{r}\right] d r$,
$G_{31}^{t}=\int_{r=0}^{t} \exp ((t-r) \rho)\left[\mu \exp (-r \rho)+\int_{s=0}^{r} x^{\mathrm{T}} U_{0}^{s} x \exp ((s-r) \rho) d s\right] d r$
Since $\exp \left(t\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right)=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$, here we have
$\exp (t \rho)=e^{\rho_{1} t}\left[\begin{array}{cc}\cos \left(t\left(\varepsilon-\rho_{2}\right)\right) & \sin \left(t\left(\varepsilon-\rho_{2}\right)\right) \\ -\sin \left(t\left(\varepsilon-\rho_{2}\right)\right) & \cos \left(t\left(\varepsilon-\rho_{2}\right)\right)\end{array}\right]$.

Problem. $z \in \mathbf{D} \Rightarrow^{?} \bar{z} \in \mathbf{D} \quad$ (i.e. $t \mapsto U_{t} z$ diff. $\Rightarrow^{?} t \mapsto U_{t} \bar{z}$ diff.) $\quad[\mathrm{YES}]$

Lemma. $\exists x \quad t \mapsto U_{t} x, U_{t} \bar{x}$ diff. $\Longrightarrow \quad \exists t \mapsto \varepsilon_{t} \in\{ \pm 1\} \quad t \mapsto \varepsilon_{t} \kappa_{t}$ diff.

Proof. $t \mapsto \overline{U_{t} \bar{x}}=\overline{\kappa_{t} V_{t} \bar{x}}=\overline{\kappa_{t}} V_{t} x$ diff.
$t \mapsto\left\langle\kappa_{t} V_{t} x \mid \overline{\kappa_{t}} V_{t} x\right\rangle=\kappa_{t}^{2}$ diff.
$\forall h \in \mathbf{R} \quad \exists I_{h}$ open intv. around $h, \quad \operatorname{Re}\left(\kappa_{t}^{2} / \kappa_{h}^{2}\right)>0\left(t \in I_{h}\right)$
$\ldots, J_{-2}, J_{-1}, J_{0}, J_{1}, J_{2}, \ldots \quad$ chain of intervals $\quad J_{k} \subset I_{h_{k}}(k=0, \pm 1, \ldots)$
$\exists k \mapsto \nu_{k} \in\{ \pm 1\} \quad \varepsilon_{t}:=\nu_{k} \operatorname{sgn}\left(\kappa_{t} / \kappa_{h}\right)\left(t \in J_{k}\right)$ well-def. and suits

Corollary. $\mathbf{F} \cap \operatorname{conj}(\mathbf{F}) \neq 0 \Rightarrow \mathbf{F}=\operatorname{conj}(\mathbf{F})$

Proof. $0 \neq x \in \mathbf{F} \cap \operatorname{conj}(\mathbf{F}) \Rightarrow t \mapsto U_{t} x, U_{t} \bar{x}$ diff. $\Rightarrow t \varepsilon_{t} \kappa_{t}, \varepsilon_{t} \kappa_{t}^{-1}$ diff.
$z \in \mathbf{F} \Rightarrow t \mapsto \varepsilon_{t} V_{t} z=\varepsilon_{t} \kappa_{t}^{-1} U_{t} z$ diff. $\Rightarrow t \mapsto \operatorname{conj}\left(\varepsilon_{t} \kappa_{t}^{-1} V_{t} z\right)=U_{t} \bar{z}$ diff.

Proposition. F is closed under conjugation in any case.

Proof. The only case of a JB*-subtriple \mathbf{H} such that $\mathbf{H} \cap \operatorname{conj}(\mathbf{H})=0$ is if \mathbf{H} is a Hilbert space spanned by a collinear grid $\left\{2^{-1 / 2}\left(u_{k}+i v_{k}\right): k \in \mathcal{K}\right\}$ where $\left\{a_{k}, b_{k}: k \in \mid \mathcal{K}\right\}$ is $\langle\cdot \mid \cdot\rangle$ orthononormed. Also $\operatorname{TRIP}(\mathbf{H})=\{w+i T(w): w \in \mathbf{G},\langle w \mid w\rangle=1 / 2\}$ with some subspace $\mathbf{G} \subset \operatorname{Re}(\mathbf{E})$ and an isometry $T: \operatorname{Sphere}(\mathbf{G}) \rightarrow \operatorname{Re}(\mathbf{E})$. The case $\mathbf{F}=\mathbf{H}$ is impossible: then $t \mapsto a_{t}=w_{t}+i T\left(w_{t}\right)$ diff. $\Rightarrow t \mapsto \overline{a_{t}}=w_{t}-i T\left(w_{t}\right)$ diff. $\Rightarrow\left\{a_{t}, \overline{a_{t}}: t \in \mathbf{R}\right\} \subset \mathbf{F}$.

Assumption without loss of gen.: $U_{t}=\kappa_{t} V_{t}, \quad t \mapsto \kappa_{t}$ diff.

Notation: $\mathbf{F}^{\perp}:=\{x \in \mathbf{E}:\langle x \mid \mathbf{F}\rangle=0\} . \quad\left(\neq \mathbf{F}^{\perp \text { Jordan }}\right)$

Proposition. $\mathbf{E}=\mathbf{F}$ (i.e. $\mathbf{F}^{\perp}=0$).

Proof. $\mathbf{F}=\operatorname{conj}(\mathbf{F}) \Rightarrow \mathbf{F}^{\perp}=\operatorname{conj}\left(\mathbf{F}^{\perp}\right)$ spin factor. $\operatorname{dim}\left(\mathbf{F}^{\perp}\right)>0 \Rightarrow \exists y \in \mathbf{F}^{\perp} \quad 0 \neq y=\bar{y}$ Calculate $t \mapsto \Phi^{t}(y)=M_{a(t)} \circ U_{t} y$.

$$
\begin{aligned}
& M_{a}(x)=a+B(a)^{1 / 2}[1+L(x, a)]^{-1} x, \quad B(a)=1-2 L(a)+Q_{a}^{2}: z \mapsto z-2\{a a z\}+\{a\{a z a\} a\} \\
& y \in \mathbf{F}^{\perp}, a \in \mathbf{F} \Rightarrow \quad\langle y \mid f\rangle=\langle y \mid \bar{f}\rangle=0(f \in \mathbf{F}) \\
& \{f g y\}=\langle f \mid g\rangle y+\langle y \mid g\rangle f-\langle y \mid \bar{f}\rangle \bar{g}=\langle f \mid g\rangle y, \quad\{f y g\}=\langle f \mid y\rangle g+\langle g \mid y\rangle f-\langle g \mid \bar{f}\rangle \bar{y}=-\langle g \mid \bar{f}\rangle \bar{y} \\
& x_{1}+y_{1}=(1+L(y, a))^{-1} y \\
& y=(1+L(y, a))\left(x_{1}+y_{1}\right)=x_{1}+y_{1}+\left\{y a x_{1}\right\}+\left\{y a y_{1}\right\} \\
& 0=x_{1}-\left\langle y \mid \overline{y_{1}}\right\rangle \bar{a} \quad(\mathbf{F}-\text { component }), \quad y=y_{1}+\left\langle x_{1} \mid a\right\rangle y \quad\left(\mathbf{F}^{\perp} \text {-component }\right) \\
& \gamma=\gamma\left(y, y_{1}\right):=\left\langle y \mid \overline{y_{1}}\right\rangle=\left\langle y_{1} \mid \bar{y}\right\rangle \\
& x_{1}=\left\langle y \mid \overline{y_{1}}\right\rangle \bar{a}=\gamma \bar{a}, \quad y_{1}=\left(1-\left\langle x_{1} \mid a\right\rangle\right) y=(1-\gamma\langle\bar{a} \mid a\rangle) y \\
& \gamma=\left\langle y_{1} \mid y\right\rangle=(1-\gamma\langle\bar{a} \mid a\rangle)\langle y \mid \bar{y}\rangle, \quad \Longrightarrow \quad \gamma=\frac{\langle y \mid \bar{y}\rangle}{1+\langle\bar{a} \mid a\rangle\langle y \mid \bar{y}\rangle} \\
& {[1+L(y, a)]^{-1} y=x_{1}+y_{1}=\gamma \bar{a}+(1-\gamma\langle a \mid \bar{a}\rangle) y=\frac{\langle y \mid \bar{y}\rangle \bar{a}+y}{1+\langle\bar{a} \mid a\rangle\langle y \mid \bar{y}\rangle}} \\
& z \perp \mathbf{F} \Rightarrow \quad B(a) z=z-2\{a a z\}+\{a\{a z a\} a\}=z-2\langle a \mid a\rangle z+|\langle a \mid \bar{a}\rangle|^{2} z \\
& B(a)^{1 / 2} z=\beta(a) z \quad \beta(a):=\sqrt{1-2\langle a \mid a\rangle+|\langle a \mid \bar{a}\rangle|^{2}} \\
& U_{t} y=\kappa_{t} V_{t} y, \quad t \mapsto\left\langle U_{t} y\right| \overline{\left.U_{t} y\right\rangle=\kappa_{t}^{2}\langle y \mid \bar{y}\rangle \operatorname{diff.}} \\
& t \mapsto \Phi^{t}(y)=M_{a(t)} \circ U_{t} y=a(t)+B(a(t))^{1 / 2}\left[1+L\left(U_{t} y, a(t)\right)\right]^{-1} U_{t} y= \\
& \quad=a(t)+\beta(a(t)) \frac{\langle y \mid \bar{y}\rangle}{1+\langle\overline{a(t)} \mid a(t)\rangle\langle y \mid \bar{y}\rangle}
\end{aligned}
$$

IF $\operatorname{dim}\left(\mathbf{F}^{\perp}=1\right.$ THEN $V_{t} y=y$ and $T_{t} y=\kappa_{t} y \Longrightarrow \operatorname{dim}\left(\mathbf{F}^{\perp}\right)=1$ impossible

CASE $\operatorname{dim}\left(\mathbf{F}^{\perp}\right)>1$

We can find $y \in \mathbf{F}^{\perp}$ with $0 \neq y \perp \bar{y}$
Calculate $t \mapsto \Phi^{t}(x+y)=M_{a(t)} \circ U_{t}(x+y)$.
$M_{a}(x+y)=a+B(a)^{1 / 2}[1+L(x+y, a)]^{-1}(x+y), \quad B(a)=1-2 L(a)+Q_{a}^{2}: z \mapsto$
$z-2\{a a z\}+\{a\{a z a\} a\}$
$y \in \mathbf{F}^{\perp}, a \in \mathbf{F} \Rightarrow \quad\langle y \mid f\rangle=\langle y \mid \bar{f}\rangle=0(f \in \mathbf{F})$
$\{f g y\}=\langle f \mid g\rangle y+\langle y \mid g\rangle f-\langle y \mid \bar{f}\rangle \bar{g}=\langle f \mid g\rangle y, \quad\{f y g\}=\langle f \mid y\rangle g+\langle g \mid y\rangle f-\langle g \mid \bar{f}\rangle \bar{y}=-\langle g \mid \bar{f}\rangle \bar{y}$
$x_{1}+y_{1}=(1+L(x+y, a))^{-1}(x+y)$
$x+y=(1+L(x+y, a))\left(x_{1}+y_{1}\right)=x_{1}+y_{1}+\left\{x^{2} x_{1}\right\}+\left\{x a y_{1}\right\}+\left\{\right.$ yax $\left._{1}\right\}+\left\{\right.$ yay $\left._{1}\right\}$
$x=x_{1}+\left\{x a x_{1}\right\}-\left\langle y \mid \overline{y_{1}}\right\rangle \bar{a} \quad(\mathbf{F}$-component $), \quad y=y_{1}+\langle x \mid a\rangle y_{1}+\left\langle x_{1} \mid a\right\rangle y \quad\left(\mathbf{F}^{\perp}\right.$-component $)$
$\gamma_{0}=\gamma_{0}\left(x_{1}, a\right):=\left(1-\left\langle x_{1} \mid a\right\rangle\right) /(1+\langle x \mid a\rangle)$
$y_{1}=\gamma_{0} y$
Consider vectors y with $0 \neq y \perp \bar{y}: \quad x=x_{1}+\left\{x a x_{1}\right\}-\left\langle y \mid \overline{\gamma_{0} y}\right\rangle \bar{a}=x_{1}+\left\{x a x_{1}\right\}$
$x_{1}=[1+L(x, a)]^{-1} x, \quad y_{1}=\frac{1-\left\langle[1+L(x, a)]^{-1} x \mid a\right\rangle}{1+\langle x \mid a\rangle}=\gamma(x, a) y$
$x_{2}+y_{2}=B(a)^{1 / 2}\left(x_{1}+y_{1}\right)$
$M_{a}(x+y)=a+B(a)^{1 / 2}\left(x_{1}+y_{1}\right)=a+B(a)^{1 / 2}\left([1+L(x, a)]^{-1} x+\gamma(x, a) y\right]=$ $=M_{a}(x)+\gamma(x, a) B(a)^{1 / 2} y \quad$ if $y \perp \bar{y} \in \mathbf{F}^{\perp}$
$z \perp \mathbf{F} \Rightarrow \quad B(a) z=z-2\{a a z\}+\{a\{a z a\} a\}=z-2\langle a \mid a\rangle z+|\langle a \mid \bar{a}\rangle|^{2} z$
$B(a)^{1 / 2} z=\beta(a) z \quad \beta(a):=\sqrt{1-2\langle a \mid a\rangle+|\langle a \mid \bar{a}\rangle|^{2}}$
If $y \perp \bar{y} \in \mathbf{F}^{\perp}$ then $U_{t} y \in \mathbf{F}^{\perp},\left\langle U_{t} y \mid \overline{U_{t} y}\right\rangle=\left\langle\kappa_{t} V_{t} \mid \overline{\kappa_{t} V_{t} y}\right\rangle=\kappa_{t}^{2}\langle y \mid \bar{y}\rangle=0$,
$\Phi^{t}(x+y)=M_{a}\left(U_{t} x+U_{t} y\right)=M_{a(t)}\left(U_{t} x\right)+\beta(a(t)) \gamma\left(U_{t} x, a(t)\right) U_{t} y=$

$$
=\Phi^{t}(x)+\beta(a(t)) \gamma\left(U_{t} x, a(t)\right) U_{t} y
$$

$\gamma(0, a) \equiv 0, t \mapsto a(t)$ diff. \Rightarrow
$t \mapsto \Phi^{t}(y)=\underbrace{\Phi^{t}(0)}_{a(t)}+\beta(a(t)) y$ diff. \quad whenever $\quad y \perp \bar{y} \in \operatorname{Ball}\left(\mathbf{F}^{\perp}\right)$
Thus $0 \neq y \in \mathbf{F}^{\perp}=0$ contradiction if we assume $\operatorname{dim}\left(\mathbf{F}^{\perp}\right)>1$

Proof. $\mathbf{F}=\operatorname{conj}(\mathbf{F}) \Rightarrow \mathbf{F}^{\perp}=\operatorname{conj}\left(\mathbf{F}^{\perp}\right)$ spin factor. $\quad \operatorname{dim}\left(\mathbf{F}^{\perp}\right)>1 \Rightarrow \exists y \in \mathbf{F}^{\perp} \quad 0 \neq y \perp \bar{y}$ Calculate the effect of $\Phi^{t}=M_{a(t)} \circ U_{t}$ on \mathbf{F}^{\perp}.
$M_{a}(x)=a+B(a)^{1 / 2}[1+L(x, a)]^{-1} x, \quad B(a)=1-2 L(a)+Q_{a}^{2}: z \mapsto z-2\{a a z\}+\{a\{a z a\} a\}$
$y \in \mathbf{F}^{\perp} \Rightarrow \quad\langle y \mid f\rangle=\langle y \mid \bar{f}\rangle=0(f \in \mathbf{F})$
$\{f g y\}=\langle f \mid g\rangle y+\langle y \mid g\rangle f-\langle y \mid \bar{f}\rangle \bar{g}=\langle f \mid g\rangle y, \quad\{f y g\}=\langle f \mid y\rangle g+\langle g \mid y\rangle f-\langle g \mid \bar{f}\rangle \bar{y}=-\langle g \mid \bar{f}\rangle \bar{y}$
$x_{1}+y_{1}=(1+L(x+y, a))^{-1}(x+y)$
$x+y=(1+L(x+y, a))\left(x_{1}+y_{1}\right)=x_{1}+y_{1}+\left\{x a x_{1}\right\}+\left\{x a y_{1}\right\}+\left\{y a x_{1}\right\}+\left\{\right.$ yay $\left._{1}\right\}$
$x=x_{1}+\left\{x a x_{1}\right\}-\left\langle y \mid \overline{y_{1}}\right\rangle \bar{a}, \quad y=y_{1}+\langle x \mid a\rangle y_{1}+\left\langle x_{1} \mid a\right\rangle y$
$y_{1}=\frac{1-\left\langle x_{1} \mid a\right\rangle}{1+\langle x \mid a\rangle} y=\gamma_{0}\left(x_{1}, a\right) y$
Consider vectors y with $y \perp \bar{y}: \quad x=x_{1}+\left\{x a x_{1}\right\}-\left\langle y \mid \overline{\gamma_{0} y}\right\rangle \bar{a}=x_{1}+\left\{x a x_{1}\right\}$

$$
\begin{aligned}
& x_{1}=[1+L(x, a)]^{-1} x, \quad y_{1}=\frac{1-\left\langle[1+L(x, a)]^{-1} x \mid a\right\rangle}{1+\langle x \mid a\rangle} y=\gamma(x, a) y \quad(y \perp \bar{y}) \\
& x_{2}+y_{2}=B(a)^{1 / 2}\left(x_{1}+y_{1}\right) \\
& \begin{array}{c}
M_{a}(x+y)=a+B(a)^{1 / 2}\left(x_{1}+y_{1}\right)=a+B(a)^{1 / 2}\left([1+L(x, a)]^{-1} x+\gamma(x, a) y\right]= \\
\quad=M_{a}(x)+\gamma(x, a) B(a)^{1 / 2} y \quad \text { if } y \perp \bar{y} \in \mathbf{F}^{\perp}
\end{array}
\end{aligned}
$$

$z \perp \mathbf{F} \Rightarrow \quad B(a) z=z-2\{a a z\}+\{a\{a z a\} a\}=z-2\langle a \mid a\rangle z+|\langle a \mid \bar{a}\rangle|^{2} z$
$B(a)^{1 / 2} z=\beta(a) z \quad \beta(a):=\sqrt{1-2\langle a \mid a\rangle+|\langle a \mid \bar{a}\rangle|^{2}}$

If $y \perp \bar{y} \in \mathbf{F}^{\perp}$ then $U_{t} y \in \mathbf{F}^{\perp},\left\langle U_{t} y \mid \overline{U_{t} y}\right\rangle=\left\langle\kappa_{t} V_{t} \mid \overline{\kappa_{t} V_{t} y}\right\rangle=\kappa_{t}^{2}\langle y \mid \bar{y}\rangle=0$, $\Phi^{t}(x+y)=M_{a}\left(U_{t} x+U_{t} y\right)=M_{a(t)}\left(U_{t} x\right)+\beta(a(t)) \gamma\left(U_{t} x, a(t)\right) U_{t} y=$ $=\Phi^{t}(x)+\beta(a(t)) \gamma\left(U_{t} x, a(t)\right) U_{t} y$
$\gamma(0, a) \equiv 0, t \mapsto a(t)$ diff. \Rightarrow
$t \mapsto \Phi^{t}(y)=\underbrace{\Phi^{t}(0)}_{a(t)}+\beta(a(t)) y$ diff. whenever $y \perp \bar{y} \in \operatorname{Ball}\left(\mathbf{F}^{\perp}\right)$
Thus $0 \neq y \in \mathbf{F}^{\perp}=0$ contradiction if we assume $\operatorname{dim}\left(\mathbf{F}^{\perp}\right)>1$

$$
\begin{aligned}
& x_{1}:=\Phi^{t}(x), \quad y_{1}:=\beta(a(t)) \gamma\left(U_{t} x, a(t)\right) U_{t} y \quad\left\langle y_{1} \mid \overline{y_{1}}\right\rangle=0 \\
& \begin{array}{l}
\Phi^{t+h}(x+y)=\Phi^{h}\left(\Phi^{t}(x+y)\right)=\Phi^{h}\left(x_{1}+y_{1}\right)=\Phi^{h}\left(x_{1}\right)+\beta(a(h)) \gamma\left(U_{h} x_{1}, a(h)\right) U_{h} y_{1}= \\
\quad=\Phi^{t+h}(x)+\beta(a(h)) \gamma\left((U _ { h } \Phi ^ { t } (x) , a (h)) \beta (a (t)) \gamma \left(\left(U_{t} x, a(t)\right) U_{h} U_{t} y\right.\right.
\end{array} \\
& \begin{array}{l}
\Phi^{t+h}(x+y)=\Phi^{t+h}(x)+\beta(a(t+h)) \gamma\left(U_{t+h} x, a(t+h)\right) U_{t+h} y \\
U_{h} U_{t} y=\frac{\beta(a(h)) \gamma\left(U_{h} \Phi^{t}(x), a(h)\right) \beta(a(t)) \gamma\left(U_{t} x, a(t)\right)}{\beta(a(t+h)) \gamma\left(U_{t+h} x, a(t+h)\right)} U_{t+h} \quad\left(\text { Span }\{\text { admissible } y\}=\mathbf{F}^{\perp}\right) \\
x:=0 \Rightarrow \quad x_{1}=\Phi^{t}(x)=a(t), \Phi^{h}\left(x_{1}\right)=a(t+h), \gamma(0, a)=1 \\
U_{h} U_{t}=\lambda(h, t) U_{t+h}, \quad \lambda(h, t):=\frac{\beta(a(h)) \gamma\left(U_{h} a(t), a(h)\right) \beta(a(t))}{\beta(a(t+h))}
\end{array}
\end{aligned}
$$

Formula for Möbius transformations in SPIN factor

$M_{a}(x)=a+B(a)^{1 / 2}[1+L(x, a)]^{-1} x$
Consider the case when $\{a, \bar{a}, z, \bar{z}\}$ ORTN wrt. $\langle\cdot \mid \cdot\rangle$ and $\langle a \mid a\rangle=\langle z \mid z\rangle=1 / 2$.

Well-known: a, \bar{a}, z, \bar{z} TRIPs, moreover
$J_{a, z}:\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right] \mapsto \alpha a+\beta z+\gamma \bar{z}+\delta \bar{a} \quad$ JB*-isom. $\quad \operatorname{Mat}(2,2, \mathbf{C}) \leftrightarrow \operatorname{Span}\{a, z, \bar{z}, \bar{a}\}$
Hence, with $A:=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right], X:=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$,
$M_{\lambda a+\mu \bar{a}}(\alpha a+\beta z+\gamma \bar{z}+\delta \bar{a})=J_{a, z} M_{\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right]}\left(\left[\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right]\right)=$
$=J_{a, z}\left(\left[1-A A^{*}\right]^{-1 / 2}(X+A)\left(1+A^{*} X\right)^{-1}\left[1-A^{*} A\right]^{1 / 2}\right)==^{\text {vazlat2.mws }}=$
$=J_{a, z}\left[\begin{array}{cc}\frac{-\alpha-\alpha \bar{\mu} \delta-\lambda-\lambda \bar{\mu} \delta+\beta \bar{\mu} \gamma}{-1-\bar{\mu} \delta-\bar{\lambda} \alpha-\bar{\lambda} \alpha \bar{\mu} \delta+\bar{\lambda} \beta \bar{\mu} \gamma} & \frac{\beta(\lambda \bar{\lambda}-1) \sqrt{1-\mu \bar{\mu}}}{\sqrt{1-\lambda \bar{\lambda}}(-1-\bar{\mu} \delta-\bar{\lambda} \alpha-\bar{\lambda} \alpha \bar{\mu} \delta+\bar{\lambda} \beta \bar{\mu} \gamma)} \\ \frac{\gamma(-1+\mu \bar{\mu}) \sqrt{1-\lambda \bar{\lambda}}}{\sqrt{1-\mu \bar{\mu}}(-1-\bar{\mu} \delta-\bar{\lambda} \alpha-\bar{\lambda} \alpha \bar{\mu} \delta+\bar{\lambda} \beta \bar{\mu} \gamma)} & \frac{\bar{\lambda} \beta \gamma-\delta-\bar{\lambda} \alpha \delta-\mu-\mu \bar{\lambda} \alpha}{-1-\bar{\mu} \delta-\bar{\lambda} \alpha-\bar{\lambda} \alpha \bar{\mu} \delta+\bar{\lambda} \beta \bar{\mu} \gamma}\end{array}\right]=$
$=J_{a, z}\left[\begin{array}{ll}\frac{\alpha+\alpha \bar{\mu} \delta+\lambda+\lambda \bar{\mu} \delta-\beta \bar{\mu} \gamma}{1+\bar{\mu} \delta+\bar{\lambda} \alpha+\bar{\lambda} \alpha \bar{\mu} \delta-\bar{\lambda} \beta \bar{\mu} \gamma} & \frac{\beta \sqrt{\left(1-|\lambda|^{2}\right)\left(1-|\mu|^{2}\right)}}{1+\bar{\mu} \delta+\bar{\lambda} \alpha+\bar{\lambda} \alpha \bar{\mu} \delta-\bar{\lambda} \beta \bar{\mu} \gamma} \\ \frac{\gamma \sqrt{\left(1-|\lambda|^{2}\right)\left(1-|\mu|^{2}\right)}}{1+\bar{\mu} \delta+\bar{\lambda} \alpha+\bar{\lambda} \alpha \bar{\mu} \delta-\bar{\lambda} \beta \bar{\mu} \gamma} & \frac{\delta+\bar{\lambda} \alpha \delta+\mu+\mu \bar{\lambda} \alpha-\bar{\lambda} \beta \gamma}{1+\bar{\mu} \delta+\bar{\lambda} \alpha+\bar{\lambda} \alpha \bar{\mu} \delta-\bar{\lambda} \beta \bar{\mu} \gamma}\end{array}\right]$
$=\frac{1}{1+\bar{\mu} \delta+\bar{\lambda} \alpha+\bar{\lambda} \alpha \bar{\mu} \delta-\bar{\lambda} \beta \bar{\mu} \gamma} J_{a, z}\left[\begin{array}{ll}\alpha+\alpha \bar{\mu} \delta+\lambda+\lambda \bar{\mu} \delta-\beta \bar{\mu} \gamma & \beta \sqrt{\left(1-|\lambda|^{2}\right)\left(1-|\mu|^{2}\right)} \\ \gamma \sqrt{\left(1-|\lambda|^{2}\right)\left(1-|\mu|^{2}\right)} & \delta+\bar{\lambda} \alpha \delta+\mu+\mu \bar{\lambda} \alpha-\bar{\lambda} \beta \gamma\end{array}\right]$
$=\frac{1}{(1+\bar{\mu} \delta)(1+\bar{\lambda} \alpha)-\bar{\lambda} \beta \bar{\mu} \gamma} J_{a, z}\left[\begin{array}{ll}\alpha+\alpha \bar{\mu} \delta+\lambda+\lambda \bar{\mu} \delta-\beta \bar{\mu} \gamma & \beta \sqrt{\left(1-|\lambda|^{2}\right)\left(1-|\mu|^{2}\right)} \\ \gamma \sqrt{\left(1-|\lambda|^{2}\right)\left(1-|\mu|^{2}\right)} & \delta+\bar{\lambda} \alpha \delta+\mu+\mu \bar{\lambda} \alpha-\bar{\lambda} \beta \gamma\end{array}\right]$
$(X+A)\left(1+A^{*} X\right)^{-1}=\frac{1}{\operatorname{det}(A)}(X+A)\left[1+\left(A^{*} X\right)^{\sim}\right] \quad$ where $\quad\left[\begin{array}{cc}\xi & \eta \\ \zeta & \omega\end{array}\right]^{\sim}:=\left[\begin{array}{cc}\omega & -\eta \\ -\zeta & \xi\end{array}\right]$

Fractional linear approach to spin factors

H Hilbert space (no conjugation is fixed)

Remark. The general form for spin factors is the following:

A subtriple \mathbf{S} of $\mathcal{L}(\mathbf{H})$ is a spin factor if (and only if) $S^{2} \in \mathbf{C i d}_{\mathbf{H}}, S^{*} \in \mathbf{S}$ whenever $S \in \mathbf{S}$.

In the case the conjugation on \mathbf{S} is simply taking adjoints,
the scalar product on \mathbf{S} is given by $\quad\langle A \mid B\rangle \mathrm{id}_{\mathbf{H}}=\frac{1}{2}\left(A B^{*}+B^{*} A\right)$.

By a result of [Upmeier], every J^{*}-derivation of \mathbf{S} is a weak*-limit of linear combinations

$$
X \mapsto \sum_{j} i\left\{A_{j} A_{j}^{*} X\right\}=\frac{i}{2} \sum_{j}\left[A_{j} A_{j}^{*} X+X A_{j}^{*} A_{j}\right]
$$

Since the left and right multiplication operators $L_{Z}: X \mapsto Z X$ resp. $X \mapsto X Z$ commute, we have

$$
\exp \left[X \mapsto \sum_{j} i\left\{A_{j} A_{j}^{*} X\right\}\right]=\exp \left(\sum_{j} i A_{j} A_{j}^{*}\right) X \exp \left(\sum_{j} i A_{j}^{*} A_{j}\right)
$$

Since all surjective linear isometries of a JB*-triple are exponentials of J^{*}-derivations [Kaup], it follows that
\mathcal{U} is a surj. lin. S-isometry $\Longleftrightarrow \exists U, V \mathbf{H}$-unitary $U \mathbf{S} V=\mathbf{S}, \mathcal{U}=U \otimes V: X \mapsto U X V$.

In particular, every holomorphic automorphism Φ of $\operatorname{Ball}(\mathbf{S})$ has the form

$$
\Phi=M_{A} \circ \mathcal{U}=\left[X \mapsto U M_{A}(X) V\right]
$$

Observe [Isidro-Stacho] that

$$
M_{A}: X \mapsto\left(1-A A^{*}\right)^{-1 / 2}(X+A)\left(1-A^{*} X\right)^{-1}\left(1-A^{*} A\right)^{1 / 2}
$$

is of fractional linear form extending automatically to $\operatorname{Ball}(\mathcal{L}(\mathbf{H}))$.

Question. Are the non-surjective linear isometries of \mathbf{S} of the form $U \otimes V$?

We shall identify the operators in \mathbf{S} with their matrices with respect to ortonormed basis in (H). Actually this means that
\qquad
\qquad

Lemma. Suppose \mathbf{K} is a Hilbert space and $R, S \in \mathcal{L}(\mathbf{K})$ are orthogonal reflections (selfadjoint operators with $R^{2}=S^{2}=1$) such that $R S+S R=0$. Then there exist a unitary operator $W \in \mathcal{L}(\mathbf{K})$ such that, in matrix form, we can write $R=U\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] U^{*}, \quad S=U\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] U^{*}$.

Proof. The two eigensubspaces $\mathbf{K}^{(\varepsilon)}:=\{\mathbf{x}: R x=\varepsilon \mathbf{x}\}(\varepsilon= \pm 1)$ or R span the underlying space orthogonally: $\mathbf{K}=\mathbf{K}^{(1)} \oplus \mathbf{K}^{(-1)}$ and hence R has the matrix form $R=V\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] V^{*} \quad$ with some unitary operator $U \in \mathcal{L}(\mathbf{K})$. In terms of the decomposition $\mathbf{K}=\mathbf{K}^{(1)} \oplus \mathbf{K}^{(-1)}$, we can write $S=V\left[\begin{array}{ll}s_{11} & s_{12} \\ s_{21} & s_{22}\end{array}\right] V^{*}$ where $s_{11}=s_{11}^{*}, s_{22}=s_{22}^{*}$ and $s_{21}=s_{12}^{*}$ because $S=S^{*}$.

Then the relation $R S+S R=0$ means that we have
$0=\left(V^{*} R V\right)\left(V^{*} S V\right)=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}s_{11} & s_{12} \\ s_{21} & s_{22}\end{array}\right]+\left[\begin{array}{ll}s_{11} & s_{12} \\ s_{21} & s_{22}\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}2 s_{11} & 0 \\ 0 & 2 s_{22}\end{array}\right]$
implying $\quad S=V\left[\begin{array}{cc}0 & s_{12} \\ s_{12}^{*} & 0\end{array}\right] V^{*}$. Since $S^{2}=1$ i.e. $\left(V^{*} S V\right)^{2}=1$, also $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}0 & s_{12} \\ s_{12}^{*} & 0\end{array}\right]^{2}=\left[\begin{array}{cc}s_{12} s_{12}^{*} & 0 \\ 0 & s_{12}^{*} s_{12}\end{array}\right] \quad$ i.e. $\quad S$ is an isometry $\mathbf{K}^{(1)} \leftrightarrow \mathbf{K}^{(-1)}$.

In matrix terms it follows that s_{12} is a unitary operator: $s_{12} s_{12}^{*}=s_{12}^{*} s_{12}=1(=\mathrm{Id})$ and we have the unitary equivalence

$$
\left[\begin{array}{cc}
0 & s_{12} \\
s_{12}^{*} & 0
\end{array}\right]=\left[\begin{array}{cc}
s_{12} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s_{12}^{*} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
s_{12} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s_{12} & 0 \\
0 & 1
\end{array}\right]^{-1}
$$

Hence we obtain the statement of the lemma with the unitary operator $U:=V\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Lemma. Let $\mathbf{H}=\mathbf{H}_{1} \oplus \mathbf{H}_{1}$ be an orthogonal decomposition and let $A, B, C, D \in \operatorname{Re}(\mathbf{S})$ be an orthonormed set such that $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \quad B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Then we can find a unitary operator $U=\left[\begin{array}{ll}u & 0 \\ 0 & u\end{array}\right]$ such that
$U A U^{*}=A, \quad U B U^{*}=B, \quad U C U^{*}=\left[\begin{array}{ccc}0 & i & 0 \\ -i & 0 & 0 \\ 0 & -i & 0\end{array}\right], \quad U D U^{*}=\left[\begin{array}{ccc}0 & 0 & i \\ 0-i & i & 0 \\ -i & 0 & 0\end{array}\right]$
with respect to some orthogonal decomposition $\mathbf{H}_{1}=\mathbf{H}_{2} \oplus \mathbf{H}_{2}$.

Proof. We can write $C=\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right], \quad D=\left[\begin{array}{ll}d_{11} & d_{12} \\ d_{21} & d_{22}\end{array}\right]$ with suitable operators $c_{k \ell}, d_{k \ell} \in$ $\mathcal{L}\left(\mathbf{H}_{1}\right)$. The relation $C \perp A$ means that
$0=2\langle A \mid C\rangle=A C^{*}+C^{*} A=A C+C A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]+\left[\begin{array}{cc}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}2 c_{11} & 0 \\ 0 & 2 c_{22}\end{array}\right]$
implying $c_{11}=c_{22}=0$. The operator C is self-adjoint as belonging to $\operatorname{Re}(\mathbf{S})$. Hence $C=\left[\begin{array}{cc}0 & c_{12} \\ c_{12}^{*} & 0\end{array}\right]$. The consequence of the realtion $C \perp B$ is
$0=2\langle B \mid C\rangle=B C^{*}+B^{*} C=B C+C B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & c \\ c^{*} & 0\end{array}\right]+\left[\begin{array}{cc}0 & c \\ c^{*} & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}c_{12}^{*}+c_{12} & 0 \\ 0 & c_{12}+c_{12}^{*}\end{array}\right]$
implying that $c_{12}=i c$ for some self-adjoint operator $c \in \mathcal{L}\left(\mathbf{H}_{1}\right)$.
Also, by assumption, we have $C^{2}=1\left(=\operatorname{Id}_{\mathbf{H}}\right)$ that is $\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & i c \\ -i c & 0\end{array}\right]^{2}=\left[\begin{array}{cc}c^{2} & 0 \\ 0 & c^{2}\end{array}\right]$.

It follows $c^{2}=1\left(=\operatorname{Id}_{\mathbf{H}_{1}}\right)$, thus is the operator c is an orthogonal reflection.

Similar arguments apply for D. Therefore
$C=\left[\begin{array}{cc}0 & i c \\ -i c & 0\end{array}\right], \quad D=\left[\begin{array}{cc}0 & i d \\ -i d & 0\end{array}\right] \quad$ with $\quad c=c^{*}, d=d^{*}, c^{2}=d^{2}=1$.
Finally we proceed to the consequences of the relation $C \perp D$:
$0=2\langle C \mid D\rangle=C D+D C=\left[\begin{array}{cc}c d+d c & 0 \\ 0 & c d+d c\end{array}\right]$.
We can apply the previous lemma with $R:=c$ and $S:=d$ with the conclusion that
$c=u\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] u^{*}, d=u\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] u^{*}$ for some unitary $u \in \mathcal{L}\left(\mathbf{H}_{1}\right.$.
We can check by immediate calculation that the statement of the lemma holds with the unitary operator matrix $U:=\left[\begin{array}{ll}u & 0 \\ 0 & u\end{array}\right]$.

FRACTIONAL LINEAR FORMS

$\mathcal{A}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right] \in \mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$,
$\mathcal{F}(\mathcal{A}): X \mapsto(A X+B)(C X+D)^{-1}=\left[\mathcal{A}\left(\begin{array}{ll} & 1\end{array}\right)^{\mathrm{T}}\right]_{1}\left[\mathcal{A}\left(\begin{array}{ll}X & 1\end{array}\right)^{\mathrm{T}}\right]_{2}^{-1}$
$\mathcal{F}(\mathcal{A B})=\mathcal{F}(\mathcal{A}) \circ \mathcal{F}(\mathcal{B})$
$M_{a}=\mathcal{F}\left(\mathcal{M}_{a}\right), \quad \mathcal{M}_{a}=\operatorname{diag}\binom{\left(1-a a^{*}\right)^{-1 / 2}}{\left(1-a^{*} a\right)^{-1 / 2}}\left[\begin{array}{cc}1 & a \\ a^{*} & 1\end{array}\right]$
Surj. lin. isom: $X \mapsto U X V^{*}, \quad$ unitary $U \in \mathcal{L}\left(\mathbf{H}_{1}\right)$, unitary $V \in \mathcal{L}\left(\mathbf{H}_{2}\right)$
$\Phi^{t}:=\mathcal{F}\left(\mathcal{A}_{t}\right), \quad\left[\phi^{t}: t \in \mathbf{R}\right]$ str.cont,1prg.
$\mathcal{A}_{t}=\mathcal{M}_{a(t)} \operatorname{diag}\left(U_{t}, V_{t}\right)$

Attention: $U \otimes V^{*}=\mathcal{F}(\operatorname{diag}(U, V))=\mathcal{F}(\kappa \operatorname{diag}(U, V))$ with any $\kappa \in \mathbf{T}$
Adjusted str.cont.: [Stachó JMAA 2010, Cor. 2.6] can be applied with linear isomeries instead of unitary operators
$\exists t \mapsto \kappa(t) \in \mathbf{T} \quad t \mapsto \kappa(t) U_{t}, t \mapsto \kappa(t) V_{t}$ str.cont.

Case of $\mathbf{E}=\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ with $r:=\operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$

We consider only str.cont.1-prgroups $\left[\Psi^{t}: t \in \mathbf{R}\right]$ in $\operatorname{Aut}(\mathbf{B})$

Recall. $\Psi^{t}=M_{a(t)} \circ U_{t}, a(t)=\Psi^{t}(0)$,
$M_{a}: x \mapsto\left[1-a a^{*}\right]^{-1 / 2}(x+a)\left[1+a^{*} x\right]^{-1}\left[1-a^{*} a\right]^{1 / 2}, \quad U_{t}: X \mapsto u_{t} X v_{t}^{*}\left(u_{t}, v_{t}\right.$ unitary $)$
Strong continuity: $\Psi^{t}(x)=x+o^{\text {norm }}(1)=x+g_{t}, \quad g_{t} \rightarrow 0(t \rightarrow 0)$

Remark. If [$\Psi^{t}: t \in \mathbf{R}_{+}$] is a str.cont.1-prsemigroup in of Carathéodory isometries of B then, by [Vesentini (1994), Thm. 4.3 (p.539)], we have the same formula with each u_{t}
being a linear not necessarily surjective isometry.
$a(t+h)=a(t)+o^{\text {norm }}(1), \quad M_{a(t+h)}(x)=M_{a(t)}(x)+g_{t, h, x}, \quad \sup _{\|x\| \leq 1}\left\|g_{t, h, x}\right\|=o(1)$ for $h \rightarrow 0$
$\forall \varepsilon>0 \quad \exists \delta>0 \quad \Psi^{t}:(1+\delta) \mathbf{B} \rightarrow(1+\varepsilon) \mathbf{B}$ well-defined $(|t|<\delta)$
$M_{a}^{-1}=M_{-a}, \quad t \mapsto U_{t}=M_{-a(t)} \circ \Psi^{t} \quad$ str.cont.
[Stachó JMAA 2010, Cor.2.6] $\Rightarrow \exists t \mapsto \kappa(t) \in \mathbf{T} \quad t \mapsto \kappa(t) u_{t}, \kappa(t) v_{t}$ str.cont. (pointwise cont)
$\mathcal{F}\left(\begin{array}{cc}A & B \\ C & D\end{array}\right): x \mapsto(A x+B)(C x+D)^{-1}$
$\Psi^{t}=\mathcal{F} \operatorname{diag}\left[\begin{array}{l}\left(1-a(t) a(t)^{*}\right)^{-1 / 2} \\ (1-a(t) * a(t))^{-1 / 2}\end{array}\right]\left[\begin{array}{cc}1 & a(t) \\ a(t)^{*} & 1\end{array}\right] \operatorname{diag}\left[\begin{array}{c}\kappa(t) u_{t} \\ \kappa(t) v_{t}\end{array}\right]$
$\Psi^{t}=\mathcal{F}\left[\begin{array}{cc}A_{t} & B_{t} \\ C_{t} & D_{t}\end{array}\right], \quad t \mapsto A_{t}, B_{t}, C_{t}, D_{t}$ str.cont. determined up to a cont. factor $t \mapsto \kappa(t) \in \mathbf{T}$
$\Psi^{t+h}=\Psi^{t} \circ \Psi^{h} \Longrightarrow\left[\begin{array}{ll}A_{t+h} & B_{t+h} \\ C_{t+h} & D_{t+h}\end{array}\right]=\lambda(t, h)\left[\begin{array}{ll}A_{t} & B_{t} \\ C_{t} & D_{t}\end{array}\right]\left[\begin{array}{lll}A_{h} & B_{h} \\ C_{h} & D_{h}\end{array}\right] \quad \exists!\lambda(t, h) \in \mathbf{T}$
Assumptions without loss of gen. up to Möbius equ.:
(0) $0 \in \operatorname{dom}\left(\Psi^{\prime}\right)$ i.e. $t \mapsto a(t)=\Psi^{t}(0)$ diff.
(1) $\mathcal{A}_{t} \mathcal{A}_{h}=\lambda(t, h) \mathcal{A}_{t+h}, \quad \lambda(t, h) \in \mathbf{T}=\{\zeta \in \mathbf{C}:|\zeta|=1\}$
(2) $\mathcal{A}_{t}=\left[\begin{array}{cc}A_{t} & B_{t} \\ C_{t} & D_{t}\end{array}\right] \quad t \mapsto A_{t}, B_{t}, C_{t}, D_{t}$ str.cont. $\quad \mathcal{A}_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(3) ${ }^{*} \exists$ common fixed point (by reflexivity): $\mathcal{F}\left(\mathcal{A}_{t}\right) E=E \quad(t \in \mathbf{R})$.
$\lambda(t, h)=\mathcal{A}_{-(t+h)} \mathcal{A}_{t} \mathcal{A}_{h}$ cont. in $t, h \quad$ (prod. of unif.bded. str.cont. lin. maps)
$\Psi^{t}(E)=E, \quad E=\mathcal{F}\left(\mathcal{A}_{t}\right)(E)=\mathcal{F}\left[\begin{array}{ll}A_{t} & B_{t} \\ C_{t} & D_{t}\end{array}\right](E)=\left(A_{t} E+B_{t}\right)\left(C_{t} E+D_{t}\right)^{-1}$
$A_{t} E+B_{t}=\left[\mathcal{A}_{t}\binom{E}{1}\right]_{1}, \quad C_{t} E+D_{t}=\left[\mathcal{A}_{t}\binom{E}{1}\right]_{2}$
$S_{t}:=\left[\mathcal{A}_{t}(E 1)^{\mathrm{T}}\right]_{2}=C_{t} E+D_{t}$.
$\mathcal{A}_{t}\left(\begin{array}{ll}E & 1\end{array}\right)^{\mathrm{T}}=\left[\begin{array}{l}A_{t} E+B_{t} \\ C_{t} E+D_{t}\end{array}\right]=\left[\begin{array}{c}E S_{t} \\ S_{t}\end{array}\right]=\left(\begin{array}{ll}E & 1)^{\mathrm{T}} S_{t}, ~\end{array}\right.$
$S_{t} S_{h}=\lambda(t, h) S_{t+h}$

Lemma. $\left[S_{t}: t \in \mathbf{R}\right]$ Abelian family, $\quad \lambda(t, h) \equiv \lambda(h, t)$.
$\operatorname{trace} A B=\operatorname{trace} B A \quad$ in finite dim.
$\operatorname{trace}\left(S_{t} S_{h}\right)=\lambda(t, h) \operatorname{trace}\left(S_{t+h}\right), \quad \operatorname{trace}\left(S_{h} S_{t}\right)=\lambda(h, t) \operatorname{trace}\left(S_{t+h}\right)$
$[\lambda(t, h)-\lambda(h, t)] \operatorname{trace}\left(S_{t+h}\right)=0$
$\operatorname{trace}\left(S_{t} S_{h}\right) \rightarrow \operatorname{trace}\left(S_{0}\right)=\operatorname{trace} 1=\operatorname{dim}\left(\mathbf{H}_{2}\right)(t, h \rightarrow 0)$.
$\exists \varepsilon>0 \quad \lambda(t, h)=\lambda(h, t)(|t|,|h|<\varepsilon)$.
$S_{t} \smile S_{h}$ for $|t|,|h|<\varepsilon$.
$u, v \in \mathbf{R}, u / m, v / m \in(-\varepsilon, \varepsilon)$,
$S_{u}=\widetilde{\lambda} S_{u / m}^{m}, S_{v}=\widetilde{\mu} S_{v / m}^{m} \quad \exists \tilde{\lambda}, \widetilde{\mu} \in \mathbf{T}, \Longrightarrow S_{u} \smile S_{v} \quad$ Q.e.d.
Remark: In infinite dimensions, $A B=\lambda B A \neq 0 \nRightarrow A \smile B$ even if $\lambda \in \mathbf{T}$.

Example: $A: e_{n} \mapsto e_{n+1}(n=0, \pm 1, \ldots)$ bilateral shift, $B: e_{n} \mapsto \lambda^{n} e_{n}$.

Remark: Even in $r<\infty$ dimensions, with $\lambda^{r}=1, \exists A, B \quad A B=\lambda B A \neq 0, \quad A \nsim B$.

Example: e_{0}, \ldots, e_{r-1} orthn. basis, $A: e_{0} \mapsto e_{1} \mapsto e_{2} \mapsto \cdots e_{r-1} \mapsto e_{0}, B: e_{k} \mapsto \lambda^{k} e_{k}$.

Proposition. $\exists t \mapsto \mu(t) \in \mathbf{C}_{0}:=\mathbf{C} \backslash\{0\}$ cont., $\mu(0)=1$ such that
$\left[\mu(t) S_{t}: t \in \mathbf{R}\right],\left[\mu(t) \mathcal{A}_{t}: t \in \mathbf{R}\right]$ str.cont.1prg.

Proof. Lemma $\Rightarrow \mathcal{S}:=\operatorname{Span}\left\{S_{t}: t \in \mathbf{R}_{(+)}\right\}$Abelian algebra with unit $S_{0}=1$.
$M: \mathcal{S} \rightarrow \mathbf{C}$ nontriv. mult. functional. (actually $\left.\exists 0 \neq x \in \mathbf{H}_{2} \quad S x=M(S) x(x \in \mathcal{S})\right)$.
$M\left(S_{t}\right) M\left(S_{h}\right)=M\left(S_{t} S_{h}\right)=\lambda(t, h) M\left(S_{t+h}\right), \quad M\left(S_{t}\right) \neq 0$ since S_{t} is invertible

Define $\mu(t):=1 \mid / M\left(S_{t}\right) \quad$ (Triv: $t \mapsto \mu(t)$ cont. $\quad \mu(0)=1$)

$$
\begin{aligned}
\mu(t) S_{t} \mu(h) S_{h} & =\frac{1}{M\left(S_{t}\right) M\left(S_{h}\right)} S_{t} S_{h}=\frac{\lambda(t, h)}{M\left(S_{t}\right) M\left(S_{h}\right)} S_{t+h}= \\
& =\frac{M\left(S_{t}\right) M\left(S_{h}\right) / M\left(S_{t+h}\right)}{M\left(S_{t}\right) M\left(S_{h}\right)} S_{t+h}=\frac{1}{M\left(S_{t+h}\right)} S_{t+h}=\mu(t+h) S_{t+h}
\end{aligned}
$$

Assumptions (by passing to $\mu(t) S_{t}, \mu(t) \mathcal{A}_{t}=\mathcal{M}_{a(t)} \operatorname{diag}\left[\begin{array}{c}\mu(t) u_{t} \\ \mu(t) v_{t}\end{array}\right]$ for $\left.S_{t}, \mathcal{A}_{t}\right):(\mathbf{1}),(\mathbf{2}),(\mathbf{3})+$
(4) $\left[S_{t}: t \in \mathbf{R}_{(+)}\right]$cont. 1 prsg in $\mathcal{L}\left(\mathbf{H}_{2}\right)$ for $S_{t}:=C_{t} E+D_{t}$
$\mathcal{A}^{\prime}:=\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}_{t}=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto \frac{d}{d t}\right|_{t=0}\left[\begin{array}{cc}A_{t} & B_{t} \\ C_{t} & D_{t}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]\right\}=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: t \mapsto u_{t} x, v_{t} y\right.$ diff. $\}$
$\mathbf{D}:=\operatorname{dom}\left(\mathcal{A}^{\prime}\right)=\operatorname{dom}\left(u^{\prime}\right) \oplus \operatorname{dom}\left(v^{\prime}\right)=\operatorname{dom}\left(U^{\prime}\right) \oplus \mathbf{H}_{\mathbf{2}}$ since $\operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$.
\mathcal{A}^{\prime} is of $\mathbf{H}_{1} \oplus \mathbf{H}_{2}$-split matrix form since $\mathbf{D}=\mathbf{D}_{1} \oplus \mathbf{D}_{2} \quad$ (by def.)
Observation: $t \mapsto \Phi^{t}(X)$ diff. whenever $\left[\begin{array}{c}x y \\ y\end{array}\right] \in \mathbf{D} \quad \forall y \in \mathbf{H}_{2}$.
Proof: $X \in \mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right) \Longrightarrow \quad$ since $\operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$,
$t \mapsto \mathcal{A}_{t}\left[\begin{array}{c}x \\ 1\end{array}\right]$ diff. $\Longleftrightarrow t \mapsto \mathcal{A}_{t}\left[\begin{array}{c}x \\ 1\end{array}\right] y=\mathcal{A}_{t}\left[\begin{array}{c}x y \\ y\end{array}\right]$ diff. $\forall y \in \mathbf{H}_{2} . \quad$ Qu.e.d.
Remark. From the general theory we know: if $0 \in \operatorname{dom}\left(\Psi^{\prime}\right)$ then
$\operatorname{dom}\left(\Psi^{\prime}\right)=\left\{X: t \mapsto U_{t}(X)\right.$ differentiable $\}=[$ dense Jordan*-subtriple $] \cap \mathbf{B}$.
Since $U_{t}: X \mapsto u_{t} X v_{t}^{*}$, all the operators $x \otimes y^{*}\left(x \in \operatorname{dom}\left(u^{\prime}\right), y \in \mathbf{H}_{2}\right)$ belong to $\operatorname{dom}\left(\Psi^{\prime}\right)$.
Notation: $b:=a^{\prime}=\left.\frac{d}{d t}\right|_{t=0} a(t), A^{\prime}:=\left.\frac{d}{d t}\right|_{t=0} A_{t}$ with $\operatorname{dom}\left(A^{\prime}\right):=\left\{x:\left.\frac{d}{d t}\right|_{t=0} A_{t}\right.$ exists $\}$, $B^{\prime}:=\left.\frac{d}{d t}\right|_{t=0} B_{t}, C^{\prime}:=\left.\frac{d}{d t}\right|_{t=0} C_{t}, D^{\prime}:=\left.\frac{d}{d t}\right|_{t=0} D_{t}$ analogously
$\Psi^{t}(0)=a(t)=\left(A_{t} \cdot 0+B_{t}\right)\left(C_{t} \cdot 0+D_{t}\right)^{-1}=B_{t} D_{t}^{-1}$
$S_{t}=C_{t} E+D_{t}, \quad S^{\prime}:=C^{\prime} E+D^{\prime}$ well-def. in finite dim.
$\mathcal{A}_{t}=\left[\begin{array}{cc}A_{t} & B_{t} \\ C_{t} & D_{t}\end{array}\right]=\operatorname{diag}\left[\begin{array}{c}\left.(1-a(t) a(t))^{*}\right)^{-1 / 2} \\ (1-a(t) * a(t))^{-1 / 2}\end{array}\right]\left[\begin{array}{cc}1 & a(t) \\ a(t)^{*} & 1\end{array}\right] \operatorname{diag}\left[\begin{array}{l}u_{t} \\ v_{t}\end{array}\right]$
$A_{t}=\left[1-a(t) a(t)^{*}\right]^{-1 / 2} u_{t}, \quad B_{t}=\left[1-a(t)^{*} a(t)\right]^{-1 / 2} a(t) v_{t}$,
$C_{t}=\left[1-a(t) a(t)^{*}\right]^{-1 / 2} a(t)^{*} u_{t}, \quad D_{t}=\left[1-a(t)^{*} a(t)\right]^{-1 / 2} v_{t}$
By assumption we consider the case $0 \in \operatorname{dom}\left(\Psi^{\prime}\right)$ i.e. if $b=a^{\prime}$ is well-def.
$A^{\prime}=u^{\prime}, \quad B^{\prime}=a^{\prime} v_{0}+a(0) v^{\prime}=b, C^{\prime}=\left[a^{\prime}\right]^{*} u(0)+a(0)^{*} u^{\prime}=b^{*}, \quad D^{\prime}=v^{\prime}$

Hence can summarize the concusion of assumptions (0), ..., (4) as follows:

Theorem. Up to Möbius equivalence may assume that
$\Psi^{t}=\mathcal{F}\left(\mathcal{A}_{t}\right)$ where $\left[\mathcal{A}_{t}: t \in \mathbf{R}\right]$ is a str.conr.1-prg. in $\mathcal{L}\left(\mathbf{H}_{1} \oplus \mathbf{H}_{2}\right) \equiv \mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ such that $\mathcal{A}^{\prime}=\left[\begin{array}{cc}u^{\prime} & b \\ b^{*} & v^{\prime}\end{array}\right] \mathbf{H}_{1} \oplus \mathbf{H}_{2}$-split with $\operatorname{dom}\left(\mathcal{A}^{\prime}\right)=\operatorname{dom}\left(u^{\prime}\right) \oplus \mathbf{H}_{2} ; u^{\prime}, v^{\prime} i$ symm. (i-self-adj.).

We have $\mathcal{A}_{t}\left[\begin{array}{c}E \\ 1\end{array}\right]=\left[\begin{array}{c}E \\ 1\end{array}\right] S_{t}$ where $\left[S_{t}: t \in \mathbf{R}\right]$ is a cont.1-prg in $\mathcal{L}\left(\mathbf{H}_{2}\right.$ with $S^{\prime}=b^{*} E+v^{\prime}$.

Furthermore we recall
$\mathcal{A}_{t}=\mathcal{M}_{a(t)} \operatorname{diag}\left(u_{t}, v_{t}\right)=\operatorname{diag}\binom{\left[1-a(t) a(t)^{*}\right]^{-1 / 2}}{\left[1-a(t)^{*} a(t)\right]^{-1 / 2}}\left[\begin{array}{cc}1 & a(t) \\ a(t)^{*} & 1\end{array}\right] \operatorname{diag}\left(u_{t}, v_{t}\right)$.
$A_{t}=\left[1-a(t) a(t)^{*}\right]^{-1 / 2} u_{t}, \quad B_{t}=\left[1-a(t) a(t)^{*}\right]^{-1 / 2} a(t) v_{t}$,
$C_{t}=\left[1-a(t) a(t)^{*}\right]^{-1 / 2} a(t)^{*} u_{t}, \quad D_{t}=\left[1-a(t) a(t)^{*}\right]^{-1 / 2} v_{t}$
$\operatorname{dom}\left(\mathcal{A}^{\prime}\right)=\mathbf{D}_{1} \oplus \mathbf{H}_{2}, \quad \mathbf{D}_{1}=\operatorname{dom}(A)=\operatorname{dom}\left(\left.\frac{d}{d t}\right|_{t=0} u_{t}\right)$.
$t \mapsto a(t)=B_{t} D_{t}^{-1}$ is differentiable, $\quad a(t)=t b+o(t)$ at $t=0$
$\mathcal{A}^{\prime}=\left[\begin{array}{ll}A^{\prime} & B^{\prime} \\ C^{\prime} & D^{\prime}\end{array}\right]=\left[\begin{array}{cc}u^{\prime} & b \\ b^{*} & v^{\prime}\end{array}\right], \quad u^{\prime}:=\left.\frac{d}{d t}\right|_{t=0} u_{t}, \quad v^{\prime}:=\left.\frac{d}{d t}\right|_{t=0} v_{t}$.
$\Psi^{\prime}(X)=\left.\frac{d}{d t}\right|_{t=0} \Psi^{t}(X)=\left.\frac{d}{d t}\right|_{t=0}\left(A_{t} X+B_{t}\right)\left(C_{X}+D_{t}\right)^{-1}=$
$=\left(A^{\prime} X+B^{\prime}\right)\left(C_{0} X+D_{0}\right)^{-1}-\left(A_{0} X+B_{0}\right)\left(C_{0} X+D_{0}\right)^{-1}\left(C^{\prime} X+D^{\prime}\right)\left(C_{0} X+D_{0}\right)^{-1}=$
$=A^{\prime} X+B^{\prime}-X\left(C^{\prime} X+D^{\prime}\right)=u^{\prime} X+b-X b^{*} X-X v^{\prime}==b-\{X b X\}+\left.\frac{d}{d t}\right|_{t=0} U_{t} X$
$\mathcal{A}_{t}\left[\begin{array}{c}E \\ 1\end{array}\right]=\left[\begin{array}{ll}A_{t} & B_{t} \\ C_{t} & D_{t}\end{array}\right]\left[\begin{array}{c}E \\ 1\end{array}\right]=\left[\begin{array}{c}E S_{t} \\ S_{t}\end{array}\right]=\left[\begin{array}{c}E \\ 1\end{array}\right] S_{t}$
$\left[S_{t}: t \in \mathbf{R}\right]$ str.cont.1prg $, \quad S^{\prime}:=\left.\frac{d}{d t}\right|_{t=0} S_{t}=\operatorname{gen}\left[S_{t}: t \in \mathbf{R}\right]$
$y \in \mathbf{H}_{2} \Rightarrow t \mapsto \mathcal{A}_{t}\left[\begin{array}{c}E y \\ y\end{array}\right]=\left[\begin{array}{c}E \\ 1\end{array}\right] S_{t} y \quad$ diff., $\quad\left[\begin{array}{c}E y \\ y\end{array}\right] \in \operatorname{dom}\left(\mathcal{A}^{\prime}\right), \quad E y \in \mathbf{D}_{1}$.
Projective translation: $\mathcal{T}:=\left[\begin{array}{cc}1 & E \\ & 1\end{array}\right], \quad \mathcal{T}^{-1}:=\left[\begin{array}{cc}1 & -E \\ & 1\end{array}\right]$
$\mathcal{B}_{t}:=\mathcal{T}^{-1} \mathcal{A}_{t} \mathcal{T}, \quad \mathcal{B}^{\prime}:=\mathcal{T}^{-1} \mathcal{A} \mathcal{T}$
$\mathcal{A}^{\prime}=\operatorname{gen}\left[\mathcal{A}_{t}: t \in \mathbf{R}\right], \quad \mathcal{B}^{\prime}=\operatorname{gen}\left[\mathcal{B}_{t}: t \in \mathbf{R}\right], \quad \operatorname{dom}\left(\mathcal{B}^{\prime}\right)=\mathcal{T}^{-1}\left(\mathbf{D}_{1} \oplus \mathbf{H}_{2}\right)$.
$\left.\operatorname{dom}\left(\mathcal{B}^{\prime}\right)=\left\{[d-E y] \oplus y: d \in \mathbf{D}_{1}, y \in \mathbf{H}_{2}\right)\right\}=\mathbf{D}_{1} \oplus \mathbf{H}_{2}\left(=\operatorname{dom}\left(\mathcal{A}^{\prime}\right)\right)$.
$\mathcal{T}^{-1}\left[\begin{array}{cc}A_{t} & B_{t} \\ C_{t} & D_{t}\end{array}\right] \mathcal{T}=\left[\begin{array}{cc}1 & -E \\ & 1\end{array}\right]\left[\begin{array}{cc}A_{t} & A_{t} E+B_{t} \\ C_{t} & C_{t} E+D_{t}\end{array}\right]=\left[\begin{array}{cc}1 & -E \\ & 1\end{array}\right]\left[\begin{array}{cc}A_{t} & E S_{t} \\ C_{t} & S_{t}\end{array}\right]=$ $=\left[\begin{array}{cc}A_{t}-E C_{t} & \mathbf{0} \\ C_{t} & S_{t}\end{array}\right]$.
$\mathcal{B}^{\prime}=\mathcal{T}^{-1} \mathcal{A}^{\prime} \mathcal{T}=\left[\begin{array}{cc}A^{\prime}-E C^{\prime} & 0 \\ C^{\prime} & S^{\prime}\end{array}\right]=\left[\begin{array}{cc}u^{\prime}-E b^{*} & 0 \\ b^{*} & b^{*} E+v^{\prime}\end{array}\right]$
$W_{t}:=\left[\mathcal{B}_{t}\right]_{11}$ str.cont.1prg. $\quad W^{\prime}=\operatorname{gen}\left[W_{t}: t \in \mathbf{R}\right]=A^{\prime}-E C^{\prime}=u^{\prime}-E b^{*}$
$S_{t}:=\left[\mathcal{B}_{t}\right]_{22}$ str.cont.1prg. $\quad S^{\prime}=\operatorname{gen}\left[S_{t}: t \in \mathbf{R}\right]=C^{\prime} E+D^{\prime}=b^{*} E+v^{\prime}$

Triangular lemma [Stachó JMAA 2016, Lemma 3.8] \Rightarrow
$\mathcal{B}^{\prime}=\operatorname{gen}[\underbrace{\left[\begin{array}{cc}W_{t} & 0 \\ \int_{0}^{t} S_{t-h} C^{\prime} W_{h} d h & S_{t}\end{array}\right]}_{\mathcal{B}_{t}}: t \in \mathbf{R}]$
$\Psi^{t}=\mathcal{F}\left(\mathcal{B}_{t}\right): X \mapsto W_{t} X\left[\int_{0}^{t} S_{t-h} C^{\prime} W_{h} X d h+S_{t}\right]^{-1}$,
$\mathcal{A}^{\prime}=\mathcal{T B}^{\prime} \mathcal{T}^{-1}=\operatorname{gen}\left[\mathcal{A}_{t}: t \in \mathbf{R}\right], \quad T:=\mathcal{F}(\mathcal{T}): X \mapsto X+E$
$\Phi^{t}=\mathcal{F}\left(\mathcal{A}_{t}\right)=\mathcal{F}\left(\mathcal{T} \mathcal{B}_{t} \mathcal{T}^{-1}\right)=T \circ \Psi_{t} \circ T^{-1}$

Closed integrated form: For all $X \in \operatorname{Ball}\left(\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)\right)$,

$$
\begin{gathered}
\Phi^{t}(X)=E+W_{t}(X-E)[\int_{0}^{t} S_{t-h} \underbrace{C^{\prime}}_{b^{*}} W_{h}(X-E) d h+S_{t}]^{-1} . \\
\Phi^{t}=\mathcal{F}\left(\mathcal{A}_{t}\right), \quad \mathcal{A}_{t}=\left[\begin{array}{cc}
W_{t}+E J_{t} & E S_{t}-\left(W_{t}+E J_{t}\right) E \\
J_{t} & S_{t}-J_{t} E
\end{array}\right], \quad J_{t}:=\int_{0}^{t} S_{t-h} b^{*} W_{h} d h
\end{gathered}
$$

Vector fields

$\Phi^{t}(X) \in \mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right) \quad\left[\mathbf{H}_{1} \rightarrow \mathbf{H}_{2}\right.$ operators $]$
$t \mapsto \Phi^{t}(X)$ diff. $\quad \Longleftrightarrow \quad t \mapsto \Phi^{t}(X) y$ diff. $\forall y \quad\left(\Leftarrow \operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty.\right)$

If $\operatorname{ran}(X) \subset \mathbf{D}_{1}\left(=\operatorname{dom}\left(\left[\mathcal{A}^{\prime}\right]_{11}\right)\right)$ then
$t \mapsto \Phi^{t}(X) y=\left[A_{t} X+B_{t}\right]\left[C_{t} X+D_{t}\right]^{-1} y \quad$ diff. $\forall y$
$\Phi^{\prime}:=\left.\frac{d}{d t}\right|_{t=0} \Phi^{t}, \quad \underline{\operatorname{dom}\left(\Phi^{\prime}\right)=\left\{X: \operatorname{ran}(X) \subset \mathbf{D}_{1}\right\}}$
Kaup type formula up to Möbius equ.:

$$
\begin{gathered}
\Phi^{\prime}(X) y=\left.\frac{d}{d t}\right|_{t=0}\left[A_{t} X+B_{t}\right]\left[C_{t} X+D_{t}\right]^{-1} y=\left[A^{\prime} X+B^{\prime}\right] y-X\left[C^{\prime} X+D^{\prime}\right] y= \\
=\left[b-X b^{*} X+u^{\prime} X-X v^{\prime}\right] y \quad\left(\operatorname{ran}(X) \subset \mathbf{D}_{1}, y \in \mathbf{H}_{2}\right)
\end{gathered}
$$

Integration of Kaup's type vector fields
$\Omega: X \mapsto b-X b^{*} X+u^{\prime} X-X v^{\prime}$ vector field on $\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right), \operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$
$b \in \mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right), u^{\prime}: \mathbf{D}_{1} \rightarrow \mathbf{H}_{1}$ densely def. i-self-adj., $v^{\prime} \in \mathcal{L}\left(\mathbf{H}_{2}\right) i$-self-adj.

Question. \exists ? $\left[\Phi^{t}: t \in \mathbf{R}\right]$ str.cont.1-prg. in $\operatorname{Aut}(B)$ such that $\Phi^{\prime}=\Omega$?

Assumption. $E \in \operatorname{dom}(\Omega),\|E\|=1, \Omega(E)=0$. With the earlier construction, let $\Phi^{t}(X):=E+W_{t}(X-E)\left[\int_{0}^{t} S_{t-h} b^{*} W_{h}(X-E) d h+S_{t}\right]^{-1}$

Remark. $\Omega=\Phi^{\prime}\left(=\left.\frac{d}{d t}\right|_{t=0} \Phi^{t}\right)$

New condition. If $\left[\mathcal{A}_{t}: t \in \mathbf{R}\right]$ str.cont.1-prg and $\Phi^{t}=\mathcal{F}\left(\mathcal{A}_{t}\right) \in \operatorname{Aut}(\mathbf{B})(t \in \mathbf{R})$ then, with $c(t):=\Phi^{t}(0)=B_{t} D_{t}^{-1}$ we have $\Phi^{t}=M_{c(t)} \circ U_{t}$ with $U_{t}=u_{t} \otimes v_{t}^{*}, u_{t}, v_{t}$ unitary. Hence, with $t \lambda(t) \neq$ cont. and $t \mapsto u_{t}, v_{t}$ str.cont., $\operatorname{diag}\left[\begin{array}{l}{\left[1-c(t) c(t)^{*}\right]^{-1 / 2}} \\ {\left[1-c(t)^{*} c(t)\right]^{-1 / 2}}\end{array}\right]\left[\begin{array}{cc}1 & -c(t) \\ -c(t)^{*} & 1\end{array}\right] \mathcal{A}_{t}=\lambda(t) \operatorname{diag}\left[\begin{array}{l}u_{t} \\ v_{t}\end{array}\right]$, that is
(5a) $\left[1-c(t) c(t)^{*}\right]^{-1 / 2}\left[A_{t}-c(t) C_{t}\right]=\lambda(t) u_{t}$,
(5b) $B_{t}-c(t) D_{t}=0$,
(5c) $-c(t)^{*} A_{t}+C_{t}=0$,
(5d) $\left[1-c(t)^{*} c(t)\right]^{-1 / 2}\left[-c(t)^{*} B_{t}+D_{t}\right]=\lambda(t) v_{t}$

In particular (5b) is trivial and
$0=-\left(B_{t} D_{t}^{-1}\right)^{*} A_{t}+C_{t}$,
$\left[A_{t}-B_{t} D_{t}^{-1} C_{t}\right]\left[A_{e}-B_{t} D_{t}^{-1} C_{t}\right]^{*}=|\lambda(t)|^{2}\left[1-B_{t} D_{t}^{-1}\left(B_{t} D_{t}^{-1}\right)^{*}\right]$,
$\left[-\left(B_{t} D_{t}^{-1}\right)^{*} B_{t}+D_{t}\right]\left[-\left(B_{t} D_{t}^{-1}\right)^{*} B_{t}+D_{t}\right]^{*}=|\lambda(t)|^{2}\left[1-\left(B_{t} D_{t}^{-1}\right)^{*} B_{t} D_{t}^{-1}\right]$

Theorem. Given any $b, E, u^{\prime}, v^{\prime}$ satisfying (1), \ldots, (4),
we have $\Phi^{t} \in \operatorname{Aut}(\mathbf{B} \quad(t \in \mathbf{R})$.

Proof. It suffices to see only that each Φ^{t} maps the unit ball B into itself. We have
$\mathcal{A}^{\prime}=\operatorname{gen}\left[\mathcal{A}_{t}: t \in \mathbf{R}\right]=\left[\begin{array}{cc}0 & b \\ b^{*} & 0\end{array}\right]+\left[\begin{array}{cc}u^{\prime} & 0 \\ 0 & v^{\prime}\end{array}\right]$.
Since u^{\prime}, v^{\prime} are i-self-adjoint (u^{\prime} possibly unbded),
$\left[\begin{array}{cc}u^{\prime} & 0 \\ 0 & v^{\prime}\end{array}\right]=\operatorname{gen}\left[\widetilde{\mathcal{U}}^{t}: t \in \mathbf{R}\right], \widetilde{\mathcal{U}}^{t}:=\widetilde{u}^{t} \otimes \widetilde{v}^{t},\left[\widetilde{u}^{t}: t \in \mathbf{R}\right],\left[\widetilde{v}^{t}: t \in \mathbf{R}\right]$ str.cont.unitary 1-prg.
Recall [Engel-Nagel, p. 230 Ex. 3.11] that pointwise we have
$\mathcal{A}_{t}=\lim _{n \rightarrow \infty}\left[\exp \left(\frac{t}{n}\left[\begin{array}{cc}0 & b \\ b^{*} & 0\end{array}\right]\right) \mathcal{U}^{t / n}\right]^{n}=$
$=\lim _{n \rightarrow \infty}\left[[\text { Möbius matrix }]\left[\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right) \text { - unitary matrix }\right]\right]^{n}=$
$=\lim _{n \rightarrow \infty}[$ [Möbius matrix $\left.]\right]^{n}=[$ Möbius matrix $]$.
Hence each $\Phi^{t}=\mathcal{F}\left(\mathcal{A}_{t}\right)$ is a Möbius trf. mapping \mathbf{B} onto itself. Qu.e.d.

Determining parameters $\left(u^{\prime}, E, S^{\prime}\right)$

We have seen: the integration of a vector field $x \mapsto b-\left\{x b^{*} x\right\}+u^{\prime} x-x v^{\prime}$ of Kaup's type with fixed point E in $\partial \mathbf{B}$ gives always rise to a str.cont.1-prsg. in $\operatorname{Iso}\left(d_{\mathbf{B}}\right)$.

We shall see, it suffices to assume withot loss of generality that the fixed point E is a tripotent, i.e.

$$
E=\sum_{k=1}^{m} f_{k} \otimes e_{k}^{*} \quad\left\{f_{1}, \ldots, f_{r}\right\} \text { ORTN } \subset \mathbf{H}_{1}, \quad\left\{2_{1}, \ldots, 2_{r}\right\} \text { ORTN } \subset \mathbf{H}_{2}
$$

Necessarily, algebraic relations hold between the parameters $\left(b, u^{\prime}, E, v^{\prime}, S^{\prime}\right)$. Namely
$\left[\begin{array}{cc}u^{\prime} & b \\ b^{*} & v^{\prime}\end{array}\right]\left[\begin{array}{c}E \\ 1\end{array}\right]=\left[\begin{array}{c}E S^{\prime} \\ S^{\prime}\end{array}\right], \quad u^{\prime}=i$-symmetric-dense, $v^{\prime}=i$.selfadjoint.
We know that these conditions are sufficient already to give rise to a str.cont.1-prsg. in
$\operatorname{Iso}\left(d_{\mathbf{B}}\right)$. We are going to establish structural algebraic conditions to
$u^{\prime} E+b=E S^{\prime}, \quad b^{*} E+v^{\prime}=S^{\prime}, \quad u^{\prime}=i$-symmetric-dense,$\quad v^{\prime}=i$.selfadjoint.

Equivalently we have
$b=E S^{\prime}-u^{\prime} E, \quad v^{\prime}=-\left[v^{\prime}\right]^{*}$ i.e. $S^{\prime}-b^{*} E=E^{*} b-\left[S^{\prime}\right]^{*}$ which is the same as
$(*) \quad S^{\prime}-\left[S^{\prime}\right]^{*} E^{*} E+E^{*}\left[u^{\prime}\right]^{*} E=E^{*} E S^{\prime}-E^{*} u^{\prime} E-\left[S^{\prime}\right]^{*}$.

By the skew symmetry of u^{\prime} we have $E^{*}\left[u^{\prime}\right]^{*} E=-E^{*} u^{\prime} E$ and hence ($*$) has the form
(**) $\quad\left[1-E^{*} E\right] S^{\prime}=-\left[S^{\prime}\right]^{*}\left[1-E^{*} E\right] \quad$ i.e. $\quad\left[1-E^{*} E\right] S^{\prime} i$-sefadjoint.

We investigate $(* *)$ in matrix form. For some orthonormed systems $f_{1}, \ldots, f_{N} \in \mathbf{H}_{1}$ resp.
$e_{1}, \ldots, e_{n} \in \mathbf{H}_{2}$ (being complete \mathbf{H}_{2}) we can write (by means of SVD decompostion)
$E=\sum_{k=1}^{N} \lambda_{k} f_{k} \otimes e_{k}^{*}, \quad 1=\lambda_{1} \geq \cdots \geq \lambda_{N} \geq 0, \quad S^{\prime}=\sum_{k, \ell=1}^{N} \sigma_{k \ell} f_{k} \otimes e_{\ell}^{*}$.
The relation (**) means that
$(* * *) \quad\left(1-\lambda_{k}\right) \sigma_{k \ell}=-\overline{\sigma_{k \ell}}\left(1-\lambda_{\ell}\right) \quad(k, \ell=1, \ldots, N)$.

We can write the sequence $\left[1-\lambda_{k}\right]_{k=1}^{N}$ in more details in the form
$\left[1-\lambda_{1}, \ldots, 1-\lambda_{N}\right]=[\underbrace{0, \ldots, 0}_{m_{1}}, \underbrace{\mu_{2}, \ldots, \mu_{2}}_{m_{2}}, \ldots, \underbrace{\mu_{r}, \ldots, \mu_{r}}_{m_{r}}], \quad 0<\mu_{2}<\cdots<\mu_{r} \leq 1, m_{1}>0$.
Then, with the partition $\sigma=\left[\sigma_{k \ell}\right]_{k, \ell=1}^{N}=\left[\sigma^{(p, q)}\right]_{p, q=1}^{r} \quad$ into submatrices $\sigma^{(p, q)} \in$ $\operatorname{Mat}\left(m_{p}, m_{q}\right)$, we can write $(* * *)$ into the form $\quad \mu_{p} \sigma^{(p, q)}=-\mu_{q}\left[\sigma^{(q, p)}\right]^{*}(p, q=1, \ldots, r)$. This is possible if and only if
$\sigma^{(1,1)}$ is arbitrary, $\quad \sigma^{(p, p)}=-\left[\sigma^{(p, p)}\right]^{*}, \quad \sigma^{(p, 1)}=\sigma^{(1, p)}=0 \quad(p>1)$,
$\sigma^{(p, q)}$ is arbitrary and $\sigma^{(q, p)}=-\left(\mu_{p} / \mu_{q}\right)\left[\sigma^{(p, q)}\right]^{*}(1<q<p)$.

Proposition. Assume $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$has a Kaup type generator $\Phi^{\prime}(x)=b-\left\{x b^{*} x\right\}+\mathrm{U}^{\prime} x$ with $\operatorname{dom}\left(\Phi^{\prime}\right)=\operatorname{dom}\left(\mathrm{U}^{\prime}\right) \cap \mathbf{B}$ where is a (not necessaarily closed) Jordan subtriple of \mathbf{E}. Assume furthermore that F is a common fixed point of the continuous extensions $\bar{\Phi}^{t}$ to the closed unit ball $\overline{\mathbf{B}}$ of the maps Φ^{t} belonging to a finite dimensional face \mathbf{F} of \mathbf{B}. Then

$$
\operatorname{Span}(\mathbf{F}) \cap \mathbf{B} \subset \operatorname{dom}\left(\Phi^{\prime}\right)
$$

Proof. We know [Peralta etc.] that there is a tripotent $E \neq 0$ (actually the middle point
of \mathbf{F}) such that

$$
\mathbf{F}=E+\left[\mathbf{B} \cap E^{\perp \text { Jordan }}\right]=\left\{E+A: A \perp^{\text {Jordan }},\|A\|<1\right\}
$$

where $\left(E^{\perp \text { Jordan }}\right)$ is a finite, say $N(<\infty)$ dimensional subtriple of \mathbf{E}.

Therefore $F=E+A$ where $A=\sum_{k=1}^{m} \lambda_{k} E_{k}$ for some Jordan-orthogonal family
E_{1}, \ldots, E_{m} with $m \leq N$ in $E^{\perp \text { Jordan }}$ and $0<\lambda_{1}<\cdots<\lambda_{m}<1$.

On the other hand,
$\left\{x \in \overline{\mathbf{B}}: t \mapsto \bar{\Phi}^{t}(x)\right.$ is differentiable $\}=\left\{x \in \overline{\mathbf{B}}: t \mapsto \mathrm{U}^{t}\right.$ is differentiable $\}=\overline{\mathbf{B}} \cap \mathbf{J}$ with the Jordan subtriple $\mathbf{J}:=\left\{x \in \mathbf{E}: t \mapsto \mathrm{U}^{t}\right.$ is differentiable $\}$. Since the orbit $t \mapsto F=\bar{\Phi}^{t}(F)$ is constant, trivially $F \in \mathbf{J}$ and hence
$\Delta F=\{\zeta F:|\zeta|<1\} \subset \operatorname{dom}\left(\Phi^{\prime}\right)=\left\{x \in \mathbf{B}: t \mapsto \Phi^{t}(x)\right.$ is differentiable $\}$.

Thus, since $\operatorname{Span}(\mathbf{F})=\mathbf{C} E+\bigoplus_{k=1}^{m} \mathbf{C} E_{k}$, it suffices to see that
(*) $\oplus k=0^{m} \mathbf{C} E_{k} \subset \mathbf{J} \quad$ where $E_{0}:=E$.

Since $F \in \mathbf{J}$ and \mathbf{J} is a linear submanifold being closed to the triple product, we may establish (*) by showing that $E_{k} \in \operatorname{Span} L(F, F)^{k} F(k=0, \ldots, m)$, or which is the same, $(* *) \quad\left\{L(F, F)^{k} F: k=0, \ldots, F\right\}$ is a linearly independent family.

Notice that the vectors E_{0}, \ldots, E_{m} are linearly independent as being pairwise Jordan ortogonal tripotents. Observe that, by setting $\lambda_{0}:=1$, we have $L(F, F)^{n} F=L\left(\sum_{k=0}^{m} \lambda_{k} E_{k}, \sum_{k=0}^{m} \lambda_{k} E_{k}\right)^{n} \sum_{k=0}^{m} \lambda_{k} E_{k}=\sum_{k=0}^{m} \lambda_{k}^{2 n+1} E_{k}$.

Hence ($* *$) is equivalent to the statement that
$(* * *) \quad \operatorname{det}\left[\lambda_{k}^{2 n+1}\right]_{k, n=0}^{m} \neq 0$.
However, $(* * *)$ is easy to see because
$\left[\lambda_{k}^{2 n+1}\right]_{k, n=0}^{m}=\operatorname{diag}\left(\lambda_{0}, \ldots, \lambda_{m}\right)$ VanderMonde $\left(\lambda_{0}^{2}, \ldots, \lambda_{m}^{2}\right)$
with $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{m}<1=\lambda_{0}$.

Corollary. If $\mathbf{E}=\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ with $r:=\operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$ and $\left[\Psi^{t}: t \in \mathbf{R}_{+}\right]$is a C_{0}-SGR in $\operatorname{Iso}\left(d_{\mathbf{B}}\right)$ then there is a $C_{0}-\mathrm{SGR}\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$in $\operatorname{Iso}\left(d_{\mathbf{B}}\right)$ being Möbius equvalent to [$\left.\Psi^{t}: t \in \mathbf{R}_{+}\right]$such that its generator is of Kaup type and whose continuous extensions to the closed unit ball admit a common fixed point which is a tripotent.

Proof. We know [Stacho, RevRoum17] that any C_{0}-SGR in $\mathbf{E}=\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ with $r:=$ $\operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$ whose 0-orbit is differentiable has a Kaup type generator (whose domain is the intersection of a not necessarily closed Jordan subtriple with the unit ball) and the continuous extensions of its mebers admit a common fixed point in the closed unit ball. Furthermore the boundary of the unit ball is a union of finite (at most r) dimensional faces. Let $F=E+A$ be a common fixed point of $\left[\bar{\Psi}^{t}: t \in \mathbf{R}_{+}\right]$where E is a tripotent and $A \perp^{\text {Jordan }} E$ with $\|A\|<1$. Consider the Möbius equivalent C_{0}-SGR $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$with $\Phi^{t}:=M_{-A} \circ \Psi^{t} \circ M_{A}$. According to the Proposition, we have $\pm A \in \mathbf{B} \cap \sum_{k=0}^{r} \mathbf{C} L(F, F) F \subset$ $\operatorname{dom}\left(\Psi^{\prime}\right)$. Hence the orbit $t \mapsto \Phi^{t}(0)=M_{-A}\left(\Psi^{t}\left(M_{A}(0)\right)\right)=M_{-A}\left(\Psi^{t}(A)\right)$ is differentiable, that is $0 \in \operatorname{dom}\left(\Phi^{p}\right.$ rime $)$ implying also that Φ^{\prime} is of Kaup type. Also we have

$$
\bar{\Phi}^{t}\left(M_{-A}(F)\right)=M_{-A}\left(\bar{\Psi}^{t}(F)\right)=M_{-A}(F) \quad\left(t \in \mathbf{R}_{+}\right)
$$

that is the point $M_{-A}(F)$ is a common fixed point for $\left[\bar{\Phi}^{t}: t \in \mathbf{R}_{+}\right]$. However (since $\left.E \perp \perp^{\text {Jordan }} A\right)$,

$$
\begin{aligned}
M_{-A}(F) & =M_{-A}(E+A)=-A+B(A)^{1 / 2}[1-L(E+A, A)]^{-1}(E+A)= \\
& =-A+B(A)^{1 / 2}[1-L(A, A)]^{-1}(E+A)= \\
& =-A+B(A)^{1 / 2}[1-L(A, A)]^{-1} E+B(A)^{1 / 2}[1-L(A, A)]^{-1} A= \\
& =-A+B(A)^{1 / 2} E+B(A)^{1 / 2}[1-L(A, A)]^{-1} A= \\
& =-A+E+B(A)^{1 / 2}[1-L(A, A)]^{-1} A=M_{-A}(A)+E=0+E=E
\end{aligned}
$$

which completes the proof.

Lemma 1. Let $\mathbf{E}:=\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ with $r:=\operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$. Assume $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$is a $C_{0}-\mathrm{SGR}$ in $\operatorname{Iso}\left(d_{\mathbf{B}}\right)$ such that $\Phi^{t}=M_{a(t)} \circ \mathrm{U}_{t} \mid \mathbf{B}$ where the orbit $t \mapsto a(t)=\Phi^{t}(0)$ is differentiable and $\mathrm{U}_{t}=\mathfrak{P} \mathcal{U}_{t}, t \mapsto \mathcal{U}_{t}=\left[\begin{array}{cc}U_{t} & 0 \\ 0 & V_{t}\end{array}\right]$ is such that U_{t}, V_{t} are linear isometries of $\mathbf{H}_{1}, \mathbf{H}_{2}$ respectively and there is a function $t \mapsto \mu(t) \in \mathbf{C} \backslash\{0\}$ such that $\left[\mu(t) \mathcal{M}_{a(t)} \mathcal{U}_{t}\right.$: $\left.t \in \mathbf{R}_{+}\right]$is a C_{0}-SGR in $\mathcal{L}\left(\mathbf{H}_{1} \oplus \mathbf{H}_{2}\right)$. Then

$$
\begin{aligned}
\operatorname{dom}\left([M \circ \mathrm{U}]^{\prime}\right)(& \left.:=\left\{X \in \mathbf{E}:[0, \varepsilon) \ni t \mapsto M_{a(t)\left(\mathrm{U}_{t} X\right)} \text { diff. for some } \varepsilon>0\right\}\right)= \\
& =\left\{X \in \mathbf{E}: \operatorname{range}(X) \subset \operatorname{dom}\left(U^{\prime}\right)\right\} .
\end{aligned}
$$

Proof. Since $\operatorname{dim}\left(\mathbf{H}_{2}\right)<\infty$,
$\operatorname{dom}\left([M \circ \mathrm{U}]^{\prime}\right)=\left\{X \in \mathbf{E}: t \mapsto \Phi^{t}(X)\right.$ is differentiable at $\left.0+\right\}=$ $=\left\{X \in \mathbf{E}: t \mapsto \mathrm{U}_{t}(X)\right.$ is differentiable at $\left.0+\right\}=$ $=\left\{X \in \mathbf{E}: t \mapsto U_{t} X V_{t}^{-1}\right.$ is differentiable at $\left.0+\right\}=$
$=\left\{X \in \mathbf{E}: t \mapsto U_{t} X V_{t}^{-1} y\right.$ is differentiable at $0+$ for all $\left.y \in \mathbf{H}_{2}\right\}$.

By assumption (and since $a \mapsto \mathcal{M}_{a}$ is real-analytic), the orbit $t \mapsto \mu(t) V_{t}$ in the finite dimensional space $\mathcal{L}\left(\mathbf{H}_{2}\right)$ is differentiable, implying also the differentiability of $t \mapsto \mu(t)^{-1} V_{t}^{-1}$. Let e_{1}, \ldots, e_{r} be an orthonormed basis of \mathbf{H}_{2} and consider any operator $X \in \mathbf{B}$. We have $\mu(t) U_{t} X e_{k}=U_{t} X V_{t}^{-1} \mu(t) V_{t} e_{k}=U_{t} X V_{t}^{-1} \sum_{\ell=1}^{r}\left\langle\left[\mu(t) V_{t}\right] e_{k} \mid e_{\ell}\right\rangle e_{\ell}=$ $=\sum_{\ell=1}^{r}\left\langle\left[\mu(t) V_{t}\right] e_{k} \mid e_{\ell}\right\rangle U_{t} X V_{t}^{-1} e_{\ell}$, $U_{t} X V_{t}^{-1} e_{k}=\left[\mu(t) U_{t}\right] X\left[\mu(t)^{-1} V_{t}^{-1}\right] e_{k}=\sum_{\ell=1}^{r}\left\langle\left[\mu(t)^{-1} V_{t}\right] e_{k} \mid e_{\ell}\right\rangle \mu(t) U_{t} X e_{\ell}$.

Thus the orbits $t \mapsto U_{t} X V_{t}^{-1} e_{k}$ and $t \mapsto \mu(t) U_{t} X e_{\ell}$ are differentiable in the same time. By passing to linear combinations we conclude that $X \in \operatorname{dom}\left(\Phi^{\prime}\right) \Longleftrightarrow t \mapsto U_{t} X V_{t}^{-1} y$ is diff. for all $y \Longleftrightarrow t \mapsto \mu(t) U_{t} X z$ is diff. for all z. Observe that the latter statement can be interpreted as $X z \in \operatorname{dom}\left(\mu(t) U_{t}\right)^{\prime}$ for all $z \in \mathbf{H}_{2}$ that is range $(X) \subset \operatorname{dom}\left(\mu(t) U_{t}\right)^{\prime}$.

Lemma 2. Let $(\mathbf{E},\{.\}$.$) be a JB*-triple of finite rank, \mathbf{J} \subset \mathbf{E}$ a dense linear subanifold being closed for the triple product and let e be a tripotent in \mathbf{J}. Then there is a tripotent f in \mathbf{J} such that $f \perp^{\text {Jordan }} e$ and $e+f$ is a maximal tripotent of \mathbf{E} (i.e. $\left\{x \in \mathbf{E}: x \perp^{\text {Jordan }}\right.$ $e+f\}=\{0\})$.

Proof. Recall [Kaup81, Neher] that, as a consequence of the fact that only finite Jordanorthogonal families of tripotents do exist in \mathbf{E}, every element $x \in \mathbf{E}$ admits a finite spectral decomposition of the form $x=\sum_{0 \neq \lambda \in \operatorname{Sp}(L(x))} \sqrt{\lambda} x_{\lambda}$ where the vectors x_{λ} are pairwise

Jordan-orthogonal tripotents being real-linear combinations from the family $\left\{L(x)^{k} x\right.$: $k=0, \ldots, r-1\}$ where $r:=\operatorname{rank}\left(\mathbf{E}\left\{. .^{*}.\right\}\right)$. That is, every subtriple $\mathbf{K} \subset \mathbf{E}$ (even a nonclosed one) is spanned algebraically by $\operatorname{Trip}(\mathbf{K})$. In particular, any non-trivial subtriple of E contains tripotents. Consider any maximal family \mathbf{F} of pairwise orthogonal tripotents in $e^{\perp \text { Jordan }}:=\left\{z \in \mathbf{J}: z \perp^{\text {Jordan }} e\right\}$. The set \mathbf{F} contains at most $(r-1)$ elements and its $\operatorname{sum} f:=\sum_{g \in \mathbf{F}} g$ is a tripotent in $\mathbf{J} \cap e^{\perp \mathrm{Jordan}}$. Also $e+f \in \operatorname{Trip}(\mathbf{J})$. To complete the proof we show that the subtriple $\mathbf{E}_{0}:=[e+f]^{\perp \text { Jordan }}$ of \mathbf{E} is trivial (otherwise it would contain non-zero tripotents). By the well-known Peirce identity of tripotents [Neher],
$L(e+f)^{3}-\frac{3}{2} L(e+f)^{2}+\frac{1}{2} L(e+f)=0$.

Hence $\mathbf{E}_{0}=\operatorname{kernel}(L(e+f))=\operatorname{range}(P)$ where $P:=2 L(e+f)^{2}-3 L(e+f)+\operatorname{Id}_{\mathbf{E}}$ is a projection $\left(P^{2}=P\right.$, the so-called Peirce-0 projection of $\left.e+f\right)$. Consider the the subtriple $\left.\mathbf{J}_{0}:=\mathbf{J} \cap \mathbf{E}_{0}=\left\{x \in \mathbf{J}: x \perp^{\text {Jordan }} e+f\right\}\right)$. Observe that $\mathbf{J}_{0}=P \mathbf{J}$ because P preserves the subtriple \mathbf{J}. Since \mathbf{J} is supposed to be (norm-)dense in $\mathbf{E}, \mathbf{J}_{0}=P \mathbf{J}$ is necessarily dense in $P \mathbf{E}=\mathbf{E}_{0}$. However, since non-trivial subtriples contain non-zero tripotents, we have $\mathbf{J}_{0}=\{0\}$ by the maximality of the family \mathbf{F}.

Proposition. Let [$\left.\Psi^{t}: t \in \mathbf{R}_{+}\right]$be a C_{0}-SGR in $\operatorname{Iso}\left(d_{\mathbf{B}}\right)$ for the unit ball \mathbf{B} of the TRO factor $\mathbf{E}:=\mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ with $\operatorname{dim}\left(\mathbf{H}_{2}\right)=r<\infty$. Then we can find a Möbius equivalent C_{0}-SGR $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$such that $\Phi^{t}=\mathfrak{P} \mathcal{A}^{t}\left(t \in \mathbf{R}_{+}\right)$where $\left[\mathcal{A}^{t}: t \in \mathbf{R}_{+}\right]$is a C_{0}-SGR in
$\mathcal{L}\left(\mathbf{H}_{1} \oplus \mathbf{H}_{2}\right)$ with generator of the form

$$
\begin{gathered}
\mathcal{A}^{\prime}=\mathcal{T}\left[\begin{array}{ccccc}
U_{11}^{\prime}-b_{11}^{*} & 0 & 0 & 0 & 0 \\
-b_{21} & U_{22}^{\prime} & U_{23}^{\prime} & 0 & 0 \\
-b_{31} & U_{32}^{\prime} & U_{33}^{\prime} & 0 & 0 \\
b_{11}^{*} & b_{21}^{*} & b_{31}^{*} & b_{11}+V_{11}^{\prime} & b_{12} \\
b_{12}^{*} & 0 & 0 & 0 & V_{22}^{\prime}
\end{array}\right] \mathcal{T}^{-1}, \quad \operatorname{dom}\left(\mathcal{A}^{\prime}\right)=\operatorname{dom}\left(U^{\prime}\right) \oplus \mathbf{H}_{2} \\
U^{\prime}=\left[U_{j, k}^{\prime}\right]_{j, k=1}^{3}, \\
U_{j, k}^{\prime} \in \mathcal{L}\left(\mathbf{H}_{1, j}, \mathbf{H}_{1, k}\right), \quad \mathbf{H}_{1}=\oplus_{j=1}^{3} \mathbf{H}_{1, j} ; \\
V^{\prime}=\left[V_{\ell, m}^{\prime}\right]_{\ell, m=1}^{2}, \quad V_{\ell, m}^{\prime} \in \mathcal{L}\left(\mathbf{H}_{2, \ell}, \mathbf{H}_{2, m}\right), \quad \mathbf{H}_{2}=\oplus_{\ell=1}^{2} \mathbf{H}_{2, \ell} ; \\
b:=\left[b_{k, \ell}\right]_{\substack{=1,2,3 \\
\ell=1,2}}, \quad b_{j, \ell} \in \mathcal{L}\left(\mathbf{H}_{1, j}, \mathbf{H}_{2, \ell}\right), \quad \operatorname{dim}\left(\mathbf{H}_{2, \ell}\right)=\operatorname{dim}\left(\mathbf{H}_{1, \ell}\right)
\end{gathered}
$$

where $U^{\prime}=\operatorname{gen}\left[U^{t}: t \in \mathbf{R}_{+}\right]$resp. $V^{\prime}=\operatorname{gen}\left[V^{t}: t \in \mathbf{R}_{+}\right]$are generators of C_{0}-SGRs of linear isometries of \mathbf{H}_{1} resp. \mathbf{H}_{2}, furthermore

$$
\mathcal{T}=\left[\begin{array}{ccccc}
\mathrm{Id}_{\mathbf{H}_{1,1}} & 0 & 0 & J & 0 \\
0 & \mathrm{Id}_{\mathbf{H}_{1,2}} & 0 & 0 & 0 \\
0 & 0 & \mathrm{Id}_{\mathbf{H}_{1,3}} & 0 & 0 \\
0 & 0 & 0 & \operatorname{Id}_{\mathbf{H}_{2,1}} & 0 \\
0 & 0 & 0 & 0 & \operatorname{Id}_{\mathbf{H}_{2,2}}
\end{array}\right], \mathcal{T}^{-1}=\left[\begin{array}{cccccc}
\mathrm{Id}_{\mathbf{H}_{1,1}} & 0 & 0 & -J^{*} & 0 \\
0 & \operatorname{Id}_{\mathbf{H}_{1,2}} & 0 & 0 & 0 \\
0 & 0 & \operatorname{Id}_{\mathbf{H}_{1,3}} & 0 & 0 \\
0 & 0 & 0 & \operatorname{Id}_{\mathbf{H}_{2,1}} & 0 \\
0 & 0 & 0 & 0 & \operatorname{Id}_{\mathbf{H}_{2,2}}
\end{array}\right]
$$

where $J: \mathbf{H}_{2,1} \rightarrow \mathbf{H}_{1,1}$ is a surjective linear isometry.

Proof. In [StachoRevRoum17, Cor.7.6] (as a completion with adjusted continuity arguments Vesentini's work [Ves94]) we estabished that [$\Psi^{t}: t \in \mathbf{R}_{+}$] is Möbius equivalent to a C_{0}-SGR $\left[\Phi^{t}: t \in \mathbf{R}_{+}\right]$of the form $\Phi^{t}=\mathfrak{P} \mathcal{A}_{t}$ where $\left[\mathcal{A}_{t}: t \in \mathbf{R}_{+}\right]$is a $C_{0}-\mathrm{SGR}$ in $\mathcal{L}\left(\mathbf{H}_{1} \oplus \mathbf{H}_{2}\right)$ with generator

$$
\mathcal{A}^{\prime}=\left[\begin{array}{cc}
U^{\prime} & b \\
b^{*} & V^{\prime}
\end{array}\right]=\mathcal{T}\left[\begin{array}{cc}
U^{\prime}-E b^{*} & 0 \\
b^{*} & b^{*} E+V^{\prime}
\end{array}\right] \mathcal{T}^{-1}
$$

where U^{\prime}, V^{\prime} are generators of isometry C_{0}-SGR in \mathbf{H}_{1} resp. $\mathbf{H}_{2}, \operatorname{dom}\left(\mathcal{A}^{\prime}\right)=\operatorname{dom}\left(U^{\prime}\right) \oplus \mathbf{H}_{2}$, $b, E \in \mathcal{L}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ with $\|E\|=1$ and $\Phi^{t}(E)=E\left(t \in \mathbf{R}_{+}\right)$. We refine this representation
by a choosing the common fixed point E to be a tripotent. According to the previous Corollary, this can be done without loss of generality. Furthermore, by Lemma 2, we can find a complementary tripotent F such that $F \perp^{\text {Jordan }} E$ and $E+F$ is a maximal tripotent of $\mathbf{E}=\mathcal{L}\left(\mathbf{H}_{\mathbf{1}}, \mathbf{H}_{2}\right.$. Actually we can write
$E=\sum_{k=1}^{m} f_{k} \otimes e_{k}^{*}, \quad F=\sum_{k=m+1}^{r} f_{k} \otimes e_{k}^{*}$
in terms of some orthonormed basis $\left\{e_{k}: k=1, \ldots, r\right\}$ of \mathbf{H}_{2}, an orthonormed system
$\left\{f_{k}: k=1, \ldots, r\right\}$ in \mathbf{H}_{1} and rank-1 $\mathbf{H}_{2} \rightarrow \mathbf{H}_{1}$ operators $f \otimes e^{*}: x \mapsto e^{*}(x) f=\langle x \mid e\rangle f$.

Define
$\mathbf{H}_{2,1}:=\oplus_{k=1}^{m} \mathbf{C} e_{k}=\operatorname{ker}^{\perp}(E), \quad \mathbf{H}_{2,2}:=\oplus_{k=m+1}^{r} \mathbf{C} e_{k}=\operatorname{ker}^{\perp}(F), \quad J:=E \mid \mathbf{H}_{2,1}$,
$\mathbf{H}_{1,1}:=\oplus_{k=1}^{m} \mathbf{C} f_{k}=\operatorname{range}(E), \quad \mathbf{H}_{1,2}:=\oplus_{k=m+1}^{r} \mathbf{C} f_{k}=\operatorname{range}(F)$,
$\mathbf{H}_{1,3}:=\mathbf{H}_{1} \ominus\left[\mathbf{H}_{1,1} \oplus \mathbf{H}_{1,2}\right]=\mathbf{H}_{1} \ominus \operatorname{range}(E+F)$.

Straightforward calculation yields
$\mathcal{T}^{-1}\left[\begin{array}{cc}U^{\prime} & b \\ b^{*} & V^{\prime}\end{array}\right] \mathcal{T}=$
$=\left[\begin{array}{ccccc}U_{11}^{\prime}-J^{*} b_{11}^{*} & U_{12}^{\prime}-J^{*} b_{21}^{*} & U_{13}^{\prime}-J^{*} b_{31}^{*} & U_{11}^{\prime}-J b_{11}^{*} J+b_{11}-J^{*} V_{11}^{\prime} & b_{12}-J^{*} V_{12}^{\prime} \\ U_{21}^{\prime} & U_{22}^{\prime} & U_{23}^{\prime} & U_{21}^{\prime} J+b_{21} & b_{22} \\ U_{31}^{\prime} & U_{32}^{\prime} & U_{33}^{\prime} & U_{31}^{\prime} J+b_{31} & b_{32} \\ b_{11}^{*} & b_{21}^{*} & b_{31}^{*} & b_{11}^{*} J+V_{11}^{\prime} & V_{12}^{\prime} \\ b_{12}^{*} & b_{22}^{*} & b_{22}^{*} & b_{12}^{*} J+V_{21}^{\prime} & V_{22}^{\prime}\end{array}\right]$.
The Kaup type vector field corresponding to the generator of $\left[\Phi^{t}: t \in \mathbf{R}\right.$] is
$\Phi^{\prime}(X)=b-X b^{*} X+U^{\prime} X-X V^{\prime}, \quad \operatorname{dom}\left(\Phi^{\prime}\right)=\left\{X \in \mathbf{B}: \operatorname{ran}(X) \subset \operatorname{dom}\left(U^{\prime}\right)\right\}$.

Moreover even
$[M \circ \mathrm{U}]^{\prime}(X)=b-X b^{*} X+U^{\prime} X-X V^{\prime}, \quad \operatorname{dom}\left(\Phi^{\prime}\right)=\left\{X \in \mathbf{B}: \operatorname{ran}(X) \subset \operatorname{dom}\left(U^{\prime}\right)\right\}$.

Taking into account that E is a common fixed point of the continuous extensions $\bar{\Phi}^{t}$ to the closed unit ball $\overline{\mathbf{B}}$, we have
(*) $\quad 0=\bar{\Phi}^{\prime}(E)=b-E b^{*} E+U^{\prime} E-E V^{\prime}, \quad \operatorname{range}(E) \subset \operatorname{dom}\left(U^{\prime}\right)$.

In terms of the submatrices $b_{j, \ell}, U_{j, k}^{\prime}, V_{\ell, m}^{\prime},(*)$ can be written as
$0=\left[\begin{array}{cc}b_{11}-J b_{11}^{*} J+U_{11}^{\prime} J V_{11}^{\prime} & b_{12}-J V_{12}^{\prime} \\ b_{21}+U_{21}^{\prime} J & b_{22} \\ b_{31}+U_{31}^{\prime} J & b_{32}\end{array}\right]$.
Comparing the entries of $\mathcal{T}^{-1} \mathcal{A}^{\prime} \mathcal{T}$ with the entries above, we get
$\mathcal{T}^{-1} \mathcal{A}^{\prime} \mathcal{T}=\left[\begin{array}{ccccc}U_{11}^{\prime}-b_{11}^{*} & 0 & 0 & 0 & 0 \\ -b_{21} & U_{22}^{\prime} & U_{23}^{\prime} & 0 & 0 \\ -b_{31} & U_{32}^{\prime} & U_{33}^{\prime} & 0 & 0 \\ b_{11}^{*} & b_{21}^{*} & b_{31}^{*} & b_{11}+V_{11}^{\prime} & b_{12} \\ b_{12}^{*} & 0 & 0 & 0 & V_{22}^{\prime}\end{array}\right]$
whence the statement is immediate.

Lemma. Let $p:=\operatorname{Proj}_{\operatorname{ran}(E)}=E E^{*}$ and $q:=1-p$. Then $p\left[U^{\prime}-E b^{*}\right] q=0$.

Proof. We have $b-E b^{*} E+U^{\prime} E-E V^{\prime}=0$. Hence

$$
\begin{aligned}
U^{\prime} E+b & =E V^{\prime}-E b^{*} E, \\
{\left[U^{\prime} E-b\right]^{*} } & =\left[E V^{\prime}+E b^{*} E\right]^{*}, \\
E^{*}\left[U^{\prime}\right]^{*}-b^{*} & =\left[V^{\prime}\right]^{*} E^{*}-E^{*} b E^{*}, \\
-E^{*} U^{\prime}+b^{*} & =-V^{\prime} E^{*}+E^{*} b E^{*}=\left[-V^{\prime}+E^{*} b\right] E^{*}, \\
{\left[-E^{*} U^{\prime}+b^{*}\right] q } & =\left[-E E^{*} V^{\prime}-E b^{*}\right] E^{*}\left(1-E E^{*}\right)=0, \\
-\left[E E^{*} U^{\prime}-E b^{*}\right] q & =0, \\
E E^{*}\left[U^{\prime}-E b^{*}\right] q & =0
\end{aligned}
$$

since $E=E E^{*} E$ and $E^{*}=E^{*} E E^{*}$.

$$
\begin{aligned}
& \left.0=b-E b^{*} E+U^{\prime} E-E V^{\prime}, \quad E E^{*} E=E, \quad \operatorname{Pr}_{\mathrm{ran}(E)}\right)=E E^{*}, \operatorname{Pr}_{\mathrm{ran}}{ }^{\perp}(E)=E^{*} E \\
& 0=\left(1-E E^{*}\right)\left(b-E b^{*} E+U^{\prime} E-E V^{\prime}\right)= \\
& =\left(1-E E^{*}\right)(b+U \prime E) \quad \mid .{ }^{*} \quad\left[U^{\prime}\right]^{*} \supset-U^{\prime} \text { antisymm. } \\
& 0=\left(b^{*}-E^{*}\left[U^{\prime}\right] *\right)\left(1-E E^{*}\right)= \\
& =\left(b^{*}-E^{*} U^{\prime}\right)\left(1-E E^{*}\right) \quad \mid E . \\
& 0=\left(E b^{*}-E E^{*} U^{\prime}\right)\left(1-E E^{*}\right)= \\
& =\left(E E^{*} E b^{*}-E E^{*} U^{\prime}\right)\left(1-E E^{*}\right)=E E^{*}\left(E b^{*}-U^{\prime}\right)\left(1-E E^{*}\right) \\
& 0=\operatorname{Pr}_{\mathrm{ran}(E)}\left(U^{\prime}-E b^{*}\right) P_{\mathrm{ran}}{ }^{\perp}(E) \\
& \mathbf{H}_{1,1}:=\operatorname{ran}(E), \quad \mathbf{H}_{1,2}:=\operatorname{ran}^{\perp}(E), \quad P_{k}:=\operatorname{Pr}_{\mathbf{H}_{1, k}} \\
& P_{1}\left(U^{\prime}-E b^{*}\right) P_{2}=0 \\
& \mathcal{T}:=\left[\begin{array}{cc}
1 & E \\
0 & 1
\end{array}\right], \quad \mathcal{T}^{-1}=\left[\begin{array}{cc}
1 & -E \\
0 & 1
\end{array}\right], \quad \mathcal{A}:=\left[\begin{array}{cc}
U^{\prime} & b \\
b^{*} & V^{\prime}
\end{array}\right] \\
& 0=b-E b^{*} E+U^{\prime} E-E V^{\prime} \\
& \mathcal{T}^{-1} \mathcal{A} \mathcal{T}=\left[\begin{array}{cc}
\left.U^{\prime}-E b^{*}\right) & 0 \\
b^{*} & V^{\prime}-b^{*} E
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
P_{1}\left(U^{\prime}-E b^{*}\right) P_{1} & 0 & 0 \\
P_{2}\left(U^{\prime}-E b^{*}\right) P_{1} & P_{2}\left(U^{\prime}-E b^{*}\right) P_{2} & 0 \\
b^{*} P_{1} & b^{*} P_{2} & V^{\prime}-b^{*} E
\end{array}\right] \\
& P_{2}\left(U^{\prime}-E b^{*}\right) P_{1}={ }^{P_{2} E=0}=\left(1-E E^{*}\right)\left(U^{\prime}-E b^{*}\right) E E^{*}= \\
& =\left(1-E E^{*}\right) U^{\prime} E E^{*}=P_{2} U^{\prime} P_{1} \\
& P_{2}\left(U^{\prime}-E b^{*}\right) P_{2}=P_{2} U^{\prime} P_{2} \\
& \mathcal{T}^{-1} \mathcal{A} \mathcal{T}=\left[\begin{array}{ccc}
U_{1,1}^{\prime}-E b^{*} P_{1} & 0 & 0 \\
U_{2,1}^{\prime} & U_{2,2}^{\prime} & 0 \\
b^{*} P_{1} & b^{*} P_{2} & V^{\prime}-b^{*} E
\end{array}\right]
\end{aligned}
$$

$\mathbf{H},\langle. \mid\rangle$ finite dim. complex Hilbert space. A unit vector $e \in \mathbf{H}$ is fixed point of a complete hol. vect. field of the unit ball
$X(e)=0$, where $X(z):=-\langle(i A-\lambda x-e) \mid e\rangle x+(i A+\lambda)(x-e), \quad A=A^{*} \in \mathcal{L}(\mathbf{H}), \quad \lambda \in \mathbf{R}$.

Question. Does there exist an X-invariant disc passing in \mathbf{B} touching e ?

Equivalently: $\quad \exists ? v \not \perp e \quad X(e+\zeta v) \| v \quad(\zeta \in \mathbf{C})$.

$$
\begin{aligned}
X(e+\zeta v) & =-\langle(i A-\lambda) \zeta v \mid e\rangle(e+\zeta v)+(i A+\lambda) \zeta v= \\
& =-\zeta\langle(i A+\lambda) v \mid e\rangle e+[\| v]+\zeta i A v+[\| v]= \\
& =\zeta[-P(i A-\lambda)+i A] v+[\| v]=(1-P)(i A-\lambda) v+[\| v]
\end{aligned}
$$

where $P:=[$ ort.proj. onto $\mathbf{C} e]=[x \mapsto\langle x \mid e\rangle e]$. Thus a disc $e+(1+\Delta) v$ is X-invariant iff

$$
\exists \mu \in \mathbf{C} \quad(1-P)(i A-\lambda) v=\mu v .
$$

Question. Is it possible that all the eigenvectors of $(1-P)(i A-\lambda)$ are $\perp e$?

Observation: $(1-P)(i A-\lambda)\left|e^{\perp}=[(1-P)(i A)(1-P)+\lambda \mathrm{Id}]\right| \operatorname{ran}(1-P)$ is a normal operator $\operatorname{ran}(1-P)=e^{\perp} \rightarrow e^{\perp}$. Hence e^{\perp} admits an orthonormed basis $f_{1}, \ldots f_{N-1}$ consisting of eigenvectors of $(1-P) A(1-P)$ and, with some $\beta_{1}, \ldots \beta_{N} \in \mathbf{R}$ and $\gamma_{1}, \ldots, \gamma_{N-1} \in \mathbf{C}$, we can write the self-adjoint operator A in hermitian symmetric matrix form
$\operatorname{Matrix}_{\left\{f_{1}, \ldots, f_{N-1}\right\}}(A)=\left[\begin{array}{ccccc}\beta_{1} & & & & \overline{\gamma_{1}} \\ & \beta_{2} & & & \overline{\gamma_{2}} \\ & & \ddots & & \vdots \\ & & & \beta_{N-1} & \overline{\gamma_{N-1}} \\ \gamma_{1} & \gamma_{2} & \cdots & \gamma_{N-1} & \beta_{N}\end{array}\right]$.

Thus a vector $v=\left[\zeta_{1}, \ldots, \zeta_{N-1}, 0\right]^{\mathrm{T}} \equiv \sum_{k} \zeta_{k} f_{k}$ is a μ-eigenvector of $(1-P)(i A-\lambda)$ if and only if $v \in \operatorname{Span}\left\{f_{k}: i \beta_{k}-\lambda=\mu\right\}$. Hence we have $(N-1)$ independent eigenvectors $\perp e$. At most one more eigendirection of $(1-P)(i A-\lambda)$ may remain which necessarily consists of multiples of a vector of the form $v=\left[\zeta_{1}, \ldots, \zeta_{N-1}, 1\right]^{\mathrm{T}} \equiv \sum_{k} \zeta_{k} f_{k}+e$. Then $(1-P)(i A-\lambda) v=\sum_{k<N}\left[\zeta_{k}\left(i \beta_{k}-\lambda\right)+i \overline{\gamma_{k}}\right] f_{k}$ and $(1-P)(i A-\lambda) v=\mu v \Longleftrightarrow \quad \zeta_{k}\left(i \beta_{k}-\lambda\right)+i \overline{\gamma_{k}}=\mu \quad(k<N), \quad 0=\mu$.

The latter system has no solution $\left(\zeta_{1}, \ldots, \zeta_{N-1}\right)$ if and only if $\lambda=0$ and $\beta_{k}=0 \neq \gamma_{k}$ for some index $k<n$. This is the case when all the eigenvectors of $(1-P)(i A-\lambda)$ are $\perp e$.

Example. $N=2, \quad A:=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], e:=\left[\begin{array}{l}0 \\ 1\end{array}\right], X(x):=-\langle i A(x-e) \mid e\rangle x+i A(x-e)$.
Then $\{v: e+v+\Delta v X$-inv. disc $\}=\mathbf{C} f$ with $f:=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}$.
Proof. $P=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],(1-P)(i A)=i\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ nilpotent with eigenvectors only in $\mathbf{C} f$.
Direct calculation:
$x:=\left[\begin{array}{l}\xi \\ \eta\end{array}\right] \Rightarrow A(x-e)=\left[\begin{array}{c}\eta-1 \\ \xi\end{array}\right], X(x)=-i \xi=\left[\begin{array}{l}\xi \\ \eta\end{array}\right]+=i\left[\begin{array}{c}\eta-1 \\ \xi\end{array}\right]=i\left[\begin{array}{c}-1+\eta-\xi^{2} \\ \xi-\xi \eta\end{array}\right] ;$
$X(e+\zeta v)=X\left(\left[\begin{array}{c}\zeta \nu_{1} \\ 1+\zeta \nu_{2}\end{array}\right]\right)=-i \zeta\left[\begin{array}{c}\zeta \nu_{1}^{2}+\nu_{2} \\ \zeta \nu_{1} \nu_{2}\end{array}\right]$.
$X(e+\zeta v)\left\|v \Longleftrightarrow \operatorname{det}\left[\begin{array}{cc}\zeta \nu_{1}^{2}+\nu_{2} & \nu_{1} \\ \zeta \nu_{1} \nu_{2} & \nu_{2}\end{array}\right]=0 \Longleftrightarrow \nu_{2}^{2}=0 \Longleftrightarrow v\right\| f$.

Convolution of functions of the form $\operatorname{pol}(t) e^{\rho t}$

Let $p \in \operatorname{Pol}_{n}(\mathbf{R})$ that is $p^{(n+1)} \equiv 0$. Then

$$
\begin{aligned}
\int_{t=a}^{b} p(t) e^{\rho t} d t & =\left.\rho^{-1} e^{\rho t} p(t)\right|_{t=a} ^{b}-\int_{t=a}^{b} \rho^{-1} p^{\prime}(t) d t= \\
& =\left.\rho^{-1} e^{\rho t} p(t)\right|_{t=a} ^{b}-\left.\rho^{-2} e^{\rho t} p^{\prime}(t)\right|_{t=a} ^{b}+\int_{t=a}^{b} \rho^{-2} p^{\prime \prime}(t) d t= \\
& =\cdots=\left.\sum_{k=0}^{n}(-1)^{k} \rho^{-(k+1)} p^{(k)}(t) e^{\rho t}\right|_{t=a} ^{b}
\end{aligned}
$$

Let $p_{1} \in \operatorname{Pol}_{n}(\mathbf{R}), p_{2} \in \operatorname{Pol}_{m}(\mathbf{R}) \cdot\left[p_{1}(t) e^{\rho_{1} t}\right] *\left[p_{2}(t) e^{\rho_{2} t}\right]=$?

$$
\begin{aligned}
& \int_{s=0}^{t}\left[e^{\rho_{1}(t-s)} p_{1}(t-s)\right]\left[e^{\rho_{2} s} p_{2}(s)\right] d s=^{s=\frac{t}{2}+\frac{u}{2}}= \\
& =\int_{u=-t}^{t} e^{\rho_{1}\left(\frac{t}{2}-\frac{u}{2}\right)} p_{1}\left(\frac{t}{2}-\frac{u}{2}\right) e^{\rho_{2}\left(\frac{t}{2}+\frac{u}{2}\right)} p_{2}\left(\frac{t}{2}+\frac{u}{2}\right) \frac{1}{2} d u= \\
& =\frac{e^{\frac{\rho_{1}+\rho_{2}}{2} t}}{2} \int_{u=-t}^{t} e^{\frac{\rho_{2}-\rho_{1}}{2} u} \underbrace{p_{1}\left(\frac{t}{2}-\frac{u}{2}\right) p_{2}\left(\frac{t}{2}+\frac{u}{2}\right)}_{p(u)} d u= \\
& =\left.\frac{e^{\frac{\rho_{1}+\rho_{2}}{2} t}}{2} \sum_{k=0}^{n_{1}+n_{2}}(-1)^{k}\left[\frac{\rho_{2}-\rho_{1}}{2}\right]^{-(k+1)} p^{(k)}(u) e^{\frac{\rho_{2}-\rho_{1}}{2}} u\right|_{u=-t} ^{t}= \\
& =\sum_{k=0}^{n_{1}+n_{2}} \frac{(-1) \cdot 2^{k}}{\left(\rho_{1}-\rho_{2}\right)^{k+1}}\left[p^{(k)}(t) e^{\rho_{2} t}-p^{(k)}(-t) e^{\rho_{1} t}\right]= \\
& =e^{\rho_{1} t} \sum_{k=0}^{n_{1}+n_{2}} \frac{2^{k}}{\left(\rho_{1}-\rho_{2}\right)^{k+1}} p^{(k)}(-t)-e^{\rho_{2} t} \sum_{k=0}^{n_{1}+n_{2}} \frac{2^{k}}{\left(\rho_{1}-\rho_{2}\right)^{k+1}} p^{(k)}(t) .
\end{aligned}
$$

Here we have

$$
\begin{aligned}
p^{(k)}(u) & =\frac{d^{k}}{d u^{k}}\left[p_{1}\left(\frac{t}{2}-\frac{u}{2}\right) p_{2}\left(\frac{t}{2}+\frac{u}{2}\right)\right]= \\
& =\sum_{\ell=0}^{k}\binom{k}{\ell}\left[\frac{d^{\ell}}{d u^{\ell}} p_{1}\left(\frac{t}{2}-\frac{u}{2}\right)\right]\left[\frac{d^{k-\ell}}{d u^{k-\ell}} p_{2}\left(\frac{t}{2}+\frac{u}{2}\right)\right]= \\
& =\sum_{\ell=0}^{k}\binom{k}{\ell}\left(-\frac{1}{2}\right)^{\ell} p_{1}^{(\ell)}\left(\frac{t}{2}-\frac{u}{2}\right)\left(\frac{1}{2}\right)^{k-\ell} p_{2}^{(k-\ell)}\left(\frac{t}{2}+\frac{u}{2}\right)= \\
& =\sum_{\ell=0}^{k}(-1)^{\ell} \frac{1}{2^{k}}\binom{k}{\ell} p_{1}^{(\ell)}\left(\frac{t}{2}-\frac{u}{2}\right) p_{2}^{(k-\ell)}\left(\frac{t}{2}+\frac{u}{2}\right) .
\end{aligned}
$$

It follows

$$
\begin{aligned}
p^{(k)}(-t) & =\sum_{\ell=0}^{k}(-1)^{\ell} \frac{1}{2^{k}}\binom{k}{\ell} p_{1}^{(\ell)}(t) p_{2}^{(k-\ell)}(0), \\
p^{(k)}(t) & =\sum_{\ell=0}^{k}(-1)^{\ell} \frac{1}{2^{k}}\binom{k}{\ell} p_{1}^{(\ell)}(0) p_{2}^{(k-\ell)}(t)=^{\bar{\ell}=k-\ell,\binom{k}{\ell}=\binom{k}{\ell}}= \\
& =(-1)^{k} \sum_{\bar{\ell}=0}^{k}(-1)^{\bar{\ell}} \frac{1}{2^{k}}\binom{k}{\bar{\ell}} p_{2}^{(\bar{\ell})}(t) p_{1}^{(k-\bar{\ell})}(0) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& {\left[p_{1}(t) e^{\rho_{1} t}\right] *\left[p_{2}(t) e^{\rho_{2} t}\right]=} \\
& =e^{\rho_{1} t} \sum_{k=0}^{n_{1}+n_{2}} \frac{1}{\left(\rho_{1}-\rho_{2}\right)^{k+1}} \sum_{\ell=0}^{k}(-1)^{\ell}\binom{k}{\ell} p_{1}^{(\ell)}(t) p_{2}^{(k-\ell)}(0)+ \\
& +e^{\rho_{2} t} \sum_{k=0}^{n_{1}+n_{2}} \frac{1}{\left(\rho_{2}-\rho_{1}\right)^{k+1}} \sum_{\ell=0}^{k}(-1)^{\ell}\binom{k}{\ell} p_{2}^{(\ell)}(t) p_{2}^{(k-\ell)}(0) .
\end{aligned}
$$

For later use we calculate the case with $p_{k} \equiv t^{n_{k}} \quad(k=1,2)$. In general, $\quad\left[t^{n}\right]^{(m)}=$ $\frac{n!}{(n-m)!} t^{n-m}$ with $\left.\left[t^{n}\right]^{(m)}\right|_{t=0}=\delta_{m n} n!\quad(0 \leq m \leq n)$. In particular we have then $p_{k}^{(\ell)} \equiv 0$ for $\ell>n_{k}$ and $p_{k}^{(m)}(0)=0$ for $m \neq n_{k}$. Therefore

$$
\begin{aligned}
& {\left[p_{1}(t) e^{\rho_{1} t}\right] *\left[p_{2}(t) e^{\rho_{2} t}\right]=} \\
& =e^{\rho_{1} t} \sum_{k=0}^{n_{1}+n_{2}} \frac{1}{\left(\rho_{1}-\rho_{2}\right)^{k+1}} \sum_{\substack{\ell: 0 \leq \ell \leq n_{1}, k-\ell=n_{2}}}(-1)^{\ell}\binom{k}{\ell} \frac{n_{1}!}{\left(n_{1}-\ell\right)!} t^{n_{1}-\ell} n_{2}!+ \\
& +e^{\rho_{2} t} \sum_{k=0}^{n_{1}+n_{2}} \frac{1}{\left(\rho_{2}-\rho_{1}\right)^{k+1}} \sum_{\substack{\ell: 0 \leq \ell \leq n_{2}, k-\ell=n_{1}}}(-1)^{\ell}\binom{k}{\ell} \frac{n_{2}!}{\left(n_{2}-\ell\right)!} t^{n_{2}-\ell} n_{1}!= \\
& =e^{\rho_{1} t} \sum_{\ell=0}^{n_{1}} \frac{1}{\left(\rho_{1}-\rho_{2}\right)^{n_{2}+\ell+1}}(-1)^{\ell}\binom{n_{2}+\ell}{\ell} \frac{n_{1}!}{\left(n_{1}-\ell\right)!} t^{n_{1}-\ell} n_{2}!+ \\
& +e^{\rho_{2} t} \sum_{\ell=0}^{n_{2}} \frac{1}{\left(\rho_{2}-\rho_{1}\right)^{n_{1}+\ell+1}}(-1)^{\ell}\binom{n_{1}+\ell}{\ell} \frac{n_{2}!}{\left(n_{2}-\ell\right)!} t^{n_{2}-\ell} n_{1}!= \\
& =e^{\rho_{1} t} \sum_{d=0}^{n_{1}} \frac{1}{\left(\rho_{1}-\rho_{2}\right)^{n_{1}+n_{2}-d+1}}(-1)^{n_{1}-d}\binom{n_{1}+n_{2}-d}{n_{1}-d} \frac{n_{1}!n_{2}!}{d!} t^{d}+ \\
& +e^{\rho_{2} t} \sum_{d=0}^{n_{2}} \frac{1}{\left(\rho_{2}-\rho_{1}\right)^{n_{1}+n_{2}-d+1}}(-1)^{n_{2}-d}\binom{n_{1}+n_{2}-d}{n_{2}-d} \frac{n_{1}!n_{2}!}{d!} t^{d} .
\end{aligned}
$$

Lemma. $\quad\left[e^{\rho t}\right]^{*(n+1)}=\frac{t^{n}}{n!} e^{\rho t} \quad(n=0,1,2, \ldots)$.
Proof. Induction by n with $\left[e^{\rho t}\right]^{*(n+1)}=p_{n}(t) e^{\rho t}$. The case $n=0$ trivial with $p_{0} \equiv 1$. On the other hand, $\left[\left[e^{\rho t}\right]^{* n}\right] *\left[e^{\rho t}\right]=\int_{s=0}^{t} p_{n}(s) e^{\rho s} e^{\rho(t-s)} d s=\left[\int_{s=0}^{t} p_{n}(s) d s\right] e^{\rho t}$, whence the statement is immediate.

$$
s(t):=\frac{\sin \lambda t}{\lambda}
$$

$$
\begin{aligned}
& s^{* n}(t)=\left[\frac{e^{i \lambda t}-e^{-i \lambda t}}{2 i \lambda}\right]^{* n}=\frac{1}{(2 i \lambda)^{n}} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left[e^{-i \lambda t}\right]^{* k} *\left[e^{i \lambda t}\right]^{*(n-k)}= \\
& =\frac{1}{(2 i \lambda)^{n}}\left[\sum_{k=1}^{n-1}(-1)^{k}\binom{n}{k}\left[e^{-i \lambda t}\right]^{* k} *\left[e^{i \lambda t}\right]^{*(n-k)}+\left[e^{i \lambda t}\right]^{* n}+(-1)^{n}\left[e^{-i \lambda t}\right]^{* n}\right]= \\
& =\frac{1}{(2 i \lambda)^{n}}\left[\sum_{k=1}^{n-1} \frac{(-1)^{k} n!}{k!(n-k)!}\left[\frac{t^{k-1}}{(k-1)!} e^{-i \lambda t}\right] *\left[\frac{t^{n-k-1}}{(n-k-1)!} e^{i \lambda t}\right]+\frac{t^{n-1}}{(n-1)!}\left(e^{i \lambda t}+(-1)^{n} e^{-i \lambda t}\right)\right]= \\
& =\frac{1}{(2 i \lambda)^{n}}\left[\sum_{k=1}^{n-1} \frac{(-1)^{k} n!\left[t^{k-1} e^{-i \lambda t}\right] *\left[t^{n-k-1} e^{i \lambda t}\right]}{k!(n-k)!(k-1)!(n-k-1)!}+\frac{t^{n-1}}{(n-1)!}\left(e^{i \lambda t}+(-1)^{n} e^{-i \lambda t}\right)\right] .
\end{aligned}
$$

