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Abstract. We introduce Jordan manifolds as Banach manifolds whose tangent
spaces are endowed with Jordan triple products depending smoothly on the under-
lying points. As chief examples we study in detail the natural complex geometry
bounded symmetric domains with their Harish-Chandra realizations as unit balls
of JB*-triples and we extend the results to Jordan manifolds where the chart
transition maps are locally generalized Möbius transformations.
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1. Introduction

Recently, in [9] the second author investigated the natural complex geometry of the
unit ball of a complex Hilbert C*-module. Among others, he proved the existence of
a unique symmetry invariant (Levi Civitá) connection in these structure along with its
explicit form in terms of the non-commutative scalar product. Our first goal in Section
2 will be to show with a different Jordan theoretical approach that the results in [9] can
be extended to the natural complex geometry of any bounded symmetric domain in a
complex Banach space. Actually, such domains are biholomorphically equivalent to the
unit balls of the so-called JB*-triples that is Banach spaces equipped with a three variable
operation (x, y, z) 7→ {xyz} satisfying the generalized C*-condition ∥{xxx}∥ = ∥x∥3 along
with the Jordan identity and the fact that its elementary inner derivations are positive
Hermitian operators. Using the deep topological Jordan algebraic results in [3, Section 2]
we achieve simple explicit formulas for the Levi Civitá connection in terms of the Bergman
operator associated with the triple product {. . .}. Taking into account that the context in
[3, Section 2] extends to general real (not only complex) topological Jordan*-triples (even
Jordan pairs) our techniques can also be applied in a fairly more general setting. Namely
we establish analogous results in Section 3 for real Banach manifolds which admit an
atlas consisting of maps into some Jordan*-triple such that the transitions between charts
around closely situated couple of points are Möbius transformations of the product triple
product (Jordan-Möbius manifolds in out terminology). These results apply automatically
to all complex symmetric Hermitian Banach manifolds treated in [2] but go far beyond the
complex setting. In Section 4 we start a more general approach. We introduce the concept
of Jordan manifold as a real or complex Banach manifold equipped with smoothly varying
Jordan*-triple products on the tangent spaces. This generality includes even classical
Riemann spaces (with triple product {uvw}p := 1

2 ⟨u|v⟩w + 1
2 ⟨w|v⟩u in terms of the scalar

product on the tangent space at the point p) in a natural manner. To approach the real
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background of the previous results, homogeneous and symmetric Jordan manifolds are
more suited. These concepts are at hand because Jordan manifolds form a category with
morphisms being smooth mappings whose derivatives are homomorphisms for the pointwise
triple products. Namely a Jordan manifold is homogeneous if its automorphism group is
transitive and symmetric if every point admits an automorphism whose derivative there
is minus-identity. For the moment it seems to be an open question if the automorphisms
of a symmetric Jordan manifold form a Banach-Lie group with an analogous construction
as Upmeier’s topology [8] for symmetric Hermitian Banach manifolds. We close the paper
with examples of various Jordan manifolds.

3. The open unit ball of a complex JB*-triple

Throughout this work let Z denote an arbitrarily fixed complex Banach space with
norm ∥ · ∥. We shall write Ball(Z) for its open unit ball Ball(Z) := {z ∈ Z : ∥z∥ < 1}.
By a Jordan triple product on Z we mean a continuous 3-variable operation (x, y, z) 7→
{xyz} being symmetric bilinear in the outer variables x, z and conjugate-linear in the
inner variable y satisfying the Jordan identity

(J)
{
ab{xyz}

}
=

{
{abx}yz

}
−
{
x{bay}z

}
+
{
xy{abz}

}
for all a, b, x, y, z ∈ E. We say that the Jordan triple (Z, {. . .}) is a JB*-triple if the
generalized C*-axiom ∥∥{zzz}∥∥ = ∥z∥3 , z ∈ Z

holds and all the operations

D(a) : z 7→ {aaz} , a ∈ Z

are Z-Hermitian with non-negative spectrum, that is∥∥ exp (ζD(a)
)
∥ ≤ 1 for every ζ ∈ C with Re ζ ≤ 0 .

2.1 Remark. (1) The Jordan identity is equivalent with the fact that all the operators
iD(a) (a ∈ E) are derivations of the triple product, that is we have the identities

iD(a){xyz} = {[iD(a)x]yz} − {x[iD(a)y]z}+ {xy[iD(a)z]}.

(2) C*-algebras are Jordan triples with the triple product

{xyz} := 1

2
xy∗x+

1

2
zy∗x ,

moreover complex C*-algebras are JB*-triples with their natural norm.

(3) Complex Hilbert C*-modules are also Jordan triples with

{xyz} := 1

2
⟨x|y⟩z + 1

2
⟨z|y⟩x.
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(4) If the unit ball D := Ball(Z) is symmetric (that is for each point a ∈ D, there is a
biholomorphic automorphism Sa : D ↔ D with Fréchet derivative S′

a(a) = −IdZ at a)
then E can be equipped with a unique JB*-triple product.

(5) Any bounded symmetric domain in a complex Banach space can be mapped biholo-
morphically onto some bounded balanced convex symmetric domain (a so-called Harish-
Chandra realization), that is onto the unit ball of some equivalent JB*-norm.

In the sequel let (Z, {. . .}) denote any given JB*-triple and let

D(a, b) : z 7→ {a, b, z}, D(d) := D(a, a),

Q(a, b) : z 7→ {a, z, b}, Q(a) := Q(a, a),

B(a, b) := 1− 2D(a, b) +Q(a)Q(b), B(a) := B(a, a)

be the usual skew-derivations, quadratic representations and Bergman operators, respec-
tively. Recall that the transformation

T : c 7→
[
exp

([
c−Q(z)c

] ∂
∂z

)]
0

that is T (x) =
[
the value z1 for the initial value problem d

dtzt = c−Q(zt)c, z0 = 0
]

is a
well-defined real bianalytic mapping

T : Z←→ Ball(Z) .

Given any point a ∈ Ball(Z), it is well-known [6, p. 27, 4] that the mapping

ga := exp
([
T−1(a)−Q(z)T−1(a)

]
∂/∂z

)
is a holomorphic automorphism of Ball(Z) and we have

(2.2) ga(z) = a+B(a)1/2[1 +D(z, a)]−1z, ∥z∥, ∥z∥ < 1.

2.3 Definition. In the sequel we shall call the mappings ga ◦ L composed with linear
unitary operators of Z the Möbius transformations associated with the triple product
{. . .}. It is well-known [3] the group Aut Ball(Z) of all holomorphic automorphisms of the
unit ball of a complex JB*-triple coincides with the set of all Möbius transformations of
the underlying triple product.

2.4 Remark. In [3] one can find ga(z) = a+B(a)1/2[1−D(x, a)]−1z which is obviously
incorrect in the sign of the term D(z, a) as on can see on the 1-dimensional example of the
classical Möbius transformation ga(z) = (z + a)/(1 + az) (with a, z ∈ Ball(C)).

Next we are going to consider Ball(Z) as a complex manifold equipped with the
charts

{
g−1
a : a ∈ Ball(Z)

}
. In this manner we get a natural generalization of the complex

Poincaré model on the unit disc Ball(C) for the real 2-dimensional hyperbolic geometry.
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Due to the possible lack of non-trivial smooth functions vanishing outside a ball, for a
Banach manifoldM , it is no longer convenient to apply the usual definition of a connection
as a mapping ∇ : TM × TM → TM as being a derivation for the first and linear in the
second variable, both with respect to multiplication with smooth functions.

2.5 Definition [5]. Let M be a manifold, modeled over the Banach space E, and denote
the space of bounded bilinear mappings E × E → E by L2(E,E). Then M is said to
possess a connection if there is an atlas U for M so that for each (U,Φ) ∈ U (where U
is some open subset of M and Φ is a homeomorphism of U onto some open subset of E)
there is a smooth mapping ΓΦ : Φ(U) → L2(E,E), called the Christoffel symbol of the
connection on U , which under a change of coordinates ψ : Φ(U)→ E transforms according
to

Γψ◦Φ(ψ
′u, ψ′v) = Ψ′′(u, v) + ψ′ΓΦ(u, v)

for smooth vector fields u, v on Φ(U) ⊂ E. The covariant derivative of a vector field Y
in the direction of the vector field X is, locally, defined to be the principal part of

∇XY = dX(Y )− Γ(X,Y ),

that is, if X,Y are smooth vector fields on M with u := Φ#X
(

: Φ(U) ∋ Φ(p) 7→
Φ′(p)X(p)

)
and v := Φ#X then

Φ#∇XY = ∇uv + ΓΦ(u, v) : Φ(U) ∋ q 7→ d

dt

∣∣∣
t=0

v
(
q + tu(q)

)
+ ΓΦ

(
u(q), v(q)

)
.

If a Banach Lie group G acts smoothly on M then, for each g ∈ G a connection g∗∇ is
defined by letting

g∗∇XY = ∇g∗Xg∗Y, g∗X(gm) = dmgX(m).

The Christoffel symbols then transform as in the definition above,

ΓΦ◦g(g(m))
(
g′(m)X(m), g′(m)Y (m)

)
=

= g′′(m)
(
X(m), Y (m)

)
+ g′(m)

[
ΓΦ(m)

(
X(m), Y (m)

)]
, m ∈M

and we call ∇ invariant under the action of G whenever g∗∇ = ∇ for all g ∈ G.

2.6 Theorem. On U := Ball(Z), there exists exactly one Möbius invariant connection
whose Christoffel symbol at a is given by

ΓId(a)(x, y) = 2B(a)1/2{B(a)−1/2x, a,B(a)−1/2y} = 2{x, g′a(0)a, y}a,

Proof. Notice first the invariance of ∇ with respect to the symmetry S0(z) := −z (z ∈
U) at the origin implies −ΓId(0)(x, y) = S′

0(0)ΓId(0)(x, y) = ΓId(0)
(
S′
0(0)x, S

′
0(0)y

)
=

ΓId(0)(x, y) that is
ΓId(0)(x, y) = 0.
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Then, for any Möbius transformation g leaving the origin fixed, g′′ = 0 and so Γg(0)
remains zero under the transformation g. Recall [6,4] that the Fréchet derivative of ga can
be expressed as

g′a(z) = B(a)1/2B(z,−a)−1, ∥z∥ < 1.

Using that Q′(z)(h) : x 7−→ 2{z, x, h}, and writing the second derivative as a bilinear
mapping, we similarly arrive at

g′′a(z)(u, v) = −B(a)1/2B(z,−a)−1∂1B(u, a)B(z,−a)−1(v)

= 2B(a)1/2B(z,−a)−1
[
D(u, a)−Q(u, z)Q(−a)

]
B(z,−a)−1(v),

applying the chain rule. If we evaluate this expression at z = 0, then

ΓId(a)(x, y) = g′′a(0)(g
′
−a(0)x, g

′
−a(0)y)

= 2B(a)1/2D(g′−a(0)x, a)(g
′
−a(0)y),

= 2B(a)1/2{B(a)−1/2x, a,B(a)−1/2y} .

From the above calculations it is immediate that a Christoffel symbol thus defined gives
rise to a connection being invariant under all Möbius transformations. Qu.e.d.

Next we proceed to the geodesic equation of the connection ∇. Recall that a smooth
curve γ : I → Ball(Z) on an open real interval I around 0 is a ∇-geodesic if its derivative
satisfies the equation ∇γ̇(t)γ̇(t) = 0. According to Theorem 2.6, this means

γ̈(t) + 2B
(
γ(t)

)1/2
D
(
B
(
γ(t)

)−1/2
γ̇(t), γ(t)

)
B
(
γ(t)

)−1/2
γ̇(t) = 0.

First we look for particular solutions with the property γ(0) = 0. Let 0 ̸= v ∈ Z be
any fixed vector and let Fv denote the real JB*-subtriple generated by v. That is Fv =
SpanIR

{
D(v)nv : n = 0, 1, . . .

}
. Since (Z, {. . .}) is JB*-triple, the spectrum of the operator

D(v)|Fv is non-negative, and, by writing Ωv :=
[
SpD(v)1/2|Fv| \ {0}, the commutative

Gelfand-Naimark Theorem of JB*-triples asserts that there is a real JB*-isomorphism
Hv : Re C0(Ωv)→ Fv such that Hv(IdΩv ) = v and Hv(φψχ) = {Hv(φ),Hv(ψ),Hv(χ)} for
all functions φ,ψ, χ ∈ Re C0(Ωv). In particular, given any solution φ : I → ReC0(Ωv), of
the equation

d2

dt2
φ(t, ω) + 2

[
1− φ(t, ω)2

]−1
φ(t, ω)

[ d
dt
φ(t, ω)

]2
, ω ∈ Ωv,

the curve γ(t) := Hvφ(t), t ∈ I is a ∇-geodesic. Notice that, for any real constant α, the
function x(t) = artanh(αt) := (eαt− e−αt)(eαt+ e−αt)−1 is the solution of the initial value
problem ẍ + (1 − x2)−1xẋ2, x(0) = 0, ẋ(0) = α. Indeed, we have ẋ = 1 − x2 and hence
ẍ = −2xẋ = −2x(1−x2) and ẍ+(1−x2)−1xẋ2 = −2xẋ = −2x(1−x2)+2(1−x2)−1x(1−
x2)2 = 0. Therefore we get the following.
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2.7 Theorem. The ∇-geodesic curves passing through the origin have the form

γ0,v(t) = Hv artanh
(
t IdΩv

)
, t ∈ R, v ∈ Z

in terms of the Gelfand-Naimark representations Hv.

2.8 Corollary. The (unique) maximal ∇-geodesic γa,w with the properties γa,w(0) = a
and γ̇(0) = w has the form

R ∋ t 7→ ga

(
Hg′a(0)

−1w artanh
(
t IdΩg′a(0)−1w

))
.

Proof. It is a well-known consequence of the Möbius invariance of the connection ∇
that h ◦ γ is ∇-geodesic whenever γ is a ∇-geodesic and h ∈ Aut Ball(Z). The curve
in the statement of the Corollary is thus a ∇-geodesic. It is straightforward to see that
its starting point is a and its starting speed vector is w. The classical Piccard-Lindelöf
Theorem ensures the uniqueness of the solution of the geodesic equation with given starting
point and starting speed vector. Qu.e.d.

The expression for the geodesic in the above can be conveniently rewritten in terms
of the power series for artanh. In fact, we have

γ0,v(t) =

∞∑
n=0

t2n+1

2n+ 1
D(v, v)2nv = artanh tv.

In the same vein,

γa,w(t) = a+B(a)1/2
[
1 +D(artanh tB(a)1/2v, a)

]−1
artanh tB(a)1/2v.

3x. Complex Jordan manifolds

3x.1 Definition. We say a complex Banach-Jordan triple (Z, {. . .}) is non-degenerate if
the quadratic representations Qa : x 7→ {xax} do not vanish unless a = 0.

By definition, a tuple (M,A,P) is a complex Jordan manifold complex manifold mod-
eled over a fixed non-degenerate Jordan triple (Z, {. . .}) if (M,A) is a complex Banach
manifold (with Atlas A) modeled over (Z, {. . .}) and P =

{
{. . .}p : p ∈ M

}
is a (real)

smooth tensor field such that (following automatic???) (TpM, {. . .}p) is isomorphic to
(Z, {. . .})

Examples: Kaup/Upmeier (invariant Finsler structure) Lorentz manifolds (very spe-
cial but important) Our example from previous chapter Porta/Recht

3. Local Möbius transformations in real Jordan-Banach triples
and Jordan-Möbius manifolds

Throughout this section E denotes a real Jordan-Banach triple with the norm ∥.∥ and
triple product {. . .}, respectively. Thus we only assume that E is a real Banach space and
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{. . .} is a continuous real trilinear mapping E3 → E satisfying the Jordan identity (J).
We can take over the notations D(a, b), Q(a, b), B(a, b) in the real setting without formal
changes. In particular, all the operators D(a, b) −D(b, a) : z 7→ {abz} − {baz} belong to
Der(E, {. . .}) the set of the derivations of the triple product. Though not explicitly stated,
a straightforward inspection of [3, Corollary 2.20] establishes the existence of a constant
ε > 0 such that the transformations

Hv := expVv with the vector fields Vv :=
[
v − {zvz}

]
∂/∂z

are well-defined on the ball εBall(E) whenever ∥v∥ < ε, moreover they have the fractional
linear Möbius form

(3.1)
Hv(z) = gHv(0)(z) where

ga(z) := a+ λ(a)[1 +D(z, a)]−1z where λ(a) := H ′
v(0) ∈ L(E) .

Notice that in the case of JB*-triples we can write λ(a) = B(a)1/2 in termd of the Bergman
operator. Besides the vector fields Vv of polynomial degree 2, let us introduce also the linear
vector fields

Lℓ :=
[
ℓz
]
∂/∂z, ℓ ∈ Der(E, {. . .}).

For their Poisson commutators
[
f(z)∂/∂z, g(z)∂/∂z

]
:=

(
f ′(z)g(z)− g′(z)f(z)

)
∂/∂z, it is

straightforward to check that we have

[Lℓ, Vv] = Vℓv, [Lℓ, Lm] = L[ℓ,m], [Vu, Vv] = LD(v,u)−D(u,v).

Therefore the real linear space{
Vv + Lℓ : v ∈ Z, ℓ ∈ Der(E, {. . .})

}
equipped with the norm ∥Vv + Lℓ∥ := sup{∥v − {zvz} + ℓz∥ : ∥z∥ ≤ 1} is a Banach-
Lie algebra with the Poisson commutator. Thus, according to the Campbell-Hausdorff
formula, for some sufficiently small constant δ > 0 we have[

exp(Vu + Lℓ) exp(Vv + Lm)
]
z =

[
exp(Vw(u,v,ℓ,m) + L∆(u,v,ℓ,m)

]
z

with two suitable real-analytic mappings

w :
[
δBall(E)

]2 × [
δBall

(
Der(E, {. . .})

)]2 −→ E,

∆ :
[
δBall(E)

]2 × [
δBall

(
Der(E, {. . .})

)]2 −→ Der(E, {. . .})

whenever ∥z∥, ∥u∥, ∥v∥, ∥ℓ∥, ∥m∥ < δ.

3.2 Definition. By a Möbius transformation of (E, {. . .}) we mean a bianalytic mapping
Φ : U → E defined in a neighborhood U of the origin in E such that for some
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ℓ ∈ Der(E, {. . .}) we have Φ(z) = ga(exp ℓz), z ∈ U with the customary notation in
ga(z) := a+ λ(a)[1−D(z, a)]−1 established in (3.1).

The next two auxiliary results 3.3-4 establish in particular that composition preserve
Möbius tranformations.

3.3 Proposition. There exists δ′ > 0 such that

∥v∥, ∥ℓ∥ < δ′ and [exp(Vv + Lℓ)]0 = 0 =⇒ v = 0.

Proof. We can choose δ′ to be so small that the mapping u 7→ [exp(Vu)]0 be injective on
δ′ Ball(E) and the terms

[exp(tLm)][exp(Vu + Lm)][exp(−tLm)]z, |t|, ∥z∥, ∥u∥, ∥m∥ < δ′

be all well-defined. Consider any couple v, ℓ with ∥v∥, ∥ℓ∥ < δ′ and [exp(Vv + Lℓ)]0 = 0.
Then, for all −δ′ < t < δ′,

0 = [exp(tLℓ)][exp(Vv + Lℓ)][exp(−tLℓ)]0 =

=
[
exp

([
exp(tL#

ℓ )
]
(Vv + Lℓ)

)]
0 =

=
[
exp

(
Vexp tℓ)v + Lℓ

)]
0.

Notice that the points

xs,t :=
[
exp

(
s[V(exp tℓ)v + Lℓ]

)]
0, |s| < 1 + ε′, |t| < δ′

are well-defined for some ε′ > 0 and they satisfy the differential equation

∂

∂s
xs,t = (exp tℓ)v − {xs,t[(exp tℓ)v]xs,t}+ ℓxs,t.

Moreover, since
[
exp

(
Vexp tℓ)v + Lℓ

)]
0 = 0 for |t| < δ′, it follows

0 =
∂2

∂s∂t

∣∣∣
s=1, t=0

xs,t =
∂2

∂t∂s

∣∣∣
s=1, t=0

xs,t =

= ℓv − 2
{( ∂

∂t

∣∣∣
t=0, s=1

xs,t

)
vxs,t

}
+ ℓ

∂

∂t

∣∣∣
t=0, s=1

xs,t.

However, here we have ∂
∂t

∣∣∣
t=0, s=1

xs,t = 0 which implies that necessarily ℓv = 0. It follows

[Lℓ, Vv] = Vℓv = 0 and therefore

0 = [exp(Vv + Lℓ)]0 = [expVv][expLℓ]0 = [expVv]0.

The choice of δ′ with ∥v∥ < δ′ ensures that v = 0. Qu.e.d.
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3.4 Corollary. There exists 0 < δ′′(< δ′) such that given any v ∈ Z and ℓ ∈ Der(E, {. . .})
with ∥v∥, ∥ℓ∥ < δ′′, for some m ∈ Der(E, {. . .}) we have[

exp(Vv + Lℓ)
]
z = ga(v,ℓ)

(
[expm]z

)
, ∥z∥ < δ′′

where a(v, ℓ) :=
[
exp(Vv + Lℓ)

]
0. In particular, for sufficiently small vectors p, q ∈ E,

gp ◦ gq = ggp(q) ◦ [expmp,q]

with a real-analytic mapping (p, q) 7→ mp,q ∈ DerZ, {. . .}).

3.5 Definition. By a Jordan-Möbius manifold modeled with (E, {. . .}) we mean a a
real-analytic manifold M with an inverse atlas X = {Xp : p ∈ M} such that for each
point p ∈M we have

(3.6) Xp : Up →M, Xp(0) = p, X−1
p ◦Xq Möbius transformation for q ∈ Xp(Up)

where Up is an open connected neighborhood of the origin in E the
A Jordan-Möbius manifold M with an inverse atlas X = {Xp : p ∈M} satisfying

(3.6) is said to be a uniform Jordan-Möbius manifold if there exists a common constant
ε > 0 such that

dom(Xp ◦ g) ⊃ εBall(E) if g ∈ {Möbius transformations} and ∥g(0)∥ < ε.

In particular the region
∪
L∈Aut(E,{...}) εLBall(E) is contained in dom(Xp) for all p ∈M .

3.7 Example. If E := Z is a JB*-triple then its unit ball M := Ball(Z) is a uniform
Jordan manifold with the charts Xp := gp|M , p ∈M . In this case we may choose ε = 1.

3.8 Example. Let (E, {. . .}) be any Jordan-Banach triple. Then we can find a constant
ϱ > 0 such that the sections of the mapping [ϱBall(E)]2 ∋ (p, z) 7→ gp(z) are real-bianalytic
for any fixed p and z, respectively. Then the ball M := ϱBall(E) with the topology from
E and with the charts Xp(z) := gp(z) defined for z ∈ Up := {u ∈ E : ∥u∥, ∥gp(u)∥ < ϱ} is
a Jordan manifold which is not uniform in general.

3.8a Example. (Special case of 3.8 with Lorenz space). E := Mat(1, 2, IR), S :=
(
1 0
0 −1

)
;

indefinite scalar product ⟨x|y⟩S := xSy∗ ∈ IR (x, y ∈ E), tripe product {xyz}S :=
1
2 ⟨x|y⟩Sz +

1
2 ⟨z|y⟩Sx = 1

2xy
∗Sz + 1

2zy
∗Sx on E. Then the local Möbius transformations

have the form

Ma(x)= (1− aSa∗)−1/2(x+ a)(1 + Sa∗x)−1(1− Sa∗a)1/2 =
= (1− aSa∗)−1/2(1 + xSa∗)−1(x+ a)(1− Sa∗a)1/2 .

Proof. By definition, Ma(x) = a+B(a)1/2[1 +D(x, a)]−1x. Here we have

B(a)z = z − 2D(a)z +Q(z)2 = z − aSa∗z − zSa∗a+ aSa∗zSa∗a =

= (1− aSa∗)z(1− Sa∗a),
D(x, a)nx = (xSa∗)nx = x(Sa∗x)n (n = 0, 1, . . .).
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Thus B(a)1/2z = (1−aSa∗)1/2z(1−Sa∗a)1/2 and [1+D(x, a)]−1x =
∞∑
n=0

(−1)nD(x, a)nx =

(1 − xSa∗)−1x = x(1 − Sa∗x)−1. Since also (1 − aSa∗)1/2a = a(1 − Sa∗a)1/2 as one can
see from the Newtonian expansion, it follows

Ma(x) = a+ (1− aSa∗)1/2x(1 + Sa∗x)−1(1− Sa∗a)1/2 =

= (1− aSa∗)−1/2a(1− Sa∗a)1/2 + (1− aSa∗)1/2x(1 + Sa∗x)−1(1− Sa∗a)1/2 =

= (1− aSa∗)−1/2
[
a+ (1− aSa∗)x(1 + Sa∗x)−1

]
(1− Sa∗a)1/2 =

= (1− aSa∗)−1/2
[
a(1 + Sa∗x) + (1− aSa∗)x

]
(1 + Sa∗x)−1(1− Sa∗a)1/2 =

= (1− aSa∗)−1/2(x+ a)(1 + Sa∗x)−1(1− Sa∗a)1/2.

The proof for the alternative expression of Ma(x) is analogous.

3.9 Example [1,7]. Let (Z, {. . .}) be any complex JB*-triple such that the family
Tri(Z, {. . .}) :=

{
e ∈ Z : {eee} = e ̸= 0

}
of its non-trivial tripotents is not void. Two

tripotents e, f ∈ Tri(Z, {. . .}) are said to be equivalent (e ∼ f in notation) if D(e, e) =
D(f, f). Actually ∼ is an equivalence relation on Tri(Z, {. . .}). Let M be a connected
component of Tri(Z, {. . .}) (with respect to the topology inherited from Z). Then the
Peirce spaces Z1/2(e) := {u ∈ Z : D(e, e)u = u/2} (e ∈M) are all isomorphic and the set

IM :=
{
e : e ∈M

}
(e := {f ∈M : f ∼ e}) of its equivalence classes can be regarded as

a complex hermitian symmetric manifold modeled on Z1/2(e0) with any e0 ∈M and being

such that the automorphisms exp t[D(e, u) − D(u, e)]
(
t ∈ IR, u ∈ Z1/2(e)

)
of Z acting

on IM form a continuous one-parameter subgroup of the Banach-Lie group Aut(IM) of all
biholomorphic automorphisms of IM (with Upmeier’s topology [8]). Given any e ∈ M ,
there is a neighborhood U of its equivalence class e in IM along with a holomorphic chart
map Φ : U → Z1/2(e) such that each map Φ# exp[D(e, u) − D(u, e)]

(
u ∈ Z1/2(e)

)
is a

Möbius transformation with the triple product

{u1u2u3} :=
∂3

∂ζ1∂ζ2∂ζ3

∣∣∣∣
ζ1=ζ2=ζ3=0

Φ#
([
Pζ1u1 ,

[
Pζ2u2 , Pζ3u3

]]
e

)

in terms of the vector fields Pu(f) :=
[
t 7→ exp t[D(e, u)−D(u, e)]f

]
∈ TeIM.

3.10 Lemma. Assume U, V are domains in a Banach space W and let T : U ↔ V be a
smooth diffeomorphism between them. Then given any couple X,Y : U → W of smooth
vector fields on U , for their transforms X̃ := T#X respectively Ỹ := T#Y on V we have

Ỹ ′X̃(v) = T ′′(T−1(v)
)
X
(
T−1(v)

)
Y
(
T−1(v)

)
+T ′(T−1(v)

)
Y ′(T−1(v)

)
X
(
T−1(v)

)
, v∈V.
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Proof. By definition, Ỹ ′X̃(v) = d
dt

∣∣
t=0

Ỹ
(
v + tX̃(v)

)
. Therefore

Ỹ ′X̃(v) =
d

dt

∣∣∣
t=0

T ′
(
T−1

(
v + tX̃(v)

))
Y
(
T−1

(
v + X̃(v)

))
=

=
[ d
dt

∣∣∣
t=0

T ′
(
T−1

(
v + tX̃(v)

))]
Y
(
T−1(v)

)
+

+ T ′(T−1(v)
) d
dt

∣∣∣
t=0

Y
(
v + tX̃(v)

)
=

= T ′′
(
T−1(v)

)[ d
dt

∣∣∣
t=0

T−1
(
v + tX̃(v)

)]
Y
(
T−1(v)

)
+

+ T ′
(
T−1(v)

)
Y ′(T−1(v)

) d
dt

∣∣∣
t=0

T−1
(
v + tX̃(v)

)
=

= T ′′
(
T−1(v)

)[
T ′(T−1(v)

)−1
X̃(v)

]
Y
(
T−1(v)

)
+

+ T ′
(
T−1(v)

)
Y ′(T−1(v)

)[
T ′(T−1(v)

)]−1
X̃
(
T−1(v)

)
=

= T ′′
(
T−1(v)

)
X
(
T−1(v)

)
Y
(
T−1(v)

)
+

+ T ′
(
T−1(v)

)
Y ′(T−1(v)

)
X
(
T−1(v)

)
. Qu,e.d.

In the sequel let
(
M, {Xp : p ∈ M}

)
be a Jordan-Möbius manifold modeled on

(E, {. . .}) with inverse charts Xp : E ⊃ Up →M satisfying Xp(0) = p, p ∈M and with
Möbius transition maps X−1

p ◦Xq for couples of point lying sufficiently close together.

3.11 Proposition, Let p ∈M be an arbitrarily given point, let X,Y be two smooth vector
fields onM and define R := ∇XY. Then, for any vector w ∈ Up, the image R := [X−1

p ]#R
of the vector field R by means of the local coordinate Xp can be expressed in terms of the
image vector fields X := [X−1

p ]#X and Y := [X−1
p ]#Y as

R(w) = H ′
w(w)

−1H ′′
w(w)X(w)Y (w) + Y ′(w)X(w) where Hw := X−1

Xp(w) ◦Xp.

Proof. Let w ∈ Up be arbitrarily fixed and write q := Xp(w). Then, with the mapping
T := Hw we have

T (w) = X−1
q ◦Xp(w) = X−1

q (q) = 0.

Also in terms of T we can write

[X−1
q ]#X = [X−1

q ]#X#
p [X−1

p ]#X =

= [X−1
q ◦Xp]

#[X−1
p ]#X =

= T#X

and similarly [X−1
q ]#Y = T#Y and [X−1

q ]#R = T#R. Hence

[X−1
q ]#R(0) =

[
T#

(
[X−1

p ]#R
)]
(0) =

= T ′(T−1(0)
)[
[X−1

p ]#R
](
T−1(0)

)
=

= T ′(w)
[[
[X−1

p ]#R
]
(w)

]
=

= T ′(w)R(w).
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By axiomatic assumption we have [X−1
q ]#R(0) =

[[
[X−1

q ]#Y
]′
(0)

][[
[X−1

q ]#X
]
(0)

]
.

That is
R(w) = [X−1

p ]#R(w) =

= T ′(w)−1
[[
[X−1

q ]#Y
]′
(0)

][[
[X−1

q ]#X
]
(0)

]
=

= T ′(w)−1
[
(T#Y )′(0)

][
T#X(0)

]
=

= T ′(w)−1T ′′(w)X(w)Y (w) + Y ′(w)X(w)

in view of Lemma 3.7 and the fact that w = T−1(0). Qu.e.d.

Our technical results 3.3-4, 3.10-11, establish immediately that the calculations for
the proof of Theorem 2.6 can be carried out locally even in the setting of general real
Jordan-Möbius manifolds. As a first straightforward consequence we get the following.

3.10 Theorem. Let M be a Jordan-Möbius manifold modeled on (E, {. . .}) with a system
of inverse charts {Xp : p ∈M} having the properties (3.6). Then there exists a (necessarily
unique) connection ∇ on M such that its Christoffel symbol Γ with the charts Φp := X−1

p

satisfies
ΓΦp

(0) = 0 , p ∈M.

Namely, if p ∈ M is any point and the constant δ > 0 is so chosen that δBall(E) ⊂
dom(Xp) then for any couple of vectors x, y ∈ E and any point a ∈ δBall(E) we have

ΓΦp(a)(x, y) = g′′a(0)(g
′
−a(0)x, g

′
−a(0)y) =

= 2λ(a)
{
[λ(a)−1x]a[λ(a)−1y]

}
.

In particular ΓΦp(a)(x, y) = 2B(a)1/2{[B(a)−1/2x]a[B(a)−1/2y]} in the case of (E, {. . .})
being a complex JB*-triple.

In the above theorem we could not include a statement about symmetry invariant
connections because, unlike the unit ball of a complex JB*-triple, Jordan-Möbius manifolds
need not be necessarily symmetric. We close this section by showing that the assumption
of uniformness implies this property.

3.11 Theorem. Connected uniform Jordan-Möbius manifolds are symmetric and they
admit a unique symmetry invariant connection.

Proof. SKETCHED
LetM be a connected uniform Jordan-Möbius manifold modeled with (E, {. . .}) along

with a constant ε > 0 and a system X = {Xp : p ∈ M} as in Definition 3.5. By
Corollary 3.3, there exists δ ∈ (0, ε) such that ga

(
δBall(E)

)
⊂ εBall(E) for any vector

a ∈ δBall(E). Observe that, given any couple of points p, q ∈ M , we can find a finite
sequence v1, . . . , vN ∈ δBall(E) such that the recursively defined sequence

p0 := p, pn+1 := Xpn(vn)
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ends in q = pN . Let us fix any point p ∈ M . We can see by induction that there
exists a sequence q0 = p, q1, . . . , qN ∈ M of points along with (linear) automorphisms
L0 = IdE, L1, . . . , LN ∈ Aut(E, {. . .}) such that for the modified charts

Yn := Xqn ◦ Ln, n = 1, . . . n = 0, . . . , N

we have
qn+1 = Yn(−vn), Y −1

n+1 ◦ Yn = X−1
qn ◦Xqn+1 .

In view of 3,3-4, if we have another sequence ṽ1, . . . , ṽÑ and consider the corresponding
points p̃1, . . . , p̃Ñ respectively q̃1, . . . , q̃Ñ with the above construction then the coincidence
pN = p̃

Ñ
of the endpoints implies the coincidence qN = q̃

Ñ
as well. It is not hard to check

that the thus well-defined transformation Sp : pN 7→ qN is a symmetry through the point
p such that the maps X−1

r ◦S ◦Xp (r ∈M) are Möbius transformations. Finally we notice
that Sp ◦ Sq is a Möbius transformation if its domain contains the origin of E. Hence the
statement of the theorem is immediate. Qu.e.d.

4. Jordan manifolds

4.1 Definition. A manifold M modeled on a (real) Jordan-Banach triple (E, {. . .}) is
a Jordan manifold if its tangent spaces TpM (p ∈ M) are endowed with a triple product
{. . .} being isomorphic to {. . .} on E and the mapping (p, u, v, w) 7→ {uvw}p is continuously
differentiable. In the sequel we shall write (M,A,P) for the triple of the carrier space, atlas
and system of triple products. A morphism F :M → M̃ between two Jordan manifolds is
a smooth mapping such that its derivatives give rise to triple product homomorphisms on
the tangent spaces.

Given two Jordan manifolds (M,A,P) and (N,B,Q),
a continuously differentiable map S :M → N is a Jordan morphism if
∀ p ∈M ∀ u, v, w ∈ Tp(M) S′(p){uvw}p = {[S′(p)u][S′(p)v][S′(p)w]}S(p).
Isomorphism and automorphisms can be defined as usually.
Aut(M) := {S :M ↔M with S, S−1 Jordan morphisms}.

(D3) Given (M,A,P) and (N,B,Q) with U open ⊂M and V open ⊂ N ,
a continuously differentiable map S : U ↔ V is a local Jordan automorphism if
S is a Jordan isomorphism between U and V as Jordan submanifolds.
Autloc(M) := {local Jordan automorphism in M}.
Notice that S1 ◦ S2 ∈ Autloc(M) whenever S1, S2 ∈ Autloc(M) with ran(S1) ∩
dom(S2) ̸= ∅.

Convention. Henceforth (M,A,P) stands for a Jordan manifold.

Example. (E0) Riemann spaces can be regarded as Jordan manifolds:
If ⟨.|.⟩p is the inner product on TpM then we take
{uvw}p := 1

2 ⟨u|v⟩pw + 1
2 ⟨w|v⟩pu.
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Example. The triple products in P need not be isomorphic to each other:

(E1) M := C with {uvw}p := Re(p)uvw.

Conjecture. (HARD)
If we assume all the {. . .}p to be JB∗-triple products then they are isomorphic.

Lemma. If for every couple of points p, q ∈ M there are neighborhoods U, V ⊂ M along
with a diffeomorphism S : U ↔ V such that q = S(p) and S′(p) is an isomorphism between
{. . .}p and {. . .}q then there is an atlas A ⊂ A with the properties (N4).

Proof. Fix any o ∈ M and a local coordinate X ∈ A with X(o) = 0. For any p ∈ M
choose a local diffeomorhism Sp with Sp(o) = p and the properties in (D2). We redefine
the triple product {. . .} on Z as the image of {. . .}o by X ′(0) and we set Xp := X ◦ S−1

p

(p ∈M).

Definition.
(D4) A Jordan manifold M is homogeneous if

Aut(M) is transitive on it: ∀ p, q ∈M ∃ S ∈ Aut(M) S(p) = q.

(D5) A Jordan manifold is locally homogeneous if
Autloc(M) is transitive on it.

Examples.
(E2) [Corach-Porta-Recht].

M := A+ the positive invertible elements of a unital C∗-algebra A.
E := A with {xyz} := 1

2xy
∗z + 1

2zy
∗y as usually.

Ua :=M and Xa(b) := b− a for all a, b ∈M .
{uvw}a = {uvw} (a ∈M ; u, v, w ∈ TaM ≡ E).
Then, for any invertible g ∈ A we have Lg := [a 7→ (g∗)−1ag−1] ∈ Aut(M).
In particular M is homogeneous because {Lg(1) : e ∈M} = {g−2 : e ∈M} =M .

(E2′) [Corach-Porta-Recht2].
A C∗-algebra with unit 1,
E := {a ∈ A : a = a∗}, {xyz} := 1

2xyz +
1
2zyx

M := {a ∈ A : a > 0} = {g∗g : g invertible}
Lg :M↔M, x 7→ g∗xg linear
S : p 7→ p−1 symmetry onM
Sg∗g := Lg ◦ S ◦ Lg−1 : p 7→ g∗gp−1g∗g
We can define

{uvu}g∗g : = Lg{(L−1
g u)(L−1

g u)(L−1
g u)} =

= u(g∗g)−1v(g∗g)−1u.

Lemma. The transformations Lg, Sp are P-automorphisms.
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Define Xv :=
d
dτ

∣∣
τ=0+

Sexp(τv/2) ◦ S1.

Notice that exp(Xv)p = exp(v/2)p exp(v/2).

Proposition. In the chart Y :
[
exp(v − {xvx}) ∂∂x

]
0 7→ [expXv]1

the transformations exp(Xw) (w ∈ E) are not in general {. . .}-Möbius type.
Proof. We would have Y : tanh v 7→ exp v that is Y (x) = exp

(
areathx

)
and

Y −1(y) = tanh log y. This implies

Y −1 ◦ [expXw] ◦ Y : x
Y7→

exp(areathx)
expXw7→

exp(w/2)
[
exp(areathx)

]
exp(w/2)

Y −1

7→

tanh
[
log

(
exp(w/2)

[
exp(areathx)

]
exp(w/2)

)]
.

Such mappings are of Möbius type only in the commutative case.

(E3) [Chu-Isidro-Kaup-Stachó]. A case with equivalence classes of tripotents.
H complex Hilbert space with inner product ⟨.|.⟩. S :=[unit sphere].
Triple product {xyz} := 1

2 ⟨x|y⟩z +
1
2 ⟨z|y⟩x (x, y, z ∈ H).

E := e⊥0 = {z ∈ H : ⟨z|e0⟩ = 0 with a fixed e0 ∈ S.
M := {TTe : e ∈ H, ⟨e|e⟩ = 1} with TT := {ζ ∈ C : |ζ| = 1}.
For e ∈ S, let us write e∼ := TTe.
Te∼M ≡ e⊥ = {z ∈ H : ⟨z|e⟩ = 0}.
{uvw}e∼ := −{uvw} ∈ Te∼M for u, v, w ∈ Te∼M .
Given e ∈ S, let Re be a rotation of H with Re(e) = e0.
Φ−1
e∼ : e ⊥ z 7→ [CRe(e+ z)] ∩ S (e ∈ S).

Then X := {Φe∼ : e∼ ∈M} = {Φe∼ : e ∈ S} is an atlas on M
with holomorphic coordinate transitions.
G∗ ⊂ Autloc(M) ∩ {X -holomorphic maps} is transitive on M .
Aut(M) ∩ {X -holomorphic maps} = {Identity}.

Case (E2)
Z := {z ∈ A : z∗ = z} self-adjoint elements.
{xyz} := 1

2xyz +
1
2zyx (x, y, z ∈ Z).

G := {g ∈ Z : g invertible}, M = A+ = {g∗g : g ∈ G}.
σ : a 7→ a−1 symmetry on M with fixed point 1.
Lg(a) := g∗ag (a ∈M, g ∈ G); L−1

g = Lg−1 , Lg :M ↔M, 1 7→ g∗g.
Definition. σa := La1/2 ◦ σ ◦ La−1/2 symmetry at e ∈M .
Remark. a = g∗g ⇒ Lg ◦ σ ◦ La−1 = σa (g ∈ G).
Definition. Infinitesimal translation on M with vector h ∈ Z ≡ T1M at 1:

Xh(a) :=
d

dτ

∣∣∣
τ=0

σ1+(τ/2)h ◦ σ1(a) (a ∈M).
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Lemma. We have

1) Xh(a) =
1

2
(ha+ ah) = {h1a}, 2) Xh(a) =

d

dτ

∣∣∣
τ=0

σexp(τh/2) ◦ σ(a).

Proof. 1) σ1+(τh/2 ◦ σ1(a) =
= σ1+τh/2(a

−1) = (1 + τh/2)1/2
[
(1 + τh/2)−1/2a−1(1 + τh/2)−1/2

]−1
(1 + τh/2)1/2 =

= (1 + τh/2)a(1 + τh/2).

2) exp(τh/2) =
∞∑
n=0

1
2nn!τ

nhn = 1 + τh/2 + o(τ).

Lemma. expXh(a) = [exp(h/2)]a[exp(h/2)].

Proof. The left and right multiplications Multhℓ : A ∋ x 7→ hx and Multhr : A ∋ x 7→ hx
commute. Observe that Hh = 1

2 [Multhℓ +Multhr ]. Therefore expX2h(a) =

= exp[Multhℓ +Multhr ]a = exp[Multhℓ ] exp[Multhr ]a = [Multexphℓ ][Multexphℓ ]a.

Remark. Since all elements fromM = A+ admit a spectral resolution over some compact
interval 0 < [α, β] < ∞, each element a ∈ M = A+ can be written as a = exph with a
unique self-adjoint h ∈ Z such that (logα) · 1 ≤ h ≤ (log β) · 1.

Definition. We write

ExpZ(h) := exp(h) (h ∈ Z), LogMa := Exp−1
Z (a) (a ∈M).

Let h ∈ Z and set a := exp(h) = ExpZ(h) = exp(Xh)1. We call the mapping

Ma := exp(Xh) = expXLogMa :M ∋ x 7→ axa

the pseudo-Möbius transformation of the point a. Natural atlas on M :

Φa :=Ma ◦ LogM ◦M−1
a (a ∈M).

Remark. M−1
a =Ma−1 .

Our next aim is to calculate the image Φ#
1 Xh : Z → Z of the vector field in the atlas page

of Φ1. By definition,[
Φ#

1 Xh

]
(z) :=

[
Φ′

1

(
Φ−1

1 (z)
)]
Xh

(
Φ−1

1 (z)
)
=

=
d

dτ

∣∣∣
τ=0

[
Φ#

1

[
σexp(τh/2) ◦ σ

]]
(z) =

=
d

dτ

∣∣∣
τ=0

[
Φ#

1 σexp(τh/2)

]
◦
[
Φ#

1 σ
]
(z).

Notice that Φ#
1 σ(z) = −z. Therefore[
Φ#

1 Xh

]
(z) =

d

dτ

∣∣∣
τ=0

[
Φ#

1 σexp(τh/2)

]
(−z) =

=
d

dτ

∣∣∣
τ=0

LogM

(
exp

(1
2
τh

)
exp

(
z
)
exp

(1
2
τh

))
.
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Let us fix z, h ∈ Z and define

w(τ) := LogM

(
exp

(1
2
τh

)
exp

(
z
)
exp

(1
2
τh

))
.

Since w(0) = z trivially, we can write w(τ) = z+ τb+ o(τ) with a unique vector b ∈ Z. In
terms of b, we have

d

dτ

∣∣∣
τ=0

exp
(
w(τ)

)
=

d

dτ

∣∣∣
τ=0

exp
(1
2
τh

)
exp

(
z
)
exp

(1
2
τh

)
.

On the right hand side we simply have

d

dτ

∣∣∣
τ=0

exp
(1
2
τh

)
exp

(
z
)
exp

(1
2
τh

)
=

1

2
h exp(z) +

1

2
exp(z)h .

On the left hand side the derivation can be carried out with the power series of the
exponential map termwise. That is

d

dτ

∣∣∣
τ=0

exp
(
w(τ)

)
=

∞∑
n=1

1

n!

d

dτ

∣∣∣
τ=0

w(τ)n =

∞∑
n=1

1

n!

n∑
k=1

zk−1bzn−k =

=
∞∑

k,ℓ=0

1

(k + ℓ+ 1)!

[
Multzℓ

]k[
Multzr

]ℓ
b .
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