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On the manifold of tripotents in JB*-triples?
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Abstract. Tripotents are natural generalizations of partial isometries in C*-algebras to the context
of JB*-triples that is complex Banach spaces with symmetric unit ball. We give a survey on the main
results papers [2,7,8,6] concerning the structure of the tripotents as a direct real-analytic submanifold
in a JB*-triple. We also discuss some recent achievements.

1. Preliminaries: symmetry, JB*-triples, tripotents

Topological algebraic structures concerning spatial symmetry have their obvious
importance in mathematical physics and they have independent mathematical in-
terest as well. The underlying space in this paper will be a so-called JB*-triple,
a complex Banach space Z whose unit ball B(Z) := {x ∈ Z : ‖x‖ < 1} is
symmetric in the sense of holomorphy that is for every point z ∈ B(Z) there is a
biholomorphism Sz : B(Z) ↔ B(Z) such that S2

z = Sz ◦Sz = IdB(Z), Sz(z) = z
and S′z(z) = −IdZ for the Fréchet derivative of Sz . As result of a long develop-
ment started with the Harish-Chandra realization of finite dimensional symmetric
domains, in 1983 W. Kaup [9] established the following algebraic characterization.
The Banach spaces with symmetric unit ball are exactly those admitting a Jordan-
Banach *-triple product (JB*-triple product for short, hence the name JB*-triple).
By a JB*-triple product we mean an operation {., ., .} : Z×Z×Z → Z with three
variables satisfying the axioms

(J1) {x, y, z} is symmetric bilinear in x, z and conjugate-linear in y,

(J2) ‖{x, x, x}‖ = ‖x‖3,

and, with the linear operators D(a) : z 7→ {a, a, z},

(J3) D(a){x, y, z} = {D(a)x, y, z} − {x,D(a)y, z}+ {x, y,D(a)z},

(J4) ‖ exp (ζD(a))‖ ≤ 1 whenever Re ζ ≤ 0.

? Supported by the National Research Found OTKA Grant No. T 48753.
?? email: stacho@math.u-szeged,hu

Key words and phrases. JB*-triple, tripotent, connection, Grassman manifold
AMS 2000 subject classifications. 17C27, 17C36, 17B60, 17B65, 17B66



As a typical example, each C*-algebra with its natural norm is a JB*-triple with
the triple product {x, y, z} := [xy∗z + zy∗x]/2. It is remarkable that the JB*-
triple product is unambiguously determined by the norm of the underlying space,
furthermore any bounded symmetric domain is biholomorphically equivalent to the
unit ball of some JB*-triple.

Henceforth Z will denote an arbitrarily fixed JB*-triple with norm ‖.‖ and
JB*-triple product {, ., ., .}, respectively. We shall write

Der(Z) := {δ∈L(Z) : δ{x, y, z}={δx, y, z}+{x, δy, z}+{x, y, δz}}

for the set of all derivations of the triple product and

Her(Z) := {α ∈ L(Z) : ‖ exp(itα)‖ = 1 (t ∈ IR)}

will stand for the set of all hermitian operators of the norm ‖.‖. Axiom (J3) can
be interpreted as the fact that that all the operators iD(a) belong to Der(Z). In
view of Sinclair’s theorem on the norm of hermitian operators (for an elementary
proof see [6, p. 245]), axiom (J4) is an equivalent formulation of the fact that the
operators D(a) are hermitian with non-negative spectra.1

The link between complex geometry and Jordan structure inZ is established by
the fact that the family autB(Z) of all complete holomorphic vector fields of the
unit ball is spanned by derivations and polynomials of second degree of the triple
product. In this paper, by a vector field on a domain C ⊂ Z we simply mean a
holomorphic mapping C → Z and, by definition, the vector field V is complete in
C if its flow is defined on the whole phase set D× IR. In particular V ∈ autB(Z)
if there is a necessarily real-analytic mapping FV : B(Z) × IR → B(Z) such
that FV (p, 0) = p and d

dtFV (p, t) = V (FV (p, t)) for all p ∈ B(Z) and t ∈ IR.
Namely, in terms of the conjugate linear quadratic representation operators Q(a) :
z 7→ {a, z, a} we can write

autB(Z) = {[z 7→ a−Q(z)a+ δz] : a ∈ Z, δ ∈ Der(Z)}.

The main objective of our work is the family

Tri(Z) := {e ∈ Z : {e, e, e} = e 6= 0}
1 Proof. Let α ∈ {β ∈ Her(Z) : Sp(β) ≥ 0} and assume ξ, η ∈ IR with ξ ≤ 0. Then∥∥∥ exp

(
ξ + iη)α

)∥∥∥ =
∥∥∥ exp(ξα)

∥∥∥ because the operator exp(iηα) is unitary with respect to

the norm ‖.‖. Define µ1 := max Sp(α) and µ2 := min Sp(α) and consider the operator
β := α − 2−1(µ1 + µ2)Id. We have β ∈ Her(Z) and α = β + 2−1(µ1 + µ2)Id. By

Sinclair’s theorem, ‖β‖ = max
{
|max Sp(β)|, |minSp(β)|

}
= 2−1(µ1 − µ2). Therefore∥∥∥ exp

(
ξ + iη)α

)∥∥∥ =
∥∥∥ exp(ξα)

∥∥∥ = e2−1ξ(µ1+µ2)
∥∥∥ exp(ξβ)

∥∥∥ ≤ e2−1ξ(µ1+µ2)e|ξ|‖β‖ =

e2−1ξ(µ1+µ2)e−2−1ξ(µ1−µ2) = eξµ2 ≤ 1. The converse is an easy consequence of the spec-
tral mapping theorem. Let ‖ exp(ζα)‖ ≤ 1 for Re ζ ≤ 0. Then, given any λ ∈ Sp(α), we have
|eζλ| ≤ ‖ exp(ζα)‖ ≤ 1 that is Re ζλ ≤ 0 whenever Re ζ ≤ 0 which is possible only if λ ≥ 0.
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of the tripotents that is the idempotent elements of the triple product in Z. In case
of Z being a C*-algebra Tri(Z) = {e : ee∗e = e 6= 0} is the set of all partial
isometries. It is a well-known consequence of axioms (J1),(J3) that the operators
D(e) and Q(e) are semisimple and commute if e ∈ Tri(Z). Namely we have
D(e)(D(e) − 2−1Id)(D(e) − Id) = 0 and Q(e)3 = Q(e) and hence the Peirce
decomposition2

Z=Z0(e)⊕Z1/2(e)⊕Z1(e), Z0(e)=Z0(e)⊕Z1/2(e), Z1(e)=Z1(e)⊕Z−1(e)

with the eigenspaces

Zλ(e) := {z ∈ Z : D(e)z = λz}, Zε(e) := {z ∈ Z : Q(e)z = εz}.

It is also a well-known consequence of axioms (J1),(J3) that Q(e) acts as an
involutive automorphism of the triple product on Z1(e): Q(e)2x = x and
Q(e){x, y, z} = {Q(e)x,Q(e)y,Q(e)z} for x, y, z ∈ Z1(e). This fact along with
iD(e) ∈ Der(Z) entails the so-called Peirce rules

{Zξ(e), Zα(e), Zη(e)} ⊂ Zξ−α+η(e), {Zε(e), Zϕ(e), Zψ(e)} ⊂ Zεϕψ(e),
{Z0(e), Z1(e), Z}={Z1(e), Z0(e), Z}={0}.

As a typical example, ifZ is the C*-algebra of all complex (m+n)-square matrices
then e = ( I000) ∈ Tri(Z) with the m × m identity matrix I and, in terms of the
(m,n) matrix decomposition we have Z1(e) = {(a 0

0 0 ): a hermitian}, Z−1(e) =
iZ1(e), Z1/2(e) = {(0x

y 0 ): x, y arbitrary}, Z0(e) = {(0 0
0 b ): b arbitrary}.

By the C*-axiom (J2), tripotents have norm one. In finite dimensions their ge-
ometric importance as distinguished boundary objects relies upon the fact [11, 12]
that the holomorphic boundary components (faces in holomorphic sense)3 of the
unit ball have the form e+B(Z0(e)), e ∈ Tri(Z) and the boundary ∂B(Z) is their
disjoint union. In infinite dimensions there may be no tripotents at all as e.g. in
the case of the commutative C*-algebra Z := C0(0, 1) of the continuous functions
f : (−1, 1) → C with lim|ω|→1 f(ω) = 0. However, using the canonical embed-
ding of Z into its bidual Z∗∗, we can regard B(Z) as a weak*-dense norm-closed
subset of B(Z∗∗). Actually Z∗∗ is always a JB*-triple whose triple product admits

2 We include a short simultaneous proof which cannot be found in the literature. Let e ∈ Tri(Z) and
δ := D(e), µ := Q(e). Using only axioms (J1) and (J3), we have {x, e, e} = {x, e, {e, e, e}} =
2{{x, e, e}, e, e}− 2{e, {e, x, e}, e}. This means the relation δ = 2δ2 −µ2 or which is the same
as (1) µ2 = 2δ(δ − 2−1Id). Similarly, from the three term expansion of {e, e, {x, e, x}} we get
(2) δµ = 2µ − µδ. Expanding {e, x, e} = {e, x, {e, e, e}} we also get (3) µ = 2δµ − µδ.
Equations (2),(3) imply immediately that (4) µ = δµ = µδ. Hence µ2(δ − Id) = 0. In view of
(1) this entails the first Peirce equation 2δ(δ − 2−1Id)(δ − Id) = 0. The second Peirce equation
has the form µ3 − µ = 0. This is immediate from (1) and (4). Indeed, µ3 − µ = µ(µ2 − Id) =
µδ(2δ2 − δ − Id) = µ(2δ3 − δ2 − δ) = 2µ− µ− µ = 0.

3 The holomorphic boundary component of a point p ∈ ∂B(Z) = {z ∈ Z : ‖z‖ = 1} is the union
of all finite sequences F0, . . . , Fn by holomorphic images of the unit disc ID :={ζ ∈C: |ζ|<1}
such that F0, . . . , Fn⊂∂B(Z), p∈F0 and Fj−1∩Fj 6=∅.
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plenty of tripotents and extends the triple product from Z in a separately weak*-
continuous manner [1]. Though the sets e+B(Z∗∗0 (e)), e ∈ Tri(Z∗∗) do not cover
∂B(Z) in general, we have [3]

{norm-exposed faces of B(Z∗∗)} = {e+B(Z∗∗): e ∈ Tri(Z∗∗)}

where B denotes closed unit ball. For more on JB*-triples see [16,12,13].

2. Tri(Z) as a submanifold of Z

Recall that the tangent cone of a subset S in a real Banach space (X, ‖.‖) at the
point p ∈ S is the set Tp(S) of all vectors v ∈ X such that v = limn ξn(pn − p)
for some sequences p1, p2, . . . ∈ S and ξ1, ξ2, . . . ∈ IR+. Notice that Tp(S) is
always a closed cone in X . By definition, S is a direct analytic submanifold in X
if for every point p ∈ S there is a bianalytic mapping Φp : Up → Vp between some
neighborhoods of the origin and the point p, respectively, along with a direct sum
decomposition X = X

(0)
p ⊕X

(1)
p into closed subspaces such that

Vp ∩ S = Φp(X(0)
p ∩ Up).

It is a direct consequence of the inverse mapping theorem that S is an analytic sub-
manifold in X if and only if, for any point p ∈ S, Tp(S) is a closed complemented
subspace of X and there is an analytic mapping Ψp from some neighborhood Up of
the origin in X into X such that

Ψ ′p(p) = Id and Ψp(x) ∈ S if and only if x ∈ Tp(S) ∩ Up.

Actually, in the latter case one can find a family {Up : p ∈ S} of 0-neighborhoods
in X such that the restricted mappings Ψp|Up, p ∈ S form an analytic atlas of S.

Given any tripotent e ∈ Tri(Z), in the sequel we shall write Pλ(e) for the
Peirce projection onto Zλ(e) along the complementary sum ⊕µ 6=λZµ(e). We also
introduce the spaces Zσ1 (e) := Z1(e) ∩ Zσ(e) and

Z(−)(e) := Z1/2(e)⊕ Z−1
1 (e), Z(+)(e) := Z0(e)⊕ Z1

1 (e)

and write P σ1 (e) := 2−1P1(e)[Id + σQ(e)] respectively P (±)(e) := P±1
1 (e) +

P1/2(e) for the corresponding projections. Furthermore we shall keep fixed the
notation K(e, .) for the operator

K(e, z) := D
(
[2−1P 1

1 (e)+2P1/2(e)]z, e
)
−D

(
e, [2−1P 1

1 (e)+2P1/2(e)]z
)
.

Notice that K(e, z)e = P (−)(e)z for all z ∈ Z. Moreover, as being in the form
D(e, w) − D(w, e), we have K(e, z) ∈ Der(Z), z ∈ Z. Hence expK(e, w) ∈
Aut(Z) with the family of all (linear) automorphisms of the triple product {., ., .}
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(which coincides with the set of all surjective isometries Z → Z). In particular
expK(e, w)Tri(Z) = Tri(Z) and Zλ( expK(e, w)e) = [ expK(e, w)]Zλ(e),
λ = 0, 1/2, 1. Regarding the complex JB*-triple Z as a real Banach space and
taking into account that e+ a+ x cannot be a tripotent if e ∈ Tri(Z), a ∈ Z1

1 (e),
x ∈ Z0(e) and ‖a‖, ‖x‖ < 2−1 we have the following observation.

2.1. Proposition [14]. Tri(Z) is a real-analytic direct submanifold of Z. For any
tripotent e we have Te(Z) = Z1/2 ⊕ Z−1

1 (e) = Z1/2 ⊕ iZ1
1 (e). In terms of the

operators K, the mappings Ψe : Z → Z, e ∈ Tri(Z) are well-defined by

Ψe(x+ v + a+ ib) := [ expK(e, v + ib)](e+ x+ a),
x ∈ Z0(e), v ∈ Z1/2(e), a, b ∈ Z1

1 (e).

They are real-analytic with the properties Ψ ′e = Id (Fréchet derivative in real
sense) and, for ‖x‖, ‖a‖ < 2−1, we have Ψe(x + v + a + ib) ∈ Tri(Z) ⇔ x =
a = 0.

A fundamental consequence of this fact is the possibility that we can establish a
canonical one-to-one correspondence Ee between the smooth curves in Z1/2(e) ⊕
Z−1

1 (e) and those in Tri(Z) with starting point e as follows. Recall ([7] or [5])
that Aut(Z) is an algebraic Banach-Lie subgroup of L(Z) with TId(Aut(Z)) =
Der(Z). Hence each smooth function F : IR → Der(Z) admits a (unique) left
multiplicative primite function L

F : IR → Aut(Z) such that

d

dt

L
F (t) = [LF (t)]F (t), L

F (0) = Id.

2.2. Theorem. Given a smooth curve γ : IR → Z(−), the curve

Ee(γ) := L
K(e, γ(.))e

ranges smoothly in Tri(Z). Conversely, given any smooth curve ε : IR → Tri(Z),
there is a unique γ ∈ C∞(IR, Z1/2(e)⊕ Z−1

1 (e)) with Eε(0)(γ) = ε.

Proof. Since t 7→ K(e, γ(t)) ranges smoothly in Der(Z), its left multiplica-
tive primitive function is well-defined and ranges smoothly in Aut(Z). Hence
indeed Ee(γ)e ∈ C∞(IR,Tri(Z)). To prove the converse, we have to see that,
given a smooth curve ε : IR → Tri(Z) with starting point e = ε(0), there
is a unique smooth curve g : IR → Aut(Z) such that g(t)e = ε(t) and
d
dtg(t) = g(t)K(e, v(t)) for some smooth curve v : IR → Z(−)(e). According
to Proposition 2.1, the maps Z(−)(f) 3 w → expK(f, e)f , f ∈ Tri(Z) are real
analytic local charts of Tri(Z). Hence it readily follows that ε(t) = h(t)e, t ∈ IR
with some smooth curve h : IR → Aut(Z). Fixing such a curve h (and regard-
ing g in the form g = hk), it suffices to see that there is a unique smooth curve
k : IR → Aut(Z) such that k(t)e = e and d

dth(t)k(t) = h(t)k(t)K(e, w(t)),
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t ∈ IR for some smooth curve w : IR → Z(−)(e). By abbreviating d
dt with ′ as

usually, this means the condition

k′(t) = k(t)K(e, w(t))− `(t)k(t) where `(t) := h(t)−1h′(t)

on k(.) with suitable w : IR → Z(−)(e). The requirement k(t)e = e implies

0 = k(t)−1(e)k′(t)e = K(e, w(t))e− k(t)−1`(z)k(t)e =
= P (−)(e)w(t)− k(t)−1`(z)e = w(t)− k(t)−1`(z)e.

Thus necessarily w(t) = k(t)−1`(z)e = k(t)−1`(z)k(t)e ∈ Z(−)(e), t ∈ IR if a
required curve k(.) exists. Since h ranges in Aut(Z), ` = h−1h′ ranges necessar-
ily in the tangent of Aut(Z) that is `(t) ∈ Der(Z), t ∈ IR. As a consequence,
also k̃−1`(t)k̃ ∈ Der(Z) and k̃−1`(t)k̃e ∈ TeTri(Z) = Z(−)(e) whenever
k̃ ∈ Aut(Z). Therefore the initial value problem k′(t) = k(t)K(e, k(t)−1`(z)e)−
`(t)k(t), k(0) = Id is wellposed in L(Z), with a unique solution ranging in the
isotropy subgroup of the point e in Aut(Z). Its boundedness ensures that its (max-
imal) domain is the whole IR. ut

The model of curves in Tri(Z) in the real vector space of curves in Z(−)(e)
described by Theorem 2.2 is a powerful tool in the study of the natural differential
geometry of Tri(Z). In 2000 Chu and Isidro [2] have found an interesting general-
ization of the classical Riemannian connection on surfaces to Tri(Z) by replacing
the orthogonal projections to the tangent planes with the Peirce projections P (−).
That is given two vector fields X,Y on Tri(Z) (functions Tri(Z) → Z such that
X(e), Y (e) ∈ TeTri(Z) = Z(−)(e), e ∈ Tri(Z)) we define

∇XY := P (−)Y ′X

i.e. ∇XY (e) = P (−)(e)Y ′(e)X(e) = P (−)(e) ddt |t=0Y ( expK(e, tX(e))), e ∈
Tri(Z). We shall refer to ∇ as the algebraic connection of Tri(Z). In [2] one
has established partial results on the algebraic form of the geodesics of finite rank
tripotents in some JB*-triples. In 2005 in [7, Lemma 1] one achieved the solution
of the geodesic equation

P (−)(ε(t))ε′′(t) = 0

for ∇ with curves in the form ε = Ee(ω) with the following arguments. Let
g(t) = L

K(e, ω(t)) and ε(t) = g(t)e. Then ε′ = gK(e, ω)e = gω and
g′′ = ε′ω+gω′ = g[K(e, ω)ω+ω′]. Since g(t) ∈ Aut(Z) for any t, P (−)(ε(t)) =
g(t)P (−)(e)g(−)(t) and hence

P (−)(ε(t))ε′′(t) = g(t)P (−)(e)[K(e, ω(t))ω(t) + ω′(t)].

Given any vector w = w1/2 + w1 ∈ Z1/2(e) ⊕ Z−1
1 (e) = Z(−)(e), from

the Peirce rules it follows that P−1
1 (e)K(e, w)w = 0 and P1/2(e)K(e, w)w =

2−1{w1, e, w1/2}+2{w1/2, e, w1}− 2−1{e, w1, w1/2} = 3{w1, e, w1/2}. Thus for
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the components ωλ(t) := Pλ(e)ω(t), λ = 2−1, 1 we get the linear differential
equations ω1′ = 0 and ω′1/2 = 3D(ω1, e)ω1/2. Hence Theorem 2.2 yields the
following result.

2.3. Theorem. A curve ε in Tri(Z) is a ∇-geodesic if and only if

ε(t) = L
K

(
e, w1 + exp[3tD(w1, e)]w1/2

)
e

for some e ∈ Tri(Z), w1 ∈ Z−1
1 (e) and w1/2 ∈ Z1/2(e).

As an immediate consequence, we get the following minor correction to [2,
Thm. 2.7]: for fixed e ∈ Tri(Z) and w = w1/2 + w1 ∈ Z1/2(e) ⊕ Z−1

1 (e),
the curve ε(t) := expK(e, tw)e is a ∇-geodesic if and only if {w1, e, w1/2} =

{e, w1, w1/2}=0. For a nontrivial example let E :=
[

10
01

]
, R :=

[
i0
00

]
, A :=

[
00
11

]
B :=

[
01
01

]
and let Z be the C*-algebra of all 4× 4 matrices. Then with e := [E0

00 ],
w1 := [R0

00 ], w1/2 := [ 0A
B0 ] we have e ∈ Tri(Z), w1 ∈ Z−1

1 (e), w1/2 ∈ Z1/2(e) and
{w1, e, w1/2} = {w1/2, e, w1} = 0.

Another issue for an effective application of Theorem 2.2 can be the inves-
tigation of minimal and stationary curves with respect to the distance in Tri(Z)
inherited from Z. By definition, a smooth curve ε : [0, 1] → Tri(Z) is a min-
imal curve if the length of any (smooth) curve in Tri(Z) joining the endpoints
ε(0) and ε(1) is not less then that of the curve ε. We say that ε is a stationary
curve if d

dτ |s=0Length(ετ ) = 0 whenever (τ, t) 7→ ετ (t) is a smooth mapping
[0, 1]2 → Tri(Z) such that ε0(t) = ε(t) and ετ (a) = ε(a) for τ, t ∈ [0, 1] and
a = 0, 1. In contrast with the close relationship in classical surface geometry in
Euclidean spaces between the stationary curves and the Riemannian connection,
in our setting the situation seems to be more involved. For instance, in the case
of the commutative C*-algebra Z := C[0, 1], any curve εα(t) := [s 7→ eiα(s,t)]
is minimal joining the constant functions ε0 and ε1 whenever α is a smooth func-
tion [0, 1]2 → [0, 1] such that each subfunction α(., t) maps increasingly the in-
terval [0, 1] onto itself. Disregarding the few cases where Tri(Z) happens to be a
Riemannian manifold, there seem to be no results in the literature on metric mini-
mal and stationary curves of tripotents in general complex JB*-triples. Recently in
[15] we achieved the following reformulation of the length variational equation for
tripotents by the aid of the technique with multiplicative primitive functions.

2.4. Proposition. Let ε : [0, 1] → Tri(Z) be a smooth curve in the form ε(t) =
L
K(e, ω(t))e where e ∈ Tri(Z) and ω : [0, 1] → Z(−)(e) is a smooth curve. Then

Length(ε) =
∫ 1
0 ‖ω(t)‖ dt. If the curve ε is stationary then we have∫ 1

0

[
ξ(t)δ

(
ω(t),K(e, ω(t))u

)
+ ξ′(t)δ

(
ω(t), u

)]
dt = 0
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for any vector u ∈ Z(−)(e) and for any smooth function ξ : [0, 1] → IR with
xi(0) = ξ(1) = 0 where δ(z, v) := lims↓0 s

−1‖z + sv‖, z, v ∈ Z denotes the
subgradient of the norm in Z.

An immediate difficulty in the progress along these lines is the fact that the bad
smoothness properties of the norm in most JB*-triples do not allow to carry out
a routine partial integration in the latter formula. Hence the following problem is
still open. In which JB*-triples are all ∇-geodesics curves stationary?

3. The Grassmanian structure of the equivalence classes of tripotents

Since the tangent space TeTri(Z) = Z1/2(e)⊕Z−1
1 (e) is not a complex subspace

in Z (in particular ie ∈ Z−1
1 (e) = iZ1

1 (e) and Z−1
1 (e) ∩ Z1

1 (e) = {0}), Tri(Z)
is not a complex submanifold of Z. Observe that if we ”go in the wrong direc-
tions” in Tri(Z) in the sense that we consider curves in the form ε(t) := g(t) with
g(t) := L

K(e, ω(t)) and ω(t) ∈ Z−1
1 (e) then the operators D(ε(t)) determin-

ing the Peirce subspaces do not change. Indeed, it is well-known that D(e, w) =
σD(w, e) whenever w ∈ Zσ1 (e) whence d

dtD(ε) = D(ε′, ε) + D(ε, ε′) =
D(gω, ge) + D(ge, gw) = g[D(ω, e) + D(e, ω)]g−1 = 0. The equivalence of
tripotents

e ∼ f
def⇐⇒ D(e) = D(f)

was introduced and studied already in 1985 by E. Neher [13]. Originally he for-
mulated this relationship as {e, e, f} = f and {f, f, e} = e and called it ”associ-
ation” but established its equivalence with D(e) = D(f) immediately. Since any
automorphism of the triple product maps an equivalence class of ∼ onto another
equivalence class and since the maps Ψe : Z1/2 ⊕ Z−1

1 (e) 3 w 7→ expK(e, w)e,
e ∈ Tri(Z) are local charts on Tri(Z), it can be expected that the quotient manifold

IM := Tri(Z)/∼ := {e∼: e∈Tri(Z)} where e∼ := {f ∈Tri(Z) : f ∼ e}

equipped with the maps

Ψ∼e : Z1/2(e) ∈ w 7→ expK(e, w)e∼ = [Ψe(w)e]∼, e ∈ Tri(Z)

becomes a real-analytic manifold. If so, IM with the intrinsic metric of curve
lengths must be symmetric in the following sense (cf. [2]). The Peirce reflections

S(e) := 2P1/2(e)− Id, e ∈ Tri(Z)

belong to Aut(Z) with Se|Z0(e)⊕Z1(e)=Id and Se|Z1/2(e)=−Id. Easily seen,
S(e) commutes with the chart map Ψe that is S(e)Ψe(w) = Ψe(−w) for all w ∈
Z1/2(e). Consequently, its quotient mapping S∼(e)f∼ := [S(e)f ]∼, f ∈ Tri(Z)
is a welldefined symmetry of IM that is S∼(e) is holomorphic with S∼(e)e∼ = e∼

and [S∼(e)]′(e∼) =−Id. It is an open problem for the time being, in which cases
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does IM become with this atlas a complex manifold (i.e. all the coordinate changing
maps [Ψ∼e ]−1◦ Ψ∼f are holomorphic). In 2001, Kaup [10] published a paper on the
Grassmanian manifold

IP := {Ja : a ∈ Z, ∃V ⊂ Z subspace Ja ⊕ V = Z}

of all principal inner ideals Ja :=
⋂
{J ⊂ Z : a ∈ J, {J, Z, J} = J} which

are complemented in Z. One of its main conclusions is that the maps

Θe : Z1/2(e) 3 u 7→ expD(u, e)Je, e ∈ Tri(Z)

form an atlas on IP and IP becomes a complex symmetric manifold with them and
a suitable metric. Notice that the equivalence e ∼ f of two tripotents can also
be formulated in terms of their Peirce 1-subspaces as Z1(e) = Z1(f) (as an easy
consequence of e∼ f ⇔ {e, e, f}= f & {f, f, e}= e ⇔ D(e) =D(f)). As it is
also shown in [10], actually we have

IP = {Ja : a∈ Reg(Z)} = {Js(a) : a∈Reg(Z)} = {Z1(e) : e∈Tri(Z)}

with the set Reg(Z) := {a ∈ Z : Sp[D(a)|C(a)] > 0} of all von Neumann reg-
ular elements in Z where C(a) := Span∞n=0D(a)na denotes the closed subtriple
generated by the element a and

s(a) := lim
n→∞

ϕn(D(a))a, a ∈ Reg(Z)

is the support tripotent of a ∈ Reg(Z) welldefined with any sequence (ϕn) of real
polynomials such that ϕn(x2)x→ 1 locally uniformly for x > 0. Thus, with the
family ID := {iD(e): e ∈ Tri(Z)} of triple derivations, the diagram of mappings

Tri(Z)
↙ ↓ ↘

ID ↔ IM ↔ IP

e
↙ ↓ ↘

iD(e) ↔ e∼ ↔ Z1(e)

is commutative. Thus the complex structure of IP provided by the charts Θe on IP
can be translated to ID and IM by its means. Henceforth we shall be concerned
with the problem how to describe holomorphy in IM and ID in intrinsic man-
ners, not involving principal ideals explicitly. Such kind of an approach may have
interest from the following view point: the algebraically less sophisticated maps
u 7→ expD(u, e) in the construction of the charts of IP apply to rather ”big” ob-
jects such that we may have Je ∩ Jf 6= ∅ even if e 6∼ f while e∼ ∩ f∼ = ∅ and
D(e) 6= D(f) simply in the latter case. As a first natural question we can raise
is how ID does behave topologically in the real-linear operator space Der(Z). We
gave the following answer in terms of decompositions with the projections

πk`(e) : L(Z) 3 L 7→ Pk/2(e)LP`/2(e), Πm(e) :=
∑

|k−`|=m
k,`=0,1,2

πk`(e).
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3.1. Theorem [8]. Π0 and Π1 map Der(Z) into itself and we have

Der(Z) = ∆1(e)⊕∆0(e) where ∆m(e) := Πm(e)Der(Z).

ID is a real-analytic direct submanifold of Der(Z). For any e ∈ Tri(Z), the map
u 7→ K(e, u) is a bijection Z1/2(e) ↔ ∆1(e) and TiD(e)ID = ∆1(e). The families

{[Z1/2(e) 3 u 7→ iD( expK(e, u)e)] : e ∈ Tri(Z)},
{[Z1/2(e) 3 u 7→ ( expK(e, u)e)∼] : e ∈ Tri(Z)}

are real-analytic atlases for ID and IM, respectively.

The main topological properties of the natural map ID ↔ IM can be established
by a fine estimate as follows.

3.2. Proposition. [8]. If e, f ∈ Tri(Z) and we have ‖D(e) − D(f)‖ < 1
66 then

there exists f ′ ∈ f∼ such that ‖e− f ′‖ ≤ 16‖D(e)−D(f)‖.

As a consequence, by writing d(z,A) := infa∈A ‖z − a‖, z ∈ Z, A ⊂ Z
for the point-set distance in Z, the quotient topology of the equivalence
classes in IM inherited from the norm topology of Tri(Z) coincides
with the topology by the bias d0(e∼, f∼) := infe′∈e∼ d(e, f∼). It co-
incides also with the topology by the Hausdorff metric dH(e∼, f∼) :=
max { supe′∈e∼ d(e′, f∼), supf ′∈f∼ d(f ′, e∼)}. Moreover the mapping
e∼ 7→ iD(e) is bilipschitzian IM ↔ ID with respect to dH .

Next we proceed to the question if the real-analytic structures given in Theorem
3.1 are compatible with those inherited from Kaup’s complex manifold structure
on IP. There is a natural candidate for a canonical technique to translate the coor-
dinate map Θe(u) := exp(u, e)Z1(e) = JexpD(u)e into IM and ID. Namely we can
project the range of expD(., e) into Tri(Z) by using support tripotents resulting in
the mappings

Θ̃e(u) := [s( expD(u, e)e)]∼, Θ̂e(u) := iD(s( expD(u, e)e))

into from Z1/2(e) into IM and ID, respectively. Are they real-analytic with respect
to the atlases of IM and ID given in Theorem 3.1?

3.3. Theorem. [8]. If Z is a JC∗-triple, e ∈ Tri(Z) and u ∈ Z1/2(e) then the
function st := s([exp tD(u, e)]e) is the solution of the initial value problem

(3.4)
d

dt
st = P1/2(st){u, e, st}, s0 = e.

By a JC*-triple we mean a JB*-triple which is isomorphic to a subtriple of some
C*-algebra L(H) with a suitable Hilbert space H . It is a well-known consequence
of the Gelfand-Neumark theorem of JB*-triples due to Friedman and Russo [4] that
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to establish Theorem 3.3 for general JB*-triples, it suffices to prove its statement
additionally only in the special caseZ = H3(O) of the 27-dimensional exceptional
JB*-triple. It seems that any JB*-subtriple of H3(O) generated by a tripotent and
an element from its Peirce (1/2)-subspace must be a JC*-triple. The solution of
(3.4) passes in such a subtriple necessarily and the theorem is valid in general.
However, we have no complete proof for the moment.

To bypass this difficulty, in [8] we construct holomorphic atlases on IM by
means of the solutions of (3.4), leading to some results of independent interest.
To this aim, first we have to understand the connection between the tangent vector
fields of Tri(Z) and those of IM. Consider a flow [φt : t ∈ IR] of mappings
φt : Tri(Z) → Tri(Z) which preserve the equivalence classes of ∼ (i.e. e∼ f ⇒
φt(e) ∼ φt(f)) such that φ0 = Id and each curve t 7→ φt(e) is smooth. Then the
vector field e 7→ X(e) := d

dt |t=0φt(e) ∈ Z(−)(e) has the property

D(X(e), e)=D(X(f), f), D(e,X(e))=D(f,X(f)) whenever e ∼ f.

We shall call such tangent vector fields equivariant. Different flows [φt], [ψt] may
give rise to the same mappings of equivalence classes in the sense that φt(e∼) =
ψt(e∼) for all t ∈ IR, e ∈ Tri(Z). Then, for the generator vector fields X :=
d
dt |t=0φt and Y := d

dt |t=0ψt, we have

D(X(e), e) = D(Y (e), e), D(e,X(e)) = D(e, Y (e)), e ∈ Tri(Z).

We call this property the equivalence of the fields X,Y and write X ≈ Y for it.

3.5. Proposition. [8]. (1) Given an equivariant field X , its projection

P1/2X : e 7→ P1/2(e)X(e)
is the unique equivariant field Y with X≈Y and Y (e)∈Z1/2(e), e∈Tri(Z).

(2) A bounded locally Lipschitzian tangent vector field X on Tri(Z) is equiv-
ariant if and only if exp tX preserves the equivalence classes of ∼ for all t ∈ IR.

(3) The family of all smooth equivariant vector fields in Tri(Z) is a Lie algebra
with the operation [X,Y ]∗ := ∇XY − ∇YX and we have [X,Y ]∗ ≈ [X̂, Ŷ ]∗
whenever X ≈ X̂ and Y ≈ Ŷ .

Define the auxiliary manifolds

Sλ := {(e, x) : e ∈ Tri(Z), x ∈ Zλ(e)}, λ = 1, 1/2, 0.

Heuristically, S1 can serve as a ”disjointification” of the Grassmanian IP. Its main
features for the study of the solutions of (3.4) can be summarized as follows.

3.6. Proposition. [8]. S1 is a real-analytic direct submanifold of Z × Z with

T(e,x)S1 = Z
(−)
1 (e)× Z1(e) ⊃

{(
P1/2(e)D(a, b)e, D(a, b)x

)
: a, b ∈ Z

}
.
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Given two smooth vector fields C : Tri(Z) → Z, D : Z → Z being complete in
Tri(Z) and Z, respectively, the statements (1),(2),(3) below are equivalent.

(1) [exp tD]x ∈ Z1([exp tC]e) for all (e, x) ∈ S1 and t ∈ IR,
(2) D(x) = {C(e), e, x}+{e, C(e), x}+{e, e,D(x)} for all (e, x)∈S1,
(3) [exp(tD)]Z1(e) = Z1([exp tC]e) for all (e, x) ∈ S1 and t ∈ IR.

For any couple (e, u) ∈ S1/2, let us introduce the tangent vector field

C(e)
u (f) := P1/2(f)D(u, e)f, f ∈ Tri(Z).

On the basis of Propositions 3.5 and 3.6 we can complete the argument.

3.7. Theorem. [8]. For each e ∈ Tri(Z) there exists a neighborhood W of 0 in
Z1/2(e) and a real-analytic map Te:W → Tri(Z) such that

Te(0) = e , expD (u, e) e ∈ Z1(Te(u)), u ∈W.

Proof. Fix any u ∈ Z1/2(e) and set xu := expD (u, e) e. Notice that the
vector field Eu(f) := P1/2(f)D (u, f) f , f ∈ Tri(Z) is a tangent to Tri(Z) and
its exponential is a welldefined mapping Tri(Z) → Tri(Z). Let

Te(u) := (expEu)e, u ∈ Z1/2(e).

Then the curve t 7→ et := Te(tu), t ∈ IR, is the solution of the initial value problem
e0 = e, d

dtet = P1/2(et)D (u, et). Consider the mapping

F (f, y) := (P1/2(f)D (u, e) f, D (u, e) y), (f, y) ∈ S1.

From Proposition 3.6 we see that F is a tangent vector field to S1 and its ex-
ponential is a well-defined mapping S1 → S1. In particular, there is a curve
t 7→ (ft, yt) ∈ S1, t ∈ IR, such that (f0, y0) = (e, e) and d

dt(ft, yt) = F (ft, yt).
Then we have d

dtyt = D(u, e)yt, y0 = e and d
dtft = P1/2(ft)D(u, e)ft, f0 = e.

By the uniqueness of solutions of initial value problems, yt = (exp tD (u, e))e and
ft = et for all t ∈ IR. Since (ft, yt) ∈ S1, we have yt ∈ Z1(ft) for all t ∈ IR. In
particular expD (u, e) e = y1 ∈ Z1(f1) = Z1(Te(u)) which completes the proof.
ut

On the basis of these results we can describe the holomorphic atlases corre-
sponding to Kaup’s coordinatization for IP both on ID and IM as follows. Consider
the vector fields

C(e)
u : Tri(Z) 3 f 7→ P1/2(f)D(u, e)f, (e, u) ∈ S1/2.

According to the results of Section 2, they are real-analytic (with respect to the
coordinates Z(−)(e) 3 w 7→ expK(e, w)). and tangent to Tri(Z). Hence the
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curves t 7→ [exp tC(e)
u ]e are well-defined on the whole IR and range in Tri(Z). By

definition they are solutions of (3.4). Also the maps

YeZ1/2(e) 3 u 7→ [expC(e)
u ]e, e ∈ Tri(Z)

are all well-defined. real-analytic and range in Tri(Z). Using Propositions 3.5, 3.6
and Theorem 3.7 we conclude the following.

3.8. Theorem. [8]. The vector fields C(e)
u are equivariant and complete in Tri(Z).

For any tripotent e, there exists a neighborhood We of the origin in Z1/2(e) such
that the restricted map Ye|We is real-bianalytic with

Ye(0) = e, [expD(u, e)]Je = JYe(u) = Z1(Ye(u)), u ∈We .

By setting Ŷ (e)(u) := iD(Ye(u)), Ỹ (e)(u) := Ye(u)∼, Y
(e)(u) := JYe(u), the

families
{Ŷ (e) : e ∈M}, {Ỹ (e) : e ∈M}, {Y (e) : e ∈M}

are holomorphic atlases for ID, IM and IP with commuting diagram

Z1/2(e)
↙ ↓↘

ID ↔ IM ↔ IP

u
↙ ↓ ↘

Ŷ (e)(u) ↔ Ỹ (e)(u) ↔ Y
(e)(u) .

Since the points of IM are actually pairwise disjoint subsets in Z, it is natural
to ask how can we describe the holomorphy of a function IM → C (and hence
holomorphy to general Banach spaces) in terms of holomorphy in Z.

3.9. Theorem [8]. Let U be an open subset of IM and let U :=
⋃
e∼∈U e∼ denote

its trace in Z. A function Φ : U → C is holomorphic if and only if for any point
e ∈ U , there exists an open neighborhood V of e in Z along with a holomorphic
function φ : V → C such that φ(f) = Φ(f∼) whenever f ∈ U ∩ V .
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[8] J.-M. Isidro - L.L. Stachó, On the manifold of complemented principal inner ideals in JB∗-triples,
Quart. J. Math (Oxford) 57 (2006) 505-525.

[9] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach
spaces, Math. Z. 138 (1983) 503-509.

[10] W. Kaup, On Grassmannians associated with JB∗-triples, Math. Z. 236 (2001) 567-584.
[11] W. Kaup - J. Sauter, Boundary structure of bounded symmetric domains, Manuscripta Math. 101

(2000) 351-360.
[12] O. Loos, Bounded symmetric domains and Jordan pairs. Math. Lectures, University of California

at Irvine, 1977.
[13] E. Neher, Grids in Jordan triple systems, Lecture Notes in Math. Vol. 1280, Springer-Verlag,

Berlin - Heidelberg - New York, 1987.
[14] J. Sauter, Randstrukturen beschränkter symmetrischer Gebiete, Ph.D. Dissertation, Eberhard-

Karls-Universität, Tübingen, 1995.
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