Co-SEMIGROUPS OF HOLOMORPHIC ENDOMORPHISMS
E Banach space, D bounded domain in E
dp := [Carathéodory distance on D], Hol(D) := {holomorphic maps D — D}

Remark. f € Hol(D) is a dp-contraction. Taylor series: f(a+v) = > [DI_,f(z)]v".

n=0

Cauchy estimates: || [DZ:af(z)}v”” < diam(D)dist(a, 9D)~ ™+ ||y||™.
f locally Lipschitzian, K CC D convex = Lip(f|K) < diam(D)dist(K, D)}

fj— f pointwise = [D" f;]v = [D™ flv on compact K C D, Vn V.

" "

Definition. [®':t € R,] str.cont.1-prsg (Co-semigroup) in Hol(D) if
PO =1d, @'"Th=d'0d" (t,hcR,), t+ ®!(z) continuous Vx € D.
The infinitesimal generator of [®' : t € R, ] is

o'

= %‘t:%@t, dom(®') = {x : Jv ®"(x) =z + hv +o(h)}

Proposition. z € dom(®') = ¢+ ®!(z) differentiable.
Proof. ®"(z) =z + hv+o(h) = ®""(z) — ®'(z) = ®'(z + hv + o(h)) — ®(z) =

= h[D,—,®!(2)]v + o(h) In particular € dom(®’) = = € dom (£

ds ‘S:t_’_O(I)S) for h \‘ 0.

For the left-derivatives:

given t >0 and z € dom(®’) with ¢"(z) = x + hv + wy, wy, = o(h) (h N\, 0) we have
(@7 () = @%(2)]/(=h) = [7(z) = @ "(z + hv +wn)] /(=h) =

= [D, @' v+ [De @ ") (wp/h) + 3 K" D21 (v 4+ wp /h)".

n>1

Since {z} is compact, [Dy®*"|v — [D,®!]v as h \, 0.
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By Cauchy estimates, with § := dist({®*(z) : 0 < s < t},0D) > 0, we have
| [Da® "] (wp/h)|| < diam(D)6 = jwp/h|| — 0 (h\,0) and

[[D2®* "] (v + wn/h)|| < diam(D)5"~|v +wp /A|"

> A HDret (v + wh/h)H =0 (h\,0). Q.e d

n>1

implying

Remark. In course of the proof we have seen

%Cbt(a&) = @' (' (z)) = [D, D" ?'(2) (z € dom(®")).

Corollary. Given x € dom(®’), the orbit ¢ — ®'(z) is continuously differentiable. Thus
dom(®') = {z € D : t — ®(x) is continuously diff. }.

Proof. Since {z} is compact, the function ¢ — [D,®']v is continuous for any v € E.
Proposition. The graph of ® is closed.

Let x,, € dom(®'), v, := ®'(x,) (n=1,2,...) and assume z,, - x € D, v,, > v € E.

q)h(xn) — Tn 4 d g " s 1 8
o /5:0 |52 ds = /5:0 [Den®Jon ds = /s:o S

[Ds, @%|v, —v = [Dy, @] vy, — [Ds, @°]v = [Dy, @] (v —v) + ([ Dy, @*"] — [Ds,, %)) v.

Since K := {z} U {z,}52, C D is compact, [D&*"|u|K = v = [D®o|K for ¢ \, 0.
Also ||[Dg, @ (v, — v)|| < M|lv, — v|| with M := diam(D)dist(K,0D)~'. Thus the
functions f,(t) = [Da, ®'v, satisfy ||fu(t) — v| < max.ck [[v — D.®v|| + M|jv_v].

Hence h ™! (®"(z) — z) = lim, A~ (®" () —zp) = f1:0 fn(sh)ds - vash 0. Q.e.d.

S
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Proposition. Let [®' : ¢ € Ry],[¥": ¢t € Ry] be ¢o-semigroups of holomorphic D — D

maps with the same generator. Then they coincide on dom(®’)( = dom(®')).

Proof. For t,s,h > 0 with t > s + h we have

% [q)t—(8+h) (\Ifs+h(:c)) - (\Ifs(x))] =
_ % [q)t—(s+h) <\I/8+h(x)) _ t—(s+h) <\I/8(:13))} _ % [q)t—(s+h) (QS(@) _ Pt <\I/S(ZL‘))} :
%[(I)t(erh) (\I/”h(x)) _ t—(s+h) (lI,S(x))} _ %/ulzo {%q)t(sﬂz) <\I,s+uh(x)>:| _
_ /u 120 Do () @) [% %\Iﬁﬂh(x)} du =
— / 1 [Dq,sﬂh(x)@t—(“h)}\If’(xps+“h(x)) du -2
u=0
=, [Dyesan (@] (0 (2));
%[@t—(s—kh) (lI]S(:L,)) _ t—(s+h) (Qs(@)] _ _% /ul_o [%q)t—(wh) <<I>h (\IJS(.I‘))>] =
__ / 1 D@ [ L (0 ()|

S Dy @@ (07 (1))

because (y,T,w) [DyCI)T}w resp. (y,T,w) — [Dy\IJT]w are continuous on domains
K x [0,t] x W with compact K C D (actually K := {U°(z) : s € [0,t]}) and compact
balanced W C E with K+W C D. Tt follows 4t~ (\I/s(x)> = U (U5 (2)) — @' (W (x)) =
0 implying that [0,¢] > s — &'~ 5 <\IJS(:1:)> is constant. In particular, by considering s = 0
resp. s =t we get ®'(z) = U(z). Qu.e. d.

Open problem. 3?7 [®: ¢ € R, ] nowhere diff. in ¢?



HOLOMORPHIC CARATHEODORY ISOMETRIES OF THE UNIT BALL
Definition. Iso; (D) := {holomorphic dp-isometries}.

We write B:={z € E: ||z|| < 1} and 0B := {x € E: ||z|| = 1} in the sequel.

The infinitesimal Carathéodory metric of D at a point a € D is

dp(a,v) = %|t:0+dD(a + tv, a).

Remark. In the case of the unit ball (D = B) we have

dg(0,z) = arth ||z|| (x € B) and dg(v) = ||v]| (v € E).

Notation. Throughout this section we consider a holomorphic endomorphism ¢ € Iso(dp)
leaving the origin fixed: 0 = ®(0). We write its Taylor series in the form
d=Uzx+Qz)=Uzx+> ~,0(x) (zeB).

It is well-known [Vesentini-Franzoni] that the Fréchet derivatives D,¥ = D,_,¥(z) : v —
d% }CZO\D((H—@) of a holomorphic dp, — dp, isometry ¥ : D; — D32 between two bounded
domains are (linear) ép, (a,:) = op,(¥(a),) isometries.

In particular U is necessarily an E-isometry: ||[Uz| = ||z| (z € E.

Furthermore, since ® € Isog, fo any x € B we have

arth [|z| = dg(0,z) = dg (®(0), ®(z)) = dg (0, ®(x)) = arth ||®(z)]|.

Thus ® maps the spheres p0B = {z : ||z|| = p} resp. the balls pB = {z : ||z| < p}
(0 < p < 1) into themselves.

Question. Under which hypothesis is ® linear (i.e. & =U)?
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Lemma. If range(®) C range(U) then & = U.

Proof. By assumption, the map ®:=U"10® is a well-defined B — B holomophy with
®(0) = 0 and Dy® = U~'Dy® = U~'U = idg. From the classical Cartan’s Uniqueness
Theorem it follows ® = idg whence the statement is immediate.

Notation. Given a unit vector y € 9B, we write S(y) := {L€L(E,C) : 1=(L,y)=|/L|}
for the family of all supporting C-linear functionals of B at its boundary point .
Lemma. Given x € 0B along with a vector v € E such that x + Av C 0B, we have*
(L,®(¢(z+nv)))=1 (¢,neA) foral L eS{Uz).

Proof. Let L € S(Uz) and consider the holomorphic map ®, , : A? — C defined as
C0(Cn) = Ulz + 1) + 32,5, " (C(z + 1)) ((neA={(eC: ¢ <1}).
Observe that, for any 0 # (,n € A, we have ®, ,((,n) = C‘lq)(((a: + m;)) implying

1220 (¢l = K172 (¢ (2 +no)) Il = I HIC(z + no) || = [IK(z + o) || = 1.

Thus @1 : (¢,n) — (L, ®, ,(¢,n)) is a holomorphic function on A? with

@0 G LI =1 and By (0,0) =l Bt (61) = (L (0,0)) = (L, U) = 1.
By the Maximum Principle, ®,, ,, ;, = 1 which completes the proof.

Corollary. (L,,(Uy)) =0 for all y € 0B and L € S(Uy).

Proof. Given L € S(Uy) where y € 0B, for all ¢ € A (even with ¢ = 0) we have

1= (L, o(Cy)) = Peo = <L, Uy+ Y g"*ﬂnwy)) Qu.e.d.
n=2

* A:={Ce€C:|(] <1} is the unit disc, T :={( € C: || =1} = OA is the unit circle.
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Notation. In terms of the Taylor expansion ®(z) = Uz + > Q,(x), let

n=2
F((,z):=¢1®(2), F(0,2) :=Ux (0#( €A, »€B).
Remark. F is holomorphic around the origin: F({,x)=Ux+)_ ("Qy+1(x); ran(F) C 0B.
n=1
Lemma. Let K C 0B be a convex subset of the unit sphere. Then the convex hull
Conv(F(A,K)) C 6B.
Proof. Assume z1,...,2; € K, (1,...,(x € A and consider a convex combination
k k

y:= Y NF((,x;) where > A\j=1, A,...,\x > 0. We have to see that y € 0B.

j=1 j=1

k

Consider the points ye = > N F(e¥™¢,x5) (L €R).

j=1

We have ||y:]] <1 (t € R) since F' ranges in the unit sphere. On the other hand

1 k 1 fe’e) ) k
Ofyt dt = Z )\jof [Ul'] + Z €2nwztﬂn+1(l‘j)}dt = = )\le'j = U

i=1 '

k
)\jxj.
n=1 J =1

J

By assumption z := il Ajz; € K implying that ||Uz| = 1 and necessarily |ly:|| = 1.
j=
In particular y = yo € 0B.

Remark. The map ® extends holomorphically to some spherical neighborhood of B by a
result of Kaup. We denote the extension also by ® without danger of confusion.

Corollary. If F is a face of B then ®(F) is contained in some face of B again.

Proof. We can apply the arguments of the lemma with ¢; = 1 and the extended ®.



EXAMPLE OF A NON-LINEAR CO0-SEMIGROUP OF dg-ISOMETRIES
E complex Banach space
X::CO(R+,E):{90 : R+—>E‘t~—>x(t) continuous, tli%lox(t):o}, ]| = max (0]
Lemma. Let [got :t e R+} be a CO-semigroup of B(E)-contractions. Then the maps

o' : B(X) — X (t € R;) defined by
Ol (z): Ry D7+ {gpt_T(a:(O)) ifo<7<t, z(r—t)ifr>t

form a CO-semigroup of B(X)-isometries.
Proof. Consider any function x € B(X) and any parameter ¢ € R,. The function ®'(z)

ranges in B(X) with lim ®'(z)(r) = lim z(7 —¢) = 0. The continuity of ®'(z) on the

T—00 T—00

intervals [0, ¢] resp. [t, o] is immediate by its definition. Hence ®*(z) € X with well-defined

max |z(7)|| < 1. Given another function y € B(X), we have
T_

@ () — @' (y)]| =max { ax |7 (2(7) =" (y(7) || max [a(o — 1) —y(o - D} <

< max { max [l#(7) ~ y(r)) |, max||e(o ~ 1) ~y(o ~ )] } <

= Elg())( Hx(T) - y(T)) H = ||z —yl.

Since trivially

() = #'(9)]| 2 max||e(o — ) ~y(o ~ )] } = max|le(r) -y ()|} = - .

we conclude that each map ®' is a B(X)-isometry.
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Next we check the semigroup property of [®' : ¢ € Ry|. Let s,t >. Then we have
O 0 () : 7 s [SOS—T(@(;I;)(O)) if7r<s,  ox)(r—s)ifr> s},
P (x) i T [(,O(S_H)_T (z(0) if 7 <s+t, z(r—(s+1t)ifr>s+ t]
Thus if 0 < 7 < s then

3 0 B (2)(1) = p° 7 (@t(x(()))> =7 <90t (93(0))) =

If s<7<s+tthen

& 0 @'(x)(r) = B'(2)( — 8) =7 *S'= o) (2(0)) =
= Ut (2(0)) = @ (2) (7).,
If s+¢ <7 then

®° o ®'(2)(7) = ®'(z)(T — 5) =Tt :U((T —s) — t) = &5 () (7).

We complete the proof by checking strong continuity, that is that ||®!(z) — ®*(x)|| — 0

whenever s — ¢ in R;. Recall that the moduli of continuty

Q = — = t1 _ to
(1) 1= max[a(t) — ()], w(ed) = max 6" (0) - (O

of any function z € X resp. any vector e € E are well-defined and converge to 0 as d 0.

Let 0 <t1 < ty. Then we have

2T (2(0) — " T (2(0)) i T <ty
P (1) — ®2(z) = { 277 (2(0)) — z(T — t1) if t1 <7 <to,
(T —ta) —x(T —t1) if to < 7.
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Therefore

w(x(O),tQ—tl) ifTStl,
195 () — 0% ()] < 4 1777 (@(@) =2 + [e(r —t) —2(0)| <
< w(z(0),ts — t1) + Uz, ta — t1) if t; <7 < to,
Q(.’.E,tg—tl) lftg <.

Hence we see the uniform continuity of the function ¢ — ®*(z) with modulus of continuity
§ = w(z(0),6) + Q(x,0).

Remark. The conclusion of the above Lemma holds even if E is assumed to be a normed
space and not necessarily a Banach space.

Corollary. If the maps ¢! are holomorphic then each ®¢ is a holomorphic d B(X)-isometry
because dp(x) (x, y) = max,>o da (I(T), y(T)) and the maps ¢' are dpg)-contractions.
Remark. It is well-known [Federer, Geometric measure theory?] that, given a continu-

ously differentiable function f: R, — E where E is a Banach space, we have

d+
— | f @ = timsup [ fE+ W = [F@)I]/h = sup Re(L, f'(t))
h\0 LeS(f(1))

in terms of the family of supporting bounded linear functionals

Sy) ={LeE":|LI =1, (Ly) =yll} (y€E)

In particular f is non-icreasing whenever Re(L, f'(t)) < 0 for any ¢ € Ry and for any
functional L € S(f(t)).

Lemma. Let V : U — E be a bounded continuously differentiable map (regarded as a

vector field) on some open neighborhood U of the closed unit ball B(E) with V(0) = 0
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and let p > sup,, .,cpm) |V (e1) — V(e2)||- Then the maximal flow of the vector field
W : B(E) 5 e — V(e)—pue is a well-defined uniformly continuous one-parameter semigroup
[o! : t € Ry] consisting of contractive (non-expansive) self maps of B(E).

Proof. By definition, any flow of W is a family [p’ : ¢t € I] of self maps ¢’ : B(E) — B(E)
where I is some (relatively) open subinterval of R, and, for any point e € B(E), the
fuction I > ¢ +— ¢'(e) is the solution of the initial value problem (x) £z(t) = W (2(t)),
2(0) = e. By writing I, for the maximal solution of (x), it is well-known that supI. > 0
in any case, furthermore we have lim;_,s,p 1, ||2(¢)|| = 1 whenever sup I, < co.

Let e1,e2 € B(E) and consider the function f(t) := ¢’(e1) — ¢'(e2) defined on the interval

I, N1,. Observe that, given any functional L € S(¢'(e1) — ¢*(e2)), we have
Re(L, f'(t)) = Re(L, W (¢'(e1)) — W (¢'(e2))) =

= Re(L,V (¢"(e1)) — V(¢ (e))) — uRe(L, ¢ (e1) — ¢ (e2)) =
=Re(L,V('(e1)) — V(¢'(e2))) — @' (e1) — ¢ (e2) || <

< pllp'(er) = ¢'(e2)|| — nl[¢'(e1) — ¢'(e2)|| = 0.
Hence we conclude that the fuction ¢ — f(t) is decreasing, in particular we have the

contraction property [|¢!(e1) — ¢(e2)| < [|¢°(e1) — ¢%(e2)|| = ||ex — ez]| for t € I, N I,.
By assumption W(0) = V/(0) = 0 implying ¢*(0) = 0 with Iy = [0,00) = R. Hence we
see also that ||’ (e)|| = ||¢*(e) — ¢ (0)|| < ||e — 0[] = ||e|| < 1 for all e € B(E) and ¢ € .
This is possible only if sup I, = co. Therefore the maximal flow of W is defined for all

(time) parameters t € R and consists of B(E)-contractions ¢?.
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It is well-known that flows parametrized on R are strongly continuous semigroups au-

tomatically. The uniform continuity of in our case is a consequence of the fact that

2

let2(e) = ¢ @l < i det@llat = [T W (e @)llde < fi7dp dt (0 <t < ),

which shows that w(e,d) < 4ud (e € B(E), § € R}).

If
N

Example. Let E := C with B(E) = A = {( € C : |[{| < 1} and let V(2)
Since |22 — 23| = |21 — 22| - |21 + 22| < 2|21 — 22|, we can apply the above Lemma with

W(z) := 22 — 22. For the flow [p’ : t € Ry] of W we obtain the holomorphic maps

Indeed, the solution of the initial value problem (%) Lx(t) = x(t)? — 2z(t), z(0) = z is
z(t) = 2z/[(1 — €**)z 4 2¢*'] as one can check by direct computation. As for heuristics,
we get a real valued solution with real calculus for (#x) with initial values —1 < z < 1,

and the obtained formula extends holomorphically to A.

Theorem. Given a complex Banach space E, there is a C0-semigroup of non-linear
holomorphic O-preserving norm and Carathéodory isometries of the open unit ball of the

function space X := Cy(R4, E).

Proof. We can apply the construction of the first Lemma with a semigroup [p! : t € R4]

obtained with the construction of the 2nd Lemma with any E-polynomial vector field V.
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Example. Let E := C and X := Cy(R4, C). Then the maps

2x(0)

t .
0} (I) : R-|— ST (1 _ eg(t_T))x(O) + 2e2(t—7)

ifr<t, x(r—t)ifr>1t

form a CO-semigroup of non-linear holomorphic 0-preserving norm and Carathéodory
isometries of the unit ball B(X).
Question. Is any holomorphic norm-isometry of the unit ball of a complex Banach space

automatically a Carathéodory isometry as well?

Analogous construction in E = £(H)

Hi= I*(Ry),  (flg) = i f@)g@) da
Stfi=[xw— flx—1t)ifz >t 0 else] (te Ry, feH)
() g=[x— flz+t)] (t€Ry, gcH)
St lin. non surjective H — H isometry:
(S)*St =1dy, SY(SY)*g= [z g(z)if x>t 0 elsel.
Pyi=Priggu = [f = 1pgfl, Pii=1—-P =5(5) =[f = 1,00/
Notation. E := L(H), Eg:=J,.,F: where

F,:={AcE: PAP, = P,AP, = 0, ,AP, = [, ¢(s) dP, with ¢ € C[0,#]},
Ay € E* lin. functional with norm 1, such that

Ao(A) :=1(0) whenever A € F; with PLAP, = fo s) dPs, ¢ € C|0,].

Lemma. Ag is well-defined.
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Proof. Immediate from the observations that
1)if 0 <t; <t and A € Fy, with P, AP, = [1* ¢y(s) dPs then
A € Fy, with P, AP, = [ ¢y(s) dPs (k =1,2);
2) A€ F, with PAP, = [, ¢1(s) dPs = [3 tha(s) dPy, 1,5 € C[0,1] implies 31 = 9y
due to continuity of the functions 1.

Definition. A := [a Hahn-Banach extension of Ay to E with norm 1]
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CARTAN TYPE LINEARITY THEOREMS WITH NON-SURJECTIVE MAPS
E Banach space, B its open unit ball, ® : B — B holomorhic
Assumption. ®(0) =0, [|[®(z)] = |z| (z € B).
Remark. If ¥ € Iso(dg) and ¥(0) = 0 then necessarily || ¥(z)| = tanhdg(¥(z),0) =
tanhdg(x,0) = ||z|| (x € B). However, it is not known in general whether ® € Iso(dp).
This latter holds if E is a JB*-triple.

As for the Taylor series of ®, we can write
O(x)=Uz+» Qu(x) (z€B)
n=2

where each term (2, is a homogeneous polynomial E — E of n-th degree and
U is a linear isometry of E since
|Uz|| = Jm |@(tz)|| = Jim dg tanh dg (@(tz), ®(0)) =

= tl_i>%1+ tanh dg(tz,0) = t£%1+ dplitz|| = ||=||-
As an easy consequence of Cartan’s Uniqueness Theorem, if range(®) C UB then necessar-
ily ® = Ulg. Indeed, the mapping ¥(z) := U~ 1®(x) (z € B) is a well-defined holomorphic
self-map of B with ¥/(0) = Idg and hence ¥ = Idg with ® = UV = U|p.
On the other hand, there is a rather simple example for a non-linear map ® satisfying our
assumptions: If we take the classical sequence space E = ¢y = {(CO, C1y...) s lim, ¢, = O}
with H(Cn);'LO:OH := max,, |(,| then the mapping ®(¢)%, := (¢3, (o, (1, (o, - . .) is clearly a

norm preservig holomorphic self-map of the unit ball.
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Conjecture. If the underlying space B is reflexive then necessarily ® = U|p.
We achieved the following result which implies the conjecture for uniformly convex spaces:

Theorem. If we have sup dim{faces of B} < oo then ® = U|g.

Recall that by a face of B we mean a non-empty convex subset of 0B := {z € E : ||z|| = 1}.
A norm exposed face of B is a non empty intersection of a real affine subspace passing
outside the open unit ball with the closed unit ball, i.e. any non-empty set of the form
Nuem {z € E: ||z]| =1 = (u,z)} with a family M of norm-one real-linear functionals
E — R. By a norm exposed complex face of B we mean a non empty intersection of
the form ;.. {z € E : ||z]| =1 = (L,z)} with a family £ norm-one complex-linear
functionals E — C. Notice that norm exposed (complex-)faces are automatically convex
subsets of the unit sphere 0B ab being the intersection of the closed unit ball witt a real
(complex) affine subspace of E.

Given any unit vector z € 9B, we shall write S;(B := {L € E* : ||z| = (L,z) = 1} for
the family of all supporting linear functionals of the unit ball at the point x. By the aid of

these terms we introduce the notations

Face,(B) ﬂ {y € OB : Re(L,y) =1}, FaceS (B) := ﬂ {yeoB:(L,y) =1}
LeS,(B) LeS,(B)

for the minimal real resp. complex norm exposed face at the point x.

Lemma. Suppose ¥ : D — E is a holomorphic map from a domain (open connected set)
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D in some Banach space into E such that range(¥)( = (D)) C dB. Then range(¥) is
contained in some norm exposed complex face of B.
Proof. Let zp € D be any point and define zy := ¥(z). Given any support linear

functional L € S,,(B), we have
(L, ¥(2))| < [[LI[® ()| =1 = [{L,¥(z0))]  (z€D).

That is the modulus of the holomorphic scalar valued function LV : z — (L, ¥(z)) assumes
its maximum value (= 1) at the inner point zg of the (open) domain D. Hence, by the
Maximum Priciple, necessarily LV = LU(zp) = 1 and therefore range(V) C {y € JB :
(L,y) = 1}. By the arbitrariness of the choice for zy € D, we conclude that range(¥) C

Mepen Niesy . Y €B: (Ly) =1} = Faceg..)(B).

Corollary. We have Faceg(ZO)(B) = Faceg( (B) D range(¥) (29,21 € D).

1)
Proof. It suffices to see that Sy (.,)(B) = Sw(z,)(B) (20,21 € D).

Let 20,21 € D and L € Sy(.,)(B). Since LV = 1, we have 1 = (L, ¥(21)) = [|¥(z1)]| that is
also L € Sy(.,)(B). By the arbitrariness of L in Sy(.,)(B) we see Sy(.,)(B) C Sy(.,)(B).

With the change zy <> 27 in the argument, we get the converse inclusion as well.

Proposition. All the polynomial maps
)
\IfNﬂ(;:sc»—>Ux+§QN(x) (Io] <1; N=2,3,...)

are norm-preserving on the closed unit ball B.
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Proof. Let x € 0B be fixed arbitrarily and consider the holomorphic map

0, () :=Uz+ Y (" 'Qu(z) (C€A).

Actually  ®,(¢) := ("1®({x) (0 # ¢ € A) while &,(0) := Uz. Let us choose a
supporting (continuous complex-)linear) functional L € S(Uz,B) :={L e E*: 1 = ||L|| =
|(L,x)|}. Since ||Uz|| = ||z|| = 1, this can be done due to the Hahn-Banach Theorem.
Since for ¢ # 0 we have [|04(C)[| = [¢|7H[@(¢x)ll = [¢|7H[¢z]l = Jlz]| = 1 implying
(L, ®,.(C))] < |[L] - ||®(Q)|| = 1 = (L, ®,(0)), the absolute value of the holomorphic
function A 5 ( — (L, ®,(()) assumes its maximum at tha origin. Thus, by the Schwarz
Lemma, [(L,®,(¢))| = 1 that is the set ®,(A)(= {P.(¢) : || < 1}) is contained in the
norm exposed face Facey,(B) := N {y€B:(Ly =1} at Uz in OB. Since
LeS(Uz,B)

Facey,(B) is a convex closed subset of E containing the point Uz, even the closed convex

hull of ®,(A) has the same property

Conv(®,(A)) C Facey,(B).

In particular, by weighting with any non-negative continuous function A : A — R we have
—1

/)\(C) area(d() /A(C)‘I)I(C) area(d¢) € Facey,(B).

CeA CeA

Given N and ¢ as in the statement of the Proposition, consider this relation with the

functions

Am (pe'?) = p™[1 + 6 cos (N—1)p)] 0<p<L; 0<p<2m; m=1,2,...).
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1 27
Since [ [¢|F¢marea(dC) = [ [ pFpre™Pdopdp = [2n/(k+n+2) if n=0, 0 else],
CeA p=0¢=0

furthermore A, (¢) = |¢|™[1+(6/2)|¢|* N (V1 +¢N)] and @,(¢) = Uz+ Y ("1 Qp (2),

n>1

hence we conclude that

2n/(m+ N +
27 /(m + 2)

Ux+g 1)QN(:C)EFaceUx(B) (m=1,2,...; 0<6<1).

By passing to the limit m — oo, it follows
0
Uz + §QN(JU) € Facey,(B) (lz]l=1; 0 <6 <1).

Given any 0 # y € B, consider the boundary point x := y/||y|| with the constant ¢’ :=
ly||V=28 € [0,1]. We have ||y||~'Uy + (6'/2)|ly||* VN (y) € Facey,(B) C 0B whence
1= |lgl = Uy+ @ 2wl -V v )| e Nyl = Uy + QPN o /228w = vy +

(5/2)QN(y)H. Qu.e.d.

Lemma. Assume vg, v, ...,v, € [E\range(U)]U{0} and Y UYv; € range(U™'). Then

j=0

necessarily vg = vy =--- =v, = 0.

Proof. We proceed by contradiction and let k be the least index with vi #£ 0 ie. v &

range(U). Then Y Udv; = Ut w thatis UF [vk—I—ka+1+- : -+U”_kvv—U”_k+1w} =0
=k

for some w € E. Since U is an isometry, it follows v¥ +Uvp 1 +- - -+U" Fu, U F+ly =0

which leads to the contradiction v, = U[ S U e — U”_k] € range(U).
£:0<6<n—k

Lemma. Let P : A" — E, P(01,...,0,) = }; i cro.. K} 5 02Dy ] With

vector coefficients p;, . ;.| € E be a bounded holomorphic map . Then for any constant

18



§ € A and for any coefficient multiindex [k1, ..., k] # [0,...,0] we have

)
Po + 5Pl k k] € Conv(P(A™)).

Proof. Notice that given any non-vanishing bounded continuous function A : A" — R,

J AE+in)P(E+in)dey ... dy dny ... dn,

(*) E1+in1,..,Entinn EA Em(P(An))

J A& +in)dy ... dé, dny ... dny,
§1+7:771 ----- £n+7:77n€A

Let us fix any § € A and any pair of non-negative multiindices [my, ..., my], [k1,..., kn] #

0 and consider the above relation with the choice
)\(plewl, e ,pnew”) = [H p;nj} . [2 +3H etkivi 4§ H e_ikj‘pj].
j=1 j=1 j=1
Observe that A(A™) > 0 and
‘ m < = m;—k; ¢kj - m; i s—kj
A1,y 00) =2 [ 1651 + 0 [T 1651 *6;7 + 6 [ ] 16,1,
i=1 i=1 i=1

In general, with polar coordinate integration we get

[T 1651765 dés ... de, dns...dn, =

S1=E1HimEA  Sp=Entinne JT1
N / / / / HPJ'P?(/’””" pj dpn - -dpr dpy---dpy =
"_0 ¥P1 n—O
(2m)" .
=|l=—F—ifsy=---=5,=0, 0 else].
[H?:1(Tj +2) "
In particular, for any non-negative multiindex [t1, ..., t,],

/ / A1, 0 H5 déy ... d&, dny .. .dn, =

d1=81+im €A 5n_£n+inn€A

— / / [2 H’(S ,m]5t3+5H15 ,mj—kj5tg+lcj+5 H|5 |m]+k35tg—k }d& ~dnp, =

5=¢;+inen  I=1 =t
— . ft=0+|=5 ft==Fk 0 el
[Hj_l(mj o) ] [Hj_l(mj kT2 ¢ Se}

19



Since the Taylor series of P coverges locally uniformly, it follows that

2-(2m)"
H?:1(mj +2)

/ NE +in)dr ... dEn dn ... dny =
&1+iny,.. . §n+inn EA

and

[ Nevimpe+ inydes g, i, =
51 +i"717“'7£n+i7’]n [SYAN
2-(2m)" (2m)"5

= ™ Pio,..., + 0 Plky,....kn]
T (my +2)" 0 T (my + k) ]

Hence and from (x) the statement of the Lemma is immediate by passing to the limits

M1, ..., My —> OO.

Lemma. Given any index N > 1, for any unit vector x € 0B we have

(%) (A/2) U FQn (UFz) C Faceyn+1,(B) 0<k<n=0,1,...,n).

Proof. We proceed by induction on n. The case n = 0 is immediate by the Proposition.
Assume that (A/2) U *Qy(U*z) C Facepn+1,(B) (z € 9B) holds for some (k,n).
Since U is a (complex-)linear E-isometry, it follows

(A/2)U =k QN (Urz) =U[(A/2)U™ T =*Q N (UFz)| CU[Faceyn+1,(B)] C Facepnr2, (B).
On the other hand, by replacing x with Uz, we get

(A/2) UM QN (UFa)=(A/2) UnFQn (UF(Uz)) C Facepn+1 1,y (B) =Facegn+z2, (B)

which completes the induction argument and hence the proof.

Proof of the Theorem. We show that the assumption 2 # 0 leads to contradction.
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Assume there is a homogeneous polynomial Qy # 0 (with N > 1) in the Taylor expansion
of Q. It is well-known that then the set N'(Qy) := {z € E: Qn(z) = 0} is nowhere dense

in E. Since U is an isometry, also all the sets
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CASE OF JB*-TRIPLES WITH FINITE RANK
(E,{...}) is a JB*triple with rank(E) =7 < oo in this section.
Remark. E is reflexive and is a finite /*°-direct sum of finitely many Cartan factors of
which only the types £(H1, Hy) and Spin factors can be infinite dimensional [Kaup, 1981].
By [Edwards-Riittiman] or [Peralta-Staché], the norm exposed faces of the unit ball B are

in a natural one-to-one correspondance with the tripotents of E as being of the form

Face(B,e) = {y € 0B: (L,y) =1 forall L € S(e)} =

={e+v:v L7 e ||| <1} (e € Trip(E)).

Lemma. Let a,b € 0B be unit vectors such that ||aa+ pb|| = max{|«|,|8|} (a, B € C).

Then
a=e+ag, ag,b LT e b=f+by, by,a LIoTdn f e | Jordan ¢

with suitable tripotents e, f € Trip(E) and vectors ag, by € B.

Proof. Since a,b € 0B, we have
a € Face(B,e), a =ag+ e, a QJordan o pegn b e Face(B, f), b= by + ¢, bg | Jordan ¢

with suitable tripontents e, f and vectors ag, by € B. By assumption ||a+3b|| = 1 whenever
|B] < 1. That is the disc a + Ab = a + ag + Ab is also contained in the face Face(B,e) of
the point a. Similarly (with the chages a <> b,e <> f,ag <> bg), b+ Aa C Face(B, f). It
follows

e J_Jordan b= f+b0, f J_Jordan a=e+ag
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implying (with the standard notation L(z,y) : z — {xy*z})

L(e, f +by) = L(f + bg,e) =0 ie. L(e, f) = —L(e,by), L(f,e) = —L(bg,e);

L(f,e+ao) =L(e+ag, f)=0 ie L(f,e)=—L(f,a0), L(e, f) = —L(ao, f);

Lle, f) = —L(e,bo) = =L(ao, f), L(f,e) = =L(f,a0) = = L(bo, e).

Since ag L7°r9a" ¢ hence we get

—L(f,e)e = —L(f,a0)e = {faoe} = {eaof} = L(e,ao)f =0

which means the Jordan-orthogonality {fee} = 0 of the tripotents e, f. Qu.e.d.

T
Corollary. If aq,...,a, € E have the property || > agar|| = Iiféf lak] (a1,...,am, € C),
k=1 =
then necessarily aq, ..., a, are pairwise Jordan-orthogonal tripotents.

Proof. Recall that » = rank(E) is the maximal number of pairwise Jordan-ortogonal

non-zero vectors in E. By the previous lemma, we can write

ar = ex +aro, ar L77 e; (j # k)

with a maximal Jordan-orthogonal family of tripotents {ei,...,e,} and suitable vectors
aio,- .., a0 € B such that ayg 17°79" ¢, (k = 1,...,r). The property a; L7°rdan ej (4 #
k) along with the maximality of {ej,...,e.} implies that, for any index k, necessarily
ar € Cey, and hence even ay, = erer, € Trip(E) with || = 1 (because |lax|| =1). Qu.e.d.
Theorem. The 0-preserving holomorphic Carathéodory isometries of the unit ball of a

JB*-triple of finite rank are linear triple product homomorphisms.
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Proof. Let (E,{...}) be a JB*-triple with rank r < oo and let ® = U + Q € Iso(dp)
with U := Dy® and (0) = 0. According to the results of the previous section, the
linear term U is a E-isometry. Consider a maximal family z1, ..., z, € Trip(E) of pairwise
orthogonal tripotents. It is well-known that ||}, _; ey || = max)_; |ag| (aq,...,q, € C)
in this case. Thus the vectors ay := Uxj satisfy the hypothesis of the Lemma and its
Corollary, giving rise to the conclusion that Uzq,...,Ux, form also a maximal family
of (minimal) tripotents in E. Therefore (by Kaup’s description of the extreme points of
B), all the vectors uc, .. ¢, = > p_; GUxzy with |[¢x| = 1 are extreme points of B with

Face(B,u¢, .. .¢.) = {Ucl,...,gr} According to the last corollary of the previous section,

Qucy,..¢) = 2 Qlug,.¢.) € [ ker(L) = {0} implying even ) (Z Ckak> =0

n=0 LeS(uey, .. cr) k=1

for |C1l,...,|¢] < 1. Since every point of the ball B is a finite linear combination of

extreme points (because E is of finite rank), necessarily ® = U|B is a linear isometry.

Observe that range(U) is a subtriple of E: if y = Uz then x = ) (rex with suitable
k=1

orthogonal min tripotens eg; by the lemma, also fi := Ue; are orthogonal tripotens and

hence {yy*y} = { (X p Cefr) O p Cefr)™ (O Cefr) b = 2ok €k fr € UE.

It is well-known [Kaup, Horn] that linear isometries between JB*-triples are triple product

homomorphisms.

Lemma. An endomorphism U € L(E) of the triple product maps Cartan factors of E

into Cartan factors.
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Proof. First observe that any minimal tripotent (atom) e of E is mapped into a minimal
tripotent by U and Ue belongs to some Cartan factor of E. Indeed, we can find a maximal
Jordan-orthogonal system ey, ..., e, (where r = rank(E)) of minial tripotents with e = e;.
The vectors Uey, form again a maximal Jordan-orthogonal system of (necessarily minimal)
tripotents by the definition of rank(E). The stetement follows hence because the factor

components of any tripotent form a Jordan-orthogonal system of tripotents.

Let F be a Cartan factor of E and consider two minimal tripotents in ey, e € F. It suffices
to see that Ue; and Uey belong to the same Cartan factor of E. Suppose the contrary.
Then we wotld have Ue; € F; | JordanFy 3 Uey, with some Cartan factors F; # Fs.
However, even if e; 1707922 ¢, there exists a minimal tripotent f € F with f f7ordan ¢, ¢,.
(this can be seen elementarily, knowing the structures of Cartan factors) and the relations

lead to the contradiction Ue;, £7°798" U f implying Uey, f € Fr (k= 1,2).

Corollary. Given a strongly continuous one-parameter family (not necessarily semigroup)
Uy : t € Ry] of linear maps in Iso(dg) (thus necessarily {...}-homomorphisms), there

exists € > 0 such that U,F t € [0, €] for every Cartan factor of E.

Proof. E is a finite Jordan-orthogonal direct sum of its Cartan factors. Let F be any
of them and consider any minimal tripotent (0 #)e € F. Since each U; is a {...}-
homomorphism, the vectors U;e are minimal tripotents. By assumption Uie — e = Upe

(t \¢ 0). Therefore there exists ep. > 0 with Uje f'7an ¢ (¢t € [0,ep,.]). Proof:
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{[Uie][Usele} — {eee} = e # 0 as t \( 0. As we have noticed, non-orthogonal minimal
tripotents belong to the same Cartan factor. In particular Use € F (¢ € [0,ep,¢]). Since
each U; maps Cartan factors into Cartan factors, hence also U/F C F (t € [0,er.]).
Qu.e.d.

Question. Can we extend the arguments to /°°-sums of finite rank Cartan factors?

Counter-example. E::co< :{(QO,Q, ):C3¢, — 0}), H(Q“O,Cl, . )H := maxy, |G|
with dB((C(L Clv .. ')7 (nOa n,.. )) = ImaXy dA(C‘rL?nn)

Let (p(C()aCl;"') = (Cg;Cb?Cl?"')‘
Clearly @ : B — B holomorphically, with ®(0) = 0. Since ¢ + (2 is da-contractive,

dp ((P(C()a Cla e ')7 q)(TIO?nlv e )) = Inax {dA(gga 77(2))7 mnaXdA(Cna nn)} =

- mEXdA(Cnvnn) = dB(£O7C17 . ')7 (7707771; .. ))

Non-commutative version. E := L(H), {eg,eq,...} orthn.basis in H,

®(z) := (pxp)? + uru* where u:eqg > e; — --- unilateral shift, p:= Projg, -
®(z) is reduced by the subspace K := Span,,- ye,

ie. prp:Ceo =K+ - K+ K—0and uzu* : K - K, K+ — 0.

It follows ||®(2)|| = max{||(pzp)?|, [luazu*|} = [l

& 0 0
o 0 oo &or

Matrix form (wrt. [ex]32,): for x := {Sk’f]k,e:ov Q(x)=| ¢ €10 €n
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MOBIUS TRANSFORMATIONS
Definition. The Mobius transformations are maximal holomorphic continuations
of holomorphic automorphisms of the unit ball B of a JB*-triple (E,{...})
® € Aut(B) extends holomorphically to a neighborhood of B.
Canonical form [Kaup MathZ. 1983]: ® = M,oU
M, (z) = a + Bergman(a)'/?[1 + L(z,a)] ‘2, U surj.lin E-isom.
Faces: If E JBW*-triple and F is a (norm-exposed) face of 0B then
JeTRIPInE F={z€dB: z—ecle}={Me): cle |c]] <1}
Tripotents: e = {eee} € OB
Moé6bius equivalence: @ ~ U if 30 Mobius trf. with W =0 o ® o0 0O
Definition. In general, Iso,(D) := {holomorphic dp-isometries}.
Remark. [Vesentini, 1980] = {O|g: © Mobius trf.} = {® € Iso,(B) : ¢(B) =B}
Proposition. The 0-preserving holomorphic Carathéodory isometries © of B are linear
provided range(©) C range(D.—-o0(z)).
Proof. Let © := U + Q € Isom(dg) where U is linear and {2 is holomorphic with Taylor
series Q(z) = > 07, Qn(u) around 0. For any vector v € B we have dg(0,v) =
artanh|lv|| and dg(0,v) = dBn(O7@(v)) implying ||v|| = ||©(v)||. Hence, for any v € E with
t (0 we get

loll = ¢t~ ltw[l = t=H[U (tv) + Q(tv)|| = ([T (tv) +71Q(t0) || = [Uv + ¢~ o(t?)]| = U]
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Since range(©) C range(U), the mapping ¥ := U710 is a well-defined holomorphic 0-
preserving Carathéodory isometry of B with D,_q¥(2) = U7'U = 1(= idg). According
to Cartan’s Uniqueness Theorem, ¥ = idg.

Remark. Iso,(B) D {M,oU :a € B, U lin. E-isom.} since both M&bius transforma-
tions and linear isometries are dg-preserving.

Remark. If V is a linear E-isometry and a € B then

VoM,= My, o M;; oVo M‘E = My, oU with the linear E-isometry

0—0

U= D.o[M7} oV oM,| = [DecoMya(2)] V[DamoMa(2)] =

= Bergman(Va)~/?VBergman(a)'/?.
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Co-SEMIGROUPS 1IN Iso,(dg) FOR REFLEXIVE JB*-TRIPLES
Assumption 0:
We consider strongly cont. 1-pr.semigroups
@' :teRy], ®'= M,y oUs, U;: E— Elin. isometry, such that

(1) dom(®')NB #£ 0 or (up to Mébius equ.) 0 € dom(®’), t — a(t) diff.

Lemma. z € dom(®') < t— Uz diff. (Upz € dom(@")).
Proof. Uiz = M_,q @' (x). (a, z) — M,y(z) real-anal.
Ma(t)oUt

Mt hvto(n) (U + hw +o(h)) =

= (c+hv+o(h))+B(c+hv+o(h))1/2(1+L(u+hw+0(h),c+hv+0(h)))_1(u+hw+o(h)) =
= Mc(u) — h(L(w,¢) + L(u,v))u + h(1 + L(u, c))_lw + o(h).

Assumption 1: Hencforth (E, {...}) is a reflexive JB*-triple.

Remark. Reflexive JB*-triples are finite direct sums of copies of spin factors, £(H;, Hs)
spaces with dim(Hsz) < oo and some finite dimensional Cartan factors.

(?) A str.cont. family [V; : ¢ € Ry] with Vy = id of lin. isometries E — E maps each
factor into itself.

Lemma. The linear isometries of a spin factor E are necessarily JB*-endomorphisms.
Proof. This is contained implicitly in [Apazoglou-Peralta, Quart. J. Math. 65 (2014),
485-503] (even for real setting). Actually there is a simple geometric argument based on

the well-known facts [Neher, Edwards] that
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1) any v € E is a real-linear combination of an orthogonal couple of minimal tripotens,

and the JB*-subtriple Cy(v) generated by v is their (C)-linear span.

2) e € E is a minimal tripotent iff ¢ = a + ib with a,b€ Re(E), (a|b)=0, (a)?>=(b)2=1/2,
2') e, f is an orthogonal couple of minimal tripotens iff

e=a+ib, f=a—ib with a,b€Re(E), (a|b)=0, (a)2=(b)2=1/2,

3) the (norm exposed) faces of B are either extreme points or 1-dimensional closed discs

of the form F={e+(f : |¢|<1} with an orthogonal couple of minimal tripotens.

Thus, given an isometry U € L(E), by 1), it suffices to see that the U preserves the linear
spans of orthogonal couples of minimal tripotents. Let e, f be an orthogonal couple of
minimal tripotents and consider the face F := {e + (f : |¢| < 1}. Since U is a linear
isometry, UF is a 1-dimensional disc with radius 1 in the unit sphere 9B. Thus, according
to 3), UF is also a face of B and therefore UF = {¢ + Cf: || < 1} for some orthogonal
couple of minimal tripotents €, f The middle point e of F is mapped into the middle point
of UF whence necessarily € = Ue. On the other hand, f = (6+ f) —¢ € F—F C range(U).
Hence the statement is immediate. Qu.e.d.

Proposition. The the factor preserving linear isometries E — E of any reflexive JB*-
triple E are JB*-homomorhisms.

Proof. 1) The linear isometries of finite dimensional factors are surjective and hencwe

necessarily automorphisms of the triple product.
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2) [Vesentini 1994] established that, for E = L£(H;,H2) with dim(H2) < oo we have
Iso(dg) N{LB: L € E} = {[X — uXv] : u,v linear isometries}.
3) The case of spin factors is setteled by the previous Lemma. Qu.e.d.
Corollary. dom(®’) is closed with respect to the Jordan-prod. {...}
Proof. z,y,z € dom(®') = t — U{zyz} = {(Uwx)(Ury)(Us2)} diff.
Remark: In particular dom(®') = [Jordan subtriple] N\B and {®/(0) : t € R} C dom(®’).
Lemma. z € dom(®’) = Uz € dom(®’ (h € R).
Proof. Upx € dom(®’ < t — U,Usz diff.
it (z) = Bt o P (z) = My 0 Uy 0 Mgy 0 Up _UoMaoU '=My,
= My 4y © My, an) © UUpx.
UUpz = M_t7,4(n) © M_a@y 0 @71 (2), a(h) € dom(®’") = ¢+ Ua(h) diff.
t — ot diff., t+— a(t) diff., (a,b) — M, o M, real-anal. ; = t — U, Uz diff.
Notation: D :=dom(®’) closure in E, F := Span(D)

Proposition. We have seen: F closed JB*-subtriple in E, D = Ball(F),
{Ut|F 1t € R} C AU_t(F, { . }), {Ma(t)|D 1t e R} C Authol(D).

Remark. In case of groups [®': ¢t € R],

(@71 =07t = U 'M_,4) = My—tyo Uy
<~ M_U;la(t) ©) Ut_l - a(_t) o) U_t
— U7 '=U_;and —U; " a(t) = a(—t).
Lemma. F+ Jordan —
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Proof. Given &' = Mty o Uy, we have My [FNB =id and U; : F — F for every t € R.
Hence Upyp|F = [U|F] o [Un|F] (t,h € R4). Thus [U¢|F : t € R4] is a str.conr. 1-pr.
semigroup and, by the Hille-Yosida theorem, the generator ®'|F = U’|F is dense in F. By

definition, ®'|F = {0}, which is possible only if F = {0}.
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STR.CONT.1-PRSG. WITH COMMON FIXED POINT
Assumption 2 (without loss of generality for reflexive E):
(2) e=®(e) Ve R, common fixed point
At :=D.®? < 2 E| @ (e +t2) ) Fréchet derivative
Apz = (2mi) =1 f|c|=1 (710 (e + (2)d¢ with z € B, dom (M) D 2B.
[A*:t € R] str.cont.lprg LIN Z := dom(A’) dense lin. in E
®=M,U (=M,0oU) t FIX, w:=w(z) =P(z) —e
w+e=0(e+z) =M, (Uz+ Ue)
wHe=a+ B(a)?[1+ L(Ue+ Ue,a)] " (Uz + Ue)
1+ L(Uz+Ue,a)|B(a)"'?(w + (e —a)) = Uz + Ue
de)=e <= [1+ L(Ue,a)]B(a)"*/?(e —a) = Ue
1+ L(Uz+Ue,a)]B(a)"?(w + (e — a)) — [1 + L(Ue,a)|B(a)""?(e —a) = Uz
1+ LUz + Ue,a)]|B(a)"?w + L(Uz,a)B(a)"Y%(e —a) = Uz
w = B(a)?[1 + L(Uz + Ue,a)] " {Uz — L(Uz,a)B(a)~?(e — a)]

P(z+e)—e=w=(A,+ B)"1Cz

A, =L(Uza)B(a)"'/2, B=[14L(Ue,a)]B(a)"*?, C=U+L(Us,a)B(a)"'/?(a—

A, +B)"'Cz=B"1C>
Proposition. As a consequence, under hypothesis (0)+(3) we have

dl(z+e) —e = Bla) ?[1 + L(Usz + Use, a;)] "' [Usz + L(Usz, a) B(ay) =Y ?(a; — e)],
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Atz = B(ay)Y?[1 + L(Use, a;)| " {Usz + L(Us 2, a;) B(ay) =2 (ay — e)].
Ate = B(ay)Y/?[1 + L(Use, a;)] " [Use + L(Uye, a) B(a;) ™Y ?(a; — €)]
Proposition = 1) t — Uz diff. = ¢t — A’z diff.

2) t — Az diff. = t — Uz diff. at 0

Proof:

[1+ L(Use, ay)]|B(a))/?Atz = Uz + L(U;z, a1) B(a) =2 (ay — €)

Uz = [1 + L(Use, ay)|B(a;) /At 2 — L(Uy 2, a;) Blay) =% (a; — e)

Suppose z € dom(A') i.e. A? exits and

itli=ot
Az =2+ t2' + o(t) (t \(0) for some 2’ € E

We know also: Uie = e +te +o(t), ar =ta' +o(t), Uiz = z+ o(1)
Thus

Uiz = [1 + L(e+te' + o(t), ta’ + o(t))] [1+0(t)] (= + t2' + o(t))—

—L(z+o(1),ta’ +o(t)) [1 + o(t)] (ta’ + o(t) — ) =

=z+tL(z,d')z+tL(z,a')e + o(t)

[Id + L(e+te' +o(t),ta' + o(t))} [1d + o(t)] (2 + t2" + o(t)) =

= Uiz + L(z+o(1),a+ta' + o(t)) [Id + o(t)] (ta' — €)
[1 + L(e+te/, ta’)] (z+t2') +o(t) = Upz + L(z + o(1), ta’)(ta’ — e) + o(t)
1+t (e ) + 2L(,a') | (= 4+ 27) + o(t) =

= Uz +t2L(z,a')a’ +tL(o(t),a’) — tL(Usz,a’)e + o(t)
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z+tz' +tL(e,a’)z 4 o(t) = Uz — tL(Uyz, a’)e + oft)

Assumption 3:

(3) e€Z=dom(N), t— Ale diff.

Remark. We intend to see: (0) + (2) = (3) up to Mdbius equiv.

Ate = B(a)/?[1 4+ L(Use, ay)] ' [Ue + L(Use, ar) B(as) ™Y/ ?(a; — €)]

e FIXP (2): e = ®'(e) = M,,(Use) = a; + B(ay)Y?[1 + L(Use, a;)] "' Use

Ate = e —a; + B(ag)Y?[1 + L(Use, a¢)] " L(Usz, a) B(ay) ™% (a; — e) =
= B(a)V?{ =1+ [1 + L(Use, ar)| "' L(Usz, ar) } B(ay) " *(ay — €) =
= B(ay)"?[1 4+ L(Use, a;)] 1{ —1— L(Usz,a¢) + L(Usz, ay }B ar)" V2% (a; —e) =
= B(ay)"?[1 + L(Use, a;)] "' B(ay) /(e — a;)

Another formula for Ale:

dlle) =e = e=as+ Bla)?[1 + L(Use,a;)] " Use

a; — e = —B(ay)V?[1 + L(Use, ay)]| " Use

Ate =

= B(ay)Y?[1+ L(Uye, a;)] " {Ure + L(Use, ay) B(ay) /% (= B(a)V/?)[1+ L(Use, a;)]
= B(ay)"?[1 + L(Use, a;)] " '[1 — L(Use, a)[1 + L(Uye, ar) = Use =

= B(a¢)"?[1 + L(Use, a;)|~2Use

since ]l —L(14+ L)' =(1+L)"'Y(1+L)—L=(1+L)"

Question: (3) =7 (2) t > Ate diff. =7t a; diff.
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Uie = M (e) = M_q,(e) ( = —a; + B(ay)V?[1 — L(e,a;)] e )
Define: F(a) := B(a)?[1 + L(M_,(e),a)] ' B(a)"'/?(e — a)
Proposition. (2)+(3) =-dom(®’) = [dense Jordan subtriple NB].
Proof. F real-analytic, A'e = F(a;).
Lemma 1. (2) + (3) = 0 € dom(®’).
Proof 1: For a — 0 we have
B(a) =1—-2L(a,a) + Q> =1+ O(||a]|?) = 1+ o(||a]|) wrt. norm in L(E)
B(a)*/2 =1+ of|al])
M_o(e) = —a+ B(a)'*[1 = L(e,a)] 'e = —a +[1 = L(e,a)] "'e + o(|lal|) =
= —a+[1+ L(e,a)le + o(||a]|) = —a + {eae} + o(||al])
Fla) = [1+ L(M_y(e), a))(e — a) + ofa]}) =
= [1+ L(=a+ Qea,a)l(e — a) + o(||al]) = e — a + o(||al])
Implicit Funct. Thm. = F' is invertible real-analytically in a nbh. of a =0
t— ay = ®Y(0) diff. at t =0 = t > a, diff. Q.e.d.
Strategy. Assume ¢ € B, V € L(E) unitary. Let
©:=MoV, & :=0"10dlcO,

4 = ®1(0), €:=07"1e), Al:= Dfev&)t cv L B E+ sv).

dS s:O

We know: ¢ a; diff. <= ¢+~ A'é diff. Try to find a suitable © with

t — A2 diff. so that we have properties (2),(3) for [® : t € R.],
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on the basis of the fact that dom(A’) is a dense linear submanifold in E.
Lemma 2: ¢ — Afe diff. < Do, (e)lM—c(e) € dom(A').
Thus, if [Dpy, )] M—c(e) € dom(A’) for some ¢ € B then [®' : ¢t € R, ] is M6bius equivalent
to str.cont.1pr. semigroup [® : t € R.] with Fix[® : t € R.] # 0 and ¢ — &'(0) diff. and,
in particular, dom(®’) dense in the ball B, which completes the proof of the Proposition.
Proof 2: ®/(&) = 071000 1(e)) = O 1di(e) = ¢
At — Dg&;t _ D@*l(e) [@—1@5@] __chain rule

= [Dqﬁ@(é)@_l} [D@(Z) (I)t] [DZ@}

©:¢me, O lieme  DO=[DO]

D ~®t =D, ®' =At, D

0@ O =Dgi()© " =D.O7!

210 (e)

At = [D.67]Af D07

— [V'D M_ A VD M_ ]

AT = VD M_JA D M_o] WV IM_(e) = VD M_JA' D M_c] "1 M_(e)
DM )7t =P P =Pra =Dy (o) M,

Hence A'e = [LINOP]A*[Dps (eyMc]M_c(€) = statement  Qu.e.d.

Remark. Analogously as the underlined formula for Ae was obtained, we get
[Dar_oeyM]M-c(e) = [DyMc]f = £| _ Mc(f +sf) = G|,y Me(sf) =

= 4| _{c+B@Y?[L+L(sf, o)) tsf} = B(e)'2[1 + L(f,¢)] 72 f =

= B(c)'/?[1 + L(M_c(e), )] *M_c(e)

Since dom(A’) is dense in E, if the Fréchet derivative D.G(c) = [v — | _ G(c+ sv)]

s=0
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with G(c) := B(c)"/?[1 4+ L(M_.(e),c)]"2M_.(e) is an invertible operator for some ¢ € B

then ran(G) N dom(A’) # () implying that [®' : ¢t € R.] is Mdbius equivalent to some

str.cont. 1pr.sg. with properties (2)4(3)

Corollary. We have

0 € dom(®’) <= de € Fix(®) e € dom[D.®] <= Ve € Fix(®) e € dom%j’.
A A

Therefore ¢ = M.(0) € dom(®’') <= 0 € dom[M_. o0 P o M.|

because, with M_.(e) € Fix(M_. o ® o M.) we have

c= M.(0) € dom(®') <= [t P'M.(0)] diff. < [t — M_.P'M.(0)] diff. and

0 € dom[M_.o0® oM, < M.(e) € dom([Dps_,eyM—_co®oM.]).

Notation. Henceforth

Lemma. D._¢G(c) = —[1 + Q(e)]

Proof. We have to see (With real differentiation % ‘0 =4

dr ‘ =0+ ) that

%‘OG(TC) = %‘o{B(TC)l/Q[l + L(M—Tc(e)vTC)]72M—Tc(€)} = —C— {ece}.

B(re)'/? = (1+72[=2L(c) + 72Q()?)) /* =

1= 5 [-2L(e) + 7°Q(e)] +0(r%) = 1+ o(7),
M_..(e) = —1c+ B(t¢)?[1 — tL(e,c)] " te =
= —1c+[1+o(7)][1+7L(e, c)+o(T)]e = e+T[—c+L(e, c)e]4o(T) = e—T[1—Q(e)]c+o(T)

G(tc) = {1 + 0(7’)}{1 + TL(e —7[1 — Q(e)]e, c) + 0(7’)}_2{6 —7[l —Q(e)]e+ 0(7)} =

= {1-27L(e,c)+o(7) H{e—7[1-Q(e)|c+o(T)} = e—7[1—Q(e)]c—27L(e, c)e+o(r) =
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=e—T1[1+Q(e)]c+ ofT). Qu.e.d.

1=
Lemma. e TRIP = G(Xe) = T P\|2
2Re[(1 — N)?] . 4Re(1 — A\)ImA
e A (P
Proof. Let e TRIP. With the Peirce proj. Py(e) : E — Ej(e) := {z : {eex} = ka/2}

L(Xe) = %P (€) + [M\?Pa(e), Q(Ne)®> =|\|*P2(e) whence

B(A(e)[Ez(e) = [1 =2/ + [A[1]id,  [1— L(e, Ae)]|B2(e) = [1 — AJid;

— —e,
1—A

1/2 -1 1A L-A
M_ye(e) = —Xe+ B(—=Xe) /“[1+ L(—Xe)]| "e= |-A+ =1

G(Xe) = B(Ae)Y2[1 + L(M_yc(e),e)] > M_x.(e) =

[1+)\(1 —)\)/( )}2 (1—[A[2)?

B (I=XN1=X) [1-A7

Thus G(Xe) = g(A)e with g(\) := Y SR
With straightforward calculation, @ = —ﬂ 8_g = —M. Hence

ox  (A=PP)?T ax (I=[AP)?

0g _ 09 09 _ o ( (1=X)?
[DeGle = ‘G“T ar ‘9”7) 0" onTan T R ((1—W2)2
09 09 dg (1=

[D1.G] (ie) ’G’ (A+i1) = ‘gA—HT) @6_25 Za —2Re <( 1—[\2)2 )

Lemma. e TRIP, L(e)v = kv, Q(e)v = v, [N\ <1 =
for w:=[D.oxG(c)]v we also have L(e)w = kw, Q(e)w = cw.
Proof. Let us write Jj ¢ for the family of all possible Jordan triple product expressions
with k£ terms v and ¢ terms e. E.g.
Jia = {{{vee}ee}, {{eve}ee}, {{eev}ee}, {e{veete},. .., {ee{eev}}} has 9 elements.

d+
By definition, [De—x.G(c)]v = d_’()G()\e +71v) =

T
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d+

= O{B()\e + Tv)1/2 [1 + L(M_xe—rv(€), Ae + Tv)] _QM_Ae_T,U(e)}.

Observe that B(\e +7v)Y/2 = 3. <17/12) [—2L(\e+Tv) + Qe+ TU)Z}n is a series of
n=0

Jordan multiplications of the form {ee-},{e- e} i.e. a power series of the commuting real

linear operators L(e), Q(e) acting as muliples of the identity on the Peirce spaces E,(f)(e).

Also in general we can write [1+ L(z,y)] =3 (1) L(z,y)"z =

n=0

oo
> ,u,(:é [Jordan expression with k terms x, ¢ terms y and one term z]
ke=0

such that 3 6(") > 0 with D ht=0 \u(r)|||x|| |ly||¢ < oo whenever ||z]], [|y| < 6.

Hence we see that [Dc: e G (c)] v admits an expansion of the form

[DC:A@ ()] Z ZJEJL:E VIT ']

7,k=0

(@)
such that 36 >0 with >7 >,/ | |v;7%||v]|F < oo whenever 0 < 7jv| < 6.
k=0 ’

In terms of this expansion we have

[De=xeG(c) Z > urhI = ZJGJM’YJJ

Jk 0JE€Tk,e

Our closing observation is that the value of any product J € [J; ¢ containg only one term

v must be a real multiple of v if {eev} = kv and {eve} = ev.

Corollary. e TRIP = 3 pg, p1, pg ), ! ps Y {A:|A| < 1} = R real-analytic

D).G= ;p(s)( )P(E) with Peirce proj. P( °); E—>E(E) ={z: L(e)z=1%x, Q(e)z=cx}.
e

Proof. We know that the linear operators L(e),Q(e) commute. [Indeed, with I :=

{(1,1),(1,-1),(1/2,0),(0,0)} and the Peirce spaces E(, o) := {7 : L(e)r = kz, Q(e)r =

ex} we have E = @, cyexBE(,). Given z € E(,, ., L(e)Q(e)r = Q(e)L(e)r = xex.] Hence
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£/2—m £/2—m

given any J € J; ¢ we can write J = Q(e)™L(e) v=¢"kK v independently of the
choice of v € & ..

Proposition. Assume e TRIP and [®' : ¢ € Ry] str.cont.l-prg. in Aut(B) with e €
MNier, Fix(®'). Then dom(®’) is dense in B.

Proof. With the previous notations, it suffices to see only that range(G) contains an inner
point. By the Inverse Mapping Theorem, to this it is enough that the Fréchet derivative
D.=xeG(c) is an invertible operator for some A with |[A| < 1.

By the previous corollary, with real-analytic coefficient functions, we have

DeoreG(e) =po(APo + pr (W1 + o5 (NPT 4+ pSH () PET.

By the first lemma, D.—¢G(c) = —[1 + Q(e)] = —Py — 1P — 2P2+) that is po(0) = —1,
p1(0) = —1/2, p5(0) = =2, p{(0) = 0.

Observation: pg_)()\)e = PQ(_) [De—oG(c)] (ie).

By the second Lemma, [D.—oG(c)](ie) = 4R(el(1 _|/\>|\2))I;n)\

_ 4Re(1 — A)ImA

that is p(_)(/\) TSIGE

# 0 for 0 # || < 1.

By the continuity of the functions p,(f,) for some § € (0,1) (in particular around A = 0),

we have  po(A), pi(A) ps (), o5 (N)20,
implying the invertibility of D.—x.G(c) = Z(k’g) pée)()\)P,ge) whenever 0 # |A| < J. Qu.e.d.
Remark. We can calculate the precise form of the functions ,okjE as follows.

Recall that E = @(K,E)GKEéZ)(e) for the Peirce spaces
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ES. (e):={z € E: L(e)z=re, Q(e)z=cx}, K:={(0,0),(3,0),(1,1),(1,—1)}.

Fix (k,e) €K and vEEéZ)(e) arbitrarily. Define

d+
B)\’TIIB()\(B—FT’U)l/z, BS‘::%‘OBA’T’ bl)\::BS\,T67
/ d+
M/\,T::M—()\e—l—ﬂ))a m/\,T::M/\,T(e)a m)\::E‘Om)\,Ta )

d+
Ry :=L(mx -, Ae +Tv), R\:= o )OR)\’T

Notice that by Peirce arithmetics, for some scalars,
o / d* /
By oe = fre, Bxaov=p\v, Bye= d—) B(Xe + Tv)e = B\,
T lo
mx,0 = UNE, mi\ = :u/)\va R)\,Oe = PAE, R)\,OU = ﬁ)xvv Rl)\e = pi\v
With the rule of product differentiation we get

_ d
D).G = By[1 + Rx,] 2m)\,0 + BA,O{%

£1 + RA,T]_Z}mA,o + Bxo [1 + Rx,o} 72ml>\

T=

dr - _ _ _
where . ‘0 [1+ Ry -] 7= —[1+ Ry 2Rﬁ\ [1+ Rxpo] to [1+ R o] 1R/A [1+ Ry o] g

It follows
[D)\eG}’U = BS\ [1 + RMO} _2;@\6 — B)\7o [1 + RA,O} _QR/)\ [1 + RA,O] _1Iu>\e—

— [1 + R)\’O]ilR/)\ [1 + RA,O} 72/1)\6 + B)\,o [1 + R)\’o} 72/1,/)\1} =

HX KX HX

—1 -2
=B\, —"—e—Byg|[l+R R\, ——" —e—B\o|l+R R) e+
N L
+Byog—2—v and continuing similarly,
>\,0<1 AT g y
’ a1 a2 20
DGlo = SN . ?Apm . fxp;m y BA@ .
(14 px) (L4 px)(1+pa) (T+p3)2(L+p2)  (1+pa)
Here we caculate the constants as follows.
1—A
H =TS because my o = M_x.(e) = —Ae+[1-2L(e)+Q(e)?]V/2[1+L(e, —Ae)| ~te =

42



1 1
_ _ 211/2 _|_ 5V [2 a11/2] , _
= —de+ [1-2L(ke) + Q) e [ At s -2 A ]e —

Next we determine 3’ along with 8 and Sy :
B(e+1v)z =1-2{(Ae+1v)(Ae +T0)z} + {(Ae + T0){(Ne + Tv)z(Ae + TV) } (Ae + Tv) },
In particular B(Xe)e = (1 —2|A\2 + [M*)e B(Ae)v = (1 —2|\?k + |A|*e?)v, whence
Bre = B(Ae)/2e = (1— [A?)e, Bav = B(Ae)Y20 = [1 — 2A]2k + |A[4e2]?0.

_|_
1B =
o ‘0 (Ae+ Tv)x
= —QX{UEZ'}—2)\{6U$}+X2)\{’U{6$6}6}+)\X)\{6{U$6}6}+)\X)\{€{6Z‘U}€}+)\X2{6{6$8}U} =
=2 [ — AL(v,e) — AL(e,v) + X2)\Q(v, e)Q(e) + A2AQ(e)Q(v, e)} x

2
‘ B(Xe + Ttv)e = —’ [ (e + Tv) 1/2] e = [B\Bxo + BxoBjle =
= BaBie + B Bx,ov = BB + ﬁﬁ\ng that is

BA(Bx + Br)v = E‘ B(Xe + tv)e =

A MU= o Te=
= —2X{vee} —2X\{eve} —l—xz)\{v{eee}e} + A e{vee}e} + M\ {efeev}e} + )\X2{e{eee}v} =

=2[ — Ak — Ae + |APA6 + [A[2Ake] v,

—Ae — Ak + [A2E(A + Xe)
(1= [ARP) + (1 = 2]APk + [A[*e2)1/2
By Bre
= + = =
=% (1—w)(1—N)

By =2

In terms of S5, we get ph=—1+

d+
drlo

since m) = { — (Ae+7v) + By~ [1 — L(e, e + TU)]_le} = —u+

d+
+B[1—L(e, Xe)] e +Bxo—— ‘

/
1—L(e, \e4+7v)] e where Bi[1—L(e, Xe)] le= &)
dr lo A

=0,
1-A

)

% 1= Les Ae 7o) Tle=—[1- L(e. Ae)]—l{%‘ou—ue,Ae+m)]}[1—L(e,Ae)]—le:
= [1-AL()] " Lle.v) e = [1=AL(e)] ! 1va - (1_X;)(1_X)”'
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Finally, for the constants py, px, p, in terms of uy, ) we obtain
Px = Mix, Pr = MK, P\ = MAK + 1ae because
Ry e = L(my, Ae)e = pxAL(e)e = e, Ry ov = pAAL(e)v = Ak,

d+

dr _
y ‘OR,\Je: p ‘OL(m,\, Ae+T1v)e=L(m)\, Ae)e+L(my,v)e=p\AL(v,e)e+purL(e,v)e.
T T

In particular, hence we can get reasonably simple formulas for the following cases:

(1)if u(=X) e Rand v € Eff)(e) then

(la) [DueGlv = —v for (k,e) = (0,0), (1b) [D,eG]v = _141-,u for (k,e) = (1/2,0),

(1c) [DpeGlv = — 5 for (k,6) = (1,1), (1d) [D,.eG]v =0 for (k,e) = (1,-1);

(14 p)

(2)ifiv(=X) €eiR and v € E,(.f)(e) then

(2a) [DjyeGlv = —v for (k,e) = (0,0), (2b) [Dy,Glv = —i —_|-;y2 for (k,e) = (1/2,0),
(2¢) [DiveGlv = — 1—2y2 for (k,e)=(1,1), (2d) [DiyeG]v:—(lfl%)Q for (k,e)=(1,—-1).

Theorem. If 0 € dom(®’) and () Fix(®') # () then the generator & is of Kaup’s type:
teR 4

dom(®’) is a subtriple in E, ®'(2) = a — {zaz} + iAz closed.
Proof. dom(®') = {z : t — Uz diff.} = dom(A’) dense in E, A’ closed lin. op.
Pl (z+e) —e= (A, + By) 1Ciz

V(z+e)=—(Ar.+ B) & (A + B)|(Ar. + B) G|y + (Arz + B) ' £Cizl

‘t:O
N(2) = =B [§B] B Gl o+ B [ B1] | 2o

Let x, — x, ¥'(x,) = y.

Zn 1= Ty — €,
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Let 2 € dom(¥), o] =1, ¢ € B*, {p,a) = o] = 1
@’ is a TANGENT vector field to 0B
0=Re(pok,®(kx)) <kl =1

¢ (o, @ (Cx)) = > 07 @™ holomorphic

Re(E P an/i”) =0

> (apk™ Pt =0 (k| =1
n=0

ZZO:_OO Bnﬁn =0 Bn = Qp41 (n > 2)7 ﬁn = 01—n (7’L < _2)7
fr=c+ap, Poi=a+az, Po=or+ag

Oén:()(‘n|22), a1 +Oé_1:0, Qo = —Qo

CONSIDER Q(z) := &'(z) — {wbz} INSTEAD OF &', b:=¥'(0) =

This is also tangent to 9bf B with Q(0) =0

Q(¢x) = ¢Q(x) HOMOGENITY
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SPIN FACTORS

(H, (-|-)) Hilbert space, z — T conjugation, (z|y)~ = (Z|y)
S := S(H,") is the JB*-triple with the triple product

{zay} = (@la)y + (ylajz - (=[7) @

(ylz)
[ TRIPOTENTS] = {Ae: e € Re(H), A€ T, <|>:1}u

U {u—I—w w,v € Re(H), (ulu) = (wlv) = 1/2, (ulv) = o}
Uy = kVi: Vi real (-|-)-unitary, Re(E) — Re(H), r; € T.

Norm formula. Given a = z + iy € H with z = T,y = 7, by writing (2)2 := (z]2),
Jall = o+ i) = [[(2)2 + 0)?] + 2[(@)?)* — (aly?]*]

Direct proof: By [Kaup, 1983], since Span{L(a)"a:n = 1,2,...} = Ca + Ca,

la||? = radSp(L(a)) = radSp(L(a)|Ca + Ca) = radSp(L(z + iy)|Cz + Cy).

Here we have L(a)z = (ala)z + (z|a)a — (2[a)a, that is

L(a) = [(z)? + (y)?]id + a® a* —a®a* = [(z)? + (y)?]id + 2i[y® 2* —z ®y*] and
L(a)z = [(2)* + ()*]w +2i[(z)y — (zly)x], Lla)y = [(2)*+ )*]y + 2i[{zly)y - (v)*a];
Sp(L(a)|Ca + Cy) = [{2)? + (5)2] + 2iSp [‘&@ a?y{i] _

= [{2)? + (5)2] + 2i roots (A2 — (aly)? + (@)2(1)2) = [(2)2 + (9)?] £2[(2)2(y)? — {aly)?]

Unit ball: {z cH: ()2 < %(1 +¢z2)) < 1}.
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Str.cont one-parameter semigroups in Iso(dgs))

(@' : t € Ry ] str.cont.1-prsg in Iso(dps))

Vesentini (1992)*: 3 M, € Re(L(H)) 3 b, b5, ct,ch € Re(H) 3 E' € Mat(2,2,R)
Ol(x) = F'(z)/¢' (x) where  (with transposition X1 := X*)

Fi(x) = (bh —ibh) + 2Myx + (%) (b + ibh)

¢'(x) = (Bfy + By —iB{y +iE}y) +2(c] +ich)Tw + (B{y — By +iEj, +iB5)a" e
such that, with By := [b},b5],C; :=[c¢!,cl], the matrices

(t€Ry)

o[ %

cl E

form a str.cont.1prsg. such that

[G*diag(I, —I5)G" = diag(I,—1I>), det(E*) >0 (t € Ry), that is

CiEt = MIB,, M =1+ C,C}l, [EY|TE! = I, + Bl B;.

Remark. In Rend.Sem.Mat.Univ Pol.Torino, there is a misprint on p.438 line 11: it
should be 706G (X) = 2(X|C; —iCs) + ---” instead of "0G(X) = 2(X|Cy; — Co) + -+ 7

It also seems that Vesentini’s results rely upon the tacitly used hypothesis that the origin

belongs to the domain of the holomorphic infinitesimal generator ® of [®': ¢ € R,].

Note di Mat. 9-Suppl.(1989)123-144; Ann.Mat.Pura Appl., 161/4(1992)281-297, Rend.
Mat.Acc.Lincei, 3/9(1992)287-294. Rend.Sem.Mat.Univ Pol.Torino, 50/4(1992)427-455.
Forerunners: U. Hierzbruch, Math Ann., 152 (1964) 395-417; L.A. Harris, Lecture Notes

in Math. (Springer , 1974), Proc. London Math. Soc., 42/3 (1981) 331-361.
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With the convention Z’ := 4

E‘ —o +Zt(or Z;), we calculate the infinitesimal generator @’

in terms of G’ that is of M', B’,C’, E’, respectively (provided 0 € dom(®)).
P =4 t:0+£—: = (@0)2 o5 FO + 50 IS F" where, for x € dom(G’).
Since G° = Idygc2 = diag(1, I3), we have
Mo =1, bg—ck—Eu:Em:O E?1:E32:1=
0=(CiE' -~ MIB) =C'"—-B', 0=1I'=(MM,; - CF) = [M'|T + M,
0=1I=(E']"E") = B/'B;) = [F']" + E' e Ej =Ej =0, Ej,=-Ej.
It follows ¢%(z) = (EY, + ES, —iEY% +iEY) =2, F%x) = 2Myx = 2z,
F'(z) = (b} —iby) + 2M'z + 2T x(b] + ibh),
¢'(z) = (BYy + Ejy — B}y + i) + 2(c) +icy) w + (B — Ejy +iE]y +iE) )a e =
= 2iEh, +2(b) +ibh)Tx
D' (z) = —1[2iEh; + 2(b) + ibh) Tz]2x 4+ L[(b] — ibh) + 2M 'z + 2T x(b] + ibh)] =
= —iBj)x — [(b] + ibh)Tx)e + L (0] — ibh) + Mz + aTa(b) + ibh) =
= (40 — )] + [M — i, — [o(Bg + ith) T — 30} — ibg)a].
Proposition. If 0 € dom(®’) i.e. @’ is of Kaup’s type as ®'(z) = a + iAz — {zxa*z} with
a := ®'(0) and some S-Hermitian A € L(H) then
iA—iel 2Re(a) —2Im(a)

G' = | 2Re(a)t 0 —€ where ¢ := El,
—2Im(a)® 5 0

and A= M +iel with M = —M7T : Re(H) — Re(H).
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Coordinatization, Mobius transformations

Recall that, by means of SVD-decomposition, we can write

0 0

B=[b),b5] =Q1 | A\ 0| Q3 where Qi€ QRT(Re(H), Q2 € ORT(R?), A;>Xy>0.
0 X

Hence with the real orthogonal operator matrix @ := Q1 ® Q2 = [ OQ 1Q02},

Gt=Q:G'QY (teRy) where G’ :=gen[G':tecR,] has the form
My M, 0
& - |y %01 o]
o[ [
Continuing with a similar transformation G = @é’ GT where @ =1, & I, & I, with

suitable real orthogonal @1, with QR-decomposition we can achieve the form

1\]4\}1 %12 2 8 Moo, Moo, E antisymm.
G = | 12 2 = , A pos.diag., L lower triangular 2 x 2 real matr.
0 —L DMy A

0 0 AT E
Question. Can we further eliminate A in entry (2,3) with a transform X — SXS~1?

In particular the Mdbius transformations in a spin factor are the maps arising from inte-
grating the vector fields corresponding to generators of the form with M’ = 0. Thus they

are contructed as follows. Take an operator matrix of the form

o 1 [0 # b oo PPO]
G' = | ot =BT 0 0= 0] | QF.
[B" 0 T
Bs]" 0 0 o [0 o

Since G’ is a bounded operator in this cases, its integration is simply

G! = exp(tG') = i n! =M G =
n=0

B 00 (B/[B/]T)k 0 00 (2h+1 0 (B/[B/]T)kB/ B
= k;z (2k)! { 0 ([B/]TB/)k] +k§0 (2k+1)! {[B/]T(B/([B/]T)k 0 =
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0 0 0

C(@eqy | o ([50]) s (50) | (gr e on)
K

0 sinh([é‘iﬁ]) cosh<

giving rise to
Meyy(x) = ol (z) = F'(z)/p'(x) where
Ft(x) = (bt —ibh) + 2Mx + (V) (bt + ibh)

©'(x) = (BY) + ESy —iE}y +iE%)) + 2(c} +ich) w4+ (B}, — By +iE}, +iES) )z'x

, 0 0 - 0 -
with My =Q1 | cosh([élﬁﬁ}) Qi, Bi=Ci=Q Sinh({(?li;z]) 25

Et' =Q, [cosh ([8‘?\;{])] Q3 -

Remark. The maximal faces of the unit ball of a spin factor are discs of the form
B.:=e+{Ce:[¢(| <1} wheree=iu+ Lvwithu LveRe(H, (u)? = (v)?=1.

Lemma. Given a tripotent e as above, for the Mébius group [M, ) : t € R] integrating the

0 uw —v
vector field M’ : z+s2e—{z(2€)*z} corresponding to the generator G’:= | uT 0 0
T 0 0

we have

¢ + tanh(t)

Mi(e+ (o) =201~ ¢, Ma(e+(e) = e+ grrmse

e (I <1).

Proof. Since e 1 € and (e)? = (€)? = 1/2, we have

M'(e+(Ce)/2 =€ —2(e+ Cele)(e + (e) + (e + Cele — (e)e =€ — (e.

Thus the vector field M’ is tangent to the complex line L, := e + Ce and, in terms of the

trivial coordinatization Z(e+(e) := ¢ it has the form Zx M’ : ¢ — 1—(? whose integration

gives the classical Mobius group [(¢ + tanh(t))/(1 + Ctanh(t)) : t € R]
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Triangularization with fixed points

Assume e € OB is a common fixed point of [P : ¢ € R, ] represented with the co-sgr.
of operator matrices [G* : t € R4] (in Vesentini’s sense). Consider the corresponding

generators

' (z) = a+ iAx — {za*z} = (5b1 — 5bo) + Mz + iex — (x|by — ib2)z + (@]T) (501 + 5b2),
M by b —

G' =T o —:| where b :=2Re(a),by:=—2Im(a), M =M =-M"* ¢cR.
bT e 0

We may assume without loss of generality (by means of Mobius equivalence) that e is a

tripotent, that is we have either
1) e=¢, (ele) =1 (real extreme point), or 2)e Le, (ele) = 5 (face middle point).
In any case, ®'(e) = 0.
Case (1) 0= ®'(e) = a+iAe — {ea*e} =
= (3b1 — bo) + Me + ice — (e|by — iba)e + (ele) (501 + Lb2).
With the orthogonal decompositions b; := pje + z; (i.e. p; € R, x; L €), we have

0=1i(e —p2)e+x1 + Me implying py;=¢cand Me = —uz.

Hence, with the restricted operator My := P,. M|et,
B T _ T _
M b by 0 (Me) p1 € 0 =z p1 —¢€
o= 0 = Me My —Me y _ | My x1 =z
blT — p —(Me)t 0 ¢ pr a0 —e
2 —€ yt £ 0 — x3 € 0
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An almost triagular similar matrix can be obtained with the operator matrices

1/2 0 0 1 1 0 -1 0

R 0 IO 0 0 -1 0 I() 0 0
T= —1/2 0 0 1|’ =109 0o o 1
0 0 1 0 1/2 0 1/2 0

as
-p1 O 0 O

A |21 My x2 0
eT=\ . ra 0 0

0 21 — m

Remark. M is a possibly unbounded skew symmetric closed real-linear operator defined

on a dense linear submanifold of e1. For heuristics see vazlat6.mws.

Case (2) 0= ®'(e), e L€, (e)? = 1/2 of face middle points. Then
0=>®'(e) = (%bl — %bg) + Me +ice — (e|by — ibs)e.
We assume without loss of generality that

e=1u+iv where u Ll v, u=1uv="7and (u)? = (v)? =1.

Since M is real antisymmetricie. M = M € —MT = =M = —M* along with dom(M) =
dom(M), we have u,v € dom(M) with (Mul|u) = (Mvlv) = (Mulv) + (Mv|u) = 0 and
(Mele) = —£(Mul|v) resp. (Mele) = 0.

Hence, using the identities (bj|u) = (u|b;) resp. (bj|v) = (v|b;), we get

0 = (®/(e)]e) = (31— 4ale)-+ (Mele) + (e[ 3o $b2) = §[e— (Mo} (b1 o) Balu],
0= (P (e)|e) = (5b1 — Lbale) = L [(br|u) + (ba|v) +i(b1|v) — i(bo|u)].

Considering the real and imaginary parts, therefore

(brlu) = =(ba|v), (br]v) = (bolu), (Mulv) =& — (brv) = (ba|u) = & = 2(b2|u).
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Thus in terms of the orthogonal decompositions

bj = pju+ojv+ x;, (where z1,x9 L {u,v})

and with p:= (Mul|v) we have

o2 = —p1, 01 =pP2, L=¢E—2ps.

Hence, with the notations P := Py, 31, Mg := PM{u,v}*, ¢ := PMu, gqo:= PMv,

we can write

M b b 0 —p —qy PL P2 0 2p2—e¢ x] p1 P2
T 1 2 p 0 —qF  p2 —p1 e—=2p2 0 —zI  p2 —p1

’r_ _ _
G = bl 0 —E& = q1 g2 Mo T i) = |[—T T2 ]\{0 I i)
b2T € 0 p1 P2 xy 0 -« P1 p2 Ty 0 —e
p2 —p1 zT e 0 P2 —p1 xT e 0

because from the relation
0= P®'(e) = P[(3b1 — 1bs) + Me + ice — (e|by — ibo)e] = 3 [z1 — iwa + PM (u+ iv) + 0]

we infer also ¢; = —x1 and ¢o = x».

Intergration of the almost triangular systems
Case (1) For short we write p := p1, © := x1, y := x2. We determine the co-semigroup

Ut :te Ry, Ut := (TS)"1GY(TS) with the generator A + B where

—p 0 0 0 00 00
_|—x My 0 O 10 0 y O
A= — y¥ 0 o’ B:=10 00 0

0 z¥ — p 00 0 0

It is well-known [Engel-Nagel] that, in terms of the co-semigroup [T" : t € Ry | with gener-
ator A = S, which consits of lower triangular operator matrices, we have the convolution

equation of Volterra type

t
(V) Ut= [ TsBU%ds+ Tt (t€Ry)
s=0

53



00 t
and also U'= )" S,(¢t) with the recursion So(t) :=T", Sp41(t) = [T 5BS,(s) ds.
n=0 0

The so-called Dyson-Phillips series > S,,(t) converges locally uniformly in norm.
n=0

In terms of the entries, we can write

Tts 00 0O 0 0 0 0
e | T TR 0.0y 0f_ |00 Ty 0
T Tt Tt Tl Lo ool Lo Ty o
and
N 0 0 Q 0 a 0 0 0.0
BUr = [Tli,ésyUég,é 2<k<a | T BSn(s) = [Téésy[SR(S)]g,,e} 2sk=d
sl 1<¢<4
It follows

t
(V') Uly=Ti, Uiy= “—fo Tio'yUs,ds+T;, (t€Ry; k=1,2,3;(=1,234).

S
At this point, one more reduction is easily available: Since the matrices 7% are lower

triangular, we have T%, = 0 with the consequence that the solution U}, of the homogeneous

t
Volterra equation Ul, = [ Tg;syUg‘fA + T3, is necesarily U, = 0 and hence also
s=0
t
Uta= | LU ds+ T, =Thy  (k=23,4),
s=0

U{74 - U§,4 - U3t74 = 0, U£74 = Ti74 - ept and alSO Uf,l = T1t71 - e_pt, U1t72 - Uf,s = O
For the remaining cases (k > 1, ¢ < 4) we obtain the following crucial Volterra equations
which can control the entries U, ,i ¢ by the third row via (V') completely:
¢

(V") Ui, = [ [T5"y|US, dr + T3, (teRy; £=1,2,3).

r=0
Notice that the matrices T?f; "y are of type 1 x 1, thus the effect of left multiplication
with them is simply a scalar multiplication. Also the submatrices Ty ,, Uy , with (k,£) =

(3,1),(3,3) are of type 1 x 1.
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Since [Tt_SBSn(s)}S = T35 *y[Sn(8)]3.e, in terms of convolutions with the functions
’U)(t) = T?ny? W(t) = T§,€ (t € R+> l= ]-7 273)7
with uniform convergence on bounded intervals (t < M), we have

t t - — = —
US,Z—T3’£+n§15n(t)3yg—‘/'g(t)+{w*Vg}(t)+n§2{w* w Vi }(t)

n terms

={WxV,}(t) where W:i=14+w+ Y wx*---xw= > w
v n=0

n=2
n terms

Remark. We can achieve useful structure formulas for the functions w*™ above by means

of the Laplace transform
Lo=L{vt)}:s— T e sV (t) dt, dom(Lv) = {s €C: T le=sto(t)] dt < oo}
t=0 t=0

and its inverse

1 oo . oo
L7WV:0<t = [ OV (Q4i0) do with Q>0 satisfying [ em{V(Q—HU)‘ do < 0.

It is well-known [Deddens, Staché JMAA]| that the co-semigroup [U¢ : t € R4] of real-
linear isometries Hy — Hy with generator M, embeds into a cy-group of isometries of
some covering real Hilbert space which can be regarded as the real part of the complexified
Hilbert space H := H, @ iH, with conjugation 7 : z @iy — x @ (—i)y (x,y € Hy). Thus
Utz= [ e P(d)) 2 (2 € Re(H))

AER

in terms of a spectral measure
P : A(C R Borelian)— { orthogonal projections on ﬁ}

Since the operators Ut := [ e P(d\) leave the eigenspace Hy = {z: 72 =7}
AER

invariant, we have
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UL = Ulr ie. Ut=7Ulr (t€R).
Hence necessarily

[ eMPdN) =71 [ eMPANT= [ e TP\t = [ eMTP(—d)\)T (teR).
AER AER AER AER
This implies the following symmetry of P(-):

P(A) =7P(—A)T ie. P(—A)=71P(A)T (A C R Borelian).

It is immediate that

Tdry>: < ‘ [ e P(d\)y >d -

t t
w(t) =Thyy = y* f Ugdry = <y
r=0 A€ER

< ‘)\eerfO e dr P(d)\) > ,\éfR Lio e AT dT] <y‘P(d/\)y> =
—iAt

[f + [+ f} —¢ <y’P(d)\)y>:

A<0 A=0 A>0

—tP{0}+ 1*j—j”<y‘P(dx)y>+ [ sy (v]rP(=dny).

Since P(—A)=7P(A)7, y=71y € Hy and (7u|70) = (u|o) = (v|u), it follows

0 < (y|P(=A)y) = (ry|rP(A)y) = (y[P)y) = (v P(A)y).

Thus we get even

it _irt sin( At
w(t) = tPl0}+ [ (5 iy ) pdn = ¥
)\GR++ AGRJF

dp(A)

in terms of the non-negative real valued measure

p(8):=2(y|P(A)y) (A C Ry Borelian), p({0}) == (y|P({0})y)

on R, with total mass

P(R4) =p({0)+2p(Ro 1) =p({0}) +p(Roy 1) +p(~Rey) = (y PR)Y ) = (y|y) = [lw]|” < 1.

For its Laplace transform we have
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Lw(s) ::fz et [ Sing\)\t)dp()\) dt= | fe_stsin()\t)

dt dp(\) =

)\GR+ )\GR+ t=0 )\
) 1
= [ L{sin()/A}(s) dp(N) = [ 55 dp(N).
AeR AeR, 57T
Hence

1

Lo = [Lw]" =] | mdp(x)}" (n=1,2,..)

AR

w*n = l /OO e(Q-l-ia)t / dp()\)
T Jo=—00 AR (Q + ig)2 + )‘2

We can calculate w*™ in terms of the product measure dp®™(\) := dp(\1)---dp()\,) as

do for sufficiently large €2 > 0.

follows. Since w(t) = [ sa(t) dp(\), by induction on n we can see that

AERJ,_
w*(t) = f Sx, * -k 8y, (t) dp(An) -+ -dp(A1) = f Sx, * - x 8y, (1) dp®™(N).
AERT AeR™
For the functions
in A\t
sx(t) = SmA 0£XeR); so=t

we have (with computer algebra MAPLE vazlat5.mws)

t
sin ot sin St

Sa * Sg(t) = /sa(s)35(t—s)ds:—a(a2_ﬂ2) _B(BQ—aQ) .

Using this identity, by induction on n we obtain that
= 1 1
Sxn, x -k 8y, (t) = Za,&n) sin A\t where a,(fn) = a,gn)()\l,...,)\n) = — H -
k=1 /
Indeed, for every n with this property, also

n
Sxy ¥k Sh 4 )= > O‘Esn))‘k's)\k *SXp1 =

k=1
~ (n) sin \it sin A,y 1t }
,; g )‘k()‘ghtl - )‘i) )‘n+1()‘i - )\%H)
| 1 sin At 1 1 sin Apq1t
ey _— + —_— —
]; Ak k;éjgn)\jz-—)\i ()\%H—)\i) ;::1 Ak k;y‘gn/\?_Ai )\n+1()\z—)\%+1)
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= Z Ong—l) sin )\kH—Z B,y Adpg1) sin A1t
k=1 k=1
We need no direct algebraic argument to prove that agﬁﬂl) = (M1, ..., Apt1) in the second
sum. Namely the commutativity of the convolution implies that for any permutation v of
the indices {1,...,n 4+ 1} we can write

5 o, ) st 4 B, - A sin Ayt =

k<n

= k; Oz,(gn—H) (>\'y(1)7 ceey Av(n-i-l)) sin /\v(k)t‘f'ﬂ()w(l)y ceey AW’(”"‘U) sin Aw(n—i—l)t
Comparing the coefficients of sin \1t,...,sin \,,41t, respectively, we conclude that
a,(:’H)()\l, cey A1) = afffﬂ)()\v(l), o Aymany)  ifkE <nand y(k) =m <n,

B, A1) = al TV 1), Aymany) ik <nand y(k) =n+ 1.

In particular (with v transposing 1 and n + 1),

n 1 1 _
ﬁ()\l,...,)\n+1):a’g +1)(/\n+17)‘27~'~7)‘n7)‘1): \ )\2 /\2'
Al Tl T
We check from the definitions, that also &;11411)()\17 ceyAn) = _A,Llﬂ Hj:j;énJr1 —)\i+11_)\32_

which completes the induction argument.
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Remark. The equations (V") can be solved by means of the Laplace transform
LV =LAV({)}:0<s— f e StV (t) dt
well-defined for bounded(?) continuous functions V : Ry (= {t e R : t > 0}) — Z

ranging in Banach spaces with finite norm integral ([, ||V (¢)|| dt < o0).
t t
Namely, for the convulution w+V : 0 <t +— [ w(t—s)V(s)ds = [ w(s)V(t—s)ds of any
s=0 s=0

couple w € Cpged(R4+,C), V € Chded (R4, 2Z) we always have £(w * V) = (Ew) (EV).
It is well-known that the operator valued functions [t — U"], [t — T"] satisfy

(L) V(@) < M (t€Ryy) for some M, > 1.

Thus, in view of (V”), for the scaled functions

(1) = e u(t) = e [Ty, Tit) = e MUL,, Tolt) = e,

we have

Ue(t) = e~ ULy = e f [T "y] U3 ds + T, =
=0

S

t
= [ [e 9T y] e Us ] ds+ e T, =
s=0

_ Io W(t — 8)Up(s) ds + Vi(t) = [@* Up] (t) + Va(t)

with the consequence that ﬁﬁg = (ﬁ@) (ﬁﬁg) + E%, Eﬁg = (1 — £@)_1£‘74. That is

Lt{e_Qthf,e}
1— Et{e—QtT§ y}

L{e U} = (¢=1,2,3).

We shall see that actually w(t f yTUZydr (t € Ry ) where the operators U] are linear
r=0

isometries. Thus we can choose the scaling factor €2 > 1 to be so large that max;||w(t)|| < 1

along with f |w(t)]| dt < 1. Then we may apply the inverse of £ with the result
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r7 _ -1 Ve \ _ 1 e LV, (s) — 1 -1 e -1 ( ws{/
Uelt) = £ (1—1:73)_['3 <e—ws[1—z:$(s)}) wlgngﬁs (1—&5(5))*/:5 <€ W(S))'

Next we establish finite explicit formulas for 7. It is convenient to use the block partitions

Tt . t t . t t _ t t
Tt — |:le ~0 } where Tﬁ: {Tll TlQ} T§1: |:T31 T32}’ TQtQ: |:T33 T34},

T3 T3 T3 Ts Th T Tiz Ti
A 0 = —p 0 ~ — yr] ~ 0 0
A== 2 here Ap; = Aoy = Aoy — '
[A21 A22:| where A [—x Mo]’ 21 [ p 2T 22 e

Notice that [T7, : t € Ry] and [T%, : t € R] are co-semigroups with the lower triangular
generators Ajq resp. Ags. Furthermore [—p]=gen[e™#' : te R ] and My=gen[U{ : teR,].

Therefore, according to [Staché JMAA, Lemmal,

Tt o e Pt 0
= _fst:o [e_p(t_s)ng} ds Ut |
ft . 1 0] 1 0
27| - fst:o ePrt=s)eds ert | | pTH(1—eft)e ePt |’
-t ! Tt—s § t Tt —€ yT -
T2t1 = f T5y ° Ao TTds = f 15 ° [ T} TP ds =
s=0 s=0 p €T
ft { 1 0 } —e PSe — yT<frs:0 e_p(s_r)Ugdr)a: yTUg p
= — —s —s s S.
2o lp 1(1 _ ep(t ))g epP(t—s) e Psp — 2T ( fr:O e—pP(s—T) Ung’)x xTUg

In particular

t K

T = [T2t1]11 = [ (=e)e " ds —yT< [ J e PS=NUE dr ds)x =
5=0 s=0r=0

t ot
=ep e Pt —1)— yT< [ [ e P=mUs ds dr):c,
r=0s=t—r
~ t t
T3, = [thl]m - _fo [yTUdS}ds = yT[ —fo

T} = [@1]21 = Io [p71(1 — ert=9))e(—ePoe) + ert=9)e=Psplds—

t
—f [p_l(l—e”(t_s))syT ( [ e_p(s_T)Ugdr> rtert=s) T < [ e Pt Ugdr> x} ds =
s=0

= p M2 p) (e —e ) 2y |

r

¢
[ pt(1—ert=)ee=Ps=M UL ds dr] x—
=t—

r

L=~

S

60



ep(t_s)e_p(s_’")Ug ds d'r}x =,

[p (1 — ert=5))gyT 4 ep(t=5)g T ]U@"ds =
¢ '

= yT[ Io ep~H(1 — ep(t_s))Ugds] + 2T [ Io ep(t_s)Ugds].

It is well-known [Deddens, Staché JMAA] that [U} : ¢ € R.] embeds into a cp-group of

isometries of some covering complex Hilbert space H > H with conjugation. Thus

Utz = [ e dP(\)z (2 € Re(H))
AER

in terms of a spectral measure P : A(C R Borelian)— {orthogonal projections on fI}

Since the operators U} = U§ Ui (t € R4) are real and unitary, necessarily

[ eMdP(\) = [ e MdP(\) = [ eMdP(-\) for all t > 0.
AER AER AER

We achieve formulas suitable for treating the entries Tlﬁ,é which involve integrations of
[U{ : t € Ry] with the aid of the Laplace transform in terms of the functional calculus
[Halmos] Fp : C(R) — L(H),

Fo:= [ (X)) dP(N), FA®(N ) := [ (A t) dP(N).

AER AER

Carrying out the integrations [, [ , it is immediate that

e~ Pt 0 0 0
Tt [f712:| .F)\ei)\t] 0 0
a 7'31 +y [-7:7511] y" [Frip)a 1 0 where
7'41 +x []:TLl} +y []:7'41 | 2" [.F’Tiél] +yT ]:7'222] (1— ept)% Pt
) It 1 —pt __ 1
7_51 — _ f e—p(t—s)ez)\s ds = _e—pt (6 : )’ 7_?1)5,10()\) _ 6(6 ),
s=0 iA p
—pt + (p+iN)t _ 2etA e (ePt — 1 ixt_q
75110\):_(@ e €' )+2 .e (e )/P, 7_3,52(/\)26 . ’
(2p 4+ Xi)(p + i) D)
t 2 pt _ —pt i)\t_2 —pt _ ,(2p4iN)t i\ it 1— 2pt
Tilo()‘):_‘i‘(g +,0)(62 e ), Tillo\):p(?)e e il )+ e (1—e ),
p 2p 2p(p + A1) (3p + Ai)
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12ip®(1 — €M) + p? X\ (4e Pt — 6eP' + 2 4 (2627 — et + 4))

W) =
202 A(GX + 2p)(iX — p)(iX + 3p)
N ipA? (€M (=3 — et 4 dePt) — 5ert — 3Pt + 8)
£
202A(GA 4 2p)(iX — p)(iX + 3p)
N A3 (ept — 24 e Pt et (20t — 2ePt 1))
€ )
202 A(IA + 2p) (iX — p)(IX + 3p)
0 eft — Mt 1 _ g—ipI — X+ et +ipet
P op—in T AN = p)p

Finally we calculate the terms Us o from (x) and substitute them into (V") to achieve the

closing result.

Theorem. Let [¥! : ¢ € R, ] be a cp-semigroup of holomorphic Carathéodory isometries
of the unit ball of the spin factor S := SPIN(H,~) such that ®'(e) = e (t € R,) for some
extreme point e of the unit ball. Then there exists a cy-group [{I\lt : t € R] of holomorphic
Carathéodory isometries of the unit ball of a spin factor S := SPIN(ﬁ, 7) with H > H and
with conjugation extending that in & with the dilation property

U =U'H (t€Ry).

o~

Furthermore the dilation group [¥' : ¢ € R.] is Mobius equivalent to a a co-group with

Vesentini-generator of the form

-p 0 0 0 1 0 01
r -z My y O 1 : 10 Iy 0 0
p ¥ —¢ p 0 0 1 0

where ]\/4\0 = —[]\/ZO]T is a possibly unbounded skew-selfadjoint extension of the operator

My to H and I := Idg . o, In terms of the spectral decomposition My = J (iN)dP(N),
AER

the maps ®! can be written as finite rational expressions of the terms
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zyeft et xy, 2Tyt | T’i% dP(\), Laplace™ " (Laplace(wq)/[1 — Laplace(wq))

AER

with a function wq(t) := e~ f [ e d{y|P(\)y) ds for suitable large 2.
s=0 ) eR

Case (2) As we have seen, up to Md&bius equivalence, we may assume that the Vesentini

generator G’ has the form

0 2pa—e 5 p1 P2
e—2p2 0 —zT p2 —p1
G = |-x re My 11 2
P1 P2 xlf 0 —¢
p2 —p1 zT e 0
We can take it into a convenient quasi lower triagular form as
—p1 €—p2 O 2e 0 0O 1 0 1 O
po—c —pm 0 0 % 10 0 0 -1
T-1G'T= Ta -1 My 0 0 with T:=[0 0 Ipb 0 O
P1 P1 ri P1 —€ — P2 0O 0 0 1 O
—p1__ —py x5 _pate  p 00 0 0 1
In terms of (C? ® H© [Cu @ Cv] & C?)-blocking,
—p 0 0 .
T71G'T=| 2 My, 0| withp:= _(gp_l ) pz},,u:: {pl _pz ]
R p2)  m P2 —p1
It follows (from the triangular lemma [Staché JMAA]) that
exp(—tp) 0 0
G Gy exp(tp)
t
G, = f Uszexp ((s —t)p)ds, Ghy = fo exp ((t — s)p)z"U§ ds,
t
. oo . , ,
(G4 Gl) = [ Gl [ o] { . 52] dr ie Ghy= [ Gi'[uGh +2TGydr,
r=0 r=0

t

Gi = [ exp((t—71)p) [,u exp (—rp) + :fo Uiz exp ((s —1)p) ds] dr

r=0

cost sint
—sint cost

[
(e —p2)) sin(t(e — p2)) } .
t

(e — p2)) cos (t(e — p2))

Since eXp( [ D }, here we have

t
exp (tp) = er! [_C Zisn((
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Problem. : € D="zeD (ie t Uz diff. =7 ¢ Uz diff.)  [YES]

Lemma. Jz tw— Uz, Uz diff. = Jt e € {£1} ¢+ gk diff.

Proof. t — U, = k,;V,T = R;V,zx diff.

t = (ki Vix|FViz) = K7 diff.

Vh e R 31 open intv. around h, Re(k?/Kk7) >0 (t € I)

ceyd_9,J1,Jo,J1,J2, ... chain of intervals Ji C I, (k=0,%1,...)

dk — vy, € {£1} g1 = vpsgn(ke/ky) (t € Ji) well-def. and suits

Corollary. F Nconj(F) # 0 = F = conj(F)

Proof. 0 # z € FNconj(F) = t — Uz, U,z diff. = terky, Et/it_l diff.
zeF=>t—egViz= 5tmt_1Utz diff. = t +— conj (5tmt_1Vtz) = U,z diff.

Proposition. F is closed under conjugation in any case.

Proof. The only case of a JB*-subtriple H such that HNconj(H) = 0 is if H is a Hilbert
space spanned by a collinear grid {27V2(uy, +ivy) : k € K} where {ay, by, : k € |K} is (-|-)-
orthononormed. Also TRIP(H) = {w + iT(w) : w € G, (w|w) = 1/2} with some subspace
G C Re(E) and an isometry 7' : Sphere(G) — Re(E). The case F = H is impossible:
then t — a; = wy +iT (wy) diff. = t — @ = wy — T (wy) diff. = {as,a;:t € R} CF.
Assumption without loss of gen.: U; = k;V;, t+— k; diff.

Notation: F':={z € E: (z|F)=0}. (# FtJordan)

Proposition. E=F (i.e. FX =0).
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Proof. F = conj(F) = F+ = conj(F') spin factor. dim(F+) >0=3ycF+ 0#£y=7
Calculate t — ®'(y) = My o Upy.

M, (z) = a+B(a)?[1+L(z,a)] "'z, B(a)=1-2L(a)+Q2 : z — z—2{aaz} +{afaza}a}
yeFaeF=  lf)=Wlf)=0(feF)

{fay} = (flo)y + (lo) f — (WI)g = (floyy, {fyg} = (fly)g + {gly)f — (9l/)g=—(9|F)7
z1+y1 =1+ L(y,a) "'y

y =1+ L(y,a))(z1 +y1) = 21 + y1 + {yaz1} + {yay: }

0=ux, — (y|y1)a (F-component), y =11 + (z1|la)y (Ft-component)

v =, y1) = (Ylyr) = (1Y)

n= A=, = ey = (1 - @)y
y= () = (=@l = 9=
{yl)a +y

1+ L(y,a)] 'y =21 +y1 =ya + (1 — v(ala@))y = T+ (@a)(glg)

z L F= B(a)z=z-2{aaz} + {a{aza}a} = z — 2(ala)z + |(ala)|?z

B(a)'?z = Bla)z  Bla) := /1 —2(ala) + [(a[a)[?
U = kVay, ¢ = (UylUpy) = 53 (y[y) diff.

t = '(y) = My © Ury = alt) + B(a(t))'2[1 + L(Upy, a(t)] " Uy =

e (lB)a® + Uy
= PO ) i)

IF dim(F+ =1 THEN V;y = y and Tyy = k;y = dim(F*) = 1 impossible

CASE dim(F+) > 1
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We can find y € F- with 0 £y L g

Calculate t — ®(z +y) = My o Uz + y).

My(z +vy) = a+ B(a)"?[1 + L(z + y,a)] (. +y), Ba) =1-2L(a)+Q? : z —
» — 2{aaz} + {a{aza}a}

yeF aeF=  (ylf)=lf)=0(f€F)

{fay} = (flody + Wlo)f — WlF)g = (flayy, {fyg} = (Flyg+ (gly)f — (9l)g =~ {9l )7
r1tyr =1+ Lz +y,a) (z+y)

r+y=1+Lx+ya)(zs +y) =21 +y1 +{wvax1} + {zay: } + {yax1} + {yay: }

v = z1+{zaz1}—(ylyr)a (F-component),  y=yi+(zla)yi+(z1la)y (F--component)
% =0(21,0) = (1 = (z1]a)) /(1 + (z]a))

Y1 = Y0y

Consider vectors y with 0 £y L 7: = =x1 + {zaz1} — <y}ﬂ>d =z + {zaxi}

1— {1+ L(x,a)] " tz|a)

z =1+ L@a) 2,  p= 1+ (z]a)

= y(x,a)y
Ts +y2 = B(a)?(z1 + y1)

My(z+y) =a+ B(a)"?(x1+ 1) =a+ B(a)l/z([l + L(z,a)] "tz + (=, a)y] =
= My(s) +1(z,@)B(@)Y%y  ify LgeFt

z L F= B(a)z=z-2{aaz} + {a{aza}a} = z — 2(ala)z + |(ala)|?~

B(a)'/?z = Bla)z B(a) = /1 - 2{ala) + [(afa)]?

If y Ly € F*then Uy € FL, (Uwy|Upy) = (reVi|k:Vay) = k2 (yly) =0,
Ot (x +y) = My (U + Upy) = Moy (Uz) + B(a(t))y(Usz, a(t)) Uy =
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= ®'(z) + B(a(t))y(Usz, a(t)) Uy

v(0,a) =0, t — a(t) diff. =
t— ®f(y) = ®'(0) +B(a(t))y diff. whenever y L 7 € Ball(F1)
——

a(t)
Thus 0+# y € F+ =0 contradiction if we assume dim(F+t) > 1

Proof. F = conj(F) = F+ = conj(F+) spin factor. dim(F+) >1=3yecFL 0#£y Ly
Calculate the effect of ' = M, o U; on F+.

M,(2) = a+B(@)2[1+L(z,a)] 'z, B(a)=1-2L(a)+Q2 : z — z—2{aaz}+{afaza}a}
ycFt = Wlf) = Wlf)=0(f €F)

{9y} = {floyy + wlo)f — WIHg = (flo)y, {fyg} = {fly)g+ (gly)f — If)T = —(9|F)y
14y =0+ Lz+ya) Hz+y)

r+y=014+Lz+y,a))(r1+y1) =21 +vy1 + {zaxi} + {xay: } + {yax1} + {yay }

r =z + {zax1} — (y|v1)a, y =1+ (z|la)y1 + (z1|a)y
1 —(x1]a)
= =v(x1,a

Consider vectors y with y L 70 = = 21 + {zaz1} — (y[Woy)a = 1 + {zxaz1}

1—([1 4 L(x,a)]" " x|a)

w1 =1+ L(z,a)] 'z, = 1+ (z]a)

y =v(,a)y (y L7y

2

T3 +y2 = B(a)'?(21 + y1)

Ma(z +y) = a+ B(a)" (1 + y1) = a + B(a)'?([1 + L(z,a)] 'z + y(z,a)y] =
= M,(z) + v(x,a)B(a)'/?y if y LyeFt

z LF = B(a)z=z-2{aaz} + {a{aza}a} = z — 2(ala)z + |(ala)|?z

B(a)/22 = B(a)z Bla) = /T~ 2(ala) + (@@
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If y L 5y € F+ then Uy € FY (Uy|Uy) = (ke Vil Viy) = k2(y|y) = 0,
(I)t(w +y) = MUz + Uy) = Ma(t)(UtQU) + B(a(t))y(Usr,a(t)) Uy =
= ®'(x) + B(a(t))y(Uz,a(t))Ury

v(0,a) =0, t — a(t) diff. =
t > ®(y) = ®Y(0) +B(a(t))y diff. whenever y L7y € Ball(Ft)
——

a(t)
Thus 0#y € F+ =0 contradiction if we assume dim(F+) > 1

zy = Q%(x), y1 = Bla(t))y(Uww,a(t)Uy  (nlyr) =0
Mz +y) = q’h(q’t(x +y)) = ®"(x1 + 1) = ®"(21) + Bla(h)y(Unz1,a(h))Unyr =
= " (z) + B(a(h))y (U@ (x), a(h)) B(a(t))y ((Urx, a(t)) UnUsy

Ot (z + y) = & (z) + B(a(t + k)Y (Urpnz, alt + h))Uryny

B(a(h)y(Un®'(z),a(h))B(a(t))y (Ui, a(t))
Blat +h))y(Ursnz, a(t + h))

r:=0= 1= z)=a(t), ®"(z1) =a(t +h), v(0,a) =1

B(a(h))y(Una(t),a(h)) B(a(t))
Bla(t +h))

UnUpy =

Uirn  (Span{admissible y} =F=)

UnUp = MhyUpiny Ahyt) =
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Formula for Mobius transformations in SPIN factor

M,(z) = a+ B(a)"?[1 + L(z,a)] 'z

Consider the case when {a,a,z,zZ} ORTN wrt. (:|-) and (a|a) = (z]z) = 1/2.
Well-known: a,a, z,zZ TRIPs, moreover

Jo.z:

’

[j ?} — aa+ Bz +9Z 4+ da  JB*isom. Mat(2,2,C) <> Span{a, z,Z,a}

Hence, with A := [3 O}, X .= [0‘ 'g},
H ¥

Myarua(@a + Bz + 77 +0@) = Jo.Mpa o ([?Y {j]) _

— Ja,z([l —AA*]—1/2(X+A> (1 +A*X)_1[1 —A*A]1/2> _vazlat2.mws__

[ — a— QI — A— NS+ BTy BN—1)\/1—pp
_ —1-as—Aa—Xa@é+ABHy V1=AX(—1-6—Xa—Xafid+ABH)
- Ja z — — — -

Y(=1+pE)VI=AA ABy—=b—Aad—p—plo

L /1= pfi(—1—Bd—Xa—Xafid+ABHy) —1—f6—Xa— X+ By

[ _ataEs+ AL ATS —BHy BV (A=A (A—|pf?)
—J 1+pd+Aat+dapé—ABuy  1+pd+Aa+iand—ABuy
- a,z B} D) — - -

’Y\/(l:|>‘|_)(1*|ﬁi| ) S+Aad+putpra—ABy
L 14+ o+ a+Aapd—ABry  1+pd+Aat+Aapmd—ABuy

_ 1 [a+aﬁ6+A+Aﬁ6—6m W_(1—|A|2)(1—Igl2)}
1+as+ X a+ s —MBay 2 L v/ (L = AP (L = [uf2)  S+Aad+p+pra—ABy

1 {amﬁéﬂﬁﬁ&—ﬂm 6\/_<1—M|2>(1—|;_L!2)}
(14+70) (1+Xa) = A8y~ 7 LW/ (I =N = [u]?)  d+Aad+u+pra—ABy

(X +A)A+AX)" = (X + A1+ (A"X)~]  where [? Zr = [ 2 E"]
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Fractional linear approach to spin factors

H Hilbert space (no conjugation is fixed)

Remark. The general form for spin factors is the following:

A subtriple S of £(H) is a spin factor if (and only if) S? € Cidg, S* € S whenever S € S.
In the case the conjugation on S is simply taking adjoints,

the scalar product on S is given by <A‘B>idH = %(AB* + B*A).

By a result of [Upmeier], every J*-derivation of S is a weak™-limit of linear combinations

J

X D {4 AN} = 237 [ A X + XA 4,).
J

Since the left and right multiplication operators Lz : X +— ZX resp. X — XZ commute,

we have

exp [X > Zi{AjA;X}} = exp (ZiAjA;)Xexp (ZZA;‘A]>

j J J
Since all surjective linear isometries of a JB*-triple are exponentials of J*-derivations

[Kaup], it follows that
U is a surj. lin. S-isometry <= U,V H-unitary USV =S, U=UV : X —» UXV.
In particular, every holomorphic automorphism & of Ball(S) has the form

dP=Myold = [XHUMA(X)V]
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Observe [Isidro-Stacho| that
My: X — (1—AA) VX + A)(1 - A" X) 711 — A*A)Y/?

is of fractional linear form extending automatically to Ball(£L(H)).
Question. Are the non-surjective linear isometries of S of the form U ® V7
We shall identify the operators in S with their matrices with respect to ortonormed basis

in (H). Actually this means that

Lemma. Suppose K is a Hilbert space and R, S € L(K) are orthogonal reflections (self-
adjoint operators with R? = S2 = 1) such that RS + SR = 0. Then there exist a unitary

operator W € L(K) such that, in matrix form, we can write

1 0], o 0 17,.
R_UL)_JU, S_Uk JU.

Proof. The two eigensubspaces K(¢) := {x : Rz = ex} (¢ = £1) or R span the underlying

space orthogonally: K = KM @ K1 and hence R has the matrix form

1 0

R:Vb o

} V*  with some unitary operator U € L(K).
In terms of the decomposition K = KM @ K-V, we can write S = V [iu 212] v
21 522

where 511 = 57, S22 = S5, and sg; = s]4 because S = S*.

Then the relation RS + SR = 0 means that we have

oz(v*vav*sm:F oHsu sublsu su} {1 0}:{2511 o]

0 -1 S21 S92



implying S=V [ 9 512

} V*. Since S? =1ie. (V*SV)2 =1, also
sia O

10 0 s ? S1257 0
= 12 — 12912 . . ) (1) (-1)
lO 1} LTz 0 } { 0 5?2312} ie. Sisan isometry KW < K=",

In matrix terms it follows that sj5 is a unitary operator: s1287y = 79812 = 1(= Id) and

we have the unitary equivalence

0 si2] [si2 070 1][st 0] [siz 0][0 1][s12 0] "
st 0| o 1|t oflo 1|T]0o 1|1 0o||0 1| -

Hence we obtain the statement of the lemma with the unitary operator U :=V [(1) (1)} .

Lemma. Let H = H; @ H; be an orthogonal decomposition and let A, B,C, D € Re(S)

be an orthonormed set such that A = [(1) _01}, B = [(1) (1)} Then we can find a

unitary operator U = [u 2] such that

0
UAU* = A, UBU* = B, UOU*:{M 00—1], UDU*:[O- %0]

%
0 -1 0 0

with respect to some orthogonal decomposition H; = Hy & Ho.

Proof. We can write C = [z; g;z], D = [Z; g;z} with suitable operators ciy, dre €

L(H;). The relation C' L A means that

0=2(A|C) = AC* + C*A= AC + CA = [} O] [e 2] + [o 2] [ L 0] = [23: 9]

-1 C21 C22 C21 C22 0 -1 0 2ca2

implying ¢17 = co2 = 0. The operator C is self-adjoint as belonging to Re(S). Hence

C = [0 612}. The consequence of the realtion C' L B is

*
ci, 0

0=2(B|C) = BC* + B*C=BC+CB = [{][%¢] +[% 611 0] = g7z ]

implying that ¢1o = ic for some self-adjoint operator ¢ € L(Hy).

Also, by assumption, we have C? = 1(= Idg) that is [(1) (1)] = [Eici%]2 = [82 CS}.
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It follows ¢? = 1(= Idg, ), thus is the operator c is an orthogonal reflection.

Similar arguments apply for D. Therefore

| 0 ac | 0 : e S S
C—{_Z.C 0], D_{—id 0} with c=c",d=d*,cc=d° =1.

Finally we proceed to the consequences of the relation C' L D:

0= 2(C|D) = CD + DC = [“”dc 0 }

0 cd + de

We can apply the previous lemma with R := ¢ and S := d with the conclusion that

I 0 , ,_ 10 1|, .
c—u[o _Ju,d-u{l O]U for some unitary v € L(Hj;.

We can check by immediate calculation that the statement of the lemma holds with the

unitary operator matrix U := [g 2] .
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FRACTIONAL LINEAR FORMS

A B

A:[C D

1 € L(H;,Hy),

F(A): X v (AX + B)(CX + D)~ = [A(X 1)T],[AX 1)T],"

F(AB) = F(A) o F(B)

M, = FM), My =ding (G700 L]

Surj. lin. isom: X — UXV*, unitary U € L(H;), unitary V € L£L(Hs)

ot .= F(A), [¢' : t € R] str.cont,lprg.

A = Mgydiag(Uy, V4)

Attention: U @ V* = F(diag(U,V)) = F(x diag(U,V)) with any x € T

Adjusted str.cont.: [Staché JMAA 2010, Cor. 2.6] can be applied with linear isomeries

instead of unitary operators

dt— k(t) € T t— k(t)Us,t — k(t)V; str.cont.

Case of E = L(H;,H;) with r := dim(H3) < o

We consider only str.cont.1-prgroups [P : ¢t € R] in Aut(B)

Recall. U' = M, oUy, a(t) = ¥ (0),

M, : 2= [1—aa*] V% (z+a)[l +a*z] [l —a*a]'/?, Ui : X — ug X0} (ug, vy unitary)
Strong continuity: ¥¥(z) =z 4+ 0"™(1) =z +¢g¢, g — 0 (t = 0)

Remark. If [T’ : ¢t € Ry] is a str.cont.l-prsemigroup in of Carathéodory isometries of

B then, by [Vesentini (1994), Thm. 4.3 (p.539)], we have the same formula with each u;
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being a linear not necessarily surjective isometry.

a(t+h) = a(t)+0""™ (1), Mygtn)(®) = Maq)(®) + gt.h,a Sup 19t,h,
z||<1

| =o(1) for h = 0
Ve>0 36d>0 ¥':(140)B— (1+¢)B well-defined (|t| < 9)

Mit=M_o, t—Ug=M_g4) 0P str.cont.

[Staché JMAA 2010, Cor.2.6] = Ft—r(t) €T t+— k(t)us, k(t)v, str.cont. (pointwise cont)
F (é g) :z+— (Az + B)(Cx + D)™t

= g [0 Lo e 165

Ut = F [é: g:}, t— Ay, By, Cy, Dy str.cont. determined up to a cont. factor t+— k(t) €T

Ptth — gt o h —s [é:: g::] = A(t,h) [é: gi] [é: g’;] 3 A(t,h) €T

Assumptions without loss of gen. up to Mobius equ.:
(0) 0 € dom(¥") ie. t+~ a(t) = TH0) diff.

(1) AcAp = ANt R Ao,  AtR) €T ={CeC:[¢|=1}

@4=[g 5]

(3)* 3 common fixed point (by reflexivity): F(A)E =E (teR).

t— A, By, Cy, Dy str.cont.  Ag = [(1) (1)}

A(t,h) = A_yn) A Ay cont. int,h  (prod. of unif.bded. str.cont. lin. maps)
V(E) = B, E=F(A)E)=F|% 5| (B)=(AE+B)CE+ D)
— E _ E
AE+B = A (T)] . cB+D =4 (T)]
St = [At(E 1)T}2 = CtE + Dt.
T _ |AtE+By | _ | ESt| _ T
A(E DT = [GE b ] = [55] = (B )T,
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SuS = A(t, h)Sein

Lemma. [S; : ¢t € R] Abelian family, A(¢t,h) = A(h,t).

trace AB = trace BA  in finite dim.

trace(S¢Sh) = A(t, h)trace(Siypn),  trace(SpS:) = A(h, t)trace(Si4n)
[A(t, h) — A(h, t)]trace(Si1n) =0

trace(S:Sy) — trace(Sp) = trace 1 = dim(Hs) (¢,h — 0).

de >0 At h) = Ah,t) (], |h] < e).

Sy — Sy, for |t], |h| < e.

u,v € R, u/m,v/m € (—¢,¢),

Sy, = AS™ INGEET, = S, — S, Q.ed.

w/m>’

Sy = ﬁS;’}m
Remark: In infinite dimensions, AB = ABA #0#4 A— Bevenif A € T.

Example: A : e, +— e,11 (n =0,%1,...) bilateral shift, B : e, — A"e,.

Remark: Even in r < oo dimensions, with \" =1, 3 A/B AB=ABA#0, AV B.
Example: ey, ...,e,_1 orthn. basis, A: ey e1 > es— ---e._1 — ey, B:ep— Ney.
Proposition. 3t — pu(t) € Cy:= C\ {0} cont., x1(0) = 1 such that

((t)Sy - t € R, [u(t)A; - t € R] str.cont.1prg.

Proof. Lemma = & := Span{S; :t € R4} Abelian algebra with unit Sy = 1.

M : § — C nontriv. mult. functional.  (actually 30 # x € Hy Sz = M(S)x (z € 5)).

M(S)M(Sp) = M(S:Sk) = Mt, h) M (S¢yp), M(S;) # 0 since S; is invertible
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Define  pu(t) := 1|/M(Sy) (Triv: ¢t — p(t) cont. p(0) =1)
B 1 At h) B
~ M) T WS M)
_ M(S)

(SOM(Sn)/M(Seen) g 1
M(SOM(S) " T M(Siin)

11(t)Seu(h)Sh

Sten = p(t + h)Sen

Assumptions (by passing to ,u(t)St,u(t)AtZMa(t)diag[’;EgZ:} for S¢, Ar) : (1),(2),(3)+

(4) [S; :t € R4)] cont. 1prsg in L(Hy) for Sy := C,E + D,

= d Ay Bel |zl [|z] . .
t:OAt_ {{y] — i |:Ct DJ [y}} = {{y} St wpx, vy dlff.}

D := dom(A") = dom(u') ® dom(v’) = dom(U’) @ Ha since dim(Hy) < co.

d
r._ %
A'_dt

A’ is of H; @& Hs-split matrix form since D = D; & Dy (by def.)

Observation: t — ®'(X) diff. whenever [)zy] €D Vye H,.

Proof: X € L(H1,Hy) = since dim(Hz) < oo,

s A m diff. < e A, m y = A, [ff/} diff. Vy € Hy. Quee.d.

Remark. From the general theory we know: if 0 € dom(¥’) then

dom(¥') = {X : t — U,(X) differentiable} = [dense Jordan*-subtriple] N B.

Since Uy : X — u; Xvf, all the operators x @ y* (x € dom(u’),y € Hs) belong to dom(¥’).

Notation: b:=da' = 4| a(t), A’ A, with dom(A4") := {z: L] A, exists},
dt 1t=0 dt 1t=0

. d
T E‘tzo

B’ B, C' = C;, D = D; analogously

= %L&:O %‘tzo %’t:()

‘I]t(O) - a(t) = (At . 0 + Bt)(Ct . 0 + Dt)_l - BtD;1

S; =CyE+ Dy, S :=C'E+ D’ well-def. in finite dim.
A, Byl _ 1 1—a(®)a®*)" 2711 a(t)] q: ug

Ar=| = dlag[&fagtg*é&ﬁ—uz} [a(t)*( Ndlag[m]
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Ay =1 —at)a®)*] Y ?uy, By =[1—at)*a(t)]"Y?a(t)v,,

Cy = [1 —a(t)a(t)*]"2a(t)*us, Dy =[1— a(t)*a(t)] v

By assumption we consider the case 0 € dom (V') i.e. if b = a’ is well-def.

A=, B =dvy+a(0) =b, C'"=[d]*u(0)+a(0)*u =b*, D' =

Hence can summarize the concusion of assumptions (0),...,(4) as follows:

Theorem. Up to Mobius equivalence may assume that

Ut = F(A;) where [A; : t € R] is a str.conr.1-prg. in £L(H; & Hy) = £(H;, Hs) such that
A = {Zﬁ: f,] H; ® Hy-split with dom(A’) = dom(u') ® Hy; v/, v’ i-symm. ( i-self-adj.).
We have At[]f] = [?]St where [S; : t € R] is a cont.1-prg in L(Hy with S' =0*E + /.

Furthermore we recall

A= Mg, v = dig ([ 700NN L0 g, ),
Ay =1 —at)a®)*] Y ?u;, By =[1—a(t)a(t)]"2a(t)vy,
Cy = [1 —a®)a(t)*] " 2a(t) v, D;=[1— a(t)a(t)*]"?v,
dom(A') =Dy ®Hy,  D; =dom(A) = dom(&|,_ u).

t + a(t) = B;D; ' is differentiable, a(t) =tb+o(t) att=0
L], v

A,:{A B}:{u b ,

V(X)=4|_ V(X)) =3|,_(AX +B)(Cx+Dy)~* =
= (A/X -+ B/)<C()X -+ Do)il — (A()X + BQ)(C()X + Do)il(C/X + Dl)(CQX + Do)il =

—A'X 4B~ X(C'X + D) = /X +b— Xb*X — Xv' = =b— {XbX} + 4| _ U,X
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wli)=1a mll] -1

[S¢ : t € R] str.cont.1prg, S := Sy = gen[S; : t € R

it
dt 1t=0

Y € H2 = t— .At [Eyy] — [?] Sty dlff, [Eyy] c dOIIl(_A/), Ey c Dl-
Projective translation: 7 := {1 ?], T-1.— {1 _1E}
B = T_lAtT, B =T AT

A’:gen[At:tGR}, B’:gen[Bt:tER}, dom(B') = T~1(D; @ Hy).

dom(B') = {[d—Ey]®y:d € Dy, y € Hy)} = Dy ® Hy(= dom(A4")).

T_l[At Bt],r:{l —E} [At AtE+Bt]:{1 —E] {At Est}:

Cy Dy 1 Cy CyE+ Dy 1 Cy S
[A—-EC, 0
- Ct St |
A —FEC" 0 u' — Eb* 0
!/ —1 g _ —

Wy = [Bt]u str.cont.lprg. W' =gen[W,:tcR]=A"— EC' =u' — Eb*
Sy = [Bt}zz str.cont.lprg. S’ =gen[S; :teR]|=C'E+ D' =b*E +/

Triangular lemma [Staché JMAA 2016, Lemma 3.8] =

, Wi 0.
B—gen{{fgst_hc,whdh s, teR

[\ /

By
U= F(B): X W X[ [ S nC'WyXdh+5,] ",

A =TBT t=gen[A :teR], T:=FT):X—X+E
ot = .F(.At) = .F(TBtT_l) =ToW;o0 T-1

Closed integrated form: For all X € Ball(£(H,;, H,)),
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t —1
(Pt(X) :E—I—Wt(X—E){/ Si_p C’ Wh(X—E)dh—f—St}
0 \b"’

o' = F(A), A= {Wt ZEJt B _Sivftggjt)E} L J = /Ot S nb* Wi dh
Vector fields
P'(X) € L(H;,Hy) [Hl — H, operators]
ts (X)) diff. <= ¢ ON(X)y diff. Vy (< dim(Hs) < 00.)
If ran(X) C Dy( = dom([A4'];1)) then

o =1L _ 9, dom(®’) = {X : ran(X) C Dy}

Kaup type formula up to Mobius equ.:
(X)y = 4|, _ [AX +B[C:X + D]ty = [AX + By — X[C'X + D'ly =

=[b—- XX +uX - Xo']ly (ran(X) C Dy, y € Hy)

Integration of Kaup’s type vector fields

Q: X —b—Xb"X +uX — Xv vector field on L(H;,Hs), dim(Hz) < oo

be L(Hy,Hs), v :D; — H;y densely def. i-self-adj., v € L(Hy) i-self-adj.

Question. 37 [® : ¢t € R] str.cont.1-prg. in Aut(B) such that ' = Q7

Assumption. E € dom(Q2), ||E|| =1, Q(F) = 0. With the earlier construction, let
—1

U(X) = E+Wy(X—E)| [y Se—nb* Wi, (X —E)dh + S,

Remark. = ®'(= £| _ @)
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New condition. If [A; : t € R]| str.cont.1-prg and ®' = F(A;) € Aut(B) (¢t € R) then,
with c(t) := ®*(0) = B;D; " we have &' = M) o U; with U; = u; ® v}, uz, v unitary.
Hence, with tA(t) # cont. and ¢ — ws, vy str.cont.,

[1 = () e)] /2] [~ t

(5a) [1—c(t)e(t)] V2[4, — c(t)Cy] = \(B)ug,  (5b) B, — c(t)D; = 0,

diag | 1~ C@)C(t)*]_m} { 1t)* _Cl(t)} A, = A(t)diag {”‘ﬂ that is

(5¢) —c(t)*A; + Cy =0, (5d) [1 —c(t)*c(t)] Y ?[—c(t)*B; + Dy] = A(t)vy
In particular (5b) is trivial and

0=—(B,D;")*A, + C,,

[Ar = BiD; ' Gil[Ae — BiDy 'Cy]* = [A(1)]*[1 = B,D; (B D; 1)),
[~(B:D;')* By + D[~ (B Dy ')* By + D] = [A(1)]P[L — (B:Dy ')* B Dy ']
Theorem. Given any b, F,u/, v’ satisfying (1),...,(4),

we have ®' € Aut(B (t € R).

Proof. It suffices to see only that each ® maps the unit ball B into itself. We have

A" =gen[A; :t e R] = [b(l 8} + {% S,]

Since u/,v" are i-self-adjoint (u’ possibly unbded),

!/ ~ ~
[% B,] =genU' : t e R|, U" :==u' @0, [u' : t € R], [0' : ¢t € R] str.cont.unitary 1-prg.

Recall [Engel-Nagel, p.230 Ex. 3.11] that pointwise we have

_ 1 t 0 b t/n n_
Ac= Jim e (&[0 o])u] =

= lim [[Mb’bius matrix| [£(Hy, Hz) —unitary matrix”n =

n—oo

81



= lim [[Mébius matrix}] = [M('jbius matrix] .
n—oo

Hence each ®' = F(A;) is a Mobius trf. mapping B onto itself. Qu.e.d.

Determining parameters (u/, E, S’)

We have seen: the integration of a vector field x — b — {ab*z} + v’z — 20" of Kaup’s type

with fixed point E in OB gives always rise to a str.cont.1l-prsg. in Iso(dg).

We shall see, it suffices to assume withot loss of generality that the fixed point E is a

tripotent, i.e.

E=) fi®e; {f1,....fr} ORIN C Hy, {21,...,2,} ORTN C H,.
k=1

Necessarily, algebraic relations hold between the parameters (b,u', E,v’,S"). Namely

[2{: :,] [E;] = [Eg?/}, u’ = i-symmetric-dense, v’ = i-selfadjoint.

We know that these conditions are sufficient already to give rise to a str.cont.l-prsg. in
Iso(dp). We are going to establish structural algebraic conditions to

vE+b=ES", bVE+v =5, u =isymmetric-dense, v’ = i-selfadjoint.
Equivalently we have

b=ES" —uE, v =-[]"ie 8 —b"E=FE*—[S']" which is the same as

(x) S —[SV"E*E + E*[W)*E = E*ES' — E*u'E — [S']*.

By the skew symmetry of u’ we have E*[u/|* E = —E*«'E and hence () has the form

(xx) [1—E*E]S" = —[5']*[1 — E*E] ie. [1— E*E]S’ i-sefadjoint.
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We investigate (**) in matrix form. For some orthonormed systems f1, ..., fy € Hj resp.

e1,..., e, € Hy (being complete Hy) we can write (by means of SVD decompostion)
N N

E:Z)\kfk@)ez, 1=X\2>--->2 Ay >0, S = ZO’kgfk@e;
k=1 k,f=1

The relation (x*) means that
(***) (I—Ak)a'kg:—d_kg(l—/\g) (]C,KZL...,N).

We can write the sequence [1 — Ax]&_; in more details in the form

[1—A1,...,1—AN}:[0,...,o,ug,...,MQ,...,MT,...,MT], 0< pig< - < 1y <1, my >0.
—— N — —————
mi ma Mo
'
Then, with the partition o = [akd ivg_l = [a(p""’)} into submatrices o9 ¢
T p,q=1
Mat (m,, mg), we can write (x * *) into the form p,0®? = —pu [c@P]* (p.g=1,...,7).

This is possible if and only if
o) is arbitrary, o®P) = —[gPP)]* oD = 0P =0 (p>1),

o9 ig arbitrary and oler) = —(up/uq)[d(p’q)]* (1<qg<p).

Proposition. Assume [®: ¢ € R ] has a Kaup type generator ®'(z) = b — {zb*z} + U’z
with dom(®’) = dom(U’) N B where is a (not necessaarily closed) Jordan subtriple of E.
Assume furthermore that F' is a common fixed point of the continuous extensions 3 to

the closed unit ball B of the maps ®¢ belonging to a finite dimensional face F of B. Then

Span(F) N B C dom(®").

Proof. We know [Peralta etc.] that there is a tripotent E # 0 (actually the middle point
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of F) such that

F :E+ [BHEJ_Jordan] — {E+A . AJ_Jordan’ ||A|| < 1}

EJordany g 5 finite, say N (< oo) dimensional subtriple of E.

where (
Therefore F = E + A where A =" | A\yE), for some Jordan-orthogonal family
Ey,...,E, withm < N in EHordan and 0 < Ay < --- < A\, < 1.

On the other hand,

{reB:tr 5t(:1:) is differentiable} = {z € B : t — Ulis differentiable} = B N J with the
Jordan subtriple J := {z € E : ¢t — Uis differentiable}. Since the orbit ¢ — F = 5t(F ) is
constant, trivially F' € J and hence

AF ={(F :|{| <1} C dom(®') = {z € B : t — ®'(z)is differentiable}.

Thus, since Span(F) = CE + @, CEy, it suffices to see that

(x) @®k=0"CEy CJ where Ey := E.

Since F' € J and J is a linear submanifold being closed to the triple product, we may
establish () by showing that Ej, € SpanL(F, F)¥F (k=0,...,m), or which is the same,
(xx) {L(F,F)*F:k=0,...,F} is a linearly independent family.

Notice that the vectors Ey,...,F,, are linearly independent as being pairwise Jordan
ortogonal tripotents. Observe that, by setting A\¢ := 1, we have

L(F,F)"F = L( 2o M Bk 2ok )‘kEk)n 2o M Bk =301, )‘inHEk-

Hence (*x*) is equivalent to the statement that
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(%) det[ A2 1] :ano £0.

However, (x * %) is easy to see because

[Ai”“} :n—O = diag(Ao, - - ., Amn) VanderMonde (A3, ..., A\2))

with 0 < A\ <X <+ < A <1=Xg.

Corollary. If E = £(H;,Hy) with r := dim(Hs) < oo and [¥* : ¢t € R,] is a Cp-SGR
in Iso(dg) then there is a Cop-SGR [®' : t € R, ] in Iso(dg) being Mdbius equvalent to
[U!: ¢t € Ry] such that its generator is of Kaup type and whose continuous extensions to
the closed unit ball admit a common fixed point which is a tripotent.

Proof. We know [Stacho, RevRoum17] that any Cop-SGR in E = £L(H;,Hy) with r :=
dim(Hz) < oo whose 0-orbit is differentiable has a Kaup type generator (whose domain
is the intersection of a not necessarily closed Jordan subtriple with the unit ball) and the
continuous extensions of its mebers admit a common fixed point in the closed unit ball.
Furthermore the boundary of the unit ball is a union of finite (at most r) dimensional
faces. Let F' = E'4+ A be a common fixed point of [@t :t € Ry] where E is a tripotent and
A 1Jordan B with ||A|| < 1. Consider the Mobius equivalent Co-SGR [®! : ¢t € R, ] with
! := M_0W'oM,. According to the Proposition, we have £4 € BNY,_, CL(F, F)F C

dom(¥’). Hence the orbit ¢ — ®%(0) = M_4(U*(Ma(0))) = M_4(¥*(A)) is differentiable,

that is 0 € dom(®Prime) implying also that &’ is of Kaup type. Also we have

—t —t

O (M_a(F)) =M_a(¥ (F)) = M_a(F) (t€Ry)
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that is the point M_4(F') is a common fixed point for [5t :t € Ry]. However (since

B | Jordan 4
M_A(F)=M_p(E+A) =—-A+BAYV? 1 -LIE+A A Y (E+A) =
= —A+BA)YV21-LA A (E+A) =
= —A+B(A)Y?1 - LA, A 'E+ B(A)Y?[1 - L(A,A)]*4 =
= —A+B(A)'2E + B(4)'’[1 - L(A, A)]'A =

= A+ E+BAY 1 -LA A " A=M_,(A)+E=0+E=E

which completes the proof.

Lemma 1. Let E := £(H;,H,) with r := dim(H;) < oco. Assume [®' : ¢t € R,] is
a Co-SGR in Iso(dg) such that ®" = M,y o U;|B where the orbit t — a(t) = ®*(0) is
differentiable and U; = ‘BZ/{,;, t— U = [[ojtvﬂ is such that Uy, V; are linear isometries of
H;, H; respectively and there is a function ¢ +— u(t) € C\ {0} such that [u(t)M,ul; :
t € Ry]isa Cyp-SGR in L(H; @ Hy). Then

dom([M o U")(:={X € E: [0,€) 3 t = M), x) diff. for some £ > 0}) =

={X € E : range(X) C dom(U")}.

Proof. Since dim(Hz) < oo,
dom([M o U])) = {X € E: t — ®!(X) is differentiable at 0+} =
={X € E: t+— Uy (X) is differentiable at 0+} =

={X €E:t~ U XV, ! is differentiable at 0+} =
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= {X €E:t— U XV, 'y is differentiable at 0+ for all y € Hy}.

By assumption (and since a+ M, is real-analytic), the orbit ¢+ u(t)V; in the finite dimen-
sional space £(Hy) is differentiable, implying also the differentiability of ¢+~ u ()~ 'V, ™t
Let e1,...,e,. be an orthonormed basis of Hy and consider any operator X € B. We have
WU Xex = U XV () Vie = U XV, é () Viler|ec)er =

_ é (1) Vilex|e UL X Vi ey,

U XV er = [®UX [p(t) 7V e = EZ; (le(t) " Vilex|ee) n(t)Ur Xeg.

Thus the orbits ¢ — UtXVt_lek and t — p(t)UiXe, are differentiable in the same time.
By passing to linear combinations we conclude that X € dom(®’) <= t+— U, XV, 'y is
diff. for all y <= ¢+ pu(t)U; Xz is diff. for all z. Observe that the latter statement can

be interpreted as Xz € dom(u(t)Ut)/ for all z € Hy that is range(X) C dom(,u(t)Ut)/.

Lemma 2. Let (E,{..’}) be a JB*-triple of finite rank, J C E a dense linear subanifold
being closed for the triple product and let e be a tripotent in J. Then there is a tripotent

f in J such that f 17°79a% ¢ and e + f is a maximal tripotent of E (i.e. {x € E: g |Jordan

e+ [} ={0}).

Proof. Recall [Kaup81, Neher| that, as a consequence of the fact that only finite Jordan-
orthogonal families of tripotents do exist in E, every element z € E admits a finite spectral

decomposition of the form z = >, NESP(L(2)) Vzy where the vectors zy are pairwise
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Jordan-orthogonal tripotents being real-linear combinations from the family {L(z)¥z :
k=0,...,7r—1} where r := rank(E{..*.}). That is, every subtriple K C E (even a non-
closed one) is spanned algebraically by Trip(K). In particular, any non-trivial subtriple of
E contains tripotents. Consider any maximal family F of pairwise orthogonal tripotents
in etJordan .— fp ¢ J . » | Jordan o3 The set F contains at most (r — 1) elements and its
sum f:= ) -pgis a tripotent in J N etJordan  Also e + f € Trip(J). To complete the
proof we show that the subtriple Eqg := [e + f]17ordan of E is trivial (otherwise it would

contain non-zero tripotents). By the well-known Peirce identity of tripotents [Neher],
Lie+ f)?—=3L(e+ f)>+ iL(e+ f) =0.

Hence Eg = kernel(L(e + f)) = range(P) where P := 2L(e + f)? —3L(e + f) + Idg is a
projection (P? = P, the so-called Peirce-0 projection of e + f). Consider the the subtriple
Jo:=JNEg={z€J:z 1% ¢ 4 1) Observe that Jo = PJ because P preserves the
subtriple J. Since J is supposed to be (norm-)dense in E, Jo = PJ is necessarily dense

in PE = Ey. However, since non-trivial subtriples contain non-zero tripotents, we have

Jo = {0} by the maximality of the family F.

Proposition. Let [U*: ¢t € Ry]| be a Cp-SGR in Iso(dg) for the unit ball B of the TRO
factor E := L(H;,Hs) with dim(Hz) = r < co. Then we can find a Mdbius equivalent

Co-SGR [®! : t € Ry ] such that &' =‘PA" (t € R;) where [A" : t € Ry] is a Cp-SGR in
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L(H; & Hs) with generator of the form

Uj,-b4, 0 0 0 0
—ba1 Usy U 0 0
A=T| —bsx U}y Ul 0 0 |7 dom(A)=dom(U")® H,
11 b1 b3 bu+ Vi bio
bty 0 0 0 VY,
3
U = [U‘;’k}j - U]l‘,k e L(H,;,H1x), H; = ®§:1H17j ;

2
V= [va/,m} m=1 ‘/E/,m € ‘C(H2,€7 HQ,m)? H; = @?=1H27£ ;

b:= [bk,e] PR bje € L(H; j,Hay), dim(Hyy) = dim(H;,)

0=1,2

where U’ = gen[U? : t € Ry] resp. V' = gen[V' : t € R, ] are generators of Cy-SGRs of

linear isometries of Hy resp. Hs, furthermore

Idg,, 0 0 J 0 Idg,, 0 0 —J° 0
0 Idg,, O 0 O 0 Idg,, O 0 0

T=| 0 0 Idg,, O 0o |, 7'=| 0 0 Idg,, O 0
0 0 0 Idg,, O 0 0 0 Idg,, O

0 0 0 0 Idm,, 0 0 0 0 Idm,,

where J : Hy 1 — Hj ; is a surjective linear isometry.

Proof. In [StachoRevRouml17, Cor.7.6] (as a completion with adjusted continuity argu-
ments Vesentini’s work [Ves94]) we estabished that [¥! : ¢ € R,] is Mobius equivalent
to a Cp-SGR [®! : t € Ry] of the form &' = P A; where [A; : t € Ry] is a Cp-SGR in

L(H; ® Hy) with generator

u b U — Eb* 0

! _ —1

A_{b* V’}_T[ v B4V T

where U’, V' are generators of isometry Cp-SGR in H; resp. Hy, dom(A’) = dom(U’)®Hs,

b,E € L(Hy,H,) with ||E|| =1 and ®'(F) = F (t € Ry). We refine this representation
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by a choosing the common fixed point F to be a tripotent. According to the previous
Corollary, this can be done without loss of generality. Furthermore, by Lemma 2, we can
find a complementary tripotent F such that F' 17°rdan B and F+ F is a maximal tripotent

of E = £L(H;,H,. Actually we can write

m T
E=3 fi®ey, F= > fi®e
k=1 k=m+1
in terms of some orthonormed basis {e : k = 1,...,r} of Hy, an orthonormed system

{fr : k=1,...,r} in Hy and rank-1 Hy — H; operators f ® ¢* : x — e*(x)f = (z|e) f.
Define

H,, = ©",Cej, = ker™(E), Hyp:=a}_, . ,Ce,=ker (F), J:=FE[Ha;,

H, ;= @)L, Cfy =range(E), H,»:=®_,,,,Cfr = range(F),

H,;:=H;6[H;; ®H; ] = H) Srange(E + F).

Straightforward calculation yields

Uu b
—1 _
T [b* V’}T_
U =J7bly Ulg—=J*b5, Ulz—J"b5 Ul —Jb5 J+bu—J"V) bia—J"V],
/ /

Uz Uz Uss U1 + b b22
= Uz, Uz, Uss Uz1J + ba b3z
b1 b3, b3, b1 J + V1;1 V1j2
bis b3o b3o biod + Vo Voo

The Kaup type vector field corresponding to the generator of [®' : ¢t € R] is
P (X)=b—-X0*X+U'X -XV', dom(®')={X € B :ran(X) C dom(U")}.
Moreover even

[MoU)/(X)=b—-X0*X+U'X —XV’', dom(®')={X € B:ran(X) C dom(U")}.
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Taking into account that E is a common fixed point of the continuous extensions 3’ to

the closed unit ball B, we have

/

(*) 0=®(E)=b—Eb'E+UE—EV', range(E) C dom(U").

In terms of the submatrices b; 4, U]’.’k, Vi m» (%) can be written as
biy — Jbiy T + UL JVY, bio — TV,

0= bor + Ul J bao
ba1 + Usy J b2
Comparing the entries of 71 A’T with the entries above, we get
Ul,—by, 0 0 0 0
_b21 UéQ Ué?) 0 0
TﬁlA/T - _b3]_ Uéz Uég 0 0
11 b1 03 b+ Vi bie
b 0 0 0 Vio

whence the statement is immediate.
Lemma. Let p := P10j,,,(py = EE* and ¢ := 1 —p. Then p[U’ — Eb*]q = 0.

Proof. We have b— Eb*E +U'E — EV’' = 0. Hence

UE+b=EV' —EbE,
[U'E—b]" = [EV'+ EV'E|,
E*U'* —b* = [V'|"E* — E*bE",
~FE*U' +b* = -V'E* + E*bE* = [-V' + E*b|E”,
[-E*U' 4+ b*lg= | — EE*V' — Eb*|E*(1 — EE*) =0,
—[EE*U’ — Eb*]q = 0,

EE*[U — Eb*]g =0

since F = FE*FE and E* = E*EE*.

91



0=b—E0V*E+UE—-FEV', EE*E=EFE, Prya,g)=FEE" Pr,,.(E)=FEFE

0=(1-EE*)(b— EV*E +U'E — EV1) =
=(1—-EE")(b+UE) |* [U]*D-U antisymm.

0= (b*— E*[U']*)(1 — EE*) =

= (b*— E*U')(1 - EE*) |E-

0= (Eb* — EE*U")(1 — EE*) =

— (BE*EbV* — EE*U")(1 — EE*) = EE*(Eb* — U')(1 — EE")
0 = Prran(e) (U — Eb*) Prant (i)

H,; :=ran(E), Hy s := rant(E), P := Pry, ,

Py(U' — Eb*)Py = 0

(1 E . [1 -E U b
S N I P I

0=b—Eb*E+U'E— EV’

e [U = Eb) 0 B
T AT—{ b* V' - b*E
P (U — Eb*)Py 0 0
= | (U = Eb*)P,  Py(U' — Eb*)P; 0
b* P, b* P, V' — b*E

Py (U’ — Eb* )Py, =P2E=0= (1 — EE*)(U' — Eb*)EE* =
= (1—- EE)U'EE* = PB,U'Py

Py(U' — Eb*)Py = PU'P,

U, — Eb'P, 0 0
TTAT = Us 4 U 0
b P, v'Py, V' —b'E
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FINITE DIM. HILBERT CASE: INVARIANT DISCS
H, (.|) finite dim. complex Hilbert space. A unit vector e € H is fixed point of a complete

hol. vect. field of the unit ball
X(e) =0,where X(z):=—((tA—Xx—e)le)z+(iA+N)(z—e), A=A"€ LH), A€ R.

Question. Does there exist an X-invariant disc passing in B touching e?

Equivalently: 37 v Y e X(e+ (v)|v (¢ € C).

X(e+Cv) =—((iA — N)Cvle)(e + Cv) + (1A + N)Cv =
= —C((GA + Nvle)e + [||lv] + CiAv + [||Jv] =

= ([ PGEA—-X) +iA]v+ [||lv] = (1 = P)(iA = X)v + [||v]

where P := [ort.proj. onto Ce] = [z +— (x|e)e]. Thus a disc e+ (1 4+ A)v is X-invariant iff
JpeC (1—-P)[iA—Nv = puv.
Question. Is it possible that all the eigenvectors of (1 — P)(iA — \) are L e?

Observation: (1—P)(iA—\)|e* = [(1—P)(iA)(1—P)+Ald] |[ran(1— P) is a normal oper-
ator ran(1 — P) = e — e, Hence e admits an orthonormed basis fi, ... fy_1 consisting
of eigenvectors of (1 — P)A(1 — P) and, with some f1,...8y € R and v1,...,7nv_1 € C,

we can write the self-adjoint operator A in hermitian symmetric matrix form

B1 ey

B2 Y2

Matrix{fl ----- fN—l}(A) = '
BN-1 N-1

Y1 Y2 ot IN-1 BN
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Thus a vector v = [(1,...,(n-1, O}T =), Ckfr is a p-eigenvector of (1 — P)(iA — \) if
and only if v € Span{ fro i iBk—A= ,u}. Hence we have (N —1) independent eigenvectors
1 e. At most one more eigendirection of (1 — P)(¢A — A\) may remain which necessarily

consists of multiples of a vector of the form v = [Cl, oo O, l}T =), Cufr +e. Then

(1-P)(iA=Nv= 3 [C(iBr — A) + %] fr and

k<N

(1-P)A—XNv=pww <= (b —N)+ir=pn (E<N), 0=pu.
The latter system has no solution ((i,...,(ny—1) if and only if A = 0 and Sy = 0 # 4 for

some index k < n. This is the case when all the eigenvectors of (1 — P)(iA — \) are L e.

0

1

Example. N =2, A:= [(1) (1)}, e = [

] , X(z):= —(iA(x —e)le)x + iA(x — e).

Then {v: e+ v+ Av X-inv. disc} = Cf with f := [1 0]T.

1 0

Proof. P = [0 0

} , (1= P)(iA) =1 [8 (1)1 nilpotent with eigenvectors only in Cf.

Direct calculation:

e Rl R P e

2
X(e+(v)=X ({1 fr”gyzD = —iC F?V:/;ﬂ

v+ s V1:| .

X(e+¢u)|jv <~ det{ Cnve v
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Convolution of functions of the form pol(t)e

Let p € Pol,,(R) that is p("*1) = 0. Then

b b b
| ptoerar=ptersn|| [ o o=
t=a =a t=a

b b b
= p_leptp(t)‘ — p_ze”tp’(t)’t + / p2p”
= t=a

t=a

n

e S (1)l ) (et |

t=a

(t) dt

t
_ e (5-%)p, (% _ g) e (54, (é N g) L=
u=—t
Gpl-gmt /t p2-r1,, t U t n U d
= e - — — — — u =
2 )., Prig =35 )P2\57 5
p(u)
P1ter2y ni+ng —(k+1) t
2 P2 — pP1 p2—P1
e DR G Lo I
k=0 u=—t
ni+nq
~1).2
> e -] -
k=0
nit+ng 2k nitng 9

-5 () [ (- 2] [ (4 2] -

:f: EY(C\ o (o m) (N e (t
2\t 2) 1 \373)\2 Pa 2

1 k Y t u k—/t t u
_ 1) O (2 _ L) k=0 (2 2
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It follows

£=0
k

P00 = 05 ()l O 0 T (D=0
£=0

k n 3 -—
DYV (%) py) (O)pi" " (0).
ZIO
[p1(t)e”!] * [p2(t)e™'] =

nitnz
1 L k—¢
—on S e (§) o

Hence

k=0 P1—P2

Ea 1 kY (e k—t
eSS e () w0 o)

k=0 £=0

For later use we calculate the case with p, = t™ (k = 1,2). In general, [t"] (m) _

t"~™ with [t"} (m) |t o = Omnn! (0 < m < n). In particular we have then p,(e) =0

=

for ¢ > ny, and p,im)(O) = 0 for m # ny. Therefore
[p1()e”!] = [pa(t)er'] =

nitng 1

k ’I”L1!
=et Yy ——— ) —1£< >—t"1_en!+
= (p1—p2)ktt m%nl,( ) ¢) (ny—0)! 2
k—L=nqg

n1+ng 1 , k TLQ' ,
ety L L ( )—t oyl =
kZ—O ('02_p1)k+1 Z:O;n ( ) ¢ (n2 _K)! !
- h—t=n;
ni
1 ng + £ ny! B
— eP1t (_l)ﬁ( ) m £n2! +
; (p1—p2)>tttt 14 (ny — )
n GPQti 1 (_1)4 ny +€ 7’L2! thﬁé n1' _
= (pa—pr)m it ¢ ) (ng—10) '
ny
1 ny +no —d\ nilns!
— Pt 1 n1—d 1 2 112 td
3 gm0 (M) e

pth 1 1" d( +'ﬂ2—d n1!n2! d
’ —1)"" td
e dZO (p2—py)rtna—dtl =1 ( ng —d ) d!
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n

[e”] R %ept

Lemma. (n=0,1,2,...).

Proof. Induction by n with [ept}*(nﬂ) = pn(t)eft. The case n = 0 trivial with py = 1.

On the other hand, [[ef]™"] x [ef!] = f;zo pn(s)ersert=5)ds = [fst:o Pn(s) ds} e, whence

the statement is immediate.

sin A\t
s(t) == o

= i [ (—1)F <k:) [e—z’)\t}*k . [ez’)\t]*(n—k) + [eikt]*n 4 (=1)n [6—i)\t] *n] _

«— (=Dn! Y PR " i n_—i\t
S P vl e A S A>]:

k=
1 n— (—1)kn![tk_1€_i>\t} * [tn—k—lei)\t} tn_l . i
H(n—k) (k= 1)/ (n—k—1)! +(n—1)!(ek+(_1) ¢ A)] '

_

>
Il
_
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