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Locally generated polynomial c'-splines
over triangular meshes

L.L. STACHO

Abstract. We classify all possible local linear procedures over triangular meshes
resulting in polynomial Cl-spline functions with affinely uniform shape for the
basic functions at the edges, and fitting the 9 value- and gradient data at the ver-
tices of the mesh members. There is a unique procedure among them with shape
functions and basic polynomials of degree 5 and all other admissible procedures

are its perturbations with higher degree.

1. Introduction

By a triangular mesh we mean a finite family of closed non-degenerate
triangles on the plane R? with pairwise non-intersecting interiors and admit-
ting only common vertices or edges. As usually, we regard R? as the set of
all real couples [€, 1] considered also as 1 x2 (row) matrices. We shall use the
standard notations z! =z : [€,7] = &, 2P} =y : [€,9] = n and (u|v) :=
Z§:1 2Vl (u)zll(v) for the Cartesian coordinates and scalar product, re-
spectively. We write ||u = (u|u)'/? for the norm of u € R? and Co(S) for
the convex hull of 8 € R? resp. det(u,v) = zl(u)zP(v) — 2l (v)zP ()
for 2x2-determinants. Given a triangular mesh 7 = {Tl, . ,TM}, in the
sequel Vert(T}) and Edge(T}y) will denote the sets of vertices resp. closed
edges of the mesh members, furhermore Dom(T) := JrL, Ty, Edge(T) :=
UM, 8Ty, Vert(T) := s, Vert(T},) will stand for the domain covered by
T, the line figure covered by all edges and the collection of all vertices, re-
spectively. Recall that, given a gradient-data

F = {(p, Jorlfep fop)) P E Vert’T)} C Vert(T) x R x R?

on the set of the vertices in 7, a function f : D — R is a C'-extension
of FF on D := Dom(7) if f has a continuous gradient p — Vf(p) =
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[% f(p), a% f(p)] on Interior(D) which admits a continuous extension to
D as well (denoted also by V f) such that

f®)=fp, VI®) = [fip fyp] (P € Vert(T)). (1.1)

A C'-extension f: D — R of F is said to be a C'-spline interpolation of F
with respect to the mesh 7 if the restrictions f|T} are polynomials of the
coordinate functions x, y.

There exists a large variety of C'-splines for any admissible 7 and F
which can be obtained e.g. as global polynomial extensions with Hermite
type interpolation [5]. Obviously global polynomial fitting may primarily
be interesting only from a pure theretical view point due to too large poly-
nomial degree and hence high numerical instability. A better alternative
could be an imitation of tensor product splines (e.g. with Catmull-Rom
type hermition curves on edges developed for rectangular meshes [7,6]).
This consists the construction of C!'-splines as linear combinations on the
rectangular mesh members from affine images of tensor products from only
two special polynomials ®, ¥ : [0,1] — [0,1] (actually @(t) = t3(3 — 2t),
P(t) = t3(1 — t)). Some main features of tensor product spline procedures
which can naturally be generalized even to procedures

&: (T,F)— frp (T triang. mesh, F grad. data on Vert(7)) (1.2)

furnishing C!'-spline interpolation functions from gradient data at the ver-
tices over triangular meshes can be formulated in Postulates A,B below.

Postulate A. (Linearity and being locally generated). There are polyno-
mial functions

©p, T ¢§,’)1“v ¢£>2,)T :T—R (T non-deg. triangle}, p € Vert(T))

depending only on the couple of the triangle T with a distingvished vertex
such that the restriction of s to any mesh triangle T € T has the form

frr|lT = Z [fPSOp,T + f;,pws,')l’ + fz:,plpg,')r} . (1.3)
p&Vert(T)

If Postulate A holds and Vert(T) = {a, b, p}, in terms of the canonical
frame vectors

el :=0=10,0], el :=[1,0], el :=0,1]
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we necessarily have

opr(P)=1, Viopr(0)=0,  $Y0(p)=0, Vo (p)=e;

‘ A (1.4)
(pp,T(x)zwggr(x):O, Vgopm(x)szr(izr(x):o (xeCo{a,b}).

The first statement in (1.4) is immediate from (1.3), while the second one
is a consequence of the fact that given any point p forming an adjacent
triangle T := Co{a,b,p}, for the mesh 7 := {T, T} with gradient data
F(q) = (0,0) for g = a,b,p we must have f7 r = 0 on T and hence also
V frr = 0 on the common edge Co{a, b} of the triangles T, T.

Locally generated linear spline procedures have the computational ad-
vantage that the resulting functions can be calculated on any mesh triangle
regardless to what happens at vertices outside. A practical disadvantage is
that in most cases only function values are available (mostly from scanned
data) and convenient gradient values must be guessed or found by optimiz-

ing procedres.

Postulate B. (Uniform shape on edges). (1.3) holds and there are
polynomial functions ®,V :[0,1] =R such that

B(0)=T(0)=d'(0)=T'(0)=T(1) =0, ®(1)=V'(1)=1 (1.5)

and the graps of the basic functions ¢p 1 on the edges of the triangle T
are affine images of the graph of ®, and those of 1/}1(5791‘ (j =1,2) are affine
1mages of the graph of V.

That is, under Postulate B, for the generic points y; := tp + (1 — t)a
on the edge Co{a, p}, resp. z; :=tp + (1 — t)b on Co{b, p} we have

¥p,Co{a,b,p} (Yt) = consta,p®(1), ¢g)00{a’b’p} (yt) = consté{%,\ll(t),
() (

| (1.6)
p.Cofabp} (2) = constbp®(1), Yoo, oy (2t) = constli)pkll(t)

while for the points x; := (1 — t)a + tb on the edge Co{a,b} we simply
have

(pp,Co{a,b,p} (Xt) = 1#1(,{)@0{&1,71,} (Xt) = 0; (1 7)

v<JOp,Co{a,b,p} (Xt) = le()j;)Co{a,b,p} (Xt) = 0.

In the sequel we call ®, ¥ the shape functions of the spline procedure
(T, F) — frF satisfying Postulate B. Notice that the requirements ®(0) =
®’(0) = ¥(0) = ¥'(0) follow automatically from the order condition (1.4)
on the edge Co{a,b}.
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At first glance, shape uniformity may seem an artificial requirement.
However, for a procedure satisfying Postulate A, the geometrically natural
property of being invariant with respect to homothetic transformations
(maps R <> R of the form x — puxS+w with some orthogonal matrix S)
implies Postulate B trivially. In our context we understand invariance as
follows: given a surjective affine transformation G(x) = xA +w with some
invertible 2x2-matrix A of the plain, the spline procedure & : (7, F) — fr p
is G-invariant if it transfers spline functions constructed with the gradient
data of any smooth function h on Vert(7) from Dom(7) to the analogous
objects with hoG~! on Dom(G(T))=G(Dom(T)), that is

JrFo G '= fam),ctr)
with Gﬁ (Xa X [:U'ly ﬂ?]) = (G(X)v X5 [Mla UQ]A_l)'

As we shall see (Lemma 4.1), if Postulate A holds, we can formulate G-
invariance in terms of the basic functions as follows:

(1.8)

©G(p),G(T) =ppToG

( 2) (D) el 1(2) (1.9)
[ngp),G(T)’ é(p),G(T)]:[wp,’)I‘OG 1,1/11(,,)TOG 1]A.

It is worth to notice (Corollary 4.4) that (1.9) cannot hold simultaneously
for all invertible matrices A and w € R2. Thus there is no local linear spline
procedure which is invariant under all invertible affine transformations and
producing always C!-smooth functions (i.e. functions being continuously
differentiable also over the edges of mesh triangles) functions.

Our aim in this paper is a parametric classification of the procedures
satisfying Postulates A,B, resulting in C'-smooth functions. In particular
we enumerate all the homothetically invariant linear local polynomial C-
spline interpolation procedues from gradient data over triangular meshes.
It is remarkable that there is a unique one among them with lawest de-
gree (degree 5) which turns out to be homothetically invariant. From the
view point of applications, the results provide the complete list of hermi-
tion C'-splines with shape uniformity over edges from which one can choose
the best fit one with respect to various aspects. It is worth to relate the
latter fact to a celebrated alternative local linear polynomial spline inter-
polation procedure on the basis of Zldmal-Zenisek 2-nd order triangular
spline equations [9]. This relies upon the fact that, given a triangular mesh
with gradient and Hessian data at the vertices and normal derivative val-
ues at edge middle points, there is a unique fitting spline with 5th degree
polynomials. The 21 polynomial coefficients over any mesh triangle can be
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obtained as the unique solution of a system of 21 straightforward linear
equations whose explicit formula was published recently [8]. Though not
stated in the sources, easily seen this kind of procedure has some homoth-
etical invariance properties. Hence it seems that our first order approach
with the shape conditions of Postulate B provides a geometrically moti-
vated alternative to several problems discussed in [8]. As mentioned earler
and remarked also e.g. in [1], first order approches with a few (actually 9
in [1]) free parameters may have practical advantages versus higher oreder
methods due to the fact that data sampling can rarely support e.g. Hessian
data (or even adequate guesses for them).

Our arguments are based on the use of baricentic coordinates associ-
ated with triangles instead of the usual Cartesian ones. Applying Remark
3.2 to the difference of the first order solution given in Theorem 2.3 a way
is opened to develop a new geometric approach to the system of Zlamal-
Zenisek equations and its alternative variants which may have further in-
dependent theoretical and educational interest.

2. Main results

Recall that given a non-degenerate triangle T C R? with {a,b,c} =
Vert(T), the normalized baricentric coordinates of a point x are the terms
of the necessarily unique triple [A%(x), Mh(x), A%:(x)] € R? such that

x = Ah(x)a+ A2(X)b 4+ As(x)e, AR (x) + A2 (x) + A% (x) = 1.

We reserve the symbols A} as standard notation. It is well-known from
elementary analytic plain geomertry [2] that

AT.(x) = area(Co{a, b,x})/area(T) (xeT)

thus normalized baricentric coordinates can easily be calculated by means

of determinants or inner products with a (7/2)-rotation:

_ det(x—a,x—b) <(b—a)R’x—a>
det(p—a,p—b) (b —a)R|p —a)

0 1
where R:= {_1 0}. (2.1)

A (x)

For later use we also introduce the abbreviating notations

AN v . {v-alp-a) v _ (v-al(p—a)R)
2 =2l (), Ep’a'_W’ {pai= p_al (2.2)
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As for geometric interpretation, g , resp. g;va are the affine coordinates of
the point v with respect to the orthogonal frame [a, P, a—i—(p—a)R] with

origin a so that v=a+ {5 ,(p—a) + E;’a(p—a)R.

Theorem 2.3. There is a unique local linear polynomial C'-spline pro-
cedure acting on triagular meshes with the property of uniform shape on
vertices® and having shape functions with minimal computational complex-
ity. Its shape functions are

*

®(t) = t3(10 — 15t + 6t2),

*

W(t) =3t —1)(4 — 3t).

The corresponding basic functions ( for a non-degenerate triangle T =
Co{a, b, p} with distinguished vertex p) have the form

opm=D(B) + 30 NN 62,05 + €242

A RI0LANS . A
= A%( _Tl) 2B+ 12D PAEAY €8 aol (0)AR + 3l (a) Vg

W

Theorem 2.4. A spline procedure acting on triangular meshes and sat-
isfying Postulates A,B produces C'-smooth splines if and only if its shape
functions are of the form

D(t) = "D(t) +3(1 — t)3D1(t), W(t) ="Ut)+ 31— )3T () (2.7)

and the basic functions (for a non-degenerate triangle T = Co{a,b,p}
with distinguished vertez p) can be written in terms of the modified shape
function

Ot):=v(t)/(t—1)
and the rotation matriz R in (2.1) as
ot = PO+ DRINRNLPE, (W 2.
0k = O(R) el + PEIPAARQIR (AR, A2)

*That is satisfying Postulates A,B with fr r € C'(Dom(T)).
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where
PR ) = s{ 8 k()
{fp a( (1 ;2?2 gg,akgp( )} + StRO p(S t)

O'(1-s) P
ﬁ‘Ffpbk’J (s )}+

o'(1-1)
(1—t)?

with the following free options in (2.5) resp. (2,6):

(2.6)
i (s,) = s{ €3 aB(b)

+t{epa7bla) + Ep k(1) | + stRD (5.1)

(i) @1,T; :[0,1] = R are arbitrary polynomial functions,

(i) (p,q) — kiip (1 = 0,1,2) are arbitrary maps assigning polynomial
functions R — R to pairs of distinct points,

(iii) (p,q,r) — Réﬁ (1 =0,1,2) are arbitrary maps assigning polynomial
functions R? — R to triples of non-collinear points with the symmetry
Rgh(s,t) = RyQ(2, 5).

Remark 2.7. (i) Actually, Theorem 2.3 is simply a corollary of Theorem
2.4 by setting the options (i)—(iv) to 0. We emphasize it for its potential
practical and educational use.

(ii) The formally rational expressions in (2.5 —2.6) are polynomials.
Indeed, (1 —1t)/[t*(1 —¢)?] =30 —3(1 —26)®1(1 —t) + t(1 — )@ (1 — 1),
resp. W(t)/(t—1) =¢3[(4 = 3t) — (1 — t)*¥q(¢)], O'(1—1t)/[t(1 —t)*] =
124+ (2=58)U (1 —¢t) — t(1 — ) P)(1 —¢t).

(iii) M, A%, AR, are the affine functions determined by the properties
Linef{a,b} = (\}. =0), Line{b,p} = (A% =0), Linefa,p} = (A =0), \J(p) =
A3 (a)=AR(b)=1. For the parametrized edge points in (1.6) we have On
the other hand zU/)(y,) = (1 — t)zUl(a — p) = (1 — t)zl(a) resp. 2l](z;) =
(1 —t)zbil(b — p) = (1 — t)2¥!(b). Hence, with the formulas (2.5), the
shape conditions (1.6) hold automatically with constap = constpp = 1
and constg%, = zUl(p — a) resp. const(j ) = gl 1(p —b), furthermore also
(1.7) is fulfilled.

(iv) One can check with symbolic computer algebra that all the spline
procedures described in Theorem 2.4 produce C!'-functions. It suffices to
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M(xe) = Mg (2ze) = A (ye) =0, P=Y1=121
AP (ye) = Mp(ze) = My (x1) =, Vi Z
A (xt) = A5 (yt) = A%(Zt) =1-—t a b

establish only that, given any two adjacent non-degenerate triangles T :=
Co{p,a,b} resp. T := Co{p, a,p} with common edge Co{p, a} and distin-
guished point p, the gradient vectors of the basic functions ¢p 1, wl()j Zr coin-
cide with those of P wg)f at the points y; = (1—t)a+tb. Indeed, hence

it follows that the unit spline functions f7 s (peVert(T), i=0,1,2) corre-
sponding to the gradient data Fg :={[p,1,0],[q,0,0] : q € Vert(7)\ {p}}

resp. Fg = {[p,0, ell],[q,0,0] : q € Vert(7)\ {p}} (j=1,2) are continu-
ously differentiable.

Theorem 2.8. A C'-spline procedure & described in Theorem 2.4 in the

form (2.79) is isometry-invariant if and only if k¢®(t) = 0 for all i=0,1,2

and p#c € R? furthermore the higher terms RZ,% in (2.9) transform as
0,G(p) _ pOo, 1,G(p) 2,G(p) _ [pl 2,

Rqa)f)G(b) = R} resp. [RG(a)I,)G(b)’RG(a)I,)G(b)] = [R, b, RJDJA whenever

G :x+— w4+ xA is an isometry.

3. Proof of Theorem 2.4

Henceforth we consider an arbitrarily fixed procedure & : (T, F)— fr p
which satisfies Postulates A,B and produces continuous but not necessarily
continuously differentiable functions. We reserve the notations ¢p T, @Z’l(oj, 21“
resp. ®, W for the basic functions resp. shape functions as established in

Section 1. In accordance with (1.5) we can write
() = t2(3—2t)+t2(1—1)* Do (), W(t) = t2(t—1)+t2(1—1)*To(t) (3.1)

and O(t) =2 +t3(t — 1)Wo(t) with suitable polynomials ®¢, ¥y.

Next we are going to express the constraints (1.4), (1.6—7) on the basic
functions in terms of ®, ¥ and baricentric coordinates. To this aim, we re-
call the following folklore fact from elementary algebraic geometry relating
the root curves with a product decomposition of multivariate polynomials
which is an easy consequence of Bézout’s Theorem [3,4].
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Remark 3.2(i) If Lg,Ly,...,L, are distinct straight lines such that
Ly = (& = 0) with the affine functions (i.e. polynomials of first degree)
ly :R? - R (k=1,...,m) then a polynomial R> — R is divisable with

o £k if and only if, for any index k, it vanishes in order vy, at the points
of L. In particular, given a non-degenerate triangle T := Co{a, b, p}, a
polynomial @ : R? — R of two variables has the form

Q = DRI g D1

for some polynomial ¢ : R?> — R if and only if it vanishes in order vy at
the points of Line{a, b}, order v, at Line{p, b} and order v, at Line{p, a},
respectively.|

(ii) If @ :R? — R is a polynomial of two variables, we can write
Q(z,y) = Q0,0) + zq1(z) + yq2(y) + xygs(z,y) where

Q1(x) = [Q(:C, 0)] - Q(07 0)/‘737 QQ(y) = [Q(Oa y) - Q(Ov 0)]/3/:
g3(z,y) = [Q(z,y) — [Q(0,0) + zq1 (2) + yaz(y)]] / (zy)

are well-defined polynomials in one resp. two variables. We shall call the
R2-polynomial Qq(z,y) := Q(0,0) + xq1(x) + yqa(y) of first degree the
principal part of Q.

Lemma 3.4. The basic functions cpp,T,Tﬂg;)T for T = Co{a,b,p} have
the form
pp.r = D(NR) + NFPPARAT Pol(A, M),

Upn = OOR)ag + IPARAR Pl M)

in terms of the baricentric coordinates (2.1), the shape functions 3.1, ©(t):=
U(t)/(t—1) and with suitable polynomials of two variables.

Proof. Fix any triangle T := Co{a,b,p}. As mentioned, necessarily
(3.44ipi) holds and © is a polynomial. Consider the functions

f=e0R),  g¥ =008 2F.

Along the edge Co{a,p}, at the points y; := (1 —t)a + tp we have
Mp(ye) =t AR(ye) = 0, Mp(ye) = [1 = Mg (ye) — Mp(ye) = 1 — t. Observe
that the functions f, ¢¥¥) suit the shape uniformity conditions because
Fy)=2(t), ¢V (y1)=0(t)(eV |y, — p)=0(t)(1 —t){el|a - p)=
= <e[j] lp—a)¥(t)

@ vanishes in order v at the point [zo, o] if %Q(zo, yo) = 0 whenever k+m < v.

9
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and since f, ¢\ are polynomial multiples of [)\%]2. Also, since y1 = p,
f(p) = 2(Mp(y1)) = @(1) =1 and

Vi) =@ (M (y1) VAR(y1) = 0- VAR(y1) = 0,
V9D (P) = Viey, [O(N(0)ab) (0] =
= 20 (P) Vamy, O (AR(%)) + O (A (P)) Vsey, 2V (p) =
=0-0'(1)VAR(y1) +O0(1)el) = ell.

Therefore the difference functions ¢p1—f and 1/}1(5; ,)I, — ¢ vanish on
the edge Co{a,p} of the triangle T. Similar arguments with the points

z¢ := (1 — t)b + tp show that ¢p T —¢ and @bgzr—g(j) vanish on Co{b, p}.
By (1.7) their gradients also vanish on the edge Co{a,b} = (A} = 0).
Hence (cf. Remark 3.2) they are polynomial multiples of [)\%]2)\?11)\'%, say

o1 = F+AR2ARARIN L and U = g0 4 ARIPAFABIIYL, respectively.
Since A%, )\'Ell are linearly independent affine functionals, the mapping A;b :
x 5 [AR(x), A§(x)] is an affine coordinatization on the plain R%. Thus we

can express each term HS)T as a polynomial of the coordinates Af:b which
completes the proof.

Notation 3.5. For later convenience, without danger of confusion, we
introduce the unifying context-free notations

P ._\P 0p ._ P . () _
)\a’b T )\CO{a:bvp}, favb T SDP,CO{aJ),p}W E‘i,b T ¢p,Co{a,b7p} (-7 - 17 2)

Furthermore, in view of Lemma 3.4, we shall write

£ = @R Dz + P 2AR AR JPIPOR AL (i=0,1,2) (3.6)

where

o .=a, ol:=02.=0, V:x—1 with e :=vall=0

and the terms P;’{; (1=0,1,2) are polynomials with coefficients depending
on the ordered tuple (i, p,a, b). Notice that necessarily

PUP(s,t) = PLP(t, s) (3.7)

due to the trivial index symmetries Ay, = Ay, and f oP = é’g.

10
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Lemma 3.8. We have frp € C! (Dom('T)) for every triangular mesh with
arbitrary gradient data if and only if

b — Vf;’{’)(y) = constp ay for fixed p # a and y € Co{p,a}. (NUM)

Proof. Given any non-degenerate triangle T = Co{a,b,p}, By con-
struction, for the points x; := (1 —t)a +tb, y; := (1 — t)a + tp and
z; := (1—¢)b+1p on the edges of the triangle T we have [} (x;) = 0 inde-
pendently of p, fP (y;) = ®ll(t) independently of b and f2P (z;) = ®ll(¢)
independently of a. Thus the shape conditions are automatic from (3.6).
Moreover, given any triangle T with a common edge but disjoint interior
to T, the functions pairs ©p,T; ), 7 TSP wl()], Zr,wszf touch continuosly.
The analogous necessary and sufficent condition for a Cl—smooth touching
is that the gradient pairs Vgpp;r,Vgopff resp. Vﬂ;g ,)I‘, V’LZJ;J,)T coincide on
the common edge:

b ) if x € Co{a,b} =TNCo{a,b,p},

(i) V£P(y)=Vfihly)  if y € Cofa,p}=TNCofa,b,p}, (3.10)
(i) VfP(2) = VI3 (2) if z € Co{b,p}=TNCo{a,b,p}.
Observe that (3.10(i)) holds automatically with the trivial value 0. Fur-
thermore conditions (3.10(i)) and (3.10(ii)) are equivalent (by changing the
roles of a and b). Finally we observe that, in (3.iiipxiii(i)), for fixed a,p

and y € Co{a, p} we can choose the points b and b on different half plain
components of~R2\Line{a, p} arbitrarily. This implies that all the vectors

Vf;’;o, (¥), Vf;:?, (y) with b, b € RALine{a, p} must be the same. Due to the
construction (1.3), the fact that all the pairs $p, T, Pp 7 TESP- ¢g>T,¢I(i>T

of basic functions touch C'-smoothly in case of adjacent triangles T,'i‘,
ensures that the splines fr g are all Cl-smooth as well.

Notation 3.11. Given any ordered triple (u, v, w) of non-collinear points,
we shall write gy, := VAJ, for the constant gradient vectors of the bari-
centric coordinate functions. Notice that, by (2.1),

(u-vR _ ouy(u-v)R
a— v)R‘w _ u> area(Co{u,v,w})’

Buv ‘= << (3.12)

where oy, =41 according as (u,v,w) are oriented anticlockwise or
clockwise. In particular, if T = Co{a,b,p} is a non-degenerate triangle,

11
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we have
gg,b + g%,p + g:,p =V [)‘g,b + )‘la»p + )‘:,p] =V1=0,
gh,Llb—a, g,la—p, gh,lb—p

Lemma 3.13. If T = Co{a,b,p} is a non-degenerate triangle, at the
points y; = (1 — t)a+ tp of the edge Co{a,p} we have

V£ (yi) =2l ((1-t)(a—p)) (@] (¢) g8, +
+oll(t)ell +£2(1-1)PrP(0,1-1) g2 .
Proof. With the abbreviations
o=y, by =7 b=, Pl=P2  GU= 30, PU(0y, 05)

a7p ’

(3.14)

we can write
ViR = v]aflelle) + 66l =
= o) V[0l (to)] + @8 (1) V) + 6 VG + GlIve, =
— oo (0)V o + B (tg)el! + £, VG + GlIve,.
We complete the proof with the observations that
blyr)=t, li(y)=0, Lla(y)=1—t,
wp(y) =l (1-t)(a—p)), Vap =ell

Remark 3.15. To prove Theorem 2.4, we need a precise description for
the coefficients of the polynomials P} in terms of the variables a, b, p such
that (3.9) should hold.

According to Lemma 3.8, the procedure & : (7, F) — fr p produces
Cl-splines for every admissible data if and only if, for any ¢ € [0, 1] and for
any fixed pair a,p of distinct points, the gradient expressions (3.14) are
independent of the variable b ranging in R?\ Line{a, p}. This latter con-
dition can be formulated in terms of the b-independent affine coordinates
(2.2) as follows. By (3.12) we have

b _ (a—p)R - =) — b
8ap = <(a—p)R|b—a) _Hp_aH (1/£p,a)(p_a)Ra
(a-bR  PRp-a)+in M p-a)R

P _
Sab~ ((a—b)R|p—a) 2gP -
Ip—al|?Ep

= lp—a| %[ (p—a)+ (8 a/Epn) (P—a)R)|.

12
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Thus we can rewrite (3.14) in the form

Vf;’g(yt) = [b—independent terms |+
2 ((1=t)(a—p)) [@I)(1)€h o + 2 (1— 1) PR (0, 1— 1) (3.16)
T 97 b : (p—a)R.
Hp_aH gp,a

Hence we conclude immediately the following.

Lemma 3.17. We have (3.9) if and only if for every pair p,a of distinct
points there exist polynomials Kz®* (i=0,1,2) of one variable such that

Eha  A(1-1)
—=b + —=b
fpa  Epa

independently of the choice of b outside Line{a,p}.

PPP(0,1—1t)  (3.18)

a,

KP(t) =« (1— ) (a—p)) [2"](1)

~ We can regard (3.18) as a partial algebraic condition on the polynomials
PP of two variables as

) _ i,p
PB0.1-1) = G- -
. . 3.19
Cen ™ (<1—t22<8—_1:;)>)[¢[ 10 geren)

Since, for fixed a, p, the coordinates (fp'?a, Ep?a) may assume arbitrary val-
ues (r,s) with s # 0, from (3.19) we obtain the polynomial divisability
relations ¢*(1 — t)|Ka®(t) and t*(1 — t)‘a:[i]((1—t)(a—p))[<1>[i]]’(t). Since
:c[o}((l —t)(a—p)) =1 and x[o]((l —t)(a—p)) = (1 - t)zbl(a — p) for
j = 1,2, with the aid of (3.22") we can state (3.19) in the form

<b—a‘(p—a)R>
Ip—al?

b-alp-a) p

P;:E(O’ 1-t) = < p—al? zp (a) X+ KLP(t) (3.20)

with suitable polynomials Yl and x5P (i =0,1,2; a#p € R?) of one
variable. Actually

o KaP() INCCILO R 40
w0 =gy Ao = 21—t 21—t

iyl 20 (A=t @-p)[@VT(H) _ g5 [¥(0)/(t-1)]
zp (a)x zp (a)

t2(1 —t) 2

13
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for j=1,2 on the basis of (3.19) In terms of the Kronecker-d, we can write
even
M) =72 (1 =702l (1) (i=0,1,2).

Clearly, the polynomials KYP cannot be chosen arbitrarily. There is a
unique obstacle: we obtained Lemma 3.13 and hence (3.18) by an inspec-
tion of Vf;”b on one of the edges of a triangle T = Co{a,b,p} at the
distinguished point p (namely Co{a,p} with the parametrization y; :=
(1 —t)a+ tb) while also the analogous conclusion should also be taken si-
multaneously in to account with the second edge (namely Co{b, p} issued
from p. Applying a change a <+ b and taking into account the symmetry
(3.7), we see that also

PP (1-,0)= (a=b|p—b) [ (a—b|(p—b)R)

W%(‘O)XWH E— KEP(2). (3.21)

We obtain the complete description for the families of polynomials K ;’g

being admissible by Lemma 3.17 by the next obervation.

Lemma 3.22. For any pair p # ¢ € R?, in (3.20—21) we have xI1(1) =
Z?p
ke (1) = 0.

Proof. Fix i,p € R? and p > 0 arbitrarily. Consider (3.20—21) for pairs
a,b with [la — p[| = [|[b — p[| = p written in the form

a:=c,, b:=c; where c;:=p+pu,;, u; :=cos reltl 1+ ginrel?.

Due to (3.7), with the abbreviations a := x[1(1) and B(7) := k5P (1) we get
0= P2P. (0,0) — P2P, (0,0) =

— {((uf\uﬁ —l)xm (ca)a+<u7|llaR>5(0')} -
 [(fuehar) = 1) e, o ol R) (7))~

= ((uolur) = 1)[21(c,) — 2l(c)]a + (u-[u,R)B(0) — (uguR)B(7)) =
= [cos(o — 1) — 1] [xm(cg) - mm(cT)}oz +sin(r — o) [B(0) + B(7)].

Since 2% = 1, in any case we have CL’E} (co) —xg] (cr) = plzl(uy) — 2l (u,))].
It follows
Blo) +B(1) = ap

oS =) =11 fil(u,) — oli(u,)],

sin(1 — o)

— cos(T —

|B(0) + B(7)| < p’a‘MH“v—UTH < (3.23)

< 2pla|[l = cos(T — o)].

14
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Suppose indirectly 3(7) # 0 for some 7 € R. Let £ := |3(7)| and choose
d > 0 such that 2p|a|(1 — cosf) < /4 whenever || < e. Then we have
1B(7)+B(T+6/2)| < e/4 that is B(r+£6/2) € [—¢/4,e/4]— B(7). Therefore
B(r+0/2)+B(t1—6/2) € [—€/2,e/2] —=2B(7) C [—¢/2,e/2] +{—2¢,2e} =
[—5e/2,-3¢e/2] U [3e/2,5¢/2] ie. |B(T+6/2)+ B(r—6/2)| € [3e/2,5¢/2]
However, we also have |3(7 + 6/2) + (7 — 0/2)| < /4 which leads to the
contradiction |8(r + &§/2) + B(r — §/2)| € [3¢/2,5¢/2] N [0,e/4] = 0. By
the arbitrariness of the radius p, the angle 7 and the origin p, we conclude
that k¢P(1) = 0 in any case.

For i = 1,2 we get o = 0 ie. x[¥(1) = 0 immediately by plugging
B(1) = B(o) = 0 with ¢ := 7+ 7/4 in the first equation of (3.23). (3.29).
(Remark: z%(uy) — z[f(u,) = 1 — 1 = 0, thus the argument does not
work for ¢ = 0). In the case ¢ = 0 we conclude a = 0 as follows. Consider
the difference of equations (3.20—21) for ¢ = 1 with a := p + el!l and
b:=p+elll + el Since kP =0 (c = a, b is estabished already, we get
simply 0 = —(1/2)x[?(1) which completes the proof.

Corollary 3.24. The relations (3.9) hold if and only if we have (3.18) with
the symmetry (3.7) where the polynomials K, ’p(t) respectively g;M((

t)(a—p))[@U) () are all divisable by 3(1 —t)2.

Proof. The relation x ’p( )=0 implies that there is a polynomial RSP such
that k5P (t) = (1—t)7eP(t) and KEP(t) = t2(1—t) kP = t2(1—t)2R5P (¢) with
some polynomial. Similarly, from x#(1) = 0 we conclude that xll(t) =
(1-6)x(t) and (1-t)zll(a)[@l)' () = ((1—1)*x V(1) = £*(1—)*X(2) with
some polynomial Y.

Corollary 3.25. We can write KSP(t) = t2(1 — t)2kEP(t) (p # ¢ € R?)
and the admissible shape functions ®, ¥ have the form
(i) ®(t) = t3(10 — 15t + 6t%) + 3 (1 — t)3®, (1),

. 3 (3.26)
(i) W(t) =3t —1)(4—3t) +3(1 — )3Ty ()

with suitable polynomials kzé’p, Dy, Us.

Proof. The stated form of K2 is clear from 3.24). By definition ®[%(¢) =
®(t) and $[0}((1 —t)(a—p)) = 1. Furthermore ®Ul(t) = w(t)/(t — 1) and
2V ((1—t)(a—p)) = (1—t)z¥)(a) for j=1,2. Thus, taking (3.1) into acount,
the relation that t?(1-¢)? is a divisor of z%((1-¢)(a—p))[@L ) (1) =2/ (t)=
6¢(1—t)+2t (1) (1-2t ) Do (t)+t* (1) 2®{(t) means simply that ¢(1-)|6+2(1—

15
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2t)®q(t) ie. 6+ 2(1 — 2t)Pg(t)|t=0,1 = 0 implying $o(0) = —3, $o(1) = 3.
Therefore ®¢(t) = —3 4 6t + t(1 — ¢)®;(¢t) with a polynomial ®; and the
generic form of ® is (3.1(i)). Also according to (3.1) in the cases j = 1,2
we can write W(t) = —t2(1 —t) +t2(1 — t)?Uq(t) with some polynomial ¥y.
Thus the relation that t2(1 —t)2 is a divisor of zll ((l—t)(a — p)) [QJ[O}]’(t) =
(1—t)ad (a) [W(£)/(1—1)) means that £2(1—t)|[¥(t)/(1—t)]" = —2t+t(2—
3t)Wo(t) +t2(1—1)?W{(t) is equivalent to saying ¢(1—t)| — 2+ (2 — 3t)Wo(t)
ie. —2+4 (2 - 3t)‘l’0(t)|t:071 = 0 implying \I’Q(O) = 1 and \Ifo(l) = —2.
Therefore Wo(t) = 1 — 3t +t2(1 —t)¥y(¢) with some polynomial ¥; and the
generic form of W is (3.26(i)).

3.27. Finish of the proof of Theorem 2.4
In view of (3.21—21) and Remark 3.2(ii) we can write
PyP(s,t) = PyD(0,0) + s[(PyE(s,0) — PoP(0,0)) /5] +
+[(PR(0,t) — PyD(0,0)) /t] + stPol(s, t) =
= s[(Pé’yg(O, s)/s] + t[(P:{’)(O,t)/t] + stPol(s,t) =
e KP(-s) , 2ll(b)[@](1-s)
=5 |pp s2(1—s)? p.b s(1—s)2

eb KaP(1=t) oy, ell(a)[ol](1-1)
Spapiogz a1

+1

+ stRY p(s,1)

with suitable polynomials K&P, @l pr of one- resp. two variables such
that t2(1—t)2|Kf;p( and t?(1—t ’x[l] (@) (2). Tt is straightforward to
check that the functions fa are polynomlals in these cases and P, ’{’)(s t) =

Pé’z(t, s) if and only if R;b(s, t) = Rﬂa(t, s). It remains to show that the
expressions

Vid(y) with y;:=(1—tJa+tp,
ab = 21020 + DR PAZp S p Pt (A2 B p)
are independent of the term b whenever
KeP(t) = t2(1 - )kgP(t),
eO(t) = o(t), @M(t) = e®(r) = [w(t)/(t - 1]

with arbitrary polynomials kLP and the polynomials &, ¥ have the form
(3.26) with arbitrarily fixed polynomials ®1, U; of one variable.

16
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Repeating the calculations of Lemma 3.13, we see that (3.16) holds
independently of the choice of k¢P, ®1, ¥y, RZ p . Notice that we have con-
structed the polynomials a’fl;((), 1—1t) = Pf)z(l —t,0) in terms of K4P
in a manner such that (3.18) should be fulfilled. Thus the expression
b -1[ i
€l ' [ (10 (a—p) [@F(1)€5.0 + (1= DPLR(0.1- )] (= K&P (1)

is independent of b automatically which completes the proof in view of
Lemma 3.17.

4. Invariance

Lemma 4.1. Let G : x — XA + w be an invertible affine map R? < R%. A
spline procedure & : (T, F) — fr p satisfying Postulate A is G-invariant if
and only if (1.9) holds for any non-degenerate triangle T with distinguished
vertex p.

Proof. The G-invariance of & means that, given any triangular mesh 7,
the unit functions fr g, (z =0,1,2; pe€ Vert(T)) corresponding to the
gradient data I, := {(p,1,0) if i=0, (p,0,el) for i=12} U {(q,0,0)
p#q€ Vert(T)} are transformed by G as

frr, oG = famair,) (=012
where G*(F;p)=
= {(r, fTFZpoG (@), VIf7.5,,0GT(x)) : r€ G(Vert(T)) } =
= {(G(Q), f7.7,, (@) [V f1,5,, (@][AT]!) : q € Vert(T)}

with the gradient data of the transformed function on the transformed
vertices. Consider any triangle T = Co{a,b,p} € T. Notice that the basic
functions over T are given as restrictions of the unit functions. In particular
7.0 T = ¢pr and frp, T = Uk (j=1,2). On the other hand, by
Postulate A, for any gradient data G on Vert (G(’T)) of the transformed
mesh, such that (G(p),w, [a,ﬁ]), (G(a),0,0), (G(b),O, 0) € G, we have

_ (1) (2 :
fam),c = weap),a(T) + a¢G(p),G(T) + ﬁwG(p),G(T)' We can apply this
observation to (4.2) with G := G*(F; ;) (i = 0,1,2) to conclude that

(4.2)

pp,1 0 G = pg(p) )

1 — 1
wg,zr °oG™! = O‘ﬂ/’éz cm T Bﬂw p),G(T) (4.3)
where [a;,8j] = [VoUp(p)][AT] ! = AT (j =1,2).

17
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Hence the matrix form in (1.9) is immediate: (4.3) implies that [AT]7! =
a 1 1,2 _
[ai gﬂ and [7’&1(37')1‘ oG 1’¢;,2r °oG™l] = W’G (p),G(T) ’¢G A~ L

Corollary 4.4. There is no affine invariant C'-spline procedure. satisfying
Postulate A.

Proof. Proceed by contradiction. Assume the procedure & : (7, F)— fr p

with basic functions gop;r,zbg 21“ is affine invariant. Then, in particular,
(1.9) holds for all transformations G : x — xA + w with det(A) # 0 and
w € R?. Consider the triangles

Ty = Gp(T)  where G i x> XAp with Ap = 4 4 |

Then, according to (1.9), for the points b with y(b) # 0 we have
(1) -1 ,(2) —
[¢0,T 0 Gy, Yo ° Gy Ay [wa (0),G,(T ’wa(O Gb(T)] (4.5)

Since Gy':y — yAp', in (4.5) we can write V[ (()J,)I, o G,Y(y)
[Vw(()%(yAgl)] [AL]7L. Therefore, for any y € T}, and b€ R? with y(b) #0,

Vo, (v) = [VES ey AL D] AR +a(b) [Vo i p(yAL )] (AL
Vi, (v)=u(b) [Vigr (yAy D] [AF] !

Observe that the segment Co{0, el!l} is a common edge of all the triangles
Ty. Hence, in view of Remark 3.15, the gradients Vw(()])Tb (y¢) with y; :=

telll must be independent of b for any fixed ¢ € [0,1]. Since y,gA];1 =y
(t € R, y(b) #0), our indirect assumption leads to the conclusions that

0 = Voiy, (ve) = Vegp(ye) and [Vegy ()] AL = Voix(y:) for all
t€[0,1] and b € R? with y(b)#0. This latter identity means in particular

that a:(b)a%w((f%?b (ye) + y(b)%qp((f,},b(yt) =2 ¢(()22r(yt) which is possible
. . 2 2 2

with b-independent Vlb((),"?rb(yﬂ only if - w(() ’?[‘b(yt) = %1/}(()73[‘]3(}’15) =0

(t €10,1]). However, hence we get 0 = V¢07Tb (y0) which contradicts the

defining relations (1.4) with Vw(()Q’)I‘b( ) =0,1].

Lemma 4.6. (Reflection lemma). Let T be a non-degenarate triangle of
the form T := Co{0, pem,b} and assume & is a spline procedure satisfying

18
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Postulate A. Then, for the fized points u; := tel'l of the reflection K =
K!:xw[z(x,—yx] =xU, U= [é _?] through the x-axis we have

(Veor(u)|e?) =0, (Vogp(u)|e?) =0, vp(u)=0 (t€[o, ).
Proof. The triangles T and K(T) are adjacent, the segment Co{0, pel}
is their common edge. According to Remark 3.15, the pairs ¢o T, 9o x(T)
resp. 1/1((){21‘,1/}éj%<(T) of basic functions must be coupled C'-smoothly along
it: wo,1(u)= wox(m (W), Voor(u) = Vg k) (ur) resp. wé{%ﬂ(ut) =
(4) (T)(ut), Vw((){.)r(ut) = V?/J(()J’%qT)(ut) for all ¢ € [0,p]. On the other

0K
hand, the transformation rules (1.9) require ¢g k(1) = ¥o,T © K—! resp.

[¢£,1%<(T),w(2) o] = [ roK ™, 65K U ie. pox(r)(y) = vor(yU)
and 1/10K T)( y) = (—1)j_11/1((){2r(y) for all y € K(T) = TU. By passing to
gradients, since K = K1 and U =U"!=1U" we get Vo xm(y) =
Vigor(yU)IU and Vi p () = (=17 [Vogp(y) for the points
y € K(T). In particular on the common edge of T with K(T) we
must have Vipo 1 (u;) Voo k() (ur) = Vigo1((w))]U ie. 59700 r(ur) =
(— 1)’“*18329 wo,1(uy) implying 0 = 8%900 T(ut = <V<p07T(ut)‘e[2]>. Simi-
larly we conclude that 1/10 T(ut) 1/1((){%{( (u) = (—1)/ *1wé{2r(ut) implying
Yooy () = 0 and Vi (u) = wﬁfi{@ (w) = (=1 [Vigp(u)]U
1mplylng in particular - ¢OT(ut) 0.

Proposition 4.7. Homothetically invariant C'-spline procedures satisfy-
ing Postulate A are shape uniform on edges (i.e. they satisfy Postulate B
automatically).

Proof. Let T := Co{0,el!l, elZ} and define
o(t) = por(w), U(t):=¢yp(u) where uy = (1-t)elll.  (4.8)

Cosider any other non-degenerate triangle T := Co{p,a,b}. Due to the
arbitrariness of the choice of T, it suffices to see only that, for j=1,2 and
te[0,1],

Po i () =®(), ¥Jk(y)=ConstdU(t) with yi:=(1-t)attp. (4.9)
It is a crucial fact that we can find a homothetic transformation

G:x+ xA+p suchthat G(el!) =a, G(T)NT = Co{a,p}. (4.10)
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Actually A = LJ(’;(;(;E)I)) gg’z;f;)] where ¢ = 1 if the points a,b,p are
oriented clockwise and o = —1 else. According to (1.9), vg(0),g(T) =

ot o G7L. Since Co{p,a} is a common edge of T and T, in view of
Remark 3.15 we have

Yo7 (V1) = Pp.am(yi) = vor (G (ye) = vor(w) = () (4.9)

which proves the first part of (3.12). To prove ¢£‘;)()T(yt) = Constg)\I/(t),

consider also the symmetry
H: x— [y(x), z(x)] = xS, v;:=uS = tel? where S:= [(1) é] (4.10)

of the triangle T. By (1.9) we have [w&r)r, LZJ(()2’)F] = W(()I")r o H,@Z)((f,)r o H]S
whence

01

[wore(u), worp (u0)] = [Vhn(vo), vor (vl [| ] = [¥5n(ve), vhn(vo)].

Thus 1/102T(vt) = U(t) while w(l)?T(vt) wo T(ut) On the other hand, by

Lemma 4.ivpvii, wOT(ut) = 0. Finally we apply Remark 3.15 and (1.9)
to the points y; of the common edge Co{a, p} between the triangles G(T)
and T. Hence we conclude that

W05 ), 02h0)] = [$Glo).aom Ve Yoy, amy 00)] =

)

1) @ B B - - (4.11)
[1/) ,T [¢0T(ut)]A—[\If(t),O]A—\If(t)[x(a p,y(a p]‘

Thus @bl(ojzf(yt) = zUl(a — p)W(t) (j=1,2) which completes the proof.

4.12. Proof of Therem 2.8

It is clear that the coordinate values &, = (v—alp—a)/||p—al® are

homothetic invariant i.e. 58((;)) Gla) = {p.a Whenever the transformation

G : R? & R? is of the form G(x) = w + p(x — q)S with a constant p > 0
and an orthogonal 2 x 2-matrix S. The baricentric coordinates A} are
even affine invariant as it is well-known from classical Projective Geometry.
Hence it suffices to see that the invariance relations

_ - 1) (2) _ - -
Pa(p).a(T) = PoG g [¢G(p),G(T)’wG(p)7G(T)] = W(I)OG LyWeG l]S
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imply that k5P = 0 (1t = 0,1,2) whenever T = Co{a,b,p} is a non-
degenerate triangle and G : R? <+ R? is the orthogonal reflection through
Line{a,p} i.e.

X x —-G(x =X
G(a)=a, G(p)=p, & =¢,, o=, (xeRr?),

so that G(x) = a+(x—a)S where S = [lp—al| ™2 [ P31 [3 0] [ Pl

Let us first investigate the relation g (p).a(T) = ¥p,T © G~'. By pluging
b= 1(x) 1= Xy (x) = Agim (X) = M (GTH(x),
G(b
s = 5(x) 1= Agim (%) = M (G (x))

in the expressions of ¥g(p),G(T) TSP Yp,T © G~! formed with (2.5), since
Mp=1-)5 — AP and G(a) = a resp. G(p) = p, we get

0 = va(p),a(T) (X) —opr oG (x) = ¢p,c(T)(X) — ¢p,T G l(x) =
- [ (1—s—t)+(1—s—1) stpgg(b)(s,t)}—

O(1—s—t +(1—s—t)2sth (s, t)}

@ (1 S) —a 0
0= aG(b (s,t) — ( t) = [ { p(;(b)ﬁﬂLgp,G(b k?GI()b)( )} +
o) PA-1) S0 0m (¢ B
+ t{ 58 S Hepa KR )}+stRD G(b)(s,t)}
(p (1 S) 73 0,p
[ {fp Po—s2 +&p bk (3)}+
'(1-t)  zb
b 0,p 0,p
+ t{&har g Hnakh (t)}+stRa7b(s,t)]
Comparing the coefficients of the monomials s™¢", in view of (2.9) we see
that
N [em)®(1=1)  —am),op ] [ (-1 0.p
(1) 0= [ p,a t(l _ t)Q ka (t)} [ p,a t(l ) Sp ak (t)}7

() 0= (68 3o HEm el ()] [S80 S s + 6P

(iii) 0 Rog(b)( t) — Ry (s,1).

Since 53(;)) =¢h,and Eg(f) = —E;a, from (i) we conclude that ka®(t) = 0.
On the other hand, (iii) implies the isometry invariance of the non-principal
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parts because the lines Line{p, a)} can be chosen arbitrarily and hence the
corresponding reflections generate the whole group of self-isometries of R2.
The treatment of the relations

(1) _ (1 -1 (1 -1
[ﬂ) G(T’wG (T)}—W()OG WMo |s
is analogous by using the vectorial forms ®qw = [wc(ll,izvﬂ/’g%?v] for tri-
angles W with distinguished vertex q. With this formalism the above

invariance relatlon can be written as g gm) (%) = [¢p (G (x))]S
where G = G™!, G(p) = p, G(a) = a and

Pap),ar) (X) = O(1—s—1)(x—p) + (1-5—1)*stQ o) (5,1),
[¥p1(G7'(x))]S = O(1—5—1)(G(x)—p)S + (1—s—t)*stQR (5, 1)S

with the vector valued polynomials

QR (5.1) = [QLR(s,1), Q38 (s.1)] =
— e W@(f;)Q)(w—p) PR () )+
b e S amp) + R0} + SR (5.1

for w:=b,G(b) where R} = [Ra a’f,’v] and kb := [k%&p,k&p].
Clearly (G(x)—p)S=(G(x)—G(p))S ((a+( a)S)—(a+ (p—a)s))S=

(x—p)S? = x—p. Hence the comparison of the coefficients of the mono-

mials s"t" yields
@) 0= [0 S (@) -p)+ ke
-~ [Ba T - p kRS
() 0= [68 ' oy 0P+ Ep i (9]

e S e p o).

(iii') 0= R;G(b)(s, t) = RE (s, 1)S.

Considering again (i), since G(b)—p = G(b)—G(p) = (b—p)S and since

Sﬂ’) = &P, Tesp. EPC:(:) = —E;a, we conclude k5 (¢) = 0.
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