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MR1245836 (94i:58010) 58B20 46L05

Corach, G. (RA-IAM) ; Porta, H. (1-IL) ;
Recht, L. [Recht, Lazaro] (YV-SBOL)

Convexity of the geodesic distance on spaces of positive
operators.
Illinois J. Math. 38 (1994), no. 1, 87–94.
For a unital C∗-algebra A, the open convex cone A+ of strictly
positive elements has a natural transitive action of the group G of
invertible elements in A and is thus a homogeneous space with an
invariant Finsler metric. Using 1-parameter subgroups of G one can
define geodesics in A+. The authors prove various convexity theorems
for functions defined by geodesics, for example the function t 7→
dist(γ(t), δ(t)) of a real parameter. Here γ and δ are geodesics in
A+ and dist (a, b) = ‖ ln(a−1/2ba−1/2)‖ is the geodesic distance. As a
corollary, geodesic spheres are shown to be convex sets.

Harald Upmeier (D-MRBG-MI)

MR1239452 (94h:46089) 46L05 58B20

Corach, G. (RA-IAM) ; Porta, H. (1-IL) ;
Recht, L. [Recht, Lazaro] (YV-SBOL)

The geometry of spaces of projections in C∗-algebras.
Adv. Math. 101 (1993), no. 1, 59–77.
Let A denote a C∗-algebra with identity, let Q be the set of all idem-
potent elements of A and let P be the set of selfadjoint elements
of Q. The sets Q and P play the role of infinite-dimensional Grass-
mannians and important applications to operator theory and complex
or differential geometry have already been found. However, much of
the differential geometry of these Grassmannians is not completely
understood today.

The authors of the paper under review began, several years ago,
an extensive study of the geometry of the spaces Q and P and
some similar idempotent varieties. The present paper investigates the
natural fibration Q

π→ P given by the polar decomposition of the
associated symmetries; as a byproduct of this analysis the authors
introduce a natural Finsler metric on Q and study the corresponding
geodesics. They prove, for instance, the existence of a unique geodesic
in Q joining two points of P and, respectively, the existence of a
geodesic fully contained in the fibre of π joining any two points of this
fibre. Mihai Putinar (1-UCSB)
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Corach, Gustavo (RA-IAM) ; Porta, Horacio (1-IL) ;
Recht, Lázaro (YV-SBOL)

Geodesics and operator means in the space of positive
operators. (English. English summary)
Internat. J. Math. 4 (1993), no. 2, 193–202.
Let A be a unital C∗-algebra, A+ the subset of positive invertible
elements in A. Then A+ has a natural Finsler structure and a natural
connection for which the geodesic equation can be solved explicitly.
It turns out that for any two points in A+ there is a unique geodesic
joining these two points. In this paper the authors study the notion
of geodesic convexity with respect to this structure. They prove
geodesic convexity of some subsets of A+ and derive related operator
inequalities. Finally they interpret the results in terms of operator
means in the sense of Kubo and Ando and in terms of relative entropy.

Andreas Cap (A-WIEN)

MR1209304 (94d:58010) 58B20 46L05 47B15 47D25

Corach, Gustavo (RA-IAM) ; Porta, Horacio (1-IL) ;
Recht, Lázaro (YV-SBOL)

The geometry of the space of selfadjoint invertible elements
in a C∗-algebra.
Integral Equations Operator Theory 16 (1993), no. 3, 333–359.
For a unital C∗-algebra A let G be the set of invertible elements in
A and Gs the subset of selfadjoint elements in G. The authors show
that for any a ∈ Gs the orbit Gs,a through a of the action g · a =
(g−1)∗ag−1 of G on Gs is open and closed in Gs and the map g 7→ g ·
a defines a locally trivial principal bundle over the orbit. Next they
construct a canonical connection on this principal bundle and study
the differential equation which describes horizontal lifts of curves.
Then they study connections on some G-equivariant bundles over
Gs which are induced by this canonical connection, in particular on
the tangent bundle TGs, on which they obtain a canonical Finsler
structure.

The polar decomposition defines a fibration from Gs to the space of
orthogonal reflections in A. Using this fibration the authors study the
geometry of Gs, in particular, geodesics with respect to the Finsler
structure. The main result is that for two points in the same fiber
there is a unique geodesic contained in the fiber which joins the two
points, and this is the shortest curve in Gs with these endpoints.

Andreas Cap (A-WIEN)
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MR1200155 (94a:46102) 46L87 58B20

Corach, G. (RA-IAM) ; Porta, H. (1-IL) ;
Recht, L. [Recht, Lazaro] (YV-SBOL)

Jacobi fields on space of positive operators. (English. English
summary)
Linear Algebra Appl. 179 (1993), 271–275.
Summary: “Let A be a C∗-algebra with 1 and denote by A+ the
set of invertible positive elements of A with its canonical connection
and Finsler structure [see G. Corach, H. Porta and L. Recht, Integral
Equations Operator Theory 16 (1993), no. 3, 333–359]. Then a Jacobi
field J(t) along a geodesic in A+ with initial conditions J(0) = 0 or
(DJ/dt)|t=0 has increasing Finsler norm for t≥ 0.”

MR1075945 (92h:46105) 46L99 58B20

Corach, G. (RA-IAM) ; Porta, H. (1-IL) ;
Recht, L. [Recht, Lazaro] (YV-SBOL)

A geometric interpretation of Segal’s inequality ‖eX+Y ‖ ≤
‖eX/2eY eX/2‖.
Proc. Amer. Math. Soc. 115 (1992), no. 1, 229–231.
Let A be a unital C∗-algebra. Suppose that A+ is the set of positive
invertible elements in A. Then A+ is an open subset of As, the
real Banach space of symmetric elements, and therefore the tangent
space TA+

a to the manifold A+ at a ∈ A+ can be identified with As.
The manifold A+ carries a natural Finsler metric defined by ||X||a =
||a−1/2Xa−1/2|| for X ∈ TA+

a . The distance d(a, b) in the Finsler metric
is defined by ||X||a, where b = e(1/2)Xa−1Xae(1/2)a−1X .

The main result is proved by means of the Segal inequality. Theo-
rem: For each a ∈A+, the exponential map expa:TA+

a →A+ increases
distances in the sense that d(expa X, expa Y ) ≥ ||X − Y ||a for all
X, Y ∈ TA+

a . Liang Sen Wu (PRC-ECNU)



Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2006

MR1149695 (93j:46059) 46L05 46L99

Corach, Gustavo (RA-IAM) ; Porta, Horacio (1-IL) ;
Recht, Lázaro (YV-SBOL)

Splitting of the positive set of a C∗-algebra.
Indag. Math. (N.S.) 2 (1991), no. 4, 461–468.
Let A be a unital C∗-algebra, B a C∗-subalgebra of A containing the
identity and H ⊂ A a Banach space supplement of B in A; that is,
A = B⊕G. If H is closed under the ∗-operation in A, then As = Bs⊕
Hs where “s” denotes the selfadjoint elements in the corresponding
set. Denote the set of positive invertible elements in A and B by
A⊕ and B⊕, respectively, and let E = {exp(h): h ∈ Hs}, the set of
exponentials of elements in Hs. Consider the mapping Φ: B⊕×E →
A⊕ defined by Φ(b, e) = (be)+, where (be)+ is the “positive part” of
be, i.e., (be)+ is the positive square root of (be)(be)+. In the paper
under review the authors prove that Φ is a diffeomorphism in several
situations, most notably when A is finite-dimensional and H = B⊥

for a suitable inner product in A. The proof relies on a theorem of
R. Hermann [Indag. Math. 25 (1963), 47–56; MR0152969 (27 #2940)]
and several of the previous results of the authors on the geometry of
the space of selfadjoint invertible elements of a C∗-algebra.

Robert S. Doran (1-TXC)

MR1077981 (91m:47020) 47A63 47A30 47B15 47D25

Corach, G. (RA-IAM) ; Porta, H. (1-IL) ;
Recht, L. [Recht, Lazaro] (YV-SBOL)

An operator inequality.
Linear Algebra Appl. 142 (1990), 153–158.
From the text: “For a Hilbert space H consider the set Gs of bounded
linear Hermitian invertible operators in H and the subset P ⊂ Gs of
unitary reflections (i.e., operators with R∗ = R = R−1). If we write
A ∈Gs as A = NR with N positive and R unitary (the polar decom-
position of A), then R ∈ P , and A→R defines a map π:Gs → P . The
sets Gs and P are smooth submanifolds of the C∗-algebra of bounded
linear operators in H, and π:Gs → P is a smooth fibration. Further-
more, we introduce on Gs a natural Finsler structure by assigning to
a tangent vector X ∈ TAGs the norm ‖X‖A = ‖N 1/2XN 1/2‖ (operator
norm). Elsewhere [“The geometry of the space of selfadjoint invertible
elements of a C∗-algebra”, to appear] we prove that the tangent map
TAπ:TAGs → Tπ(A)P decreases norms, together with some geometric
consequences similar to those shown in another paper of ours [“The
geometry of spaces of projections in C∗-algebras”, Adv. in Math., to
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appear]. The essential step in obtaining this result is the following
operator inequality, whose proof is the objective of this note. The-
orem: Let S, T be bounded linear operators in Hilbert space, with
S invertible Hermitian or invertible skew-symmetric; then ‖STS−1 +
S−1TS‖ ≥ 2‖T‖.”

MR1073852 (93a:46099) 46H99 46M20 58B20

Corach, G. (RA-IAM) ; Porta, H. (1-IL) ;
Recht, L. [Recht, Lazaro] (YV-SBOL)

Differential geometry of spaces of relatively regular
operators.
Integral Equations Operator Theory 13 (1990), no. 6, 771–794.
Let A be a Banach algebra with group of units G and with the set
of idempotents Q. The authors study the topological and geometric
properties of the space S = {(a, b) ∈ A×A: ar = a, rb = b, ba = r},
where r is a fixed element in Q. In particular, they study principal
fiber bundles τ :G → S, where τ(g) = (ga0, b0g

−1), (a0, b0) ∈ S, and
θ:S → Q, where θ((a, b)) = ab. When A is a C∗-algebra and r = r∗,
they also study a real analytic retraction of S onto {(a, b) ∈ S: b =
a∗}. The authors announce further papers on similar topics.

W. Żelazko (Zbl 726:46028)

MR1051073 (91g:46056) 46H99 46M20 58B25

Corach, Gustavo (RA-IAM) ; Porta, Horacio (1-IL) ;
Recht, Lázaro (YV-SBOL)

Differential geometry of systems of projections in Banach
algebras.
Pacific J. Math. 143 (1990), no. 2, 209–228.
Let A be a unital Banach algebra. The authors focus on the refined
structures of the set of all n-partitions of unity: Qn = {(q1, · · · , qn) ∈
An, qiqk = δikqi,

∑n
i=1 qi = 1}. The differential geometry and the

algebraic topology of Qn provide invariants of the algebra A itself.
The authors study the fibration π:G→ Qn, π(g) = gqg−1, q ∈ Qn,

by defining a natural connection on it. Here G stands for the group of
invertible elements of A. The parallel transport equation with respect
to this connection turns out to be identical to the transport of Yu.
L. Daletskĭı and S. G. Krĕın [Dokl. Akad. Nauk SSSR 6 (1950), 433–
436]. Mihai Putinar (1-UCSB)
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MR1044801 (91b:47043) 47B15 47A55 58B20

Corach, G. (RA-IAM) ; Porta, H. (1-IL) ;
Recht, L. [Recht, Lazaro] (YV-SBOL)

A metric property of the polar decomposition of projections.
Analysis and partial differential equations, 417–426, Lecture Notes in
Pure and Appl. Math., 122, Dekker, New York, 1990.
The authors study a variational property of the embedding P ⊂ Q,
namely the fact that for projections of rank 1, the distance (= geodesic
distance) from a fixed element q ∈ Q to a variable element p ∈ P is
attained at a unique p = π(q). This element π(q) can be characterized
in a variety of ways. (Notation: If H is a Hilbert space, Q denotes the
set of bounded linear q:H →H with q2 = q and P ⊂Q the selfadjoint
q.)
{For the entire collection see MR1044775 (90j:00006)}

Themistocles M. Rassias (Athens)

MR1009189 (90h:46091) 46L05

Corach, Gustavo (RA-IAM) ; Porta, Horacio (1-IL) ;
Recht, Lázaro (YV-SBOL)

Two C∗-algebra inequalities.
Analysis at Urbana, Vol. II (Urbana, IL, 1986–1987), 141–143,
London Math. Soc. Lecture Note Ser., 138, Cambridge Univ. Press,
Cambridge, 1989.
With a view to geometrical applications in a forthcoming paper [“The
structure of projections in a C∗-algebra”, to appear], the authors
prove two inequalities of a technical nature for elements η and b of an
arbitrary C∗-algebra A: (1) ‖η‖ ≤ ‖cηa± bη∗b‖; (2) ‖cηb∗ ± bη∗c‖ ≤
K‖cηa± bη∗b‖. Here a and c are the positive square roots of 1 + b∗b
and 1+ bb∗, respectively, and K depends only on b. The proofs involve
the study of the real-linear map Φ:A→A given by Φ(η) = cηa− bη∗b.
{For the entire collection see MR1009181 (90d:46003)}

Robert J. Archbold (4-ABER)
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MR1108460 (92h:46068) 46G15 46H20 46M20 58B20

Corach, G. (RA-IAM) ; Porta, H. (1-IL) ;
Recht, L. [Recht, Lazaro] (YV-SBOL)

Multiplicative integrals and geometry of spaces of
projections.
Conference in Honor of Mischa Cotlar (Buenos Aires, 1988).
Rev. Un. Mat. Argentina 34 (1988), 132–149 (1990).
Consider a Banach algebra A with identity, and set Qn = {q =
(q1, · · · , qn) ∈ An: q2

k = qk, qiqk = 0 if i 6= k, and
∑n

k=1 qk = 1}. Let
G denote the group of units of A, and define π:G → Qn by π(g) =
gq0g

−1, where q0 ∈Qn is given. Then π defines a principal fibre bundle
over its image, and, in particular, any curve γ: [0, 1]→Qn with origin
q0 admits a lift to Γ: [0, 1]→ G, that is, Γ(t)q0Γ(t)−1 = γ(t) for each
t ∈ [0, 1] [cf. the authors, Pacific J. Math. 143 (1990), no. 2, 209–228;
MR1051073 (91g:46056)].

For a continuous and rectifiable γ: [α, β]→Qn, the authors obtain
an explicit lift Γ, which is the horizontal lift of γ for a connection
on Qn. The method is to construct, for every t ∈ [α, β], an element
M t

α(γ) ∈ G such that M t
α(γ)γ(α)M t

α(γ)−1 = γ(t) for all t ∈ [α, β]. M
turns out to be a multiplicative integral, in that (M v

u )(Mw
v ) = Mw

u

for all u, v and w ∈ [α, β]; these are special cases of the multiplicative
integrals of V. P. Potapov [Trudy Moskov.Mat.Obshch.4 (1955), 125–
236; MR0076882 (17,958f); translated in Amer. Math. Soc. Transl. (2)
15 (1960), 131–243; see MR0114915 (22 #5733)]. The lift Γ is then
defined by Γ(t) = M t

α(γ) for each t ∈ [α, β] and coincides with the lift
mentioned earlier when γ is C1.

An analogous result is obtained for spaces of the form Sq = {(a, b) ∈
A2: aq = a, qb = b, ba = q}, where q ∈ A is a fixed idempotent.
Here, if γ: [α, β] → Sq is rectifiable and continuous, then there is
a lift γ: [α, β] → G such that Γ(t) · γ(α) = γ(t) for all t ∈ [α, β]. In
particular, if γ is C1, then Γ is the unique solution of an initial value
problem. This relates to the decomposition of Banach spaces studied
by, e.g., A. Douady [Ann. Inst. Fourier (Grenoble) 16 (1966), no. 1,
1–95; MR0203082 (34 #2940)].
{For the entire collection see MR1108446 (91m:00041)}

David A. Robbins (1-TRC)
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Vol. 16 (1993) (c) 1993 BirkhNuser Verlag, Basel 

The Geometry of the Space of Selfadjoint 
Invertible Elements in a C*-algebra 

GUSTAVO CORACH, HORACIO PORTA AND LXZARO RECtIT 

Let A be a C*-algebra with identi ty and G * the  set of all selfadjoint 

invertible d e m e n t s  of A. This  paper  is a s tudy of the  geometr ic  propert ies  

of the  manifold  G *. The  action of the  group G of invertible elements  of A 
over G*, given by 9" a = ( g - 1 ) * a g - 1 ,  defines Banach homogeneous  spaces 

G --4 G ~,a, where G ~'a is the  orbit of a 6 G ~. It tu rns  out  tha t  the  G *,a are 

open and closed subsets of G ~ and the  principal  bundles  G --* G ~'a carry 
na tura l  connections.  The  horizontal  lifting of (differentiable) curves ? in G ~ 

are controlled by the  differential equat ion F 1 . i  ~ = - 7 7 7  , which is called here 
the  transport equat ion (an al ternat ive approach  based on mult ipl icat ive 

integrals is given in Section 8). Several G - b u n d l e s  are s tudied,  in par t icular  

the  t angen t  bundle  T G t  One relevant point  here is tha t  the  (left) polar 

decomposi t ion  a = up (a C G ~, u > 0, p uni tary)  provides two structures:  

first it is easy to see tha t  p is a reflection so tha t  It(a) = p defines a map  

7r : G ~ ~ P where P is the  set of all p 6 A such tha t  p* = f l - 1  = fl; second 

for a t angen t  vector X 6 T~G ~ the  n o r m  I[Xll~ = ]1~'-1/2XI/-1/2 H defines 

a Finsler s t ruc ture  on the  bundle  TG ~. This bundle  carries a canonical 

connect ion de te rmined  by the  t r anspor t  equat ion,  wi th  covariant derivative 

defined by 

D x Y  = X ( Y )  - I ( X a - I Y  + Y a - I X )  
2 

Research part ial ly suppor t ed  by CONICET,  Argent ina  and  by Funda- 

cion Antorchas ,  Argentina.  
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and parallel t r anspor t  along a curve 7 in G ~ given by the  t r anspor t  funct ion 

F of 7- Thus  T G  ~ is endowed wi th  the  result ing s t ruc ture  of Finsler bundle  

with a t r anspor t  connection.  The  exponent ia l  map  of this connect ion is 

1 - - 1 . ~  1 a - - 1 . .  
eXPa X = e - �89  �9 a = eT a Zae7 n. 

The  restr ict ion of the  bundle  T G  s to P splits as TGSIP = T P  (9 N where 
the  "normal  bundle"  N has over p 6 P the  fiber 

Np = {X  �9 T e a  s : X p  = pX} .  

The restr ict ion to N of the  exponential  map  is a di f feomorphism from N 

onto G ~ which preserves the  fibers. In Cheeger-Gromoll  theory  (see [3]) 

this is expressed by saying tha t  P is a soul of G ~. 

Re turn ing  to the  s tudy  of the  flbration ~r : G s --+ P we give a de- 

scription of the  fibers of 7r and of the  group of all g C U tha t  preserve 

the  fibers. The  tangent  m a p  T~r : T G  s ---+ T P  decreases norms  in the  

sense tha t  II(T,~r)Xll < IIxt l ,  ( x  6 T,~G'). This theorem is based on the  

inequali ty l ISTS  -1 + S-1TS[]  >_ 2I[T][ valid for bounded  linear operators  

S, T on a Hilbert  space wi th  S selfadjoint and invertible [4]. The  ma in  

result of this paper  is tha t  given two points  in the  same fiber G~ there is 

a unique geodesic fully contained in G~ joining them,  which is the  shortes t  

curve in G s with the  same endpoints .  A basic tool of the  proof  is the  above 

ment ioned  contract ion proper ty  of T~r. 

In finite dimensional  cases, R iemann  metr ics  can be defined on T G  ~ 
and we show an example  where the canonical connect ion is the  Levi-Civita 

connect ion of such a metric.  This  paper  is par t  of a series devoted to the  

s tudy  of the  geometry  of several reductive homogeneous  spaces which ap- 

pear  na tura l ly  in Banach and C*-algebra theories: the  space of idempoten t s  

in a C*-algebra ([17], [18], [6]), the  space Qn of n-tuples of idempoten t s  
decomposing the  ident i ty  in a Banach algebra [5], the  space of relatively 

regular e lements  in a Banach algebra [8]. The  subset A + of G * of all posi- 
tive invertible elements of A is also considered in [7], where it is shown tha t  

the well-known Segal's inequali ty (see [21]) l ie  (x+Y)l] <-]le(X/2)eYe(X/2)lt, 
where X,  Y are selfadjoint elements of A, is equivalent to the  proper ty  tha t  
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the exponential  map of A + increases distances, a property  which A + shares 

with Riemannian manifolds with nonpositive curvature. The geometry of 

some Hilbert homogeneous spaces has been previously studied by P. de la 

Harpe ([12], [13]) and Finsler s t ructure of some groups of operators on a 

Hilbert space has been studied by Atkin ([1], [2]) who proves some results 

on uniqueness and minimali ty of geodesics. The t ransport  equation of Q~ 

has been independent ly  found by Daleckii and Kato (see [9], [14] and also 

[15], [10]); its geometric meaning, however, was first established in- [5]. In 

the case n = 2, Q2 can be identified with the space of all the reflections and 

its t ransport  equation takes the same form as tha t  of G ~, a phenomenon 

which will be studied in a forthcoming paper. 

1. P r e l i m i n a r i e s  

Let A be a C*-algebra with 1 represented as an operator  algebra in a 

Hilbert space H. Also denote by G = G(A)  the group of invertible elements 

of A and G s = G~(A)  the space of invertible selfadjoint elements of G. For 

each a 6 G ~ there is a form B a defined on H by B a ( x ,  y) = (ax,  y). The 

B a's are hermit ian non-degenera te  bilinear forms. The Ba-adjo in t  of u C A 

is u a = a - l u * a .  Hence the uni tary group U a of B a consists of the u 6 G 

with the equivalent properties u -1 = a - l u * a  or ( u * ) - l a u  -1 = a. 

In order to s tudy the natural  geometry of G s we introduce the following 

action of G on GS: 
g . a = (g-1)* ag-1 .  

This action fits into the following picture: consider E = G ~ x H as a 

product  bundle over G s with fiber Ea = H over a 6 G ~. Then  E is a 

pseudo-Riemannian  bundle when each fiber E ,  is provided with the form 

B a . 

E can also be considered as a G-bundle  with the action 

9(a ,x)  = (9.  a, gx). 

It is clear that  this action is isometric on fibers (because Bg'a(gx ,  gy) = 

B a ( x , y ) )  and tha t  the isotropy group of a 6 G ~ for the action g �9 a is the 

uni ta ry  group U a of the form B a. 
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Using Bg'a(gx, g y ) =  Ba(x , y )  with g = a(b) the  geometr ic  interpreta-  

t ion in terpre ta t ion  of a is tha t  a(b) an isometry f rom Ea = (H, B a) onto 

Eb = ( H ,  Bb). 
In the  sequel we denote  G ~'a the  orbit  {9" a; g C G} of a. 

1.1 PROPOSITION 

each a 6 G ~, the  map 

The orbits G s'a are open and closed in G s and for 

G --+ G ~'a, g --~ g . a 

is a smoo th  principal bundle with group U ~. 

P r o o f i  It suffices to show tha t  G --* G s'a has a smoo th  local section near 
a 6 G s. For b 6 G s near  a put  or(b) =- (b- la)  1/2. Here b- la  is close to 1 

and the  square root  has the  usual meaning (see [20] for example) .  Rout ine  

calculations show tha t  

o(b) . a = (((b- '  a) l /2)- ' )*a((b - I  a)I/2) -1 =- b 

so tha t  cr is a local section, as needed. This  completes  the  proof  of 1.1. 
It is readily seen tha t  G s has a functorial  character  in the  category 

of C*-algebras and *-homomorphisms.  In part icular ,  using Michael 's result 

[16] tha t  G(A) -~ G(B)  is a Serre fibration if f : A ~ B is a surjective 

*-homomorphism,  Proposi t ion  1.1 implies tha t  f :  GS(A) ~ GS(B) is onto 

if and  only if every componen t  of GS(B) contains some element  of the  image 

of f .  This  result is useless in the  case when A is the  algebra of all bounded  

linear operators  on a Hilbert space H and B is the  quot ient  of A by the  
ideal of all compact  operators  ( the Calkin algebra of H)  since in this case 

the  na tura l  project ion GS(A) --* Gs(B) is onto ([13], p. 197). However in 

general there is no way of lifting elements and the  criterion above may be 

adequate.  
We use a = zzp as the  polar  decomposi t ion  of a wi th  v = lat -= (a2) 1/2 > 

0 and wi th  p unitary. Since la[ and a commute  we have 

p* = ( l a l - X a ) *  = a l a l - '  = lal-'  = P 

whence p is a selfadjoint uni tary  element of A, or p* = p-1 = p. 
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2. T h e  canonical connection 
Denote by H a the Lie algebra of U a. It is clear tha t  H a is a subalgebra 

of the Lie algebra ~ of G and that  G can be identified with A (since G is open 
in A). In this identification, H a corresponds to the set of Ba-an t i symmet r ic  

elements of A, i. e., 

H a = {x  C A; a - l x * a  = - x } .  

2.1 PROPOSITION Le t  S ~ denote  the  set o f  e lements  s o f  A which  are 

B a - s y m m e t r i c ,  i. e., w i th  a - l  s*a = s. T h e n  A = H a �9 S a and  the  e lements  

o f  U ~ conjugate  S a in to  itself." i f  s E S ~ and  g C U ~, then  gsg -1 E S a. 

Proof.- Only the last s ta tement  needs a proof: 

a - l  ( g s g - 1 ) * a  = ( a - l  ( g - 1 ) * a ) (  a - l  s*a)(  a - l  g*a) = gsg -1 .  

2.2 PROPOSITION For g C G define W a = {gs; s C Sa}. The  the  map 

g ~ Wg C T g G ( =  A )  is a d is tr ibut ion  o f  hor izonta l  spaces for a connect ion  

on the principal  bundle  G --~ G ~'a. 

Proof." ( W g ) u  = Wg~ for u C Ua ,g  C G is equivalent to ~sa?A -1 - - ~  S a, 

which is shown in Proposit ion 2.1. 
The connection defined by the distribution Wg is the canonical  con- 

nec t ion  of the bundle G ~ G s'a. 

2.3 PROPOSITION [ f  T( t ) ,  u < t < v is a curve in G s,a, a curve r ( t )  in 

G is a hor izonta l  l i f t ing o f  7(t) if  and onty i f  F(~) satis~qes the  " t ranspor t  

equa t ion"  
= - - 1 7 - 1 ~ F "  

Proof: Suppose that F(t) lifts 7(t), or F(t).a : 7(t) or (F-1(t)) *aF-l(t) = 

7(@ Then 7 -1 = Fa-IF * and by differentiation we get 

- - 7 - - 1 9 7  - 1  = F a - l r  * + r a - l F  * 
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o r  

_7-1~/= ~a - l r* ( r -1 )*a r  -1 + r a - l~* ( r -~ )*a r  -1 

= (r  + M ) F  -1 

where M = ra-l(r-l )*a. Hence the equation F = - (1/2)7-1+p holds if 

and only if M = F. This in turn is equivalent to 

r - ~  = a- l ( r-~F)*a,  

or F-11p E S a or finally I" E Wr. This completes the proof. 
In the sequel we shall be interested only in solutions F of the t ransport  

equation with F(u) = 1. These satisfy F ( t ) .  7(@ = 7(t) for all u _< t < 
v. This P will be refered to as the "transport  function" of the path  7(t) 
(cs [5], [10], [14], [15], [18]). The transport  function has the following 

fundamental  property: 

2 . 4  P R O P O S I T I O N  If  7(t) is a curve in G ~ with transport function F(t) 
then for g E G the transport function ofg �9 7 = (g-1)*Tg-1 iS g l - ' g  - 1  . 

3. I n d u c e d  C o n n e c t i o n s  

Suppose C is a G-man i fo l d  (G = G(A)) and C --* G ~ is a C ~176 G-  
Banach bundle, i.e., G operates in a compatible C ~ way on C and G s. 

A connection D on C is a transport connection if parallel t ransport  in C 
along a curve a(t) is given by the transport  function of a(t). This means 

that  a section a( t )  of C along a(t),  0 _< t _< 1, is D-paral le l  is and only if 

~(t) = r(t)(~(0)) where r( t)  satisfies I" = -(1/2)a-lar, r(0)= 1. 

3.1 PROPOSITION Transport connections are G-invariant. 

P r o o f i  Use Proposition 2.4. 
We define several t ransport  connections resulting from the systematic 

use of the t ransport  functions in appropriate contexts. 
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T h e  b u n d l e  E 

Let E = G s • H as a G - b u n d l e  wi th  the  ac t ion g(a, x) = ( g . a ,  gx)  

descr ibed above in Section 1 and  define the  connect ion  on E by 

. v  
dt = (r-l(~)v(~))t~=~ 

for any  sect ion v(t)  = (a ( t ) , x ( t ) )  over a(t). 

3.2 PROPOSITION D is a transport connection on E and 

1 1 
n x v  = X ( v )  + -~a- X v .  

The curvature of  D at a 6 G ~ is: 

l [ a - l X ,  a - l y ] "  n ( x , Y )  = - ~  

Next  define a R i e m a n n i a n  met r ic  (( , )) on E as follows. For a 6 G s let 

a = up be the  polar  decomposi t ion  of  a wi th  u = la[ = (a2)1/2 > 0 and  p 

uni tary .  We define on the  fiber Ea = H the  met r ic  

((x, y))o = ( . x , y ) =  < . l / 2x , . 1 /2y ) .  

Define also a 1- form on G s wi th  values in A by se t t ing at  each a 6 Gs: 

1 
S = - - a  - 1  [dp, u] 

2 

where again a = up is the  polar  decomposi t ion  of a. 

3.3 PROPOSITION 

of  E we have: 
For any  tangent  field X on G ~, and any sections x, y 

X ( ( x , y ) )  - ( ( D x x ,  y)) - ((x, D x y ) )  = ( (S (X)x , y ) ) .  
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Proof:  

B u t  

as c la imed .  

D x  Dy  
X((x,y))  - ((--~-,y)) - <(x,--~-)) 

d 1 1 
---- - -~( .x ,y )  - (•(2 + -~a- dx ) , y )  

1 1 - (.x,(~) + ~ a -  &y)) 

= (~x, y) + <.~, y) + <.x, y) 

l (pa- l  ~tx,y) 

1 <~x, a - i f  y) --(-x,Y)- ~ 

1 1 = (zz(p,-1/~- _ a - l ~  _ - y - l S a - l y ) x , y  ) 
2 2 

- - 1 .  V 1 1 v-l(~p + vh)p y---~lg--l p(pz] -1 L p~ ) - -~ 

1 1 - l f j  1 1 

= ~-I~_ _~-Ip~__~ _ _~-i~ 2~ p 2 2 2 

1 -I 1 
: --~2 PP~- ~PP 

1 1 = _ ~ - , p ~  + ~p~ 

1 1 a 1" : - - - - a - - l ( P / ]  - -  /2/)) : - - 7  -- [/~' /2] '  
2 

3.4 COROLLARY Parallel transport on E preserves the metric  on curves 

with p = constant. 

T h e  b u n d l e  M 

We def ine M as t h e  p r o d u c t  b u n d l e  M = G s • V where  V is t h e  

space  of  b o u n d e d  c o n j u g a t e  b i l inear  fo rms  on  H .  T h e  g r o u p  G ac t s  on  V 
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by gg(x,y)  = g ( g - l x , g - l y ) .  If g( t )  is a curve in M on the  curve a(t) we 

define 
__ D u  v )  - 3 ( u ,  D v  

dt dt 
for any sections u, v in E.  The  right hand  side has the  form 

~(~, v ) + g ( ~ ,  v) + ~(u,  6) 

- ~ ( ~ t , v ) - ~ t 3 ( a - l h u ,  v) 

- g ( u ,  ~)) - 1 -~g(u,a-l av) 

: ~ ( u , v ) - - ~ ( a - l h u ,  v ) - -2~(u ,a - l c t v ) ,  

which obviously depends  only on the  values of u, v at each point  but  not  on 

their  derivatives. This  means  that :  

3.5 PROPOSITION The connection on M is a transport connection with 
covariant derivative 

1 
(Dxg) (u ,v )  -= (X(~))(u ,v)  - l g(a-aXu,  v ) -  -~g(u ,a- lXv)  

T h e  b u n d l e  L = G s x A 

The  elements  b in A can be in terpre ted  as bilinear forms by fl(u, v) = 

(bu, v) and the  connect ion on M induces a connect ion on L = G ~ • A by 

D a  v) v) = 

where fl(u, v) = (au,  v). 

3.6 PROPOSITION The connection on L is a transport connection with 
covariant derivative 

D x a  = X(a)  - ! ( X a - l o  r -Jc g r a - l X ) .  
9 
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The  curvature of  D satisfles: 

4R(X,  Y ) a  = a[a -1 X ,  a - 1  Y] - [Xa -1 , Ya-1]a .  

Proof." The fact that  D is a t ransport  connection on L results from calcu- 

lating for a fixed b 6 A: 

D b ) =  D 1 ~ ( F .  ~ ( ( F -  )*bF -1) 

= _ ( v - 1 ) , b r - X ~ r - x  

1 (aa_ (r_l).br_l + 
2 

1. _ x ( v _ l ) , b r _  ~ + l(F_X),bF_Xa_Xh ~-- - - a a  
2 

- 2 ( h a - l ( F - 1 ) * b p - 1  + (P-X)*bP- la-Xh)  = O. 

3.7 PROPOSITION The section a --~ B a in G ~ x A is parallel. 

Proof." 

3.8 COROLLARY 

Da 1 
dt - h -  ( h a - l a + a a - l h ) = O .  

The  section a --* (a, a) in L is parMlel. 

P r o o f :  Since Ba(x,  Y) = (ax, Y), Ba corresponds to the tautological section 

in G" x A. 
The metric  (( , )) in E defines a Finsler s t ructure on the bundle of 

bilinear forms M = G" x V, as follows. If fl 6 M~ then 

I]fl[la = sup{i f l (x ,y) l ;  ((x,x))a _< 1,((y,y))a <_ 1}. 

With  the interpretat ion of u 6 A as the bilinear form f l(x,  y) = (ux,  y), this 

translates into a Finsler norm on the bundle L = G * x A given explicitly 

by: f o r u E L a  = A ,  
l[7/]la = ] 1 / . / - 1 / 2 u y - 1 / 2 [ I  



Corach, Porta and Recht 343 

(11 [l=~ operator  norm calculated from ( , >). 
Notice that  if a = vp = t, -1/2 �9 p (z~ > O, p = uni tary)  then the map 

?~ --+ t ] - 1 / 2  " U~  Lp - ~  La 

is an isometry for the norms [[ [[p (=  ][ [[), [[ [[a. In the sequel length of 
curves and related concepts refer to this metric  through the usual definition 

Length(7 ) = / II;/(t)ll~(t)dt. 

The  t a n g e n t  b u n d l e  T G  s 

The set G * is open in the real subspace A s of symmetric  elements of A. 

Hence T G  ~ = G ~ x A s is a subbundle of L = G s x A. Since the covariant 

derivative in L defined by 3.6 produces symmetric  results from symmet-  

ric data,  we can restrict this connection to T G  ~. This is the canonical 

connect ion on G s, with covariant derivative defined by 

D x Y  = X ( Y )  - I ( X a - I y  + Y a - ~ X )  

and parallel t ransport  along a curve a(t)  in G ~ given by the transport  func- 
tion F(t)  of a( t )  ac t ing on tangent  vectors by F ( t ) - X  = (r(t)-l)*xr(t) -1. 
Since the term X a - I y  + Y a - I X  in D x Y  is symmetr ic  in X and Y, the 

connection in T G  ~ is a symmetr ic  connection. Similarly, the curvature of 
T G  ~ is given by 

4 R ( X , Y ) Z  = Z [ a - I X ,  a - I Y ]  - [ X a - I , y a - 1 ] Z .  

The Finsler s t ructure of L = G ~ x A can be restricted to T G  ~. In the 

sequel we will always consider T G  ~ as endowed with the resulting structure 
of Finsler bundle with a t ransport  connection. 

Finally we briefly describe the exponential mapping of this connection. 
Direct computat ion shows that  given a 6 G ~ and X 6 TaG s, the curve 
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7(t )  -- e t X . a ,  where  )~ = - ( 1 ~ 2 ) a - I X ,  is the geodesic wi th  7(0) = a, 

~(0) = X.  Therefore  the  exponent ia l  mapp ing  is 

e x p ,  X = e -~-I  x/2 �9 a. 

This can also be wr i t t en  as expa X = al/2ea-1/2xa-1/2al/2. 

4. T h e  s t r u c t u r e  o f  G ~ 

Let P C G s be the  set of or thogonal  reflections of A, i.e., p �9 P if 

and  only if p* = p = p-1.  We define a f lbrat ion 7r : G s --+ P by set t ing 

Tr(a) = p where  a = up is the  polar  decomposi t ion  of a. As no t iced  in the  

prel iminaries  section, p is a selfadjoint uni tary ,  hence an e lement  of P .  

Given p �9 P we wri te  each u �9 A as a 2 x 2 ma t r i x  

U l l  U12 / 

U ~ \ U21 U22 

w h e r e  ~11 ~--- pttp, Ul2  = p ~ ( Z  - -  p ) ,  U21 -~ (J- - -  p)~p, U22 = ( !  - -  p)~t(~l - -  p ) ,  

for p = (p + 1) /2  the  associated s y m m e t r i c  project ion.  This  decomposes  

the  a lgebra  as A = A0 | A1 where  A0 consists of the  diagonal  e lements  

Ull 0 ) 
U ~ 0 ~22 

and  A1 consists of t he  codiagonal  e lements  

(o 
U ~ 

U21 

= { u ; u p  = - p u } .  Equivalently,  Ao = {u;up = pu), A1 We say tha t  

degree(u)  = 0 for u 6 A0 and  degree(u)  = 1 for u �9 A1. T h e n  A = Ao | A1 

is a Z 2 - g r a d e d  algebra.  

4.1 s PROPOSITION Denote by Gp the/~bers 7 r - l ( p )  oleTr : V s --+ P.  

a) G; = {a e G" n A0;ap > 0} = {.p;~ > 0,~p = p~}. 
s $ b)  The g roup  of all g ff G that preserve the/~ber Gp, i.e., g �9 a 6 Gp 

for each a 6 GSp is G M Ao. 
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P r o o f  o f  a): a G G * N A 0  and ap > 0 imply a = (ap)p is the  polar  

decompos t ion  of a. 
S P r o o f  o f  b):  Let g C G c o m m u t e w i t h p .  T h e n  for any a = u p C  G o we 

have g .  a = (g -1 )*upg-1 .  T h e n  g .  a is in no (as a p roduc t  of degree zero 

elements)  and  it is symmetr ic .  Also (g. a)p = (g -1 )*ug-1  > 0 so tha t  by a) 
s we get g. a G G~. Conversely, assume tha t  g G G acts on G o. T h e n  for each 

u > 0 wi th  up = pu, there  exists u' > 0 wi th  u'p = pu' and g.  (up) = u'p. 

Decompos ing  g-1 = h0 + hi  wi th  h0 C A0 and hi G A1 we get 

u 'p  = g . (up)  = (h~ + h~)up(ho  + h , )  

= (h~ + h ~ ) u ( h o  - h~)p,  

so tha t  after cancelling p and compar ing  te rms  of the  same degree we get 

h~uho - h~uhl  = u' h~uhl  - h~uho = O. 

Taking u = 1 it follows tha t  h~ho = v' + h~hl > 0 and  h0 is invertible. But  

the  equali ty h~vhl  = h~vho can not  hold for all u > 0 c o m m u t i n g  wi th  p 

unless hi = 0. In fact consider the  example  

(0 0) 
v =  /3 

and write  

h0 = ( hll 
\ 0 

0 ) h l :  ( 0 h12 ) 
h22 h21 0 " 

T h e n  f rom h~vhl  = h~uho we get 

h~101h12 = h~1/3h22 

and since we can take a,/3 > 0 arbi t rary  real numbers ,  we get h~1h12 = 0 

and h~lh22 = 0. Cancell ing h~l and h22 we conclude tha t  h12 = 0, h21 = 0 
and  therefore h = 0. This  means  tha t  g-1 (whence g) has degree 0 and the  
proof  is complete.  
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The restr ict ion to P of the  bundle  T G  ~ splits as a sum T G  ~ ]p = T P |  

where the  "normal"  bundle  N is defined by Np = {x 6 TpG~;xp = px} .  

4.2 THEOREM L e t  "z : N --~ G ~ be the restriction t o  N of  the exponen-  

t im mapp ing  o f  G s, so tha t  E(p, X)  = e-pX/2 .p. Then E is a di f feomorphism 

satis fying E(Np) = G s p" 

P r o o f :  The  inverse of Z is given at a = vp by ~ . - l (a )  = (p, p l n v ) .  

We close this section wi th  the  remark  tha t  geodesics in a fiber with  

given endpoints  are unique. This  follows f rom the  fact tha t  posit ive elements  

have unique symmet r ic  logari thms. In fact, if x 6 G~ and H = H+ | H_  

with H i  = {x; px = + x } ,  then  

a+ 0 ) 
a =  0 a _  

can be wr i t ten  in a unique way as a = r �9 p where 

(1 ) - ~ X +  0 

0 7 X _  

and X•  symmetr ic .  So there  is a unique geodesic joining p wi th  a. For 

arbi t rary b, a 6 G~, opera te  first wi th  a convenient g 6 G A A0 to reduce to 

the  case b = p. 

5. Projecting on the base 

The  basic fact of this section is the  following. 

5.1 THEOREM The tangent map  TTr : T G  ~ --+ T P  decreases norms. 

P r o o f i  We want to prove that 

IIT   Xll < IlXll~ 
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for all a E G 8. Let a(t)  be a curve in G 8 and X = &(t). Let p(t) = ~r(a(t)) 
and let F(t) be the transport  function of p(t). Finally define al( t )  = F(t) .  
a(0). Since ~r(a(t)) = ~r(al(t)) (F( t ) is  un i ta ry)we get that  X2 = k(0)-&l(0)  
is tangent to the fiber 7r-~(p(0)). Next calculate at t = 0: 

d 1 
X,  = al = ( r ( t ) .  a(0)) = ~ ( - p ~ a  + ap~). 

Writing at t = 0 the polar decomposition a = up = pu we get 

Then calculate 

IlXll~ = l lu-~Xu--~ II 
1 1 1 

= Ilu-~ x~ u-~ + u -~X~u-~  II 
~___ 1 1 1 �9 

= II ( u - ~ u ~  + u~pu-~)  + u-~X=u-~l l .  

lISTS -1 + S-~TSII > 211TII 

valid for any symmetric invertible operator S and any operator T. This 
reduces the proof of the theorem to the inequality 

Ilu-~Xu--~ II ~ t lu-@xlu-~lI.  

But 
1 1 i 1 1 1 

u-LXu-~ u-LXI u-~ + 

is the decompostion of u - l X u - ~  in degree 1 and degree 0 components 
determined by p(O). This is clear because p# = -/~p and X2 is tangent to 
Gp(0).s Therefore if we write 

1 1 
X l  = ~ ( - p ~ p u  + upp~) = ~(~u + u~). 

Recall the inequality ([4]): 
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then  clearly 

(0 ) 
u - ~  X l  v--~ = fl 

(o o) l/--~ X 2 ~ - - ~  = 

ii.--~ x~ , -~  II ~ I1~11 = II ~--~ x~ ~--~ II. 

5.2 THEOREM A geodesic of  length less than 7c contained in P is the 
shortest curve in G s joining its endpoints. 

P r o o f i  Let 7 be the  geodesic in P joining p0 and Pl and  let 5 be any other  

curve joining P0 and Pl- T h e n  51 = 1r(5) is contained in P and according 

to Theorem 5.1, the  length  of 51 does not  exceed the  length  of 6. T h e n  

observing tha t  the  Finsler metr ic  of G s restr icted to P is given by ordinary 

opera tor  norm,  a direct applicat ion of [18] gives the  desired minimal i ty  and 

uniqueness.  

6. G e o d e s i c s  in  a f i be r  

Suppose a(t) ,  0 < t K 1 is a curve in G s with Tr(a(0)) = a(1). 

Denote  p(t) = ~-(a(t)), u(t) = a(t)p(t),  and r ( t )  the  transport funct ion 

of p(t). Next define a(t)  = P- l ( t )a ( t )F( t ) .  Since r ( t )  is unitary, the polar 
decomposi t ion  of a is 

~ = ( r - ' v r ) ( r - l p r ) ,  

8 or 7r(~) = P - l p F  = p(O) for each t. This  means tha t  a is a curve in ap(0). 

Observe tha t  a has the  same endpoints  as a because 

~(o) -- r - a ( o ) . ( o ) r ( o )  = a(O) 

and by the  hypothesis  ~r(a(0)) = a(1) we have p(1) = a(1) and therefore 
~ ( ~ )  = r - l ( ~ ) ~ ( ~ ) r ( ~ )  = r - l ( ~ ) p ( 1 ) r ( ~ )  = p (o )  = p (1 )  = a (~) .  

We claim tha t  

( �82  I1~11~ _< Italia �9 
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First (use Pt  = -t iP,  a = up, etc.): 

a = - r - ' ( -  ~-pt>r + r - ~ ( -  ~-pt)r + r - l a r  

1 1 . = r -  ( f f (pp~ - ~p t )  + a ) r  

= F _  1 pb + i.,pp 
2 

and therefore 

Ilall~ = II(r-l~-l/~r)a(r-l~-l/~r)l l  
llF_1u_112 pi: + i.'p = , - -  u - 1 / = p [ I  

2 
1 

= ~ l l ~ - ~ / ~ ( p  ~ + ~ p > - ~ / = l l  �9 

On the other hand, a = up = pv gives 

1 1 
= ~(Pb + @) + ~ ( t  ~ + u t )  

and then 

But in the matr ix decomposition at each p(/) 

u-I/2(tu+uP)u-~/2 = 5 0 

(because the former commutes with p and the lat ter  anticommutes with p). 
Hence 

implies IlaiIo > II~tl~ �9 This is inequality ( �82 and the claim is proved. 
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This inequali ty shows that :  

6.1 PROPOSITION. For any curve joining a 6 G s with 7r(a), there is a 
shorter curve in the lqber G~(,) with the same endpoints. 

The  following technical  result is needed in the  proof  of T h e o r e m  6.3: 

6.2 LEMMA. Let p be a rank  1 orthogonad projection in the Hitbert 
space H, a : H -~ H positive det~nite, X : H --~ H selfadjoint. Then 

I[pa]/2Xa]/2pll <_ Hpapll HXH- 

Proof: Decompose H -- Ce (~ H 1 where IleH = 1, 
ker(p). T h e n  we have mat r ix  representat ions 

a]/2= ( AB B*)C 

X=(~ 7" o) 

p(e) = e, and  HI = 

where A, ~ are scalars, B E H] and B* : H1 --+ C is the  funct ional  B*(h) = 
(h, B) ,  and  O, C are operators  in H1. Define also a bilinear map  F : H x H  --~ 
C by F(u, v) = (Zu ,  v). T h e n  calculating we find tha t  the  ( t ,1)  ent ry  W]I 
of W = a]/2Xa U2 is F(Ae + B, Ae + B). T h e n  

IIW~[I ~ IIFII IIAe + BIt 2 : IIX[I IIA~ + BII ~ = I[X[I(A 2 + IBI=) �9 

But 

and so 

[ A 2 + B*B 
a = ( d l / 2 )  2 = \ B A  + CB 

AB* + B* C 
BB* + C 2 / 

tlW~lll ~ IIXII Ilal~ll ,  

as claimed. 



Corach, Porta and Recht 351 

6.3 THEOREM. The  unique geodesic in G~ joining two points a, b �9 G~o 
is the shortest curve in G s joining a and b. 

P r o o f i  We consider  first the  case where  b = p. Let  w(t) ,  0 < t < 1 be a 

curve  joining p and  a, and  7( t )  = e ~ .p ,  0 _< t _< 1, t he  geodesic in G~ 

joining the  same  endpoin ts  where  X = ~(0) �9 TpG~ and  .~ = 1 ~pX. We 

will show t h a t  

Length(w)  >_ Length( ' ) , ) .  

By 6.1 we m a y  assume tha t  w is fully conta ined  in G~. We handle  first the  

case p = 1. 

By changing  the  represen ta t ion  if necessary,  we can find e 6 H wi th  

X e  = h e ,  IIell = i and  = IIXII. Next,  we decompose  H as H = C e O C e  -L 

and  therefore  we can obta in  by compress ion to Ce  two curves 711 and  w u  

defined as the  (1,1) entries of the  mat r ices  of 7 and  w in the  decompos i t ion  

H = C e  @ Ce.  By 6.2 we have Length(w11) _< Length(w) .  Also, 7 1 1 ( t )  _7_ 

(e t ~ .  p) = e tA and  

II+11117H = I~%17~ = I~-~12~-*~12~I = I~I 

so t h a t  

L e n g t h ( 7 1 1 ) =  ]~] = ]IX]] = Length(-) ' ) .  

Since wu(t)  > 0 we can calcula te  

~0 
1 

L e n g t h ( w n )  = U&n(t)]]~u(t)dt 

j[o 1 Iwull2(t)&n(t)wnl/2(t)ldt 

= [d)ll(t)/wn(t)[dt _> Ilog Wll( t ) l~[--I~1 

since w u ( 1 )  = 711(1) ---- e "x, wl l (0 )  = 7 1 1 ( 0 )  = 1. This  shows tha t  7 is 

min imal  in t h e  case p = 1. 
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Consider  next  an arbi t rary p and decompose  H = H+ | H _  where 

H+ = {x; px = i x } .  Then  

) X = 0 X = - T X +  0 
X _  ' 0 + i x _  

and 

Similarly, 

But ,  

e x+ 0 ) 
7 ( t )  = d ~ "p = 0 - e  - * x -  

= ) 

IlXll = IIX+ll or IlXl[ = IIX-II 

and 

so tha t  by choosing the  half  where X keeps its no rm we are (up to sign) in 

the  case p = 1, and  the  proof  is complete.  

To complete  the  proof, operate  with an element  of G n A0 to reduce 

the  general case to b = p. 

7. A n  e x a m p l e  

We consider now the algebra A of linear endomorph i sms  of the  Hilbert 
space C 2 wi th  the  s tandard  inner product .  T h e n  G = GL(2, C) and G 8 

has three connected components  de te rmined  by signature.  Denote  G~ the 

component  consisting of the  positive definite elements  of A. The  level 

manifolds Mh = {a; det(a)  = h} of the  de te rminan t  funct ion  det  : G~ --* 

R + form a smoo th  foliation wi th  three dimensional  leaves. Also the  rays 
Na = {ra ;  r > 0} wi th  a 6 M1, form a one dimensional  foliation and 

{Mh} is t ransversal  to {N,}.  The  leaves Mh are the  orbits of the  act ion 
g.a = (g-1)*ag-1 of the  subgroup SL(2,  C) C GL(2, C) and the  leaves Na 

are the  orbits of the  center {zl  ; z # 0} of GL(2, C). 
Since a curve th rough  a(0) = 1 with det (a( t ) )  = 1 satisfies tr(4(0))  = 

0, by t rans la t ion we have t r (a - l&)  = 0 for all curves in Mh. T h e n  the  
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solution P of the transport  equation I" = - ! a - l a r  is contained in COL(2, C). 
2 

Therefore the canonical connection on TG~ preserves the leaves Mh (in the 

sense that  D x Y  is tangent  to Mh whenever both X and Y are), and these 

leaves are totally geodesic. 
Introduce a Riemannian metric on G~ by (X, Y) ,  = t r ( a - l X a - I Y )  for 

X, Y 6 T~G~. Writing 

(X,Y)a  = tr((a-1/2Xa-1/2)(a-1/2ya-1/2)) 

shows immediately tha t  (X, Y)~ is positive definite. The foliations {Mh} 
and {No } are orthogonal for ( , )  

7.1 PROPOSITION. The canonical connection in TG~ is the Levi-Civita 
connection of the Riemann metric t r ( a - l X a - l y )  and GL(2, C) acts iso- 
metrically on G~. 

Proof." We already observed that  the canonical connection is symmetric.  

Using 3.6 one verifies that ,  for X,  Y, Z tangent  fields, it holds that  

Z ( X , Y )  = (DzX,  Y) + (X, DzY)  

and this completes the proof. 

The tangent  space T1M1 to det = 1 at a = 1 is the space of symmetric  

2 x 2 matrices with trace zero. Using 

1 0 ' J =  0 

we can write the arbi t rary element 

i n  T1M1 as  

(~) 

o) ;) 

X=( y z+ix) 
z - ix - y  

X = - i ( x I +  yJ + zK) 
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( x , y , z  are real). Further,  each g 6 SU(2) has the form 

and writing o~ = s + ui ,  ~ = v + w i  we can expand g as 

g = s + u I + v J + w K .  

T h e  c o n d i t i o n  Io~1 = + I~1 ~ = 2 2 + ~2 + v ~ + w = = m i m p l i e s  

g -1 = s - u I -  v J -  w K  = g* 

and therefore 
g �9 X = g X g  -a  . 

This shows that  the action of SU(2) on T1M1 corresponds to the action 
by inner automorphism of quaternions g with [gl = 1 on the 3-space of 

purely imaginary quaternions. Then with elements of SU(2) we can obtain 

any rotat ion of R 3 identified to T1Ma through X ~ ( x , y , z )  as in (~). In 
part icular  any plane in TaMa can be mapped  onto any other plane. 

Observe next that  SU(2) operates isometrically on M1 and leaves 1 

fixed. Hence the action of SU(2 ) l eaves  sectional curvature K ( X , Y )  = 

(R(X,  Y ) Y ,  X )  invariant. This shows that  the sectional curvature in T M a  

is the same for all planes in T M a .  Then operating with g G SL(2,  C)  we 
conclude the M1 has constant sectional curvature. For any pairs X,  Y G 

T I M 1 ,  we can calculate 

4 ( R ( x , Y ) Y , X )  = t r ( (XY)  ~) - t r (X~Y  ~) 

( j2 0) (0 
so that  taking X = 0 - x / ~ / 2  ' Y = v ~ / 2  0 we can 

verify tha t  ( X , X )  - (Y,Y) = 1, ( X , Y )  = 0 and therefore the sectional 

curvature of M1 is 

1 
4 ( t r ( X y ) 2  - t r (X2y2) )  -- 
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More generally (with the same proof!): 

7.2 PROPOSITION. The submanifolds Mh C G~ deigned for each h > 0 
by det = h have constant sectional curvature - 1 / 4 v f h .  

8. A p p e n d i x  

There is an alternative way of obtaining the t ransport  function of 7 

in terms of multiplicative integrals (see [19], [11], [22])  Consider a curve 

7(t),  u _< t _< v in G s. Assuming 7(t) continuous we can find a part i t ion 

n = {u  = 40 _< ~1 _< -. .  _< ~ = v}  wi th  7(~,)  and 7(~i+1) close ~or all i. 
Next define 

PII : (~(~n)--l~(~n--1)) 1/2"'" (~(t2)--1'~(tl)) 1/2('~(/;1)-1"~(~0)) 1/2 

which makes sense because 7(t~+l)-aT(t i)  is close to 1 for all i. Since 

x 1/2 
~[(~i+x)--l'f(~i)) "~[(ti) : ~/(~i+1) 

(proof of Proposit ion 1.1) we get PII �9 7(u) = 7(v)- Taking limits on the 
part i t ion (assume tha t  the curve is smooth) we can define the multiplieative 
integral 

P(v,u) = lira PII H 
and then 

P ( v , u ) ' 7 ( u ) = 7 ( v ) .  

From the definition of P we see also that  for u _< w _< v: 

P(w,v)P(v ,u)  = P(w,u)  

or 
P ( ~ ,  v) = P ( ~ ,  ~)P(~,  ~ ) - '  = p ( ~ ) p ( v ) - ~  
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where  we abbrev ia te  P( t )  = P( t ,  u) with  u the  left endpoint .  

8.1 PROPOSTION Given a smooth  curve 7(t) ,  u < t < v in G s, the 
horizontal lifting; r ( t )  o f  7( t )  with initial condition F(u)  : 1 is given by 
r(~) = P ( t , u ) .  

P r o o f i  We will see t ha t  P ( t , u )  satisfies the  t r anspo r t  equa t ion  F = 

-(1/2)-y-l%r. For tha t  approx imate  the  curve 7( t )  by a piecewise l inear 

curve r ( t )  joining "/'(to), 7 ( t l ) , ' ' ' ,  7 ( tn)  so tha t  be tween  ti and  t{+l we have 

r ( t )  : 7 ( t / )  + s(7( t i+l  - "y(ti) where  s = (t - t i ) / ( t i+ l  - ti). Abbrev ia t e  

a = 7( t / ) ,  b = 7(ti+1).  T h e n  

r = a + s(b - a) = a(l + $a-l(b- a)) 

so t h a t  le t t ing c = a - l ( b  - a) we can wri te  

r : a(1 + sc) 

r - 1 ( b  - a) : (1 + sc ) - I c  

and  
T--I+ = ~(1 + sc ) - l c .  

T h e n  the  func t ion  Ti(t)  = (1 + sc) -1/2 satisfies T ~ ( t ) =  (1 + sc) -1 and  

TiT{ + TiT i  : - ( I  + sc) -1~c( I  + sc) -1 

SO 

TIT-' + T&T7 ~ :-(1 + ~)-~ : -~-'+. 

Therefore 
1 1 

-I+_ T Ti]T[ -2. TiTi -1 =---~T -~[ i, 

Now at t = ti we have Ti = 1 and  then  [Ti, Ti]T[ -2 : 0 there.  Hence if a 

and  b are close then:  
TiT~ -I = 12r-X + - K 
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with K small. Define now for ti < t < ti+l the  function 

Tn( t )  : T i ( t ) T { - l ( t i ) T i - 2 ( t i - 1 )  . . . To(t l  ). 

Taking limits on the part i t ion II we get the function 

and the identities 

Hence T1 satisfies 

T1 = lim Tn 
II 

7 = l im r, 
H 

0 = lira K.  
H 

1 1. TIT71=-~- ~. 

But T1 = P .  In fact, let us calculate: 

Ti(ti+l) -~ (1 ~- c) -1 /2  

= (1 + a - l ( b -  a ) ) - l / 2  
: (1 + a - l b -  1) -1/2 

= ( a - l b ) - l / 2  = (~-1a)1/2.  

Then 

TII(~n) = Tn-l(l~n)Tn-2(tn-1).. .  

-~- (o'(tn)--1~[(~n_1))--l/2 (~(~n_l)--lo'(?~n_2))--l/2 

and therefore T1 = lim TH = P as claimed. 
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A GEOMETRIC INTERPRETATION OF SEGAL'S 

INEQUALITY 1 1  5 Ilex/2eYex/21 1  


G. CORACH, H. PORTA, AND L. RECHT 

(Communicated by Paul S. Muhly) 

ABSTRACT.It is shown that the exponential mapping of the manifold of posi- 
tive elements of a C*-algebra (provided with its natural connection) increases 
distances (when measured in the natural Finsler structure). The proof relies on 
Segal's inequality IIeX+YII 5 IleX/2eYeX1211,valid for all symmetric X , Y in 
any C*-algebra. In turn, this geometric inequality implies Segal's' inequality. 

Let A be a C*-algebra with 1 and denote by A+ the set of positive invertible 
elements of A.  Then A+ is an open subset of AS, the real Banach space 
of symmetric elements in A,  and therefore, the tangent space TaAf to the 
manifold A+ at a E A+ can be identified to AS. The manifold A+ carries 
a natural Finsler metric (see [I]) defined by llXlla = lla-1/2~a-1/211for X E 
TA,f . This norm corresponds to the following interpretation: assume A is 
faithfully represented in a Hilbert space (L ,  ( , )) , and for each a E A+, 
define an inner product in L by (<, q)a = (a<, q) . On the other hand, each 
X E TA,+ determines the bilinear form B(< ,q) = (Xt  , q) on L . Then the 
Finsler norm llXlla coincides with the norm of the bilinear form B in the 
Hilbert space (L ,  ( , ),) . 

The group G of invertible elements of A acts on A+ by Aga =(g*)-lag-' , 
(g  E G , a E A+) making A+ into a reductive homogeneous space (see [2]) with 
the natural connection given by 

DxY = X(Y) - + Y U - ~ X ) ,; (x~- 'Y 
where X(Y) denotes the derivative of the field Y in the direction X in the 
Banach space AS . In this connection, the geodesic y with y(0) = a and 
j (0 )  = X has the form y (t) etXa-1/2aeta-'X/2= . 

Further, for each g E G and a E A+, the map g is an isometry from the 
Hilbert space (L,  ( , ),) onto (L , ( , ).Rga) and consequently the tangent map 
(TAg), : TA,f - TA2ga is an isometry for the Finsler metric. 

The geometry of A+ in this setting was studied in [ I ]  where, in particular, 
the following result is proved [ l ,  Theorem 6.31: the distance d(a , b) in the 
Finsler metric defined by 

d(a ,b) = inf{length(y);y joins a to b) , 
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is given by d ( a ,  b) = length of the unique geodesic in A+ joining a to b , i.e., 
d (a  ,b) = llXlla where b = exa-1/2aea-1x/2. 

Notice that the Finsler structure in A+ does not come from a Riemannian 
metric. However, A+ shares with Riemannian manifolds of nonpositive cur- 
vature the following metric property, which is the main result of this note. 

Theorem 1. For each a E A+, the exponential map exp,: TAT +A+ increases 
distances in the sense that 

(*) d(expa X ,  exPa Y) > IIX - YlIa 

forall X ,  Y E  TAT. 
Proof. Since G acts isometrically, it suffices to prove the inequality for a = 1 . 
Set x = exp, X = e x ,  y = exp, Y = e Y .  The geodesic that joins x to y in 
time 1 has the formula 

Z ~ - l t / 2 ~ ~ x - ~ z t / 2~ ( t )= e 2 

where b = y(1) = The inequality we are after is eZx-1 /2~ex-1Z/2 .  

or 
1 1  logx - logy11 Il l~- ' /~zx- ' /~11.  

But 

Then x - ' / ~ z x - ' / ~  = l o g ( ~ - l / ~ y x - l / ~ )  1 1  logx log yll ISO we must prove -
1 1  log(~- ' /~yx- ' /~)11or, changing x into x-I , 

1 1  logx + logy11 I I I  ~ o ~ ( x ' / ~ Y x ' / ~ ) I I .  

Replacing x , y by kx , ky with k a large positive number allows us to 
assume without loss of generality that logx > 0 and logy > 0 .  Then, the last 
inequality is equivalent to 

But this is equivalent to Segal's inequality (see [3, Theorem X.57, p. 260, vol. 
111, or [41) 

(**I lleX+YllI1 l e ~ / ~ e ~ e ~ / ~ 1 1  

and this concludes the proof of Theorem 1. Obviously all steps in the proof can 
be reversed, so that (**) implies (*) . 

As an application of Theorem 1, consider a C*-algebra A with a distin- 
guished family pl ,p2, . . . ,p, of selfadjoint orthogonal projections satisfying 
pip, = 0 if i # j and p, +p2 + .. .  +p,  = 1 .  Let B c A be the C*-
subalgebra of elements of A that commute with all pi and H c A be the 
Banach subspace of elements h E A satisfying pihpi = 0 for each i .  Let also 
E =  {eh: h = h* E H). 
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Theorem 2. For each b > 0 in B ,  the distance (in the Finsler metric) from b 
to the submanifold E c A+ is attained at 1 E E . 
Proof. Set X = log b . By definition X = X1 + . . . + X,  , where Xi = p ixp i  . 
Since llXll = maxllXill, we can assume that llXll = IIXlll, and accordingly, 
we choose a faithful representation of A in a Hilbert space L with the addi- 
tional property that, setting L = L 1  $ .. . $ L ,  with Li  = p i ( L ), the subspace 
L1 contains a "norming eigenvector" for X l  , i.e., a unit vector < E L 1  with 
X I <=f11x1115. Let Y be an arbitrary selfadjoint element of H . Then, by the 
definition of H , Y <  E L2  $. . . $L ,  and therefore X< = Xl< is perpendicular 
to Y <. As a consequence we have 

Then using Theorem 1, we conclude that d ( b  , 1) 5 d ( b  ,eY ,  and we are done. 

Remark. Notice that the tangent map to exp also increases norms. In fact it 
suffices to show this property for a = 1 . For that we estimate 

using Segal's inequality Ile-Y/2eY+ tze-Y/211 2 IlefZ1 1  . Assume that t > 0 and 
that max Spec(Z) = 1121 1  . Then lietZ1 1  = etllZII 2 1 . Hence in this case 

Then 

For other Z 's, change Z into -2 . 
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D I F F E R E N T I A L  G E O M E T R Y  OF S P A C E S  

O F  R E L A T I V E L Y  R E G U L A R  O P E R A T O R S  

G. CORACIi, H. PORTA AND L. RECHT 

Given an idempotent  r of a Banach algebra A we study the space 

S = S r = { ( a , b )  c A •  r b = b ,  b a = r } ,  

and in part icular  the fiber bundle induced by the action of the group of 

units G of A, and the associated bundle 0 : S ~ Q = {q E A : q2 = q} 

defined by O(a, b) = ab. When A is a C*-algebra and r E Q is symmetric,  

we also study a real-analytic retract ion of S onto Tr = {(a, b) E S : b = a*} 

related to the polar decomposition of a reflection. 

I N T R O D U C T I O N  

Let F be a Banach space and O the space of projections of F ,  i.e. Q 

consists of all linear bounded operators q C L(F) such that  q2 = q. As in 

the finite dimensional case, one can consider the canonical vector bundle 

= {(q,v) C Q x F :  v C im q} over Q (here we use im q for the range of 

q). On the other hand  if E is a Banach space which is isomorphic to some 

im q, q C Q, one defines 

$ = $ ( E , F ) =  {( i , j )  6 L ( E , F )  x L ( F , E ) :  j i  = 1E}.  

Research supported by CONICET,  Argentina 
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There  is a na tura l  m a p  0 : $ -+ Q given by O(i,j) = i j ,  whose image Q~ is 

open and closed in Q. The  map  0 : $ --+ Q~ is a principal  fiber bundle  wi th  

group H - GL(E) .  

Observe tha t  f iQ ~ -~ Q' is the  vector bundle  f IQ'  = $ X H E ,  associated 

to 0 and the  na tura l  representa t ion of the  group H on E.  

This  paper  deals with  the  topological and geometr ic  s t ruc ture  of $. 

Each ( i , j )  E $ defines a decomposi t ion of F into ~wo direct summands ,  one 

of which is isomorphic to E.  This  justifies the  name  of space of  decompo- 

sitions we have chosen for $. 

It is readily seen tha t  $ is a closed analytic submanifold  of L(E ,  F)  x 

L(F,  E).  The  project ions define locally trivial fiber bundles  wi th  affine 

fibers prl : $ -+ I ,  pr2 : $ --* J; I (resp. J )  consists of ali direct 

monomorph i sms  (resp. epimorphisms)  f rom E into F (resp. f rom F onto 

E).  As a consequence, S ,  I and J are homotopy  equivalent. The  group 

G -=- G L ( F )  of all invertible operators  on F operates  on S by g. ( i , j )  - 

(g i , jg-1);  for each ( i , j )  E $ the map  v = z(i,j) : g H g . ( i , j )  defines a 

principal fiber bundle  over the  orbit $ '  of ( i , j )  in $. In part icular ,  curves 

in S '  lift to  G. But  for C 1 curves an explicit lift can be found  as the  solut ion 

of a linear differential equation,  as shown below. This way of lifting curves 

is related to the  geometry  of the  bundle  z : G --~ S '  in a very precise sense: a 

naturM connect ion is defined on v and the  horizontal  lifts of C i curves in S ~ 

are, precisely, the  solutions ment ioned  above. Several geometr ic  invariants 

of the  connect ion are calculated. Also a na tura l  connect ion is defined on the  

principal  bundle  8 : S(E ,  F)  ---* Q'. In this case, the  horizontal  !ift of a C i 

curve 3' in Q' with  origin O(i,j) is (P(t)i,jr(O-1), where r is the solution 

of the  initial value problem I" = (;/7 7;/)F, r (0 )  = 1. 

If E and  F are Hilbert spaces, it is na tura l  to consider the  "symmetr ic  

par t"  of S,  i.e. the  space 7~ = { ( i , j )  E $ : i* = j} .  The  uni ta ry  group 5/ 

of F acts on 7~ and defines, for each (i, i*) E T~, a principal fiber bundle  

L/--+ TC (=  orbit of (i, i*) in T~) with a connect ion induced by tha t  of $ ' .  
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Observe that  O(i,i*) C 7~ = (p e L ( F ) :  p2 = p, p.  = p}. In [5] it is shown 

that  the polar decomposition, which can be seen as a map G ~ U, induces 

a map ~r : Q --+ p ;  we call p = w(q) the polar decomposi t ion of q. 

We conclude the paper by introducing a "polar decomposition" of pairs 

( i , j )  E $, which seems to play a relevant role in the study of the geometry 

of 8. 

The results described above are developed in the following, more gen- 

eral, context: given a B a n a c h  algebra A and r C Q = {q E A : q2 = q}, 

we consider $ = Sr = {(a,b) C A x A : a r  = a, rb = b, ba = r}. We show 

that  $ ( E ,  F )  can be identified with a convenient $~ (see the end of w All 

the results we get for $ can be translated to the spatial case, S(E ,  F) ,  with 

no extra effort. One advantage of this presentation is that  it has functo- 

rial character. Of course, in the last part of the paper, which is concerned 

with Hilbert space operators, we deal with C*-algebras instead of general 

Banach algebras. 

This paper is part of a series ([5], [6], [7], [18], [19]) devoted to several 

aspects of the geometry of spaces of projections of a Banach algebra A. 

The space S(E,  F) ,  when E = A and F = A n, has been considered in [4]. 

Prof. B.E. Johnson suggested some generalizations which motivated our 

interest in the space $. In another context, Taylor [23] has also studied the 

space $ (see, in particular, section 3.6 of his paper). Related aspects can be 

found in papers by Douady [10] and Koschorke [13]. Finally, we mention the 

connections of our work with that  of Gramsch concerning relative regular 

elements of topological algebras. Recall that  a C A is relative regular or 

p~eudo inver~ible if there exists b E A such that  aba = a and bah = b (see 

[1], [16], [3]). In this case ab and ba are idempotent  and it is clear that  the 

union of the spaces St, when r runs through Q, coincides with the set )4; 

of such pairs (a, b). The differential structure of 147 has been considered by 

Gramsch [11] whose work has some connections with ours. 

The minimality of geodesics in the fibers of ~r : Q --. P in a C*-algebra 



774 Corach, Por ta  and Recht 

A has been studied in [5] and [19]. We study this problem for the case of 

Ir : $ ---, T~ in a forthcoming paper. 

We thank Prof. B.E. Johnson for several valuable comments. 

w ANALYTIC STRUCTURE OF $ 

Let A be a Banach algebra with identity 1, G its group of units and Q 

the set of idempotent elements of A. Throughout r is a fixed element of Q 

and $ is defined by 

$ = & = { ( a , b )  E A x A  : d r = a ,  r b = b ,  h a = r } .  

1.1. Theorem $ is a closed analytic submanifold of A x A. The tangen~ 

space o r s  ai (a ,b)  E S is (isomorphic to) {(X,Y) E A x A  : X r  = X ,  r Y =  

Y, bX + Y a - - O } .  

Proof. Observe, first, that $ is contained in the direct (=complemented) 

subspace M of A x A consisting of all pairs (x, y) such that xr = x, ry = y 

(a complement of M is { ( x , y ) : x r  = O, ry = 0}). Then, it suffices to show 

that $ is a closed analytic submani{old of M. Observe, next, that S = 

r where r  M --+ t A r  is defined by r  = y x  = (ry)(xr); then, by 

the implicit function theorem, it suffices to show that T = T(a,b)r is right 

invertible. For this, an easy computation shows that T ( X ,  Y )  = Y a  + bX 

and W :  rAr  --+ M defined by W ( Z )  = (1/2)(aZ,  Zb) verify T W  = id. 

1.2. Proposition For g E G the map (a,b) H (ag- l ,gb)  defines a 

diffeomorphism from $ = Sr onto Sgrg-1. 

Thus, Sr depends, as a Banach manifold, not on r but on its conju- 

gation class. We shall see later (5.8) that, as a principal fiber bundle over 

Q, Sr depends on a certain equivalence class of r, which is smaller than 

its conjugation class. 

1.3. Remark Recall that every idempotent q E Q induces matrix represen- 
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ra t ions  for all e l emen t s  of A, 

a -~- a l l  a12 ) ' 

a21 a22 

where  a l l  ---- qaq, a12 = qa(1 - q), a21 ---- (]. - -  q)aq, a22 ---- (1 -- q)a(1 -- q). 

P r o d u c t  in A co r re sponds  ot m a t r i x  mu l t ip l i ca t ion  in this  r ep resen ta t ion .  

In th is  m a t r i x  d e c o m p o s i t i o n  i nduced  by r,  an  d e m e n t  (a,  b) C $ can  be 

wr i t t en  as 

a2  0 ' 0 0 

wi th  blal + b2a2 = 1. 

\ u  end  this  sec t ion  by observ ing  t h a t  t he  sets $ ( E ,  F )  descr ibed  in ihe  

I n t r o d u c t i o n  are special  cases of $ = St .  In fact ,  let (io,jo) 6 $ (E ,  F)  be 

fixed and  let A = L(F) ,  r = iojo E Q = Q(L(F)) .  T h e n  T :  $ ( E , F )  --+ 8r 

def ined by T ( i , j )  = ( i jo, ioj)  is a d i f f eomorph i sm wi th  inverse T - l ( a ,  b) = 

(aio,job). 

w T H E  F I B R A T I O N  G --* $ 

Let  T : G -* 8 be  the  m a p  def ined by T(g) = g.(a,b) = (gao,bog-a), 

where  (ao,bo) is a f ixed e lement  of 8 .  The re  is a n e i g h b o r h o o d  U of (do,be) 

in $ such t h a t  (ro(a,b) = abo + (1 - ab)(1 - aobo) is inver t ib le  for all (a,b) 

in  U. In fact ,  c r 0 ( a , b ) . ( a 0 b + ( 1 - a o b 0 ) ( 1 - a b ) )  = 1 - ( 1 - q ) q 0 ( 1 - q )  

(where  q0 = aob0, q = ab), which  is inver t ib le  for q0 close to  q. T h e  m a p  

~0 :  U -~ a is a cross sec t ion of T, i.e. T(~0(a, b)) = (a ,b)  for all (a ,b)  C U. 

More  general ly,  if ( a , ,  bl) = v(g)  and  U1 = g.U t h e n  c~1 : U1 --+ G def ined 

by  l(a, b) = 9 0(g-'a, = g 0(g-l.(a, b)), is cross sect ion of  over U,.  

Thes e  r emarks  show t h a t  the  image  $ '  of v is o p e n  in $ and  t h a t  T : G --+ S t 

a d m i t s  local  cross sect ions.  Moreover ,  if K = {g G G : gao = do, bog = 
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bo} ( K  is the i sotropy group of (a0,b0)), then r �9 U1 x K --~ T--~(U!), 

defined by r  = crl(a,b)h,  is a diffeomorphism, with r  = 

( r ( g ) , a l ( v ( g ) )  - l g ) .  This proves the following result: 

2.1. Theorem The map ~r : G --* S '  is a pr inc ipal  f iber bundle with 

s t ruc tural  group K = {g : gao = ao~ bog = b0}. 

2.2. CoroIlary ~- induces the exact  h o m o t o p y  sequence 

�9 - ' - -~ Tr i+l(S ' , (ao ,bo))  --* 7ri(K, 1) --* ~ri(G, !) --+ ~ri(S ' , (ao,  bo)) --~ . . .  

In  part icular,  i f  G is contractible then ~r i+l($ ' , (ao ,bo))  is i somorphic  to 

2.3. Remarks i) In germs of the idempotent  q0 = aobo, K can be 

expressed as {g C G : gqo = qog = q0}; thus, in the matr ix representat ion 

determined by q0, K consists of all invertible matrices of the form 

it) Consider the commutat ive diagram 

G 

S - - -  2 0  
0 

where p(g) = gpog -1 and O(a, b) = ab. Then the  isotropy group of qo in G 

is H I = {g C G : gqo = qog}, i.e. H I consists of all invertible matrices (with (h01 0) respect to q0) of the form h2 ; thus K is a normal subgroup of H ~ 

and therefore $ --* Q is a principal fiber bundle, as will be shown in section 
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5 (cf. [22]). 

iii) If ( a l , b l )  = T(9 ) then the tangent  map of T at g, TgT : TgG --~ 

T(al,bl)$' = T(~I,b~)S is given by (Tgr)(X) = (Xao , -bog- lXg-1) ,  X e 

TgG ~ A. (As a rule we shall write tangent vectors with capital letters). 

In particular,  for g = I we get (Tlr)(X) = (Xao, -boX) so tha t  the kernel 

of T l r  consists of all vectors X in A such that  Xqo = qoX = 0; in other 

words, ker(Tl~-) = {X C A :  X = (1 - q0)X(1 - qo)}. In q0-matrix form, 

ker(Tlr )  = { (00 O ) } ,  

which is clear because it consists of tangent  vectors at 

iv) If we let (do, b0) vary in $ and consider the corresponding maps T = 

r(~0,b0) , the results above show that  $ is a discrete union of homogeneous 

spaces $~ C $ of G (here discrete means that  each $ '  is open and closed 

in $).  This type of Banach manifolds has been considered by Raeburn 

[20]. By combining his results and ours it is rather  easy to obtain a ho- 

motopy equivalence between $(B@A) and the space of continuous maps 

C(X(B),  S(A)), where B is a complex commutative Banaeh algebra with 

identity and X(B)  is the space of maximal ideals of B [20]. 

v) Even if we shall not consider the functorial character of $ ,  it is worth 

mentioning that  an epimorphism f : A --+ C of Banach algebras induces a 

Serre fibration $ ( n )  ~ $(C) .  The proof of this fact follows the argument 

used in [6]. 
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2.4. Example Let F be a Hilbert space, E a closed subspace and p if_ A = 

L ( F )  the orthogonal projection on E. Let $ = Sp, so that  the isotropy 

group of (p,p) c $ is 

H 0 :  {g e G : G L ( F )  : g lE= 1E, g ( E •  E •  . 

Thus, H0 is isomorphic to G L ( E •  When  the codimension of E in F is 

0% Kuiper 's  theorem [14] shows that  G and H are contractible, so that ,  by 

2.2, ~ri($) = 0 for all i >_ 1. 

We turn  now to the study of the projections 

prl  : (a,b)~-.  a, pr2(a,b)~-+ b. 

Denote by f the image of $ by prl  and J the image of $ by pr2. We  study 

prl ,  the case of the other projection being similar. Let (a0,b0) E $ and 

T : G ~ $ as before. Consider a local cross section of prl  o r : G --+ f 

(for instance, s(a) = 1 +abo - aobo for a C [ close to a0, or s t (a)  = 

g(1 + g ' labo  - aobo) for a close to gao). Let N be the left annihilator of 

ao : N = { X  G A : Xao  = 0}. Then r : p r ~ l ( v )  --* V x N  defined by 

r  = (a,b sg(a) - b0), where V is the domain of the section sg, is a 

diffeomorphism and r  = ( a l ( X  + bo)sg(a) ' ! ) .  Thus pr ,  : $ --~ f 

is a locally trivial fiber bundle with afflne (a fortiori contractible) fiber. 

Analogous results hold for pr2 : S --* J.  In particular $~ I~ d have the 

same homotopy type (in the case $ (E ,  F )  where E is a Banach algebra and 

F = E '~, this result has been obtained in [4]). 

In certain cases, the surjectivity of the map T : G --~ $ is related to the 

so called stabili ty problems in K-theory.  For instance when B is a Banach 

algebra, A = M n ( B )  and r is the idempotent  matr ix with 1 in the  (1,1)en-  

try and 0 elsewhere, $ can be identified with { ( (x t , . . .  , x , ) ,  ( Y l , . . . ,  y , ) )  ff 
r t  

B '~ x B ~ : ~ ykxk  = 1}; K-algebraists look for sufficient conditions for the 
k = l  
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m a p  G --+ pr15 = { ( Z l , . . . ,  zn)}, which  assigns to  every inver t ib le  m a t r i x  

er E G its first co lumn ,  to  be on to  (see [15] for an  excel lent  desc r ip t ion  of 

these  p rob lems) .  T h e  resul ts  above show t h a t  those  cond i t ions  d e p e n d  only  

on the  h o m o t o p y  t y p e  of G and  5 (see [4]). 

w THE TRANSPORT EQUATION 

We use the  n o t a t i o n s  of w F r o m  the  f ibra t ion  p roper t i e s  of r : G --+ 5 '  

it follows t h a t  for every con t inuous  curve 3' : [ch/3] --+ 5 '  and  every g E G 

such t h a t  r(g) = 7@0 the re  exists  a con t inuous  curve  P : [~,/~] --+ G 

such t h a t  rI" = 7 and  F(c~) = g. We shall  prove  t h a t ,  for C 1 curves  7, a 

l i f t ing P can  be  o b t a i n e d  by solving a l inear  different ial  equa t ion .  Indeed,  

a more  involved  p r o c e d u r e  yields a rect if iable con t inuous  l if t ing F u n d e r  

the  a s s u m p t i o n  t h a t  7 is rect if iable and  cont inuous .  See [18] for such  a 

c o n s t r u c t i o n  for the  case of curves  in Q, where  mul t ip l i ca t ive  in tegrals  are 

used  (see Vol te r ra  [24], Schlesinger  [21], P o t a p o v  [17] a n d  Daleckii  [8]). 

Cons ide r  a C 1 curve  7 : [c~,/3] -+ S '  w i th  7 (~ )  = (a0,b0) and  take  a 

p a r t i t i o n  II : a = to < t l  < . . .  < t~ = t o f [ c  h t ]  (t E [ch/~]) such tha t ,  

for each k = 0 , 1 , . . . , n -  1, gk+l = a(tk+l)b(tk)+ ( 1 - - q ( t k ) )  E G, where  

7( t )  = (a(t),b(t)), q(t) = a(t)b(t). Observe  t h a t  gk+l.(a(tk),b(tk))  = 

(a(tk+l),b(tk+l)), so t h a t  T ( g k + l g k . . . g l )  ~- ~/(~:k+l)" Set gii = gn . . .g l .  

It can  be shown,  u n d e r  the  weaker  a s s u m p t i o n  t h a t  7 is rect if iable and  

con t inuous ,  t h a t  t he  l imit  P( t )  = liml11111__+0gn exists  for all t E [~,~] and  

I" is a rect if iable con t inuous  curve [~,/5] -~ G such t h a t  r P  = 7. We shall  

a s sume  this  fact  w i t h o u t  p roo f  and  derive a different ial  e q u a t i o n  such  t h a t  

i ts un ique  so lu t ion  P w i th  ini t ial  value g E G wi th  7(c~) = r(g), satisfies 

r P  = 7- 

Fi rs t ,  observe  t ha t ,  for any real n u m b e r  h smal l  enough ,  P( t  + h) - 

r(t) = g,+hr( t ) - r ( t )+o(h) ,  where  gt+h = a( t+h)b( t )+(1-q( t+h)) (1-q( t ) )  
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and o(h)/Ihi-, o when h --, O. Then 

gt+h -- 1 = a(t + h)b(t) - q(t + h) - q(t) + q(t + h)q(t) 

= a(t + h)(b(t) - b(t + h)) + (q(t + h) - q(t))q(t) 

and I'(t) = lim F(t + h ) -  F(t) lim g(t + ~ ) -  1 = : r ( t )  
h---,O h h--*O h 

= ( -a( t )b(~)  + (~( t )q( t )r ( t ) .  

3.1. Theorem Let 7 = (a,b) : [a,~] --+ $ '  be a C 1 c i trve .  The $o~ut~oft 4 

the initial value problem 

(3.1.1) r = ( - a b + 0 q ) r ,  r ( ~ ) =  1 

i,S a C 1 c u r v e  • : [ol,/~] --~ G 3uch  t h a t  

~ ( r ( t ) )  = ~( t )  for  all ~ e [~ ,~] .  

Proof The existence, uniqueness and invertibitity of the solution of 

3.1.1 follow from the general theory (see e.g. [3], [9]). It suffices to show 

that  TF = 7, i.e. P(t)a0 = a(t) and b0r(t)  -1 b(t) for all t. Since the 

curves F - l a ,  bP begin at ao,bo, respectively, it suffices to show tha t  they 

are constant. 

First, write the differential equation as 

/~ = (_ab  + ab + ab~b)r 
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since ba = r and  ar = a, so tha t  fir = it. 

T h e n  ( r - a a ) "  = _ p - 1 F F - 1  a + r - l h  

= - r - l ( - a ~  + ab+  a~a~)rr - la  + r - l a  

= - r - ~ ( - a b a  + itba + at)aba - it) 

= - F - ~ ( - a b a  + it + aba - it) 

= 0 , and  

(b r ) '  = 

bF + b(-ab + hb + abab)P 

(b - rb A- bhb + rbab)F 

(bhb + bab)r , since rb = b 

0 

s i n c e b a = r  so tha t  O = ~ = b a + b h .  

w T H E  C O N N E C T I O N  ON G --~ $ '  

As usual ,  let (ao,bo) be  a fixed element  of $ and  ~" : G -+ $ '  be  the  

cor responding  f ibrat ion.  A tangent  vec tor  X E TgG is called vertical if 

( T j ) X  = 0. We deno te  Vg the  set of all vert ical  vec tors  at  g E G: 

5 = { x  e T~a.(T~,)X = 0 } .  

As remarked before (2.3.3) 5 = {X e TgC: Xqo = 0 and qog-aX = 0}, 

where  qo = aobo C Q. It is easy  to  see tha t  Vg = gV1 and  V1 = { X  E 

TaG: X = (1 - qo)X(1  - qo)}. Bu t  then  it is clear tha t  H1 :=  { X  C T1G: 

( 1  - q0)X(1  - qo) = 0)  is a direct  supp lemen t  of VI in A = TIG. 

Define Hg :=  gila for all g E G. T h e n  H g |  = T1G and  Hgh = 

Hgh for all g E G, h C K = {g E G : gqo = qog --- q0}. F ina l ly  we 
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have the operators vg, hg E L(A) defined by v ~ ( X ) =  g ( 1 -  qo)g-aX(1-- 

q0), hg(X) = gqo9-1Xqo + 9qog-1X(1 - qo) + g(! - qo)g'lXqo for X C 

A = T g G .  

It is clear that  vg and hg are the projections of L(A) determined by 

the decomposition A = Vg | H r. It is also clear that  vg and hg depend 

analytically on g- 

All these remarks ,  put together, prove that  the subspace distribution 

g ~-~ Hg defines a connection on the principal bundle re : G --~ 8 ' .  

v ~--1X~ The connection form w is defined for X E TaG by wgX = lLg 1. 

Then cogX = (1 - qo)g-lX(1 - qo). The 2-form dw is easily cMculated from 

its definition, for X,  Y E TaG: 

dwg(X, Y) = ( 1 /2 ) { X . wgY  - Y . w g X  - w g I X ,  Y]} 

= (1 /2) (1  - q0)[g- 'Y,  9 " 1 x ] ( 1  - q0) 

= (1/2)wl[g-iy,  g - I X ] .  

Analogously, the curvature form ~ of the connections is 

~'tg(X,Y) = dwg(hgX, hgY) 

= ( 1 / 2 ) ( 1 -  q 0 ) { g - l y q 0 g - l X  - g-lXqog - 1 y } ( l  - q0) , 

and obviously we get the structure equations 

dwg(X,Y)  + (1/2)[wgX, wgY] = ~ g ( X , Y )  . 

Recall [12, p.69] that  a differentiable curve 7 : [a, fl] -~ 8 '  admits a unique 

horizontal lift with origin 1, i.e. a differentiable curve P : [a, fl] --+ G such 

that  P(a)= 1, ~ ( r ( t ) ) = 7 ( t )  and r ( t )  c H~(,) for all t e [~,fi].  We show 

next that  the, lifting constructed in Theorem 3.1 by means of the differential 

equation F = ( - a b  + ~q)F is exactly the horizontal lift of 7 = (a, b). 

4.1. Theorem For every C 1 curve 7 : [a, fi] --+ $' the horizontal lift F 

with origin go, for 7r(go) = 7(~), is the solution of the initial value problem 
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(4.1.t)  /" = ( - ~ L  + @ ) r ,  r ( a )  = go.  

Proof Both objects, the horizontal lift and the solution of the differential 

equation, are unique, so it suffices to prove that  the horizontal lift P with 

origin go satisfies (4.1.1). 

By definition, 7r(F(t)) = 7(t), F(a)  = go and I'(t) e Hr(0  = P(t)H1; 

this means that  r ( t )a0 = a(g), b0r(t)  -1 = b(t) and F ( t ) - l F ( t )  E H1 for all 

t, so that  (from now on we omit writing the variable t) (1 - q0)F- iF(1 - 

q0) = 0; but q0 = aobo = r - l a b P ,  so 

(4.1,2) o = ( I  - q o ) r - ~ P ( 1  - qo) = r - ' ( 1  - a b ) ~ ' r - ~ ( I  - a b ) .  

On the other hand, h = Fao, b = - b o p - l F F  -1 and 

i-~r -1 -~- a b -  0q = i'~F-1 -t- a ( - b 0 r - ~ r r  -1) - (abab+ abab) 

= i-r -1 + a ( - ( b r ) r - ~ / ~ r - 1 ) ( ~ a 0 b  - a b 0 r - ~ r r  - l a b )  

= ~ r  -~  _ ~ b ) r - ~  _ p r ~ a b  + a b P r - ~ a b  

= (1 - ab)Fp- i (1  - ab) = 0, by (4.1.2). 

This shows that  F = ( - a b  + @)r ,  which proves the theorem. 

From the transport equation, a natural connection on the  tangent bun- 

dle TS is constructed as follows. 

Given a C 1 curve (a,b) = (a(t) ,b(t))  in $ and a tangent vector field 
D 

u ~ ( r  -1 u, vr)l ,-0.  (U, V) along (a, b), the covariant derivative ~--~( , V) is 

~ ( u ,  v)  = (u - cu, ~ + w) ,  where ~ = -aL + ab + Then abab. The 

curve (a, b) is a geodesic of this connection if and only if it verifies fi = ch 
and b = -l)e. The following proposition, whose proof is straightforward, 

describes all geodesics through the point (a0, b0) E $. 
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4.2. Proposit ion Given a tangent vector (X ,  Y )  e T(ao,bo)$ the curve 7(t) = 

(g(t)ao, D0g(t)-l), where g(t)-~ e t(X~176176 i8 the geode8gc through 

(ao, bo) with the initial velocity vector (X ,  Y) .  

4.3. Remark The exponential map of the connection is given by 

Exp(a0,b0)(X, Y) = e(xb-=Y+ =Yab) 

for (X,T) e T(~o,bo)(X,Y). 

w T H E  PRINCIPAL BUNDLE $ --~ Q 

In this section, we study the map 0 : $ ~ Q defined by 0(a, b) = ab. 

We shall prove that  0 is a principal fiber bundle with s t ructure  group H = 

{h e a : h~ = ~h ,  (1 - ~)h = 1 - r} and define a oonnect ion  on 0, We also 

determine the horizontal liftings, with respect to this connection, of curves 

in Q. 
5.1. Lemma H acts freely on $ by (a ,b ) .h  = (ah, h- lb) .  

Proof Observe, first, that  in terms of r the elements of H have the form 

hi1 0 

0 1 )  

Suppose that  (a ,b ) .h  = (a,b) for some (a,b) C $,  h E H. This means 

that  ah = a and h - l b  = b, or, matricially, 

and 

Olhll 

a2hll  

0 0 0 

so that  alb11 = al, a2hu = a2 and multiplying at left by bl and b2, 

respectively, and adding we get (blal +b2a2)hll = blal +b2a2, which means 

precisely, h n  = 1, ile. h = 1. 
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Observe tha t  the action of H preserves the fibers 0-1(q) (q = ab). 

5.2. Lemma Given (a, b), (a',  b') in O-l(q) there exists a unique h 6 H ~uch 

that (a',b') = (a ,b ) .h .  

Proof We continue with the same matr ix notation. If (a', b') = (a, b) . h 

= ' and a2hll = a S, so that ,  blalhl l  = blab, b~a2hll = b2a~2 then alh l l  al 

and hl l  = (blal +b2a2)hll = bla~ +b2a~. Thus, hl l  (and so h ) i s  completely 

determined by (a, b) and (a' ,  b'). For the existence, it suffices to show that  

0) 
is actually invertible. But it follows from the equalities aibk = a}b~ tha t  

f ~11(bla1 + b~2a2) = (b~al + b~2a2)hll = 1, so that  h is invertible. 

5.3. Lemma The map 0 : S --~ Q admits local section$; in particular, its 

image i~ open and closed in Q. 

Proof Let q = ab = O(a,b) C Q and ~rq : G --~ Q be defined by 

~ra(g ) = gqg-1. It is well known that  ~rq admits analytic local sections [18], 

[6]. Then,  there  exists a neighborhood V C Q of q and an analytic map 

c~' : Y ~ G such tha t  ~ ' (s )g~ ' (s )  -1 = s for a l l s  6 V. Thus, a : V - ~  5 

defined by a(s) = a ' ( s ) . (a ,b )  = (a'(s)a, bfft(s) -1) is an analytic cross 

section of O. This shows, also, tha t  0(5) is open in Q. But Q\O(S) is the 

union of sets of the form O(Sr,) so that  0(5) is also closed. 

The lemmas above imply, together,  the following result 

5.4. Theorem The map 0 : 5 --* Q is a principal fiber bundle with structural 

group H.  

5.5. Remarks 1) The image of 0 clearly contains the similarity orbit of 

r,  but examples can be easily obtained in which it is strictly greater. In 

fact, when A = L(F)  the image of 0 : $ --+ Q consist of all q 6 Q such tha t  

im q is isomorphic to im r; however; if q E Q belongs to the similarity orbit 

of r then  ker q is isomorphic to k e r r  (and, of course, im q is isomorphic 

to i m r ) .  It can be shown tha t  O(fr) is the equivalence class of r for the 
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relation ,-~ defined on Q as follows: q ,-~ q~ if there exists w, z in A s~ that  

wq = q'w, qz = zq ~, zwq = q and wzq'  = q'. 

2) Observe that ,  in the spatial case S ( E ,  F) ,  the associated vector b~andle 

corresponding to the action of the group H = G L ( E )  over E coincides with 

the canonical vector bundle {(i j ,  im i j )  : ( i , j )  e S ( E ,  F)}.  

Next, a connection wilt be defined on the bundle  0 : $ --~ Q, Recall 

that  for (a, b)C $ ,  the tangent space T = T(~,b)$ is 

T = { ( X , Y )  : X r  = X ,  r Y  = Y, Ua + bX = O} ~ 

Observe also that  the vertical vectors, i.e. the elements of T which are 

tangent to the fiber O-l(ab),  form the subspace 

= {(x ,Y)  e m: xb+ Y = 0 } .  

Let us define the following direct complement of ~/(~,b) in T: 

= { ( X ,  Y)  e r :  bX = 0} 

and consider the projection F(~,b) : T --* T 

F(a ,b ) (X ,Y)  = (abX, - b X b )  o 

It is straightforward verification that  F is the projection onto l/-(~,s) with 

kernel H(a,s). 

5.6. Lemma C~ven (a ,b) , (a ' ,b ' )  e 0-1(q) and h ~ H such Sha~ (a;,b~) = 

(a, b). h the respective projections F(~,b), r(a,,b,) verify FO,,b,)((X,  Y ) .  h ) = 

(_F(a,6)(X,Y)) .h  for  all ( X , Y )  G T.  

This equivariance property, whose proof is straightforward, shows that  

the distribution (a, b) ~-+ H(~,b) defines a connection on 0 : S --~ Q. We shall 

determine the horizontal liftings of C a curves in Q. 

5.7. Theorem Let 7 :  [~, 9] -~ Q be a C 1 curve with origin 7(~) = q = ab, 
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for ~ome (a, b) C S.  Let F :  [a, 8] ~ G be the unique solution of the initial 

value problem 

i ~ = [+, 7 j r ,  r ( ~ )  = 1 .  

Then 6(t) = r ( t ) . ( a , b )  = (r( t )a ,  br(t)  -1) i~ the horizontal lift of 7 with 

origin (a, b). 

Proof By the uniqueness of horizontal liftings with fixed origin, it suffices 

to show that  r ( t ) a b r ( t )  - ~  = 7(t) and ~(t) e H~(,) for  all t e Is, Z]. T h e  

first property is known ([18], [6]). Observe that  

~(t)  = ( F ( t ) a ,  -br(t)-lr(t)r(t) -1) 

and 

H~(t) = {(X,Y)  6 Th(0: b F ( t ) - l X  = 0}. 

We must show, then, that  bF( t ) - lF ( t )a  = 0. But F is the horizontal lift of 

7 to G so that  

q F ( t ) - l F ( t ) q = O  

(see [6,(4.6)]). Multiplying by b on the left and by a on the right and using 

rb = b and ar = a we get the desired equality. 

5.8. Remark In 1.2 we have observed that,  as Banach manifolds, Sr and 

Sgrg-1 are isomorphic for all g C G. We now prove that,  as principal fiber 

bundles, ~ : S~ -~ Q and #~, : $~, --, Q are isomorphic if rr ~ = r' and 

r ~ r  z r .  

In fact, using matrix representations in terms of r: we have 

0 0 ' 0 0 

for some x; the map 
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((hi alx)(hi D2)) 
a2 a~x 0 0 

is a diffeomorphism of $r  onto 8r,,  the isomorphism of Hr  onto Hr, having 

the form 

I . f :  I ~ , 

0 0 1 

It is easily verified that: a) the isomorphism respects also the connec- 

tions, i.e. horizontal  vectors on T(a,b)$~ are sent onto horizontal vectors 

in T(~, b,)Sr,, and b) T r r , ( ( a , b ) . h )  = (Trr , (a ,b)) .~ ' (h)  for hi1 (a,b) C St ,  

h E  Hr. 

w THE C*-ALGEBRA SETTING 

When  E and F are Hilbert spaces, the most relevant pairs ~'inclusion- 

projection" ( i , j )  are those in which the inclusion i is an isometry whose 

image is orthogonal to the kernel of the projection j .  

6.1. Proposit ion Let E ,  F be Hilbert spaces and ( i i j )  E $ = $ ( E ,  F) .  Then 

i is an isometry and ker j  _1_ imi  if and only i f j  = i*. 

Proof Suppose that  j = i*, so that  i*i = 1E. Then clear ly  i* is an 

isometry and, for y E ker j and x E E,  (y , i (x) )  = {i*y,x)  = ( j ( y ) , x )  = O. 

Conversely, let i be an isometry with im i _I_ ker j .  For i E ker j and x E E 

we have ( j ( y ) , x )  0 (y , i (x)}  = ( i*(y) ,x) ,  so that  j = on ker j ;  for 

y e (ker j ) •  = imi  and x E E,  ( i*(y) ,x)  = ( i*( i (x ' ) ) ,x)  for some x' E E,  

so {i*(y) ,x)  = { i (x ' ) , i (x ) )  .= (x , ,x )  = ( j i ( x ' ) , x )  = ( j ( y ) , x )  and j = i* on 

(ker j)' .  
Let A be a C*--algebra with uni tary group U and P = {p E Q : p* = p}. 

Given a fixed r E 7) we consider the subset 7Z of S consisting of all pairs 

(a,b) such that  b =  a*, i.e. T~= { ( a , a * ) : a r = a ,  a*a = r}. 
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The following facts can be proven as above: 

6.2. T~ is a closed real-analyt ic  submanifold of A x A; for (a, a*) E T~, 

T(~,~.)T4 can be identified with {(X, X*)  E A x A : X r  = X,  a*X + X*a = 

0}. 

6.3. L/acts on 7~ by inner automorphisms defining, for each (a, a*) E T~, 

a principal fiber bundle r : U ~ T~ with structure group H~ = {u E L/ : 

u a  -~- a } ,  

6.4. There  is a principal connection on r : L/ --+ T~; for u E /2 the 

horizontal vectors are those X E A such that  X* = X and ( 1 -  aa*)uX(1 -  

aa*) = 0; the horizontal lifting of a Cl-curve 7 : [a, 8] -* T~ with origin u0 

(~-(u0) = 7 (a ) )  is the solution of the initial value problem 

i" = ( - a a *  + aa* + aa*aa*)r ,  P(~) = uo.  

6.5. The map 0 : T~ --* ? ) is a principal fiber bundle with s t ructure  group 

= { u  e u :  = ( i  - = i - 

6.6. There is a principal connection on 0 : ~ --* 7 ) whose horizontal 

vectors at (a, a*) are those (X, X*)  satisfying a*X = 0; the horizontal lifting 

with origin (a, a*) of a C 1 curve 7 :  [a, 8] --* 79 such that  7(c~) = aa* is given 

by t H ( r ( t )a ,  a*r( t)*) ,  where r is the unique solution of the initial value 

problem F = [#, 7IF, P(c~) = 1 (F is uni tary because [~, 7] is ant isymmetr ic  

[ 9 ] ) ,  

6.7. Remark  When  E is a t t i lbert  space and A = L(E) then 7~ can be 

thought  as the space of all partial  isometrics with the same kernel as r; 

thus, the map 0 is a way of fibering over 7 ) these partial isometries. 

We proceed now to define the "polar decomposition" of a pair (a, b) E 

$.  The definition of the polar decomposition of an idempotent  q of A is in 

order [6, w Given q E Q, 2 q -  1 is invertible so it admits  the (uniquely 

determined) polar decomposit ion 2q - 1 = )~2p where ~ > 0 and p* = p - 1  

it follows that  p2 = 1 and ~p = pA-~, so tha t  p = (1/2)(p + 1) E 7 9. Define 

re(q) = p; p is what  we call the polar decomposition of q. 
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In order to find what  should be the polar decomposition of a pair 

(a, b) C $ be, we start by considering the spatial case. Thus, as in the 

beginning of the section, S = $ ( E ,  F )  where E and F are Hilber~ spaces 

and 7~ = 7 4 ( E , F ) =  {(k, k*) :  k*k = 1E}. 

Given ( i , j )  e $ we look for a pair (k,k*)  C T4 such that  if ij  = q 

then kk* = ~r(q), Thus we have to twist ( i , j )  into ( i ' , j ' )  in order to 

transform imq into im~r(q) and then convert i' in an isometry without  

changing im(i ' j ' ) .  

6.8. Theorem There exists a real-analytic retraction II : S --~ 7~ such that 

the following diagram commutes 

H 
$ , 7 4  

0! i0 
Q >~P 

where O(i,j) = ij.  

Proof Write q = ij and p = 7r(q). Using the same notations as above, we 

observe that  ,~-lq = p,~-l: in fact, ,~-~q = ,~- l (1/2)(A2p+ i)  = ( ! /2 ) ( ,~p+ 

.~--1) = (1/2)(p.,~--1 .4_ .~--I) : (1 /2 ) (D _}_ 1)/~,1 = p /~ - l ,  where we have used, 

for the third equality, that  Ap = pA -1. 

Thus A -1 e GL(F)  satisfies A - l ( i m i )  = l - l ( i m q )  = imp, Now 

(x, y) ~ (A- l i x ,  A- l iy )  is an inner product  in E,  so there exists a posi- 

tive g E GL(E)  such that  {A ' l i x ,  l - l i y )  = <gx, gy) for all x , y  e E. This 

shows that  k = A - l i t  "1 : E -+ F is an isometry and then (k,k*)  E 74. 

Notice that ,  when i is an isometry, i.e. ( i , i*)  C 7~, then A = 1F, g = 1E 

and k = i. 

Define I I ( i , j )  = (k, k*). The analyticity of 1-I is obviously determined 

by that  of ~r. Thus, it suffices to prove that  the diagram commutes,  i.e. 

that  kk* = p. But, k/c* and p are both orthogonal projections with the 
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same image,  for i m k k *  = i m k  = i m A - 1 i g  -1 = i m & - l i  = imp.  It follows 

t h e n  tha t  kk* = p. 

In t he  genera l  case we have: 

6.10. T h e o r e m  Let A be a C*-algebra and r E Q. Then there is a real- 

analytic retraction II : $r --+ T~(T) such that the diagram (6.9) commutes .  

Proof  In view of R e m a r k  5.8 we can suppose  t h a t  r C 7 ) (replacing,  if 

necessary,  r C Q by the  unique  r ~ C 1 ) such tha t  r~r = r* and  rr  I = ra). 

Given (a, b) C $ let q = ab and  decompose ,  as usual,  2 q - 1  = ~2p wi th  )~ > 0 

and  p* = p = p-1.  Observe  first t ha t  a*~-2a + 1 - r is a posi t ive invert ible 

e lement  (wi th  inverse bA2b * + 1 -  r )  so tha t  o~ = A - l a ( a * A - 2 a  + 1 -  r )  -1/2 

is a well-defined e lement  of A. It suffices to verify (a) o~*o~ = r ,  (b) ar  = 

and  (c) o~*  = p = ~r(q) and  define I I ( a , b ) =  ( a , ~ * ) .  

P roof  of (a): ~*c~ = {(a*,~-2a + 1 - r ) - l / 2 a * ~ - l } { ) , - l a ( a * A - 2 a  + 

1 - -  r) -1 /2}  : ( a * l - 2 a  + 1 - -  r ) - l / ~ a * l - e a ( a * l - 2 a  + 1 - -  r) -1/~ : 1 -- 

( a * A - 2 a +  1 -  r ) - l / ~ ( 1 -  r ) ( a * a - 2 a +  1 -  r) -1/2 = 1 -  ( 1 -  r )  = r,  because  

(a*A-2a  + 1 - r )(1 - r )  = 1 - r (see L e m m a  6.11 below). 

P roo f  of (b): a = /~- la(a*)t-2a-t -  1 -  r )  - 1 / 2  - -  ~-la(a*,~-2a)-l/2, 
where  the  inverse square  root  is t aken  in the  C* algebra  r A r ,  whose uni t  

is r ,  and  t h e n  a r  = ) , - l a (a* )~ -2a ) - l / 2 r  = 1 -1a(a*) , -2a ) -~ /2  = a ,  because  

ar = r (see L e m m a  6.11 below). 

P roo f  of  (c): o~oe* = A - l a ( a * A - 2 a ) - l a * ) .  -1 = A-lq12q*A-1;  now q = 

ApA -~ by (6.8), so t ha t  q* = A-lpA,  qA2q, = ApA-1A2A-lpA = ApA and  

a s *  = p, as claimed. 

Thus ,  the  proof  of T h e o r e m  6.10 is finished, modu lo  the  following 

l emma,  whose  proof  is an easy exercise: 

6.11. L e m m a  Let A be a C*-aIgebra, x,  c E A,  such that x* = x and xc  = z.  

Then for  every continuous funct ion  f on the spectrum of  x,  f ( x ) c  = f ( x ) .  

6. i2.  Remark Denote S I P  = {(a ,b)  e S : ab e P }  = 0 - 1 ( ~ 9 ) .  

T h e n  S I P  can be identif ied wi th  T~ Xu H,  where  H has the  same  mean ing  

as before,  and  for every  u C U, h C H and  c~7~(a, h) is identif ied wi th  
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(c~u, u ' lh ) ;  the projection $t~P --~ T~ xu H is determined by (a, b) ~-~ (o~, h), 

where h is the unique element of H such that (a,b) = (a,v~*).h (see 5.2). 
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DIFFERENTIAL GEOMETRY OF SYSTEMS
OF PROJECTIONS IN BANACH ALGEBRAS

GUSTAVO CORACH, HORACIO PORTA, AND LAZARO RECHT

Let A be a Banach algebra, n a positive integer and Qn =
{{q\, . , Qn) e Λn: qιqk = διkqi, q{ + + qn = 1} . The dif-
ferential geometry of Qn , as a discrete union of homogeneous spaces
of the group G of units of A is studied, a connection on the principal
bundle G —• Qn is defined and invariants of the associated connection
on the tangent bundle TQn are determined.

Introduction. The structure of the set Q of all idempotent elements
of a Banach algebra A plays a fundamental role in several aspects of
spectral theory. This work deals with the differential structure of the
space

of systems of n "orthogonal" projections in A.
The manifold Qn appears as a universal model when certain poly-

nomial equations are considered. More precisely, if α i , . . . , α Λ

are different complex numbers and a(X) denotes the polynomial
(X - a\) - - - {X - an), then the set Aa = {a e A: a(a) = 0} is a
closed submanifold which is diίfeomorphic to Qn . Thus Qn is the
model for all simple algebraic elements of A of degree n. More-
over, Qn plays a role in the study of arbitrary algebraic (in particular,
nilpotent) elements (see [AS]).

Section 1 contains the description of the differential structure of Qn

and Aa as closed analytic submanifolds of An and A, respectively;
it contains also the proof that Qn and Aa are diffeomorphic.

Using Kaplansky's notion of SBI-rings, we recover a result of Barnes
[Ba] concerning the surjectivity of Aa —• Ba when B is the quotient
of A by its Jacobson radical. In §2 we show that Qn is a discrete
union of homogeneous spaces of G, the group of units of A this
fact, together with a classical result of Michael [Mi], shows that an
epimorphism / : A —• B of Banach algebras induces Serre fibrations
Qn(A) —> Qn{B) and Aa —• Ba. In §3 we obtain an explicit way of

209
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lifting diίferentiable curves in Qn to G by solving a linear differen-
tial equation which we call the transport equation', this fact is due to
Daleckii and S. G. Krein [DK] and T. Kato [Kal] but its geometrical
meaning is new. In fact, in §4 we define a connection in the principal
bundle G —• Qn and show that the horizontal liftings of differentiable
curves in Qn are precisely the solutions of the transport equation.

Several invariants of the tangent bundle of Qn are calculated in
§5 (covariant derivative, curvature, geodesies, etc.). As observed by
Kato [Kal], [Ka2, II.4] the lifting theorem has important applications
in quantum mechanics (see [Ga], [GS]). A remark about C*-algebras is
in order: our results extend to the case of some involution algebras, in
particular to all C*-algebras. For instance, the transport equation has
a unitary solution if the curve has self adjoint values; in a forthcoming
paper the immersion of

into Qn will be studied, together with associated fibrations Qn-+ Pn
Concerning the references, the reader may consult Rickart's book

[Ri] for the literature up to 1960; the topology of the space of idem-
potents Q = Q2 has been considered in [PR1], [Ra], [Ko], [Ze], [Au],
[Gr] and with special emphasis on the differential struture of Q in
[Ra], [Gr], [Ki], [HK]; for the transport equation the reader may con-
sult [Kal] and [DK2]; in [PR2] the differential geometry of P = P2 is
needed for the study of minimality of geodesies; see also [CPR2] for
a related problem; finally, the case of algebraic operators on Hubert
space, the reader may consult the books [He] and [AFVH]. In particu-
lar, some problems concerning the set Pn in this context are discussed
in [CH]. The set Qn appears, implicitly or explicitly, in various works;
we only mention [Ja, p. 54], [Ka2, II.5] and [DK2, Chapter IV].

1. Differential structure of systems of projections. Let A be a real
or complex algebra with identity 1. Denote by G = G(A) the group
of units of A and by Q = Q(A) the set of all idempotents of A.

Suppose that the polynomial a(X) = Π/Li(^ — aΐ) has differ-
ent roots OL\ , . . . , an in the field. Let gj{X) = Π^iX - &i) and
qj(X) = gj(X)/gj(aj). Then qj(X) has degree n - 1, 0/(a,-) = δJi9

for i Φ j qi{X)qj(X) = h(X)a(X) for some polynomial h(X) and
ΣίLi Qάχ) = ! (because 1 - £/Li qt{X) has degree < n - 1 and it
vanishes at n values, the α/).

Let Aa denote the solution set of a, i.e., the set of all a e A with
a(a) = 0.
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1.1. PROPOSITION. Let aeA(a). Then

(i) Σ7=i«<(«) = ! ;
(ii) qi{a)qj{a) = 0 ifiφj',

(iii) qi{a) eQ, i= 1, . . . , n;
(iv) <?,(α)α = aqj{a) = a^d), i=l, ... , n.

Proof, (i) follows from £)" = 1 (?;(X) = 1 and (ii) follows from the
equality qi(X)qj(X) = h{X)a{X). From (i) and (ii),

qi{a) =
k=\ k=\

which gives (iii). Finally from a(X) = c(X - oti)qi(X) (with c =
gi(oti) Φ 0) it follows that 0 = a(a) = c(aqi(a) - α/ήf/(α)) and this
completes the proof because #/(#) commutes with a.

Let Q« = Qn(A) denote the set of all ^-tuples of idempotents #/
of A which satisfy qiqj -0 iϊ i Φ j and Σ?=i 9i — ^ -

1.2. PROPOSITION. ΓΛe mapping a —• (<?/(α), . . . , <?«(α)) w α
tίonfrom Aa onto Qn whose inverse is (q\, . . . , qn) —• 53"= 1 α/<?/.

The proof is a straightforward application of Proposition 1.1. Thus,
from a set-theoretical view point, Qn is a universal model for the sets
Aa . We shall extend this result to the differential geometry setting.

1.3. REMARK. I. Kaplansky introduced the notion of SBI-rings
(SBI = suitable for building idempotents) as those rings A such that
the natural mapping Q(A) —> Q(A/R) is onto, where R is the Jacob-
son radical of A.

It is known that for a SBI-ring A, the map Qn(A) —> Qn(A/R) is
also onto for each n = 1, 2, . . . (see [Ja, p. 54]).

It is also known that all Banach algebras are SBI [Ri, p. 58]. These
facts and 1.2 imply that, for every a — (a\, . . . , an) (with at φ a^),
Aa -»(A/R)a is onto, a result due to Barnes [Ba, Theorem 7].

From now on, we will assume that A is a real or complex Banach
algebra with identity. For π-tuples Z = (Z\, . . . , Zn) in An we use
the norm \\Z\\ = maxi</<^ | |Z/| | . The general facts on Banach algebras
and Banach manifolds needed below can be found in [Ri] and [La],
respectively.
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1.4. THEOREM. Let a e Aa be a fixed element, q — q(a) =
(q\(a), ... , qn{cή) € Qn the corresponding system of idempotents. Set

T = {XeA; qtXqi = 0 for all i = 1, . . . , n),

S = {Y G A qkYqt = 0 for all k φ I}.

1.4.(i) A is the Banach space direct sum A = T ®S.
1.4.(ii) For each Z = X + Y, XeT, Y e S, set

and define

φ(Z) = cxp(X')(a + Y) exp(-X').

Then φ is a diffeomorphism from a neighborhood U of O € A onto
a neighborhood V of a. Moreover, φ\unτ is a homeomorphism onto
VΠAa.

Proof. It is clear that every Z e A decomposes as X + Y, where

X = ΣqjZqkeT and

n

for Y^qt = \ and

z = ( Σ qι)z ( Σ q ι ) = Σ qjZqϊ+ Σ

It is also clear that the decomposition is topological, for T and S
are respectively defined as the images of the projections

and Z -

An easy computation shows that the derivative of φ at O is the
identity: in fact, for Y e S Dφ(O)Y = Y obviously; for X e T
Dφ{O)X = [X1, a] = X'a - aXf = X the assertion follows from the
decomposition A — T®S.

Then, by the inverse function theorem, there exist open neighbor-
hoods U' of O and V of a such that φ maps U' diffeomorphi-
cally onto V. Consider next Z = X + Y with φ(Z) e Aa. Since
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φ(Z) = M(a + Y)M~ι, then a + Y is also a root of a. Then
O = Πi(a + Y — α, ) and using Prop. 1.1.(iv):

O = Qj H(a + Y - α f) = gj H(aj + Y- α, )

where L = Y[jφi{Y - (α, - α,-)). If 7 has small norm
min{|α/ - α7 | , / ^ 7} suffices) then L is invertible and therefore
qjY = 0 for each j . Hence < (̂Z) G Aa with 7 small implies Z eT.
This means that (perhaps for smaller neighborhoods) φ is a homeo-
morphism from Uf Γ\T onto V Γ\Va.

Considering the maps φ as analytic local coordinates in ^ , we
obtain:

1.5. COROLLARY. Aa is a closed analytic submanifold of A whose
tangent space at a eAa can be identified to the Banach space T.

1.6. REMARKS, (i) The choice of the chart φ may seem rather
artificial; for instance, the derivative at O of φ\(X + Y) =
exp(X)(α + K)exp(-ΛΓ) is X + Y -> Xa - aX + Y = [X, a] + Y
and the equalities qi[X', α]#/ = (αy - otϊ)qiXqj (i φ j) show that
Dφι(O) maps Γ onto T and £ onto S. Thus, </>i also provides
charts for the analytic structure of Aa . However, we have chosen the
map φ because it is the exponential map of the natural connection
to be studied later (see §4). This remarks applies also to the charts
chosen below for Qn .

(ii) An obvious consequence of 1.3 is that Aa is locally arcwise con-
nected for all a as above. For the simpler case of a(X) = X(X - 1)
this is a result of Zemanek [Ze, 3.2] for complex Banach algebras,
which was generalized for real algebras by Aupetit [Au, p. 413]. How-
ever both results have been also proved in [PR1, 4.3] (see also 2.2(iii)
below).

1.7. THEOREM. Qn is a closed submanifold of An .

Proof Fix qeQn and define V = {X = (Xx, . . . , Xn) e An: qrXiqs

= 0 for r Φ i and s Φ i or r = s = i, and ^/X/^ + Qi^kQk — 0 for
iφk}.
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The map θ: An -* An , 0(Z Z 9 ... 9 Zn) = (XΪ9 ... 9 Xn) defined

by

xk =

/

Λ - l

/̂ι = ~ /]
k=\

is a projection onto V whose kernel is the set S' of all Y = (Y\, ... ,
Yn) £ An with qrYiqs = 0 for r = / and s > i or s — i and r > i.

Thus r ' e y = ^ . For X e V put

ί/AΓ/ήfy if 7 < / ,

- QiXiQi if / < /.

Observe that qiXqi = 0 for / = 1, ... , Λ .
Consider now the map ψ: An -> An defined by

ψ(Z)i = v/(X + Y)i = txp(X)(qiYi) e x p ( - Z )

f o r l e Γ , F € 5 ;. Then Z)^(O)r = Y for 7 e S" and, calculating,

= [X,qi] = Xi ΐorXeT', ι = l , . . . , / i .

This means that Dψ(O) = identity and ^ is a diffeomorphism from
a neighborhood of 0 onto a neighborhood of #. For Y e Sf such
that || Y|| < 1 it is easily shown that q + Γ e Qn if and only if Y = O.
This completes the proof.

REMARK. According to Proposition 1.2, the bijections connecting
Aa and (?„ are given by algebraic expressions.

The next result, whose proof follows easily from the theorems above,
shows that Qn is a universal model for the sets Aa of simple algebraic
elements of degree n .

1.8. T H E O R E M . The map a —• {q\(a)9 . . . , qn{β)) is a diffeomor-

phism from Aa onto Qn whose inverse is given by (q\9 ... 9 qn) —•
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Σ/Li <*iQi Consequently, for any other β = (β\, ... , βn) with βt φ
βj the map a —• Σ?=i βiQiiP) ™ a diffeomorphism from Aa onto Aβ .

2. Fibrations. The group G of invertible elements of A acts on
Qn by inner automorphisms on each coordinate: if g e G and q =
(0i, . . . , 4 M ) Ξ Λ I then gtfg"1 = (g^i^- 1

? . . . , gqng~ι)eQn.

2.1. THEOREM. Lei # be a fixed element of Qn and define π: G

(i) /̂zer̂  exist an open neighborhood U of q in Qn and a local
section σ: U —• G of π

(ii) the orbit Vq = {gqg~ι: g e G} is open (and closed) in Qn

(iii) π: G —• Vq is a principal fiber bundle with structure group GQ =
{geG: gqx =q{g, i= 1, . . . , n).

Therefore Qn is a discrete union of homogeneous spaces of G.

Proof. Given q' e Qn define

It is clear that σ(q) = 1 and o[q)qι = qΊσ(q'). Thus, for every q' in
a neighborhood U of q, we have σ(qf) e G and σ(q')qσ(q')~ι = q'.
This proves (i) and (ii) and the rest of the statement follows from
standard arguments (see [St, §7]).

2.2. REMARKS, (i) An invertible element g belongs to Go if and
only if q^gq\ = 0 for all k φl. Thus, the Lie algebra of GQ can be
identified to {X e A: qkXq\ = 0 for all k Φ 1} .

(ii) With the notations of 2.1 and 1.6 it is easy to describe trivializa-
tions of the tangent bundle TQn and of a suplement NQn of TQn

in the trivial bundle ε: Qn x An —> Qn . We call 7VQW the "normal
bundle" of Qn . Given # e (?„ , let t/^ = {qι e Qn: σ(tf') € G} . Then
h:UqxAn -+UqxAn, defined by

is a diίfeomorphism which trivializes simultaneously τ:
and a bundle z/: Λ^QΠ -• Qn where (NQn)q = Sf (as in 1.6).

(iii) Given q € Qn, its connected component (in Qn) can be de-
scribed as the set {gqg~ι: g G G0} , where G° is the connected com-
ponent of 1 in G: in fact, it suffices to replace G by G° in the proof
of 2.1. Of course, similar statements hold for Aa . This generalizes
[Ze, Theorem 3.3] and [Au].
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2.3. COROLLARY. Consider a fixed q e Qn and a continuous curve

γ: [0, 1] —> Qn such that γ(0) = q. Then, there exists a continuous

curve Γ: [0, 1] —• G such that Γ(0) = 1 and πoγ = γ, where π(g) =

gQg~ι

We consider now the behaviour of the functor Qn under epimor-
phisms.

Let f:A-+B be a continuous homomorphism of Banach algebras
which preserves the identity

Clearly / induces maps (?(/): G{A) -> G(B), and fn: Qn(A) ->
Qn(B). We shall prove that fn is a Serre fibration when / is an
epimorphism [Sp].

2.4. THEOREM. Let f:A—>B be a {continuous) epimorphism of
Banach algebras. Then fn: Qn(A) —• Qn(B) is a Serre fibration. In
particular, fn is onto if and only if its image intersects every connected
component of Qn(B).

Proof. Replacing A and B by C(Im, A) (= algebra of all maps
Im -> A) and C(Im , 5) respectively (where / = [0, 1]), it suffices to
show that if γ: I —• Qπ(5) is such that y(0) = q! = fn(q) for some
q €Qn(A) there exists a curve γ: I —> Qn(A) such that fn°7 = ϊ-

For this, we consider the commutative diagram

G(A) -ί-+ G(B)

π\

Qn{A)

where π ^ ) = gήf^"1, πq\h) = Λ^Λ"1 (^ e G(Λ), A e G(5)). By
the local triviality of πq> proved in 2.1, there is a curve <5: / —> (7(2?)
with J(0) = 1 and π^J = y. Michael [Mi] proved that / : G(A) ->
G(B) is a Serre fibration; therefore, there is a curve ε: / —• (7(̂ 4) such
that e(0) = 1 and f o ε = δ. To finish the proof it suffices to define
γ = nq o e, which satisfies fnoγ = γ.

The next theorem extends results of Raeburn [Ra] concerning the
set πo(P(A ® 2?)) of all connected components of the idempotents of
A ® B, where 4̂ is supposed to be commutative.

We omit its proof and that of the proposition below because they are
simple combination of Raeburn's techniques without previous results.



SYSTEMS OF PROJECTIONS IN BANACH ALGEBRAS 217

2.5. PROPOSITION (cfi [Ra, p. 383]). Let A be a Banach algebra and
B\, . . . , Bn be open balls in C with paίrwise disjoint closures, centered
at OL\ , . . . , an, respectively. Let U — B\ u U Bn and Av = {a e A:
the spectrum of a is contained in U}. Then AJJ is open in A and
f = (/i 5 , fn) Au —• 4̂Λ w an analytic retraction onto Qn, where
f: U —• C w defined by fi(z) = ^ ybr z e Bk and fn(a) is obtained
by means of the holomorphic functional calculus.

2.6. THEOREM (C/ [Ra, 4.5, 4.7]). Let A and B be complex Banach
algebras. Suppose that A is commutative with spectrum X. Then the
Gelfand map A —> C(X) induces bίjections

πo(Qn(A®B))-+[X,Qn(B)],

{Qn{A®B)}-{Qn{C{X,B))}

where [ , ] denotes homotopy classes of maps and {Qn(C)} is the set
of orbits of the action of G(C) on Qn(C).

2.7. REMARK. If A is the algebra of complex continuous functions
on the 3-sphere, B is the algebra of all 2 x 2-matrices over C and
n = 2, we reobtain the example of [PR1, 7.13].

3. Lifting C1-curves. The transport equation. In this section we
describe a method which leads to a lifting Γ of a curve γ: [a, b] —•
Qn, as in Corollary 2.3, valid when γ is rectifiable and continuous.
For the sake of simplicity we only consider n = 2, the general case
being similar and somewhat more involved. The reader can find the
details (for n = 2) in [PR1]. Our present interest in this construction
lies in that it leads to the transport equation.

Consider a continuous rectifiable curve γ: [a, t] —> Q and a par-
tition Π: t0 = a < t\ < ••• < tn = t such that \\γk - y^+1|| < 1
(fc = 0, . . . , n - 1), where yh = y{tk) then

Yk-ύ^G (fc = 0, . . . , n- 1) and

Thus, σ can be thought of as a "discrete" curve of units which con-
jugates γo with γn . Putting u(U) = σΛ σi, it can be shown [PR1,
§5] that the limit Γ(ί) = limw(Π), when the length of the partition
Π tends to zero, exists and defines a unit of the algebra. Moreover
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Γ: [a, b] -* G is continuous and rectifiable. If the original curve γ
has a continuous derivative, then the value

(l/Λ)(Γ(ί + h) - Γ(ί) is, approximately,

(l/λ)(cτ,+ΛΓ(ί)-Γ(O), where

σt+h = γ(t + h)γ(t) + (1 - γ(t + A))(l - γ(ή).

Then,

(l/A)(Γ(ί + h) - γ(ή) = (l/h)(σt+h - l)Γ(ί)

= (l/h)(2γ(t + h)γ(t) - γ(t + h) - y{t))T{t)

= (l/h){γ(t + h)(γ(t) - γ(t + A)) + (γ(t + A) -

and

Thus, the lifting Γ of γ constructed by the limiting process described
above satisfies the initial values problem

Γ=(γγ-γγ),

Γ(0) = 1.

In the general case n > 2 the initial value problem is

where γ = (γ\, ... , yn)\ [a, b] -* Qn is of class C 1 . Observe that
Σ i hϊk = Άϊi - 7i(l - 3Ί) = ΫiYi - ϊiΆ because γ2 = 1 - yi and
h =hYι+ Yih (differentiate γ\ = γ\).

As we said before, we shall not justify all the assertions about Γ.
Instead we include the proof of the following result due to Daleckii,
Krein and Kato, for the sake of completeness (see [DK2, IV, Theorem
1.1]).

3.1. THEOREM. Let γ: [a, b] —>• Qn be a C 1 curve. Then, the
unique solution in A of the initial conditions problem

Γ(α) = 1,
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where γ = Σ,l=ι hYk > satisfies
(i) Γ(t)eG (te[a,b]),

(ii) T(t)γ(a)T(tyι=γ(t) (te[a,b]).

Proof. Existence and uniqueness of Γ follow from general facts [La,
p. 71]. To prove (i) consider the companion problem

I Δ(α) = 1,

and observe that (ΔΓ)# = ΔΓ + ΔΓ = 0. Then ΔΓ is constant on
[a, b] and, since Δ(α) = Γ(α) = 1, it is ΔΓ = 1. Thus Γ(ί) is left
invertible in A moreover, Γ(ί) belongs to the connected component
of the identity in the set of left invertible elements. It is easy to see
that this component is completely contained in G. This proves (i).

To see (ii) we compute ( Γ - ^ Γ ) ' (k = 1, ... , n):

observe that γγk = (ΣyiYdVk = Ykϊk, because y^ = 0 for / φ k,
and that yky = yk{ΣYiYi) = -YkiΣYiYi) = ~YkYk, because yk =
YkYk + Yύk and Σ Yk = ( Σ Ykϊ = Γ = 0. Thus

(Vι7k^y = ~Γ~liYkYk ~Yk + YkYkW = 0

and Γ ' ^ Γ is constantly yk(a). This completes the proof of (ii).

3.2. REMARK. The proof of part (i) could have been omitted be-
cause it is a general fact that the solution of f = φT, Γ(α) = 1, where
φ: [a, b] —» A is a continuous curve, is a curve of invertible element
of A.

If A is an involutive Banach algebra, i.e. there exists a continuous
antilinear mapping x —• x* such that (xy)* = y*x*, 1* = 1 and
x** = x (x 9 y G A), we consider the unitary group of A

U = {ueG:u~l = w*}

and the self adjoint part of Qn

Pn = {p = (Pi, . . . , Pn) e Qn' Pk = Pk (/c = 1, . . . , n)}.

For these algebras more specific results hold. We omit the details
about the differential structure of Pn .
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3.3. COROLLARY. If γ: [a, b] —• Pn is a C 1 curve then the solution
oft=γΓ, T(a) — 1, defines a curve Γ: [a, b] —> U which conjugates
the curve γ.

Proof It suffices to show that Γ(ί) e U for every t e [a, b]. Ob-
serve first that

because

Σ ^ + ̂ ^ = Σ **= (Σ ?*) = r = °
Thus (Γ*Γ) = f * Γ + Γ * f = 0 and Γ*Γ is constant. But Γ(0) =
Γ*(0) = 1, so Γ*Γ = 1. Now, Γ(ί) is invertible for all t, by Theorem
3.1, so 1

3.4. REMARK. Of course many liftings of γ may exist. But Γ is
the unique horizontal lifting of γ with respect to the connection we
shall define in the next section. This fact completes Kato's remark [Ka,
II.4.2, Remark 4.4]. Moreover, if our σ 's, used to obtain the transport
equation, are multiplied (at left or at right) by (1 - (% — yk-\)2)~1^2 ,
where (1 - r ) " 1 / 2 = Σ m = o ( ' i / 2 ) ( - / ' ) m f o r IIΊI < 1 ? we get a different
"discrete" lifting of γ but in the limit it becomes the same continuous
curve Γ. In this sense, the local solution [Ka, p. 102, (4.18)]

ΠίO = (1 - (γ(t) - ym2rιl2{y{t)y{Q) + (1 - y(ί)))(l - 7(0))

is related to the global solution Γ.

4. The connection. Let q e Qn be fixed and π: G —• Qn defined
by π(g) = g<lg~ι = (gQ\g~ι, . . , gQng~λ). It is very easy to show
that the derivative of π at g e G(Tπ)g: (TG)g: (TG)g -> (TQn)π{g)

is given by

(Tπ)g(X) = g[g-χX, q]g-χ (X G (TG)g)

where [Z , q] = ([Z , qx], ... , [Z , qn\) for all Z eA.
We say that X e {TG)g is vertical if (Tπ)g(X) = 0 or, what is the

same,if [g~ιX,q] = 0. Then, if Vg ={Xe (TG)g: [g~ιX,q] = 0 } ,
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it is clear that Vg = g V\ and that

= {X e A: qkXqt = 0 for all / φ k}

This shows that

Hι={XeA:qιXqι=O(i=\,...,n)}

is a supplement of Fi in A (= (ΓCr)i) and, in general //^ = ^T/i is a
supplement of F^ in A (= (TG)g). Moreover, Hg-h = Hgh (g G ( ? ,
heH). Finally, the projections Ag: (ΓG)^ -> ^ , i;^: {TG)g -> F^
given by

verify

Clearly the mappings g -^ hg and g —• v g from G into the
bounded linear operators on A are differentiate. All these facts show
that g -* Hg defines a connection in the principal bundle π: G —• Q^ .

For the theory of connections we refer the reader to [KN]. However,
we are dealing with Banach manifolds and bundles, which requires a
few notational changes.

From now on by "curve" we mean a C°° curve.
Given a curve γ: [a, β] —• Qn , a horizontal lifting of 7 is a curve

Γ: [α, β] -* G such that πΓ = y and f (ί) e i7Γ(/) (ί € [α, jff]).

It is a general fact that, for each g0 e G such that γ(a) = goPg^1

9

there is a unique horizontal lifting Γ such that Γ(α) = go. In par-
ticular, if y(α) = q there is a unique horizontal lifting Γ such that
Γ(α) = 1 .
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4.1. THEOREM. Given a curve γ: [a, β]-+ Qn the horizontal lifting
Γ such that Γ(α) = 1 is the solution of the transport equation

n

(4.2) f = γΓ, where γ =

with initial condition Γ(α) = 1.

Proof. We have seen that the solution Γ of (4.2) is a lifting of π,
i.e. πoΓ = γ (see 3.1). By the uniqueness of both objects it suffices to
show that the horizontal lifting Γ with Γ(α) = 1 satisfies (4.2). We
recall that Γ satisfies

(4.3) Γ(t)qΓ(t)-ι=γ(t) (te[a9β])9

(4.4) ΓeHΓ = ΓHl9 i.e. f (ί) e T{t)Hx (te[a, β])

or, what is the same

(4.5) Γ-ιγΓ = q

and

(4.6) Γ- ! f eHx.

Differentiating (4.5) we get 0 = Γ-ι(-TT-ιγ + γ + y Γ Γ " 1 ^ and
cancelling Γ"1 and Γ, we get

(4.7) γ = [ΓΓ-1, γ].

Now, (4.6) means that qiΓ~ιΓq\ = 0, (/ = 1, ... , n), which can also
be written as

(4.8) qΓ-iΓ = Γ-ιΓ(l-q).

Replacing (4.5) in (4.8) we get Γ~ιγt = T-yΓ - Γ^1fT"1yΓ which,
after cancellation, gives

(4.9) yΓΓ"1 = f Γ - 1 ( l - y )

and

(4.10) f 1 f 1

Finally,

1 , yi]7iT (by 4.7)
1
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This last expression coincides with f because y/ΓT"1 = I Γ " 1 ^ - yz)
by (4.9) and therefore y/ΪT~'1y/ = Γ Γ ' ^ l - yz-)y/ = 0. This proves
the theorem.

4.11. REMARK. In general, if γ: [α, β] —• Qn is a curve with origin
q' — goqgQl then Γ is the horizontal lifting with origin go if and
only if it is the solution of the problem f = γΓ, Γ(α) = go

We compute next the 1-form, the 2-form and the curvature form of
the connection.

We recall that the 1-form θ assigns to each X e {TG)g the hor-
izontal component of g~ιX £ (TG)\ = S?, the Lie algebra of H.
More explicitly,

n

θgX = vdg-ιX) = g~ιvg(X) = Σqig-ιXqi.
i=\

The 2-form dθ of the connection is defined by

dθ(X, Y) = \{X - ΘY - Y ΘX - Θ([X, Y])}9

where X, 7 e (TG)g, [ , ] denotes the Lie bracket and Z W
denotes the derivative of W in the direction of Z , i.e. W is ex-
tended to a vector field on a neighborhood of g and given a curve
δ:(-ε,ε)-+G such that δ(0) = g and δ(0) = Z,

dtt=o

Although the notation is the same, the Lie bracket should not be
confused with the commutator bracket of the algebra.

From the computations

z = l ι = l

and

i=\
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we get

The horizontal differential of θ, also called the curvature form of
the connection is Ω(JT, Y) = dθ{hgX, hgY) for [X, Y] e (TG)g.
Explicitly

, Y) = ί-

= -I vS Σ
rφs

Qi

ί = i

ί = l

V
where qk = 1 - qk =

ί = l

The structure equation Ω(X, 7) = ί/6»(Z,
trivially satisfied.

, ΘY] is thus

5. Calculations on the tangent bundle, geodesies. Consider q € Qn

fixed and let A\ = {X € A: qiXqi = 0, i = I, ... , n} (in §4 we
c a l l e d i t Hi). It i s c lear that H = {g E G : gqi = qig, i = I, ... , n}
operates at left on A\ by h • X := hXh~x.

Thus we define the associated bundle of π : G —• Qn with standard
fibre A\, denoted by G <g> A\ —• Qn , where G® A\ := G x Λi/ ~ ,
(^, JΓ) ~ (gΛ, h~ιX) forheH and the map G Θ Ax -> β« is
determined by (,§•, X) —»• π ( ^ ) . It is a general fact that this vec-
tor bundle is isomorphic to the tangent bundle TQn, by means of
(*,*)-> (π(g), gXg~ι) e {TQn)π(g). Given a curve γ: [a,β]-+
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Qn the parallel displacement of the fibre (TQn)γ^ along γ from
a to te[a,β] is defined by xl

a: (TQn)γ(a) - ( Γ β Λ ) y ( 0 , τι

a(Z) =
Y(t)ZT(t)~x, where Γ is the horizontal lifting of y with origin
Γ(α) = 1.

Given X e (TQn)q and a vector field Z defined near # the covari-

ant derivative DXZ is DXZ :=X Z + [Z, X], where

Λ v v d

and Λ z = -7—
' = 0

for a curve δ: (—e, e) —• (?« such that (5(0) = # and ^(0) = X.

5.1. PROPOSITION. For every curve a: [α, /?] —• An the element
Da/dt = a + [α, y] w ŵ // defined and has the following properties:

(a) Ϊ / ytayt = 0 for all i = 1, ... , n then γi(Da/dt)γi = 0 for all
i = 1, . . . , n (in other words, Da/dt is tangent if a is tangent).

(b) if ytayk = 0 for all i φ k then γi(Da/dt)γk = 0 for all i φ k
(i.e. Da/dt is normal if a is normal).

Proof, (a) Differentiating y^ayi = 0 we get

0 = yiayi + yiixyi + yiayi.

Multiplying by yz at right and left we have

(5.2) yάiayi + yiayi + y^y^i = 0.

On the other hand

Da . . .,
Vi~dtri = γ*aγi + γ '

7i

and YiΣkfaVk = ViΣk(ι ~ 7k)h because γk = ykyk + γkγk (differ-
entiate y^ — yk)\ thus

Vi
A: A:

because Σk Vk = 0 a n d 7I7A: = 0 ^ / ̂  fe.
This shows that

7/-^7/ = y/άy/ + y, fly,7i + y,7, fly, = 0, by (4.2).

The proof of (b) is similar.
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This shows that for every vector field Y of Qn along γ, the formula
Da/dt = Ϋ + [Y, γ] defines another vector field of Qn , the covariant
derivative of Y.

The torsion of the connection, defined by T(X, Y) = DχY-DYX-
[X, 7] in general, turns out to be in our case

(5.3) r(x,r) = [r,x]-[x,?],

where X, Y e (Γβπ), and X = Σ?=i X^ , ? = Σ/Li ̂

5.4. REMARK. For n = 2 the connection is symmetric, in the
sense that its torsion is zero everywhere: in fact, for n = 2 we have

j

These equalities, when replaced in (4.3), prove the assertion. How-
ever, for n > 3 this is no longer true.

The curvature of the connection, expressed by R(X, Y)Z =
DX(DYZ) - DY(DXZ) - D[XiY]Z for X, Y, Z e (Γβπ)^ , is given,
in our case, by

(5.5)
. ϊ = l

or, abbreviating

(5.6) /?(Z,7)Z

We study now the geodesic curves of the connection, that is, the
curves γ: [a, β] —»• Qn such that Dγ/dt = 0. It is a well-known fact
that this condition is equivalent to τ'a(γ(a)) = γ(t), (t e [a, /?]). The
equation defining the geodesic curves can be written as

(5.7) 7k + [?k,n = 0, k=l,...,n.

Using the commutation rules obtained from X) γ,• = 1, γf = γ, and

Viϊk = 0 f ° r i / ^ , we get

(i) 7/7/ = ( 1 - 3 Ί ))Ί ( / = 1, . . . , « ) ;
(ϋ) 7i7k + 7ih = 0 (/ φ k)

(iii) Σ?fe = 0;
( i v ) γiγf = γfγi ( / = 1 , . . . , « ) ;
(v) 7ifr7i = 0 (i= 1, . . . , n ) .

These equalities imply that (5.7) is equivalent to

(5.8) y* + yfc ( ^ y , 2 ) + ( ^ y , 2 ) y f c-2y2 = 0, (A: = 1, ... , n).
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It is easy to exhibit all the solutions of (5.8) which satisfy γ{t) € Qn

for all t. In fact, for q e Qn , X e (JQn)q, γ(ή = etXqe~tx (teR)9

satisfies (5.8) and all the solutions of (5.8) with the additional condi-
tion γ(t) G Qn, have this form. The connection is also complete, in
the sense that its geodesies are defined for all t G R, and the expo-
nential map of the connection is given by

ExP ( ?: {TQn)q -> Qn , = exqe'x.

Properties of minimality of length of geodesies are studied in a
forthcoming paper ([CPR2]).
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