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Abstract. We prove that for every JBW∗-triple E of rank > 1, the sym-

metric part of its predual reduces to zero. Consequently, the predual of every
infinite dimensional von Neumann algebra A satisfies the linear biholomorphic

property, that is, the symmetric part of A∗ is zero. This solves a problem

posed by M. Neal and B. Russo [15, to appear in Mathematica Scandinavica].

1. Introduction

The open unit ball of every complex Banach space satisfies certain holomorphic
properties which determine the global isometric structure of the whole space. An
illustrative example is the following result of W. Kaup and H. Upmeier [13].

Theorem 1.1. [13] Two complex Banach spaces whose open unit balls are biholo-
morphically equivalent are linearly isometric. �

We recall that, given a domain U in a complex Banach space X (i.e. an open,
connected subset), a function f from U to another complex Banach space F is said
to be holomorphic if the Fréchet derivative of f exists at every point in U . When
f : U → f(U) is holomorphic and bijective, f(U) is open in F and f−l : f(U)→ U
is holomorphic, the mapping f is said to be biholomorphic, and the sets U and f(U)
are biholomorphically equivalent. Theorem 1.1 gives an idea of the power of infinite-
dimensional Holomorphy in Functional Analysis. A reviewed proof of Theorem 1.1
was published by J. Arazy in [1].

A consequence of the results established by Kaup and Upmeier in [13] gave raise
to the study of the symmetric part of an arbitrary complex Banach space in the
following sense: Let X be a complex Banach space with open unit ball denoted by
D. Let G = Aut(D) denote the group of all biholomorphic automorphisms of D and
letGO stand for the connected component of the identity inG. Given a holomorphic
function h : D → X, we can define a holomorphic vector field Z = h(z) ∂∂z , which
is a composition differential operator on the space H(D,X) of all holomorphic
functions from D to X, given by X(f)(z) = (h(z) ∂∂z )f(z) = f ′(z)(h(z)), (z ∈ D).

It is known that, for each z0 the initial value problem ∂
∂tϕ(t, z0) = h(ϕ(t, z0)),

ϕ(0; z0) = z0 has a unique solution ϕ(t, z0) : Jz0 → D defined on a maximal open
interval Jz0 ⊆ R containing 0. The holomorphic mapping h is called complete when
Jz0 = R, for every z0 ∈ D. Denoting by aut(D) the Lie algebra of all complete,
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holomorphic vector fields on D, the symmetric part of D is DS = G(O) = GO(O).
The symmetric part of X, denoted by XS or by S(X), is the orbit of 0 under the
set aut(D) of all complete holomorphic vector fields on D. Furthermore, XS is a
closed, complex subspace of X, DS = XS ∩D, and hence, DS is the open unit ball
of XS , DS is symmetric in the sense that for each z ∈ DS there exists a symmetry
of D at z, i.e., a mapping sz ∈ Aut(DS) such that sz(z) = z, s2

z = identity, and
s′z(z) = −IdE ; thus DS = ES ∩ D is a bounded symmetric domain (cf. [13], [4],
and [1]).

A Jordan structure associated with the symmetric part of every complex Banach
space X was also determined by W. Kaup and H. Upmeier in [13]. Namely, for every
a ∈ XS there is a unique symmetric continuous bilinear mapping Qa : X ×X → X
such that (a−Qa(z, z)) ∂∂z is a complete holomorphic vector field on D. A partial
triple product is defined on X ×XS ×X by the assignment

{., ., .} : X ×XS ×X → X,

{x, a, y} := Qa(x, y).

It is known (cf. [13] and [4]) that the partial triple product satisfies the following
properties:

(i) {., ., .} is bilinear and symmetric in the outer variables and conjugate linear
in the middle one;

(ii) {XS , XS , XS} ⊆ XS ;
(iii) The Jordan identity

{a, b, {x, y, z}} = {{a, b, x} , y, z} − {x, {b, a, y} , z}+ {x, y, {a, b, z}} ,
holds for every a, b, y ∈ XS and x, z ∈ X;

(iv) For each a ∈ XS , the mapping L(a, a) : X → X, z 7→ {a, a, z} is a hermitian
operator;

(v) The identity {{x, a, x} , b, x} = {x, a, {x, b, x}} holds for every a, b ∈ XS and
x ∈ X.

It should be remarked here that property (v) appears only implicitly in [4]. A
complete substantiation is included in [16] (compare also [20]).

The extreme possibilities for the symmetric part XS (i.e. XS = X or XS = {0})
define particular and significant classes of complex Banach spaces. The deeply
studied class of JB∗-triples, introduced by W. Kaup in [12], is exactly the class of
those complex Banach spaces X for which XS = X. In the opposite side, we find
the complex Banach spaces satisfying the linear biholomorphic property (LBP, for
short). A complex Banach space X with open unit ball D satisfies the LBP when
its symmetric part is trivial (cf. [1, page 145]).

The symmetric part of some classical Banach spaces was studied and determined
by R. Braun, W. Kaup and H. Upmeier [4], L.L. Stachó [18], J. Arazy [1], and J.
Arazy and B. Solel [2]. The following list covers the known cases:

(i) For X = Lp(Ω, µ), 1 ≤ p < 1, p 6= 2, and dim(X) ≥ 2, we have XS = 0;
(ii) For X = Hp the classical Hardy spaces with 1 ≤ p < 1, p 6= 2, we have

XS = 0;
(iii) For X = H∞ or the disk algebra, XS = C;
(iv) When X is a uniform algebra A ⊆ C(K), AS = A ∩A.
(v) When A is a subalgebra of B(H) containing the identity operator I, then AS

is the maximal C∗-subalgebra A ∩A∗ of A;
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(vi) LetX be a complex Banach space with a 1-unconditional basis. ThenX = XS

if and only if X is the c0-sum of a sequence of Hilbert spaces. Moreover, if X
is a symmetric sequence space (i.e. the unit vector basis form a 1-symmetric
basis of E) then either XS = {0} or XS = X. In the last case, either X = `1
or X = c0.

In a very recent contribution, M. Neal and B. Russo stated the following problem:

Problem 1.2. [15, Problem 2] Is the symmetric part of the predual of a von Neu-
mann algebra equal to 0? What about the predual of a JBW∗-triple which does not
contain a Hilbert space as a direct summand?

In this note we give a complete answer to the questions posed by Neal and
Russo [15] in the above problem. Our main result proves that for every JBW∗-
triple W which is not a Hilbert space, the symmetric part of its predual reduces to
zero. In particular the symmetric part of the predual of an infinite-dimensional von
Neumann algebra is equal to {0}. Unfortunately, there exist examples of JBW∗-
triples W containing a Hilbert space as a direct summand for which S(W∗) =
(W∗)S = {0}.

2. Computing the symmetric part of a JBW∗-triple predual

We recall that a JB∗-triple is a complex Banach space E satisfying that ES = E.
JB∗-triples were introduced by W. Kaup in [12], where he also gave the following
axiomatic definition of these spaces: A JB∗-triple is a complex Banach space E
equipped with a triple product {·, ·, ·} : E × E × E → E which is linear and
symmetric in the outer variables, conjugate linear in the middle one, satisfies the
axioms (iii) and (iv) in (1) and the following condition:

(vi) ‖{x, x, x}‖ = ‖x‖3 for all x ∈ E.

Every C∗-algebra is a complex JB∗-triple with respect to the triple product
{x, y, z} = 1

2 (xy∗z+ zy∗x), and in the same way every JB∗-algebra with respect to
{a, b, c} = (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗.

Elements a, b in a JB∗-triple E are said to be orthogonal (denoted by a ⊥ b)
whenever L(a, b) = 0. It is known that a ⊥ b ⇔ {a, a, b} = 0 ⇔ {b, b, a} = 0 (cf.
[8, Lemma 1]). The rank, r(E), of a real or complex JB∗-triple E, is the minimal
cardinal number r satisfying card(S) ≤ r whenever S is an orthogonal subset of E,
i.e. 0 /∈ S and x ⊥ y for every x 6= y in S.

We briefly recall that an element e in a JB∗-triple E is said to be a tripotent
whenever {e, e, e} = e. A tripotent e ∈ E is said to be complete whenever a ⊥ e
implies a = 0. When the condition {e, e, a} = a implies that a ∈ Ce, we shall
say that e is a minimal tripotent. The symbol Tri(E) will stand for the set of all
tripotents in E.

The following characterization of complete holomorphic vector fields, which is
originally due to L.L. Stachó (see [18], [19] and [21]), has been borrowed from [2,
Proposition 2.5].

Proposition 2.1. Let X be a complex Banach space whose open unit ball is denoted
by D and let h : D → X be a holomorphic mapping. Then h ∈ aut(D) if and only
if h extends holomorphically to a neighborhood of D, and, for every z ∈ X, ϕ ∈ X∗
satisfying ‖z‖ = ‖ϕ‖ = 1 = ϕ(z), we have <eϕ(h(z)) = 0. �
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In order to simplify the arguments, we recall some geometric notions. Elements
s, y in a complex Banach space X are said to be L-orthogonal, denoted by x ⊥L y,
(respectively, M -orthogonal, denoted by x ⊥M y) if ‖x ± y‖ = ‖x‖ + ‖y‖ (respec-
tively, ‖x ± y‖ = max{‖x‖, ‖y‖}). It is known that x ⊥L y if, and only if, for all
real numbers s, t, sx ⊥L ty if, and only if, there exist elements a, b ∈ X∗ satisfying
a ⊥M b, ‖x‖ ‖a‖ = ‖x‖ = a(x), and ‖y‖ ‖b‖ = ‖y‖ = b(y) (see, for example, [10,
Lemma 3.1 and Corollary 4.3]). It is also known that for each pair of elements (a, b)
in a JB∗-triple E, the condition a ⊥ b implies a ⊥M b (cf. [8, Lemma 1] and [11,
Lemma 1.3(a)]).

We also recall that a JBW∗-triple is a JB∗-triple which is also a dual Banach
space. In this sense, JBW∗-triples play an analogue role to that given to von Neu-
mann algebras in the setting of C∗-algebras. Every JBW∗-triple admits a unique
(isometric) predual and its product is separately weak∗-continuous (see [3]).

We can proceed with a first technical result on the structure of the symmetric
part of a JBW∗-triple predual.

Proposition 2.2. Let W be a JBW∗-triple with predual W∗ = F . Suppose, e1, e2

are two tripotent elements in W , ϕ1, ϕ2 ∈ F with ‖ϕk‖ = 1, e1 ⊥ e2, and ej(ϕk) =
δjk (j, k = 1, 2). Then e1(φ) = e2(φ) = 0, for every φ in FS.

Proof. Let φ be an element in FS . Since φ ∈ FS , the holomorphic vector field[
φ−Qφ(z, z)

]
∂
∂z is tangent to the unit sphere of F . Thus, by Proposition 2.1,

<e
〈
e, φ−Qφ(ϕ,ϕ)

〉
= 0,

for every ϕ ∈ F , e ∈W with ‖ϕ‖ = ‖e‖ = 1 =
〈
e, ϕ
〉(

= e(ϕ)
)
.

Since e1 ⊥ e2 implies e1 ⊥M e2, it follows from the hypothesis that ϕ1 ⊥L ϕ2.
In particular, for any weight 0 ≤ λ ≤ 1 and κ1, κ2 ∈ T := {κ ∈ C : |κ| = 1},
κ1(1−λ)ϕ1 +κ2λϕ2 belongs to the unit sphere of F and κ1e1 +κ2e2 is a supporting
functional for it. Therefore,

0 = <e
〈
κ1e1 + κ2e2, φ−Qφ

(
κ1(1− λ)ϕ1 + κ2λϕ2, κ1(1− λ)ϕ1 + κ2λϕ2

)〉
= <e

(
κ1e1(φ) + κ2e2(φ) + κ1(1− λ)2α1 + κ2λ

2α2 + κ1λ(1− λ)β1 + κ2λ(1− λ)β2

)
with the constants αk :=

〈
ek, Qφ(ϕk, ϕk)

〉
, βk := 2

〈
e3−k, Qφ(ϕk, ϕ3−k)

〉
. In par-

ticular, with the choice λ = 1 we get

<e
(
κ1e1(φ) + κ2e2(φ) + κ2α2

)
= 0

for every κ1, κ2 ∈ T. Replacing κ2 with −κ2 we have <e
(
κ1e1(φ)

)
= 0 (κ1 ∈ T),

and hence e1(φ) = 0. �

Before dealing with our main result we shall review some results on JB∗-triples
of rank one. For a JB∗-triple E, the following are equivalent:

(a) E has rank one;
(b) E is a complex Hilbert space equipped with the triple product given by 2{a, b, c} :=

(a|b)c+ (c|b)a, where (.|.) denotes the inner product of E;
(c) The set of complete tripotents in E is non-zero and every complete tripotent

in E is minimal;
(d) E contains a complete tripotent which is minimal.
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The equivalence (a) ⇔ (b) follows, for example, from [7, Proposition 4.5]. The
implications (b) ⇒ (c) and (c) ⇒ (d) are clear. It should be commented here that
a general JB∗-triple might not contain any tripotent. However, since the complete
tripotents of a JB∗-triple E coincide with the real and complex extreme points of its
closed unit ball (cf. [14, Proposition 3.5] and [5, Lemma 4.1]), by the Krein-Milman
theorem, every JBW∗-triple contains an abundant set of (complete) tripotents. In
the setting of JBW∗-triples, a tripotent e is minimal if and only if it cannot be
written as an orthogonal sum of two (non-zero) tripotents (compare the arguments
in [17, Proposition 2.2]). Back to the equivalences, the implication (d) ⇒ (a) is
established in [9, Proposition 3.7 and its proof].

Theorem 2.3. Let W be a JBW∗-triple of rank > 1 and let F denote its predual.
Then FS = {0}, that is, F satisfies the linear biholomorphic property.

Proof. Let φ be an element in FS . According to the Krein-Milman Theorem, the
finite linear combinations of the extreme points of the closed unit ball, D(W ), of
W form a weak∗-dense subset in D(W ). Therefore, it suffices to prove that

(1) e(φ) = 0 for all e ∈ Ext
(
D(W )

)
,

or equivalently, e(φ) = 0 for every complete tripotent e ∈W .
Let e be a complete tripotent in W . Since W has rank > 1, the comments

preceding this theorem guarantee the existence of two non-zero tripotents e1, e2 in
W such that e1 ⊥ e2 and e = e1 + e2. Let us notice that the JBW∗-subtriple
U of W generated by e1 and e2 coincides with Ce1

⊕∞ Ce2. We can easily define
two norm-one functionals ψ1, ψ2 in U∗ satisfying ψj(ek) = δjk. By [6, Theorem],
there exists norm-one weak∗-continuous functionals ϕ1, ϕ2 in W∗ which are norm-
preserving extensions of ψ1 and ψ2, respectively. Applying Proposition 2.2 we have
ej(φ) = 0, for every j = 1, 2, and finally e(φ) = e1(φ)+e2(φ) = 0 as we desired. �

It is known that a von Neumann algebra, regarded as a JBW∗-triple, has rank
one if and only if it coincides with C. We therefore have:

Corollary 2.4. Let W be a von Neumann algebra of dimension < 1 and let F =
W∗. Then FS = {0}, that is, F satisfies the linear biholomorphic property. �

There is an additional aspect of Problem 1.2 that should be commented. Suppose
H is a complex Hilbert space, W is a non-zero JBW∗-triple, and consider the JBW∗-
triple U = H

⊕∞
W (the orthogonal sum of H and W ). It is clear that U has rank

> 1. Thus, Theorem 2.3 implies that S(U∗) = {0}. In other words, the predual of a
JBW∗-triple which does not contain a Hilbert space as a direct summand satisfies
the linear biholomorphic property but the class of all JBW∗-triples whose preduals
satisfy the linear biholomorphic property is strictly bigger.
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