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Convexity of the geodesic distance on spaces of positive
operators.
Illinois J. Math. 38 (1994), no. 1, 87-94.
For a unital C*-algebra A, the open convex cone A1 of strictly
positive elements has a natural transitive action of the group G of
invertible elements in A and is thus a homogeneous space with an
invariant Finsler metric. Using 1-parameter subgroups of G one can
define geodesics in A*. The authors prove various convexity theorems
for functions defined by geodesics, for example the function ¢ +—
dist(y(t),d(t)) of a real parameter. Here v and § are geodesics in
A" and dist (a,b) = || In(a""/?ba""/?)|| is the geodesic distance. As a
corollary, geodesic spheres are shown to be convex sets.

Harald Upmeier (D-MRBG-MI)

MR1239452 (94h:46089) 46105 58B20

Corach, G. (RA-IAM); Porta, H. (1-IL);

Recht, L. [Recht, Lazaro] (YV-SBOL)

The geometry of spaces of projections in C*-algebras.

Adv. Math. 101 (1993), no. 1, 59-77.

Let A denote a C*-algebra with identity, let @) be the set of all idem-
potent elements of A and let P be the set of selfadjoint elements
of @. The sets () and P play the role of infinite-dimensional Grass-
mannians and important applications to operator theory and complex
or differential geometry have already been found. However, much of
the differential geometry of these Grassmannians is not completely
understood today.

The authors of the paper under review began, several years ago,
an extensive study of the geometry of the spaces ¢ and P and
some similar idempotent varieties. The present paper investigates the
natural fibration @ = P given by the polar decomposition of the
associated symmetries; as a byproduct of this analysis the authors
introduce a natural Finsler metric on @) and study the corresponding
geodesics. They prove, for instance, the existence of a unique geodesic
in  joining two points of P and, respectively, the existence of a
geodesic fully contained in the fibre of 7 joining any two points of this
fibre. Mihai Putinar (1-UCSB)
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Geodesics and operator means in the space of positive
operators. (English. English summary)

Internat. J. Math. 4 (1993), no. 2, 193-202.

Let A be a unital C*-algebra, A' the subset of positive invertible
elements in A. Then A" has a natural Finsler structure and a natural
connection for which the geodesic equation can be solved explicitly.
It turns out that for any two points in A" there is a unique geodesic
joining these two points. In this paper the authors study the notion
of geodesic convexity with respect to this structure. They prove
geodesic convexity of some subsets of AT and derive related operator
inequalities. Finally they interpret the results in terms of operator

means in the sense of Kubo and Ando and in terms of relative entropy.
Andreas Cap (A-WIEN)
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The geometry of the space of selfadjoint invertible elements
in a C*-algebra.

Integral Equations Operator Theory 16 (1993), no. 3, 333-359.

For a unital C*-algebra A let G be the set of invertible elements in
A and G® the subset of selfadjoint elements in G. The authors show
that for any a € G® the orbit G®® through a of the action g-a =
(g7Y)ag™" of G on G* is open and closed in G® and the map g+ g-
a defines a locally trivial principal bundle over the orbit. Next they
construct a canonical connection on this principal bundle and study
the differential equation which describes horizontal lifts of curves.
Then they study connections on some G-equivariant bundles over
G® which are induced by this canonical connection, in particular on
the tangent bundle T'G®, on which they obtain a canonical Finsler
structure.

The polar decomposition defines a fibration from G® to the space of
orthogonal reflections in A. Using this fibration the authors study the
geometry of G®, in particular, geodesics with respect to the Finsler
structure. The main result is that for two points in the same fiber
there is a unique geodesic contained in the fiber which joins the two
points, and this is the shortest curve in G® with these endpoints.

Andreas Cap (A-WIEN)
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Jacobi fields on space of positive operators. (English. English
summary)

Linear Algebra Appl. 179 (1993), 271-275.

Summary: “Let A be a C*-algebra with 1 and denote by A" the
set of invertible positive elements of A with its canonical connection
and Finsler structure [see G. Corach, H. Porta and L. Recht, Integral
Equations Operator Theory 16 (1993), no. 3, 333-359]. Then a Jacobi
field J(t) along a geodesic in AT with initial conditions J(0) =0 or
(DJ/dt)|i=o has increasing Finsler norm for ¢ > 0.”

MR1075945 (92h:46105) 46199 58B20
Corach, G. (RA-IAM); Porta, H. (1-IL);
Recht, L. [Recht, Lazaro] (YV-SBOL)
A geometric interpretation of Segal’s inequality ||e
H€X/26Y6X/2H-
Proc. Amer. Math. Soc. 115 (1992), no. 1, 229-231.
Let A be a unital C*-algebra. Suppose that A' is the set of positive
invertible elements in A. Then A" is an open subset of A%, the
real Banach space of symmetric elements, and therefore the tangent
space T AT to the manifold A" at a € AT can be identified with A®.
The manifold A%t carries a natural Finsler metric defined by || X]||, =
lla='2Xa~'/?|| for X € TA;}. The distance d(a, b) in the Finsler metric
is defined by ||X||., where b= e(l/2Xa ' X go(1/2a X

The main result is proved by means of the Segal inequality. Theo-
rem: For each a € A", the exponential map exp,: T A} — A™ increases
distances in the sense that d(exp,X,exp,Y) > |[|X —Y]|, for all
X, Y eTA}. Liang Sen Wu (PRC-ECNU)

X+YH <
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Corach, Gustavo (RA-IAM); Porta, Horacio (1-IL);
Recht, Lazaro (YV-SBOL)
Splitting of the positive set of a C*-algebra.
Indag. Math. (N.S.) 2 (1991), no. 4, 461-468.
Let A be a unital C*-algebra, B a C*-subalgebra of A containing the
identity and H C A a Banach space supplement of B in A; that is,
A=B®G.If H is closed under the x-operation in A, then A* = B*®
H?® where “s” denotes the selfadjoint elements in the corresponding
set. Denote the set of positive invertible elements in A and B by
A% and B9, respectively, and let E = {exp(h): h € H*}, the set of
exponentials of elements in H®. Consider the mapping ®: BY x E —
A® defined by ®(b,e) = (be)*, where (be)™ is the “positive part” of
be, i.e., (be)™ is the positive square root of (be)(be)*. In the paper
under review the authors prove that ® is a diffeomorphism in several
situations, most notably when A is finite-dimensional and H = B*
for a suitable inner product in A. The proof relies on a theorem of
R. Hermann [Indag. Math. 25 (1963), 47-56; MR0152969 (27 #2940)]
and several of the previous results of the authors on the geometry of
the space of selfadjoint invertible elements of a C*-algebra.

Robert S. Doran (1-TXC)
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Corach, G. (RA-IAM); Porta, H. (1-IL);

Recht, L. [Recht, Lazaro] (YV-SBOL)

An operator inequality.

Linear Algebra Appl. 142 (1990), 153-158.

From the text: “For a Hilbert space H consider the set G* of bounded
linear Hermitian invertible operators in H and the subset P C G° of
unitary reflections (i.e., operators with R* = R = R™!). If we write
A€ G* as A= NR with N positive and R unitary (the polar decom-
position of A), then R € P, and A — R defines a map 7: G°* — P. The
sets G* and P are smooth submanifolds of the C*-algebra of bounded
linear operators in H, and 7: G* — P is a smooth fibration. Further-
more, we introduce on G° a natural Finsler structure by assigning to
a tangent vector X € T4G* the norm || X || = || N'/2X N'/2|| (operator
norm). Elsewhere [“The geometry of the space of selfadjoint invertible
elements of a C*-algebra”, to appear] we prove that the tangent map
Tam:TaG® — T4y P decreases norms, together with some geometric
consequences similar to those shown in another paper of ours [“The
geometry of spaces of projections in C*-algebras”, Adv. in Math., to
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appear|. The essential step in obtaining this result is the following
operator inequality, whose proof is the objective of this note. The-
orem: Let S,T be bounded linear operators in Hilbert space, with
S invertible Hermitian or invertible skew-symmetric; then ||STS~! +
STTS|| >2|T].”

MR1073852 (93a:46099) 46H99 46M20 58B20
Corach, G. (RA-IAM); Porta, H. (1-IL);
Recht, L. [Recht, Lazaro] (YV-SBOL)
Differential geometry of spaces of relatively regular
operators.
Integral Equations Operator Theory 13 (1990), no. 6, 771-794.
Let A be a Banach algebra with group of units G and with the set
of idempotents Q. The authors study the topological and geometric
properties of the space S ={(a,b) € Ax A: ar=a, rb=>, ba =r},
where r is a fixed element in (). In particular, they study principal
fiber bundles 7: G — S, where 7(g) = (gao,bog™'), (ag,by) € S, and
0:S — Q, where 0((a,b)) = ab. When A is a C*-algebra and r = r*,
they also study a real analytic retraction of S onto {(a,b) € S: b=
a*}. The authors announce further papers on similar topics.

W. Zelazko (Zbl 726:46028)

MR1051073 (912:46056) 46H99 46M20 58B25

Corach, Gustavo (RA-IAM); Porta, Horacio (1-IL);

Recht, Lazaro (YV-SBOL)

Differential geometry of systems of projections in Banach

algebras.

Pacific J. Math. 143 (1990), no. 2, 209-228.

Let A be a unital Banach algebra. The authors focus on the refined

structures of the set of all n-partitions of unity: @, = {(¢1, -,qn) €

A" qiqr = 0irqi, Y.y q = 1}. The differential geometry and the

algebraic topology of @, provide invariants of the algebra A itself.
The authors study the fibration m: G — Q,,, 7(9) = gqg™ ', ¢ € Q,,

by defining a natural connection on it. Here G stands for the group of

invertible elements of A. The parallel transport equation with respect

to this connection turns out to be identical to the transport of Yu.

L. Daletskii and S. G. Krein [Dokl. Akad. Nauk SSSR 6 (1950), 433

436]. Mihai Putinar (1-UCSB)
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Corach, G. (RA-IAM); Porta, H. (1-IL);

Recht, L. [Recht, Lazaro] (YV-SBOL)

A metric property of the polar decomposition of projections.

Analysis and partial differential equations, 417-426, Lecture Notes in

Pure and Appl. Math., 122, Dekker, New York, 1990.

The authors study a variational property of the embedding P C @,

namely the fact that for projections of rank 1, the distance (= geodesic

distance) from a fixed element ¢ € Q to a variable element p € P is

attained at a unique p = 7(q). This element 7(g) can be characterized

in a variety of ways. (Notation: If H is a Hilbert space, @ denotes the

set of bounded linear ¢: H — H with ¢®> = g and P C Q the selfadjoint

q.)

{For the entire collection see MR1044775 (90j:00006)}

Themistocles M. Rassias (Athens)

MR1009189 (90h:46091) 46L05

Corach, Gustavo (RA-IAM); Porta, Horacio (1-IL);
Recht, Lazaro (YV-SBOL)
Two C*-algebra inequalities.
Analysis at Urbana, Vol. IT (Urbana, IL, 1986-1987), 141-143,
London Math. Soc. Lecture Note Ser., 138, Cambridge Univ. Press,
Cambridge, 1989.
With a view to geometrical applications in a forthcoming paper [“The
structure of projections in a C*-algebra”, to appear|, the authors
prove two inequalities of a technical nature for elements 1 and b of an
arbitrary C*-algebra A: (1) ||n|| < |lena £ bn*db|); (2) ||enb* £bn*c|| <
K||ena £ bn*b||. Here a and ¢ are the positive square roots of 1+ b*b
and 1+ bb*, respectively, and K depends only on b. The proofs involve
the study of the real-linear map ®: A — A given by ®(n) = cna — bn*b.
{For the entire collection see MR1009181 (90d:46003)}
Robert J. Archbold (4-ABER)
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Recht, L. [Recht, Lazaro] (YV-SBOL)
Multiplicative integrals and geometry of spaces of

projections.
Conference in Honor of Mischa Cotlar (Buenos Aires, 1988).

Rev. Un. Mat. Argentina 34 (1988), 132-149 (1990).

Consider a Banach algebra A with identity, and set @, = {¢ =
(g1, an) € A™ ¢ = qi, qiqr =0 if i # k, and Y7, g = 1}. Let
G denote the group of units of A, and define 7: G — Q,, by w(g) =
9q09~", where qy € Q,, is given. Then 7 defines a principal fibre bundle
over its image, and, in particular, any curve ~v: [0, 1] — @,, with origin
qo admits a lift to I':[0,1] — G, that is, T'(t)qol'(t)~* = ~(t) for each
t € [0,1] [cf. the authors, Pacific J. Math. 143 (1990), no. 2, 209-228;
MR1051073 (91g:46056)].

For a continuous and rectifiable 7: [, 6] — @, the authors obtain
an explicit lift ', which is the horizontal lift of v for a connection
on Q. The method is to construct, for every t € [a, 8], an element
M! () € G such that M!(y)y(a)M!(y)"t =~(¢t) for all t € [, 8]. M
turns out to be a multiplicative integral, in that (M?)(MY) = MY
for all u,v and w € [a, B]; these are special cases of the multiplicative
integrals of V. P. Potapov [Trudy Moskov. Mat. Obshch. 4 (1955), 125
236; MR0O076882 (17,958f); translated in Amer. Math. Soc. Transl. (2)
15 (1960), 131-243; see MRO114915 (22 #5733)]. The lift T is then
defined by I'(t) = M!(y) for each t € [, 3] and coincides with the lift
mentioned earlier when v is C*.

An analogous result is obtained for spaces of the form S, = {(a,b) €
A% aqg=a, ¢gb=1"b, ba = q}, where q € A is a fixed idempotent.
Here, if ~v:[a, 8] — S, is rectifiable and continuous, then there is
a lift : [, ] — G such that T'(t) - y(«) = 7(¢) for all ¢ € [, F]. In
particular, if v is C', then T is the unique solution of an initial value
problem. This relates to the decomposition of Banach spaces studied
by, e.g., A. Douady [Ann. Inst. Fourier (Grenoble) 16 (1966), no. 1,
1-95; MR0203082 (34 #2940)].

{For the entire collection see MR1108446 (91m:00041)}

David A. Robbins (1-TRC)
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ILLINOQIS JOURNAL OF MATHEMATICS
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CONVEXITY OF THE GEODESIC DISTANCE ON SPACES
OF POSITIVE OPERATORS

G. Corach, H. PorTa AND L. RECHT

Let A be a C*-algebra with 1 and denote by 4% the set of positive
invertible elements of 4. The set A” beingopenin A°* = {2 € 4; a* = 4} it
has a C* structure and we can identify T4} with A4° for each a € A™. We
use G to denote the group of invertible elemenis of A. Notice that G
operates on the left on A* by the rule

La=(g*)'ag™' (g€G,acd’).

This action allows us to introduce a natural reductive homogeneous space
structure in the sense of [8] (for details see [2], [3], [4]).

The corresponding connection—which is preserved by the group
action—has covariant derivative

DX dx 1,. _ 1~
@ =@ 2T X+ XyTh)

where X is a tangent field on A" along the curve y and exponential
exp, X = eXa ' 2gpa T X/2 4 e AT X € TAL.
The curvature tensor has the formula
R(X,Y)Z = —ta[[la 'X,a '¥],a"'Z]

for X,Y,Z € TA}. The manifold A* has also a natural Finsler structure
given by

X1, = lla="2Xa=""?|| for X € TA}

and the group G operates by isometrics for this Finsler metric.

TueoreM 1. If J(¢) is a Jacobi field along the geodes;c ¥(t) in A" then
W)y is @ convex function of t € R.
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defmition J(¢) satisfies the equation

2
D—'2I+R(J,V)V=O (1)
dt
where V(¢) = y(¢).

Notice that by the invariance of the connection and the metric under the
action of G we may assume that y(t) =e'* is a geodesic starting at
v(0) = 1€ A, where X €.4°. Then for the field K(¢) = e X/2f(f)e—1X/2
the differential equation (1) changes into

4K = KX* + XK - 2XKX, (2)

(where the dots indicate ordinary derivative with respect to ¢). Since the
group (¢ acts by isometries, we have ICON ey = V(O 2H(E)y(1) 172 =
IK(2)]|. Thus the proof reduces to showing that for any solution X(¢) of (2)
the function ¢ — ||K(#)|| is convex in ¢ R, where the norm is the ordinary

norm in the C* algebra 4. Sofix u <v € R and let ¢ satisfy u < r < . We
will prove that )

K < =5 1R@ )+ =% k). 6)

Consider first the case where the selfadjoint element X € 4 has the form
I
X = Z I\ipi (4)
- i=1

with A, A,, ... A, 1eal numbers and Dy, D3, ... p, selfadjoint elements of A
satisfying p;p;=0for i #+jand Pirtp,+ - +p, =1

Suppose that A is faithfully represented in a Hilbert space -#. For fixed
X €A decompose x € # as x = Li_q&ix; where x, is a unit vector in the
range of p, and the €, arc appropriate scalars. Define next the matrix
(e} = (kD) by k(1) = (K(D)x,, x;) for all ¢. The differential equation (2)
is equivalent to the equations ;

ic.ij(t) = aizjkij(t) (29)
“where 3; = (A, — 1)) /2.

A simple verification (or Bernoulli’s formula) shows that all solutions of

) = ¢2f(0) satisfy
f(t) = ¢(u, v,e; ) f(u) + ¢(u, v, c;t)f(v)

Proof. The method of proof is based on a similar strategy used in [4]. By

where

b(u,

(u,

Then each kij(t) sat

k

where ¢, (¢} = p(u,,
in matrix form as

]

where (1) = {¢, (1,
Schur product {a,;) -

[l

The final step is to p:

Notice that both ®(f
Bochner’s theorem I
functions of ¢. In bot
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page 31).
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according to which for
we have




(3)
form
(4)

tsof A
or fixed
r in the

matrix
tion (2)

(24)

tions of

CONVEXITY OF THE GEODESIC DISTANCE

Sinh c(v — 1)
Sinh e(v — u)
(v—1)

(v—u)

forc # 0,
du,v,c;t) =

fore =10,

Sinh ¢(t — u)
Sinh ¢(v — u)
(t—u)

[CED)

forc # 0,
w{u,v,c;t) =

forc = 0.

Then each k,(f) satisfies
k(1) = () k;(u) + thy; () ki (V)

where ¢, (1) = ¢(u,v,8,; t) and ¢, (¢) = ¢(u, v, ;;; ¢). This can be written
in matrix form as

k(t) = ®(t)ok(u) + ¥(t)ok(v)

where (1) = {¢,;{¢)} and T(t) = {4,()}and the symbol o denotes the
Schur product {;;}{b;;} = (a;;;;} of matrices. It follows that

()l sl @) ()l +11¥() = k(0)]. (5)
The final step is to prove the inequalities

lo(e)e k(w)ll < 2=l k@),

1w (1) s k(o) = T k()] (6)

Notice that both ®(¢) and ¥(#) are positive semidefinite. This follows from
Bochner’s theorem [1] applied to ¢(u, v, c; t) and (i, v, c; t) considered as
functions of ¢. In both cases the matrix is of the form {F(A; — )} where
F(c) is the Fourier transform of a positive function (see [7], formula 1.9.14,
page 31).

Next we apply a theorem of Davis (see [6] and the generalization in ]}
according to which for n X n-matrices A and P with P positive semidefinite
we have

1P e Al < ( max P, )IAll

l<i<n
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Taking P = ®(¢} and P = W(r) we get inequalities (6). Using now (5) and (6)
we also get _

s @) ]+ 22 e (7)

)l <

Since the element x and the representation space 5% were not specified, we
may assume without loss of generality that for a given ¢ between u and ¢ we

have [|K()x|| = |{K(#)x, x)|. Then writing ¢ = (£,,&,,.. ., £,) we conclude
that

[Kk(8)é, 6 =[{K(£)x, x)| = K()|
[k (u)é, &) = [KK (u)x, x)| < || K(1)|
[<k(0)€, &3] =<K (v)x, x)| <| k(1))

and then (3) follows from (7) for X of the special form (4).

Let us go then to the general casc—when X is an arbitrary selfadjoint
clement of A. The spectral theorem allows us to approximate X (in operator
norm) by elements of the form (4). From the well-possedness of problem (2)
we conclude that (¢, X) - K(¢) is norm continuous, and the inequality (3)
for arbitrary X follows from the same inequality for X of the form (4). This
completes the proof of Theorem 1.

For a,b € A" let dist(a, b) denote the geodesic distance from a to b in

the Finsler metric || X||, of A. It is not hard to prove (using the invariance of
the metric) that

dist(a, b) =[[ln(a~2ba=172)|. (8)

Trrorem 2. If y(t) and 8(t) are geodesics in A* then t — dist(y(2), 8(¢))
is a convex function of t € R.

Proof.  Suppose the geodesics y(¢) and 8(z) are defined for u < ¢ < .
Define A(s, t) by the properties:

(a) the function s — A{s,u), 0 <s < 1 is the geodesic joining y(x) and
a(u);

(b) the function s - A(s,v), 0 <5 < 1 is the geodesic joining y(v) and
a(o);

(c) for each s, the function ¢ — A(s, t), u <5 < v is the geodesic joining
h(s, u) and h(s, v).

In particular A(0,¢) = y(¢) and A(L,f) = 8(¢). Define also J(s, ) =
dh(s, £3/ds. Then, for cach s,¢ — J(s, ¢} is a Jacobi field along the geodesic

&

t — h(s, t). Finally d

From Theorem 1, ¢ -
convex for u <t <
geodesic s — A(s, u)
dist(y(v), 8(v)). Nov
the length of the cu
dist(y(v), 8(v)) < f(

proved.
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we have, by convexirt
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¢ — h(s, t). Finally define

s = NI, 1) lucs, o0 ds.

From Theorem 1, ¢ — [J(s, £)]| is convex for each s. Hence ¢ — f(#) is also
convex for u <t <v. But f(u) = JAICs, uMlags,u ds 18 the length of the
geodesic s — h(s, u) and therefore f(u) = dist(y(x), 8(«)). Similarly, fv) =
dist(y(v), 8(0)). Now for u <t <v, the value () = [¢IT(s, Ollags, ds is
the length of the curve s —> (s, t) joining y(¢) and 8(¢) and then we have
dist(y(v), 8(v)) < f(t). Convexity of dist(y(), 8(v)) follows and Theorem 2 is

proved.

CoroLLARY 2.1. For any fixed y € A the function f: AT R, flx)=
dist(x, ) is |convex in the geomeiric sense”, that is, each geodesic y(t) satisfies

Fr(0) < (1 = ) f(¥(0)) + #(v(D)-
In particular geodesic spheres are convex sets.
Proof. Take 8(¢) = y for all ¢ and apply Theorem 2.

CoroLLARY 2.2. For any ag, a;, by, and by in A* we have

n(a}/z(aal/zalaal/z)raﬁﬂ)l/z(b(l)/z(bal/zblbg 1/2)‘1,(1)/2)1/2 u

< lla?by ' “Nat/ 261" )
Proof. Take two geodesics y(t) and 3(z) and write them as
Y (1) = alf*(ai Vayay ) aif,
B(1) = bY(b7 Vbib ) b

where a, = y(0), a, = y(1), by = 8(0), b, = 6(1). Then for each 0 <t <1
we have, by convexity,

dist(y(t),8(¢)) < (1 — t)dist(ag, bo) + t dist(ay, by)

lin(x(5) 286y v(e) ")

< (1 — 1)) in{ag V2boag /?)| + tin(a;/%byar )|
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Next we apply this formula to the geodesics y(¢} and k8(t) where k > 0. By
choosing % large enough we can assume that )

y(6) (ks (1)) y(1) 2 > 1
ag '*(kby)ag'/? > 1

ar (kb )a; V2 > 1

and therefore using [|ln x|| = Inllx|| for x > 1 and canceling out k, the last
inequality for norms becomes

”‘y(t) _'/za(t)y(t) —-1/2 ” < llag 1/2b0a0—1/2"17r”a;i/zb]arl/z”r_

Notice that ¥(¢)™" is also a geodesic so that the last formuia gives also:

lv(e)' 25(e)y(6)?] < lal/2boal 21"~ lal/2b,al 2"

or equivalently

lv(2)' 282y 2| < Nai2bion = arr2prrye,

which is another way to write (9).

This inequality has many variations. For example, replacing a, by a? and b
by b? and using the definition of the geodesics, we get

(aoaq 'ala; ) a)

or using |z| = (zz%)1/2,

-1/2 _
bo(bi 555" bo) | < Hagbol "yt I

[ ao(agtata ] [bob5 6255172 < Naghyll ~"Hayb. 1.

As special cases of (9) we can also get [lab’all < Ila'lmllr and lla’t’]| < [lab||’
forany a,b € A" and 0 <¢ < 1,

ThEOREM 3 (see [3]). The exponential function in A% increases distances.

Proof. By invariance it suffices to show that the exponential function
increases distances at the identity 1 €. 4%, Consider two geodesics of the
form y(¢) = ¢'¥ and (¢) = ¢'*. Then according to Theorem 2 the function

F(1) = dist(y(1), 8(2)) =[lin(e*/2e e 1572 |

CO

is convex. Since f(0)
Taking limits we have

Observe next that |
0 < xy < x; uniformly
lim, . p,(x)=1Inx

lim l111
t—0

(the last inequality is |
we conclude that f(¢)

dist{exp (X ), exp (¢}

To finish the proof w
Then

%ln(e"x/ze"ye

)
g
™~
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is convex. Since f(0) = 0 this implies that f(£)/t < f()foreach 0 <t < L.
Taking limits we have lim, 4 f(¢)/¢ < f(1).

Observe next that In x can be approximated on any interval [x,, x,] with
0 < xo < x; uniformly in the C! sense by polynomials p,(x). In particular
lim, oo P(x) =Inx and lim, p.(x) = 1/x. Then

lim _}ln(eftX/ZetYe—tX/Z)
t—0

.o 1 — _
lim lim +p,(e X/ LgtYe1X/2)
n—x =0

. d
= lim Epn(e—:X/ZerYeéfX/Z) =Y—-X
H—>x =0

(the last inequality is justified below). Now from this equality and convexity
we conclude that f(¢) = ¢]Y — X|| and this means that

dist(exp,(1X), exp,(1V)) = tllY - X| foralla€eA* andall X,Y € TA,.

To finish the proof write the polynomials p, explicitly as pfx}=Lr, I,‘x" .
Then

d

Eln(eerjzerYe—rX/Z) ll=0

—rX/ZerYe—fX/Z)
=0

. d
- lim e

lim Zr",k %(eer/zerYe-tX/z)k
H— o= t=0

= lim Yr, (¥ = X)* = lim p(D(Y ~ X) = (Y = X).

As observed in [3] this property of the exponential is equivalent to Segal’s
inequality ([le**Y|| < |le¥e™]| for X,Y selfadjoint) which is therefore an-
other consequence of the convexity of the distance function in A™.
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1. INTRODUCTION

This is a study of the geometric sructure of the space @ of idempotent
elements of a C*-algebra. Particular attention is devoted to the way Q is
fibered over the space P of all selfadjont elements of Q.

Throughout A denotes a C*-algebra with identity represented as an
algebra of operators in a Hilbert space E. The set O inherits from A4 a
differentiable structure with a natural connection (see [2]), and the global
structure of  can be described as follows: the restriction of the exponential
map of Q to the normal bundle N (formed by the skewsymmetric tangent
vectors) of the immersion P @ is a difftomorphism from N onto Q (see
Section 4 below).

The resulting retraction n: ¢ — P is given by the polar decomposition of
the associated symmetries, and alternative characterizations of the fibers
Qp=n“(p) are presented. For instance, each pe P determines a non-
degenerate conjugate-bilincar symmetric form B, on the Hilbert space E
and the clements of @, are the “inertial decompositions” E=E, @ E_
where £, and E_ are B,-orthogonal subspaces, with B, positive definite
on E, and negative definite on E_. Tt is also natural to study the groups
U, of B,-upitary elements. The group U, operates by inner automor-
phisms on P with orbit ¢,. The stability subgroup U W={ueU, up=pu}

* Research supported in part by Consejo Nacional de Tnvestigaciones Cientificas y Técnicas
{CONICET), Argenlina.
59

0001-8708/93 $9.00

Copyright € 1993 by Academic Press, Inc.
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consists of the ye [/ » Which are also unitary in 4. The set Vi=U,n4,,
where A, denotes the set of positive elements of A, provides a section
to the fibration Up,=0Q,, u—upu='. Some geometric properties of the
embedding V,< U, are given in Theorem 5.2,

We also consider metric properties. A Finsler structure naturally related
to @ -5 Pis introduced in ¢ and the final part is devoted to the study of

hoc methods are developed to obtain the minimality of geodesics, whic
consider as the main result of this study (cl. [3] for a special case). ,

The paper is organized as follows. In Section2 we collect some
preliminary facts concerning the differential geometry of Q. In

In Section 4 we study the diffeomorphism N — Q. and the structure of
the B, -unitary group U, is studied in Section 5. The Finsler metric on o
is introduced in Section 6, Several basic properties of the tangent map of z
are studied in Section 7, especially those related to the metric. In Section 8
we define a “reduction map”™ which is the key for the proof of the minj-
mality of the length of geodesics in Q, presented in Section 9.

The bibliography on idempotents and projectors in Banach and
C*-algebras is very extensive. The classical book of Rickart [13] contains
the references until 1960, The topological and differentia

The authors are grateful to
The Instituto Argentino de Matematica for the opportunity to present these

results in a series of lectures in July 1988, and we also thank Mrs. Leticia
Scoccia for typing, at that time, the final draft of this paper.

2. PRELIMINARY Facrs

Given a manifold M we denote T'_M the tangent space at x e M. Recall
[3] that T . € may be identified with the setofl Xe 4 satisfying ¢ X + Xq = X ;
for pe P we have T,P={XeT,Q: X*=X}. For pe P denote N,cT,0
the skewsymmetric part of 1,0, or N,={xe T,0:X*= X} so that
T.0=T,P® N,. We refer to the resulting vector bundle ¥ — p a5 the
rorinal bundle of the immersion P < o

A connection V on (2 is defined by

1—0),

dY
_ H( (10

where
is the |
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where X = (dy/dt)(0)e T,Q, Y is a local tangent field near g, and [I: A — 4
is the map Ha=(1—gq)ag + qa(l —gq). For properties of this connection
sec [3]. The geodesics of @ starting at ¢ with velocity XeT,Q have
the form y(t)ze’fqe")" where ¥=1[X,q¢] (=Xg—gX). Therefore the
exponential map of Q is given by Exp,(X)= e*ge—*. In Section 6 we use
the “transport curve” I'(¢) of a curve y(¢) in Q. It is defined as the solution
of I'(1)=[(¢), y(1)] I'(r) with I'(0)=1 (see [3,10]).

3. PoLAR DECOMPOSITION

The polar decomposition provides a map from the group G of units of
A onto the product G, x U of the positive units &, and the unitary group
U of 4. Operating on the symmetries ¢ =2g — 1 associated to idempotents
g we can use the polar decomposition to express () as a “product.” Here
are the details.

3.1. PROPOSITION. Suppose qe( and let e=1’p be the polar decom-
position (A>0 and p unitary) of £=2q— 1. Denote p= (p+1)/2. Then:

(1) p*=1 and p is an orthogonal projection;
(2) Ap=pi~ " and therefore q=Api~—".

Proof. Write the polar decomposition of & as & = up where u=4? and 4
are positive and p is unitary. Then 1=¢> = upup so that ppp=p~ ! Taking
adjoints we get up~'z= p. Hence ypu’ = plppp)p=p, or pp’p ' =p~"
Taking square roots gives pup ~'=p ' so that pup ™ l=pt=pp~lu =
pe ' =pe=pup and cancelling pp we get p ' =p, which proves (1). Also
from pup =4, and using p? =1 we get pu~'p = p and taking square roots
pi~1p =1, which proves (2).

In the sequel we use n: Q — P to denote the map defined by =(g)=p,
where e=2¢— 1, p=2p—1 and &= A2%p is the polar decomposition of £ as
in Proposition 3.1. The fiber =~ '(g) will be denoted .

_Each pe P determines a conjugate-bilinear symmetric form B, on E
defined by B,(x, y)={px,y) for all x,y in E. Observe that B, is non-
degenerate because p is invertible, and that 1is B, -unitary, since B,(Ax, y) =
(phx,yy = A px, yd> = {px, Ay = By(x, A~ 'y). Given an arbitrary
non-degenerate conjugate-bilinear symmetric form B, a decomposition of Bis
an idempotent ¢ € Q such that:

(1) B is positive definite on the range of q and negative definite on the

kernel of ¢;
(2) g is B-symmetric: B(gx, y)= B(x, gy) for all x,y in E.
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The set of all decompositions of B is denoted %(B). A natural map iden-
tifies the fiber Q,=n~'(p) with the decompositions of ,. More precisely:

3.2. ProPOSITION, For ge Q and se P with e=2q— 1 and { =25 — 1 the
Sollowing conditions are equivalent;

(1) qe2(B,);
(2) Le>0;

(3} =n(g)=s
(4) g=AasA ™! where 1 is positive and B,-unitary.

Proof. (1})=(2) because for xe F we can write x=x,+x, with
£xy=Xxo and ex, = —x,. Then, by B-symmetry of ¢ we get B,(x,, x,)=0
and therefore B (ex, x)= B{x,, xo) — B,(x,,x,)>0 when x#0. But
B (ex, x)= {{ex, x) so {&>0.

(2)=(1). The proof that (2)= (1) is similar.

(2)=(3). Let §=(e>0. Then e ={f=f"'{ so by definition s = n(qg).

(3) = (4) follows from Propositien 3.1.

(4)=(2), since A*=2 and A is B, -unitary, whence {17 '=Ai{ so
e=AA "=l and {e=21"2>0.

CoROLLARY. Q,=9(B,)= {ApA~": A>0and B,-unitary).

Fix pe P, abbreviate B=B,, and denote a? the B-adjoint of acA:
B(ax, y)= B(x, a®y) for all x, y € E (since a® = pa*p it is clear that a®e 4).
Given ge (0, write ¢=ApA~' as in 3.2.4 and set & = Ap. Then, observing
that k#=pi~!', we get g=kk® It follows that k is a partial isometry
for B, being B-isometric (and equal to 1) on im(p) and zero on ker(p). In
terms of the decomposition E=im(p)@ker(p) we can write X in matrix
form as k=({§) with a:im(p)—im(p) positive (since 1>0) and

b:im(p)—ker(p). Since B={, > on im(p) and B= — ¢, > on ker(p) we

get
kﬁ_(a 0)3 a —b*
“\s 0/ "\o o /)

Furthermore, the fact that

q=kk”=(a 0\/a —b* _ a’  —ab*
b 0/\0 0 ba —bb*

is idempotent yield
a —
0

This means that «

3.4, PROPOSITION
b:im(p)— ker(p)
Fepresentation

in terms of the dec

We close this se
that Ap=(¢J) and

for some ¢ > 0. N
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is idempotent yields k%k = p, or
a —b¥\fa 0 a—b* 0 10
(0 0 Xb 0)=( 0 0)=(0 0):"'
This means that a=./1+ &*h. We can summarize these facts as follows:

3.4. PROPOSITION. The fiber @, can be parametrized by the operalors
brim(p) — ker(p)} (equivalently, be (1 —p) Ap), by means of the mairix

representation
__(a® —ab*
T=\ba —bb

in terms of the decomposition E=1im(p) @ ker(p), where a= /1 + b*b.

We close this section by giving the matrix form of the generic 4. Notice
that Ap= (29} and A=A% >0 imply that

a b*
,1=(b c) (3.5)

for some ¢>>0. Now, the fact that 4 is B,-unitary (3.2.4) gives

L[ a —b*
=0 7)) (36)

Therefore

10 a’—b*h —ab*+b*c
CAP= a1 = ,
(0 1) (ba—cb bb* + ¢ )

so that A has the form (3.5), with b:im(p)— ker(p) arbitrary in A and

a, ¢ the positive roots a = /1 +b*b, ¢ =./1 + bb* (the conditions —ab* +

b*c¢ =0 and ba— cb=0 are then automatic).

4. THE STRUCTURE OF

This section considers the diffeomorphism from N onto ¢ menfioned in
the Introduction.

607/101/1-5
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3 1.
&

C”"_—? — ‘CD

<> l
FIGURE 1

4.1. THEOREM. Let @: N — Q be the restriction to N of the exponential
map of Q, so that ®(p, X)=e*pe=* where for Xe N, we set X=[X, p].
Then

(1) @ is a diffeomorphism from N onto (.
(2) for each pe P we have Q,= ®(N,) (see Fig. 1).

Proof. Setagaine=2¢—1, p=n{q), p=2p—1, and let Y=1log 1 where
2 has the same meaning as in Proposition 3.1. Then Y*= Y and pA=1""p
(see 3.1.2) implies p log A= —(log A)p, whence ¥Y=logAe T,P and there-
fore X=[Y,pleN,. Clearly by definition @(p, X}=4¢ and this provides
the inverse g — (n(q), [log 4, n{g)]) of &, which proves (1).

To obtain (2) we first observe that the map X — e[*71 js a bijection from
N, onto the set of @ € A which are positive and B, -unitary. Routine calcula-
tions give that e!*#) is indeed of this type. Conversely, given such an a
consider loga. Since a®=pap=a—"' we get p(loga)p= —loge whence
log ae TQ, and since log a is selfadjoint, the element X =[log e, p] is in
N,. This settles the claim. But ¢(N,) coincides with the set {ApA='i=0
and B,-unitary} and (2) follows using Proposition 3.2. This concludes the
proof of 4.1.

Given a non-degenerate form B we call the Grassmanign of B
the submanifold Gr(B) of @ consisting of all B-symmetric ge (.
Similarly Gr(B, #)= Gr(B)n P consists of the ¢ which are simuitaneously
B-symmetric and *-symmetric. The tangent spaces are formed by the
B-symmetric, and the B- and x-symmetric elements, respectively, of TQ.
The normal bundle of the immersion Gr(B, *) — Gr(B) is defined as N{(B) =
Nn TGr(B).

4.2. THEOREM. Let B= B, where pc P is a fixed element. Then the map
@ of 4.1 induces a diffeomorphism from N(B) onto Gr(B).

Proof. In view «
&~4Gr(B)) < N(B).
From s =g, X%=X
e FsPe® = @(s, X).
Proposition 3.1, ther
e=e"=(1"Y)F a2 |
®~Y{g)e N(B) as cl:
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Proof. In view of 4.1 it suffices to show that &(N(B))c Gr(B) and
d=N(Gr(B))c=N(B). Denote p=2p—1 and let seGr(B, =), Xe N(B),.
From s?=s, X?=X, and X=[X, s] we get ¥7= - X so that &(s, X)? =
e~ ®sBe® — (s, X). Conversely if ¢gfF=g and e=2g—1=1% as in
Proposition 3.1, then e =¢ ' = ¢® is B-unitary. From £ = 1%¢ = 01 > we get
e=e"=(17?)? % But (A7%)?=122"21>0 and (6%)*6®= —log 1 and so
@~ '(g) e N(B) as claimed.

4.3. COROLLARY. (1} P is a deformation retract of (;
(2) Gr(BYn P is a deformation retract of Gr(B).

5. Tue UNiTARY GROUP OF B,

Concerning the structure of the “hyperbolic” unitary group we present
the following two theorems,

Suppose pe P is fixed and let p=2p—1 and B=B,. Denote by U,=
U(B) the group of B-unitary elements of 4, ie, U,={ucA:u"=u""'}. U,
operates by inner automorphism on @, and we denote x: U, — , the map
r(u)=upu—'. We use U for the fiber U =17 "(p) and V, for the set of

elements ve U, which are positive v* = > 0. Observe that U’ consists of

the elements u, that are both unitary and B-unitary. The Lie algebra & of
U, consists of the Xe A which are B-skewsymmetric; it splits as % =
H® F, where Hy={Xe ¥ : Xp=pX}and ¥ ={Xe¥: Xp=—pX}. Of
course, % =T,U and & =T, V,. The proof of the following result is
straightforward.

5.1. Tarorem. (1) Let m:V,x U = U, denote the multiplication
map m(v, ug) =vig, pri: V,x UV, the first projection and v:V, > Q,
the restriction of x to V,. Then m and v are diffeomorphisms and the follow-
ing diagram commutes

0)__m
V,x U "y,

Pr K

VF - Qp

Moreover the inverse of m is the polar decomposition.
(2) The map X — e* is a diffeormorphism from %, onto V,,.

p

A feeling for the way ¥V, bends in U, can be obtained from the following
estimate,
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5.2. THEOREM. For 0#£ZeT,V, decompose v='Z=W,+ W, according
to & =%,0H. Then |Wy| <[|W,].

Proof. Set A=(v""}"?>0 and X=1""(v"'Z)A=A4ZA Clearly pip=

A7 because pvp=v"" so AF=1"'; also Z¥=—v"'Zv "= —A2Z}7
because ZeT,V,, and then X?=(1ZA)’=17Z%°1"= —X. Since also

X*=Xweget XeT V,=%,. Writing matrix decompositions with respect
to p (use 3.5. and 3.6)

L _fa b* o {a —b*
X‘(n 0)’ 1_(1) ) g ‘(—b )

so that XA~ ' = W,+ W, with
* _ * 0
W0=(b na—an*h ,
0 bn*e— enb*
_ 0 an*c— b*pb*
Y \ena—bn*b 0 |

The result follows from the inequality |b*na—an*b| < |cna— by*b|,
a consequence of inequality (2) in [2].

6. THE FINSLER METRIC ON (0

We begin with the definition:

6.1. DEFINITION.  The norm [ X|, on the tangent space 7,0 is defined
by |X],= A~ 'X4| where A is the element of (3.1); thus Q with | ||, is a
Finsler space.

The norm {| ||, is actually a natural norm on all of A. In fact, for ge @,
g =ApA~" we can define an inner product {x, y),= (A7 'x, A"'y) on E by
transporting with A the ordinary inner product. Equivalently

%, ¥74=Bylgx, qp)— B, (1 —g)x, (1—q) y).
Then for each ae 4 the {, > -operator norm of a coincides with |||, ie.,
lal,=12""all =sup{<{ax, ax)*: {x, x> 2 =1}.
We abbreviate |x|, = (x, x> 1> and when no ambiguity results we use a*
for the {, ),-adjoint of ae 4, or {ax,y),= (x,a”y),. This translates
into a* = 22a*1 " ? = epa*pe notation of 3.1).

Notice that the Finsler metric is U,-invariant in the sense that |ux|, =
x|, for g=uru=', ue l,, g, reQ,, and xeE. '
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7. THE TANGENT MaP OF n: Q> P

In order to describe the tangent map of n: @ — P we begin with a few
calculations. Suppose that ge @, p=n(g), Ze T,Q, and Y= T,mMZ)eT,P.
Suppose further that 4(¢) is a curve in Q0 with 6Z(0)=g, 8(0)=Z, and
denote y(t)=mn(8(?)} so that y(0)=p and y(0)=1Y. According to 3.3 there
is a curve A(2) with A(f)e V., and 8(z) = A(¢) y(1) A#)~". Also let I'(z) be
the transport curve of y() (see Section 2) and define u(1y=I'(¢) ' A(t) I(1),
so u(t)e V, and #(0) = 1(0); this follows from the invariance of B, i¢.,
B(_s.ps_ll(x,y)zB,,(s*‘x,s"‘y) for any s unitary, hence U gp-1y=5U,s~"
and V,,-1,=5V,s " Differentiating 4 = Ay i tand u=TA " at t=0 we
get

Z=AYA '+ A[A" U, pl At (7.1)
A U=u"g—u [ [, pll (7.2)

With p=2p—1 and using [ ¥, p]=Yp=—pY, pu=u""'p we obtain
w [, [Vop]]=Yp—u"Ypu=(Y—u 'Yu ')p.
Then, setting w=u""[u, [Y, p]1] yields

[w, p1=4[w, p1=50(Y —u~'Yu"")p, p]
=YY —u "YuT'—pY¥p+pu'Yu 'p)
=Y—L1w "+uYu)

and then from (7.1) and (7.2),

Z=ulua, plu " +u{l(e ' Yu '+ u¥u)}u".

74. PROPOSITION. Let Z=Z,+Z, be the decomposition of Z as a sum
of a #-symmetric element Z  and a # -skewsymmetric element Z,,. Then

Z, =ul{s(u "Yu~'+u¥u)}u~'
--1

Z,=ulu i, plu

Proof. Since u is B,-unitary, as observed above, in view of 7.3 it suffices
to show that 4(u~'Yu '+ u¥u) is +-symmetric (which is obvious) and that
[~ '%, p] is skewsymmetric. For this, write [#~'d, p1* = pi ' —m'p
and use u~ lp = —puu ' (which follows differentiating u(t)p = pu(f) ')

The complete description of the tangent map of n: Q — P is given by the
following result.
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7.5. THEOREM. (1) At each pe P the tangent map T,n:T,0— T,Pis
given by T,n(W)=W,, the w-symmetric part of W< 7,0
(2) At each geQ, q=ApA~' with XeV,, the following diagram
commuies

N
TqQ—"> T,0

Tqﬂl J Tym

TpPT’ TP
where N,(Z) = A7'ZA, K(Y) = (12)(A7'Y2~' + AYR), and T,m is
described in (1). -

(3) N, is an isometry of T,Q with the norm | |, onto T,Q with the
ordinary norm (=| ||,) and K,: T, P — T, P iy invertible.

Proof.  Assume first g=p in Proposition 74; then 1=1 and so Z,=Y,
which proves (1). By invatiance of the ¢, >, product, N, is an isometry
and preserves symmetric and skewsymmetric parts. Therefore (7.3} and
(7.4) yield K (T,n{(Z))= K (Y}=symmetric part of 1~ 'Z1=T,n(N(Z)),
which proves (2). The invertibility of X, is shown in the proof of the next
theorem.

We close this section with the following metric property of T,.

7.6. THEOREM. The tangent map of the projection m: () — P does not
increase normis.

Proof.  According to 7.5 it suffices to show that X, is invertible and that
IE (¥} = | Y]l. Observe that the commutativity of the above diagram
implies that K, is onto. So only the last estimate remains to be proven.
Represent 4, 17!, and Y (notation of 7.4) in matrix form with respect to

p=mnlg),
* __ k%
l=(a b)’ oo b ’ Ve 0 #* '
b ¢ - ¢ n 0
Then K (¥Y)=({ %) where { = cna + by*b (this is the same calculation used

in the proof of 5.2). Since || Y]f =||n| and |K,(¥)| = || the resuit follows
from |#| < llena + bn*b|l, and this is inequality (1) in [2].

8. A RepucTION PROCESS

If H <im(p) is given (for a fixed pe P), a projection p, in H, @ ker(p)
with im(p,)=H, and ker(p,)=ker(p) results and a “reduction map”

D(B,) = D(B,) ca
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@(B,) »9(B,,) can be defined. A detailed study of this situation in an
abstract setting is contained in a forthcoming paper [4]. For our present
needs only the following special Tesults about operators in E and subspaces
of E suffice.

Let us denote, for simplicity: H —im(p), H,=orthogonal complement of
H, in H, Hy=ker(p), and K=H,® H,. Also denote B, the restriction of
Bto K.

8.1. DepNTION.  For ge @, define g, to be the projection in K charac-
terized by:

(1) gy is B,-symmetric, and
(2) im(gx)=im(g)n K

To obtain an ecxpression go=hh™ for g, we start with g=kk®
k=(*9) as in Section 3 and denote i: H,— H the canonical injection

H,> H @®H,, and f=ba"'i;: H, — H,. Observe that
Iba= 112 = I(ba=")* (ba~ ")l = lla~'b*ba ™|
= lla=2b*b| = (L + b*b) ™" b*b|
=(L+[1b*B1) " 16*b] <1

so that || f]| < 1 and we can also define

a=(1—f*) "2 H - H,, f=jfo:H — H,.

Then 1+ f*B=1+afYfa=1+a* = L+ f(L—%) "= (1 -f*) " =
o,
Finally, let h=(%%): K- K.

8.2. PROPOSITION. With the above notations ¢, = hh®.

Proof. First observe that A% = (2 =£") and therelore, from o® =1+ p*B,
we get #%th =p,. Hence, using ip, = h we obtain (hh™)” = hh™. This shows
that #2® is a B,-symmetric projection in K. To obtain g, = k™ it suffices
to prove that im(kk™) =im(g) n K=im(qx). Now im(qg) coincides with the
graph of the map ba~': H — H and therefore im{g) N K coincides with the
graph of f: H, — H,. It remains to show that the graph of f is the set of
pairs (ax,, fx,), x,€H,. But, by definition, B=fu" so (ax,, fx)=
(x}, fx}) for x}=ax,, and we are done.

Thus ¢+ ¢ can be interpreted as a smooth map S: 0, — @, (K), where
Q,(K) is the space of decompositions of B, in the algebra #(K) of all
bounded linear operators in K. Here is the main property of S:
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8.3. THEOREM. The tangent map of S decreases norms.

Before starting the proof some preliminary remarks are in order.
The group U{(B,) (resp., U,) of B -unitary operators (resp., B-unitary
operators) acts transitively and isometrically on Q,(K) (resp, Q,) by
conjugation. Moreover the inclusion U(B,}— U,u—igivenby i=udid
for the decomposition E= K@ H,, is compatible with §, in the sense that
ATHS) A1 =S((A;) ' qd,) for all 4, e U(B,). Therefore we may assume
without loss of generality that Sg=gq,=p,.

Next we determine the general form of all ge ¢, such that S¢=p,. For
this purpose (and also for the remainder of this paper) we use matrix
representation in the decompossition E=H, @ H,® H,. Let Ae V, satisfy
g=Apl ', and let

diy 412 43
g=kk"= 421 G2 g
T F12 g3

according to 3.5. Since Sg=p,, we get gx,=x, for all x,e H,, which
implies ¢,, =1, q,, =0, g, = 0. But, using 3.4 and the B-symmetry

a2=(q” 912)_(] 0 )

421 gz 0 g

Then, using ¢,, =0, we obtain (0 ¢.,)=bha= (h, byg2,), which proves that
b, =0,

1 0
a=( ), b=(0 b,)
0 g

and this justifies the following

84. LeMMA.  Let g€ Q,. Then Sq=p, if and only if g=Jpi—" with

1 0 0
A=[0 =z 4%, (8.4.1)
0 d ¢

where z= /1 +d*d and c=. /1 + dd* for some d: H,— H,. Therefore

10 0
g=|0 z* —zd*|. (8.4.2)
0 dz —dd*
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Proof of Theorem 8.3, TIn view of the preceding remarks, it suffices to
show that for Xe T,0,, with Sg=p,, we have

(T, SYX) < |1 X1l

Suppose that w(t) is a curve in @, with g=w(0) and X=wb(0)e T,Q,.
Then Sw(f) = pu(t) p,u(t) ! for certain u(r)e V(B,). Set

d
Xi= g (@0 g ™)

0

X2=X_X1>

so that (T,8)(X,)=(T,S)X)— (T,S)X,)=0 because S(j(t}g(t)~")=
() pyp(t) "= Se(r). Since ||X],=|I27'X2| we only have to calculate
A7 XA=2"'X, A+ 17X, A For that we use X, =[(0), ¢] and set

&) 0 (2)*
in=[ 0 1 o0

) 0 v()
50 that
0 {0y dz  —1(0)* 2
X =\ zd*1(0) 0 zd *v(0)
fasa ()] 10ydz  [dd*, w(0)]
and
0 0 —t{0)* ¢
X A=[A7'H0)A, p] = 0 0 d*v(0)c

ci(0) (0)d O

On the other hand using (8.4.2) and the fact that 1 'X,4eT,0Q,, we
conclude that A !X, A has the form

0 0 0
A7 x,A=0 0 —0O*
06 0
Therefore
0 0 —i(M* ¢
A7lXA=| 0 0 d*v(0)c— O*

ct(0) cv(0)yd+0 0
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Denote ¥=(T,S)(X). Then

d
=5 () prp(t)™'

= [0), p, 1= (f(g)* _f(()O)*)

and finally | ¥ = {£(0).
Hence,

d
=— Sw(#
Y 7 S )\

=0 r=0

1A~ ‘Xl" max{ll(cr(o) e¥(0)d+ ), ”( T(O) 9*)}
= ||let(0}] = |10

(the last inequality holds because ¢=./1+ bb* = 1). Thus, (T, SHX)|| <
|A~'XA] = [ X|l,, which proves Theorem 8.3.

9. GEODESICS IN

This section deals with geodesics in (. Throughout lengths of curves in
Q are calculated according to the metric described in Section 6. Our first
result is the following minimality theorem.

9.1. THEOREM. Let p,, p, € P at (geodesic) distance d(py, py)<m. Then
there is a unique geodesic in P joining py to p,, it has length d(po, p.} and
it is shorter than any other curve in ( joining po and p,.

Proof. In view of [11] it suffices to show that for any curve in 0
joining p, and p, there is a shorter curve in P with the same endpoints. But
this is obvious because of Theorem 7.6 above.

We turn next to geodesics joining points in the same fiber 0,:

9.2, THEOREM. Any pair of elements in a fiber Q, can be joined by a
geodesic of Q fully contained in Q,. Such a geodesic Is unique up 10
reparametrization.

Proof. Let g,5€Q, and suppose first that s=p. Then, @ being
the exponential map at s, the statement follows from 4.1. For an arbitrary
pair ¢, s€ @,, endow E with the inner product {,>,. This produces the
corresponding constructions and concepts: the space P({,>) of
{, >,-orthogonal projections, the adjoint a* of an element a€ 4, the new
polar decomposition, and the resulting fibers Q,((, »,} through each

weP({, >,). Clear
Qr(< L] >s): Qn[.r): !
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weP({, >,}. Clearly se P({, »,). Less obvious is the [ollowing identity:
Q.({, >5)= Q) which can be proved using a* = {pa*p{ and {x, y>,=
{plx,y>, where p=2n(s)—1 and { =25 — 1. This reduces the general case
to the previous one and the theorem is proved.

Finally we come to our main result:

9.3. THEOREM. let peP and qeQ, and let y be the unigque geodesic
contained in (), joining p and q. Then y has minimal length among all curves
in Q joining p and q.

We set some notation before describing the strategy of the proof. Denote
by y{t). 0<<¢<1, the unique geodesic joining p and ¢ in Q,, so y(t)=
e“pe™ " where X=7(0)e T,Q, and X=T1X, p] (for this use 9.2 and the
explicit formulas of Section 2}. From ¥* =¥ we get ¥2220 and since ¥
commutes with p we can find (changing the representation space if
necessary) an element s e E with ph=h, |h| =1, X?h= | X?|| h. Define next
H,=one dimensional subspace generated by A, and all the associated
objects described in Section 8, whose notation we use here unchanged. The
minimality of y will result from the following three facts.

9.4. PROPOSITION.  For any ge Q, and any curve in Q of length L joining
p and q there is a curve fully contained in Q, also joining p and q whose
length does not exceed L.

9.5. PROPOSITION.  The map S: Q, — Q,(E) of Section 8 pushes curves in
Q, onto eurves in Q, (E) without increasing their lengths and the image of
the geodesic v is a geodesic of the same length.

9.6. PROPOSITION.  (,(E) is a Riemannian space with constant negative
curvature and therefore its geodesics are minimal.

FIGURE 2
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Proof of 94. Denote by u(t), 0<¢<1, u(0)=p, u(1l)=gq, the given
curve of length L= [§[li().q dr. Let v(z) be the projected curve in P,
v{t)=n(u()), and I(t) the transport curve ofv, ie, I'=[d,v]I for
0<t<1 and I'(0}=1, so that I'(¢) is unitary (because [, y] is skewsym-
metric) and T(¢) pI (1) ' =v(z). We claim that r(t)=I "'(f)u(z) I'(z) is
contained in @, and that its length is <L (see Fig. 2).

Since conjugation by unitary elements commutes with (polar decom-
position, hence with) =:Q —» P, we get n(r(£))=1()"" m(u(s)) I'(t)=
I'(t) " to(t) F(t)=p for all ¢ and therefore #(t)e@,. To show that length
does not increase we use the following observation: for fixed ¢, if 4(f)=
Z+ W is the decomposition of #(r) in its symmetric part Z and its skew-
symmetric part W with respect to the u(¢)-inner product {, »,,, then

() iy 2 | Wy (9.71)
” W”u(f) = ||r(t)|| r(i)* (9.7ii)

Of course (9.7i) is obvious: W=1(z—#u") so

W 0 agry < 3l ey + 18 agy) = Nl -
The second estimate will follow from explicit formulas for Z and W. First,

F=T"'a—IT ut+ul I
=TI 'a—[[6v], «])1.
Therefore u—[[5, v], u] is {, >, -skewsymmetric because it is the
conjugate by the unitary I" of the (, ),,,-skewsymmetric tangent vector

F(t)e T,;,,Q,. On the other hand, using ¢=2u —1, p=2v — 1, and denoting
temporarily Y=[[4, v], #] we have

Y¥=[u* [v,6]]=L[3 0], u*]
pY*p=[pld, v]p,pu*p]

and, since pv=rvp=v, po= —1op, and pu*p=u, we can simplily the last
formula:

pY*p=[—[4 0] u]=—7Y.

But Ye T,,,Q so ¢Y= — Ye¢ and therefore the u(¢+)-adjoint ¥* of ¥ satisfies

Y* =gp¥*pe= —¢g¥e=Y.

In other words, ¥
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In other words, Y= [[#, v], u] is u(¢}-symmetric, which means
W=u—[[s,v] ul,
Z=[[s 0], ul

Now F=I"—"WT and the preservation of local norms under conjugation
by unitary elements {Section 6) prove (9.7i1).

The proof of Proposition 9.4 is completed as follows. Notice that r(),
0=<t<1, lies on the fiber @, and has length(r) <length(x), by (9.71) and
(9.7ii). But then the curve I' (1) r(t) I{1)"" (which has the same length
as r and also lies in Q,) satisfies the required conditions because
(1) r(O)1"(1)‘1=1'“(1)pF(1)*l =p and F(1)r(1) (1)~'=r(1) !
r(1y 1(1) F(1) ' =u(l)=4.

Proof of 9.5. In view of 8.3 only the statement about the geodesic needs
prool. Write

0O 0 m*
¥=10 0 a*
m n 0

for m: H, » H, and n: H, - H,. Therefore ¥? has the form

m*m x =

¥=| n*m » =
0 *  *
and X% =|X|*k implies m*mh=|%X?| h and n*mh=0, ie, n*m=0.
Furthermore |m] = [\ X]. Let us decompose ¥ = R T where
0 0 m* o0 0 O
R=|10 0 0 T=10 0 »n*
m 0 0 0 n O

Then RT=TR=0, and therefore e~ ‘%y(t)e'® =e'"pe~'T. Observe that
R=R*= —R% T=T*=—T? sothate', e®eV,. Also, p, T=Tp, (=0)
and then im(eTpe ) >im(e"p e ~"}y=im(p,)= H,. Since H, is a maxi-
mal positive subspace for B in K and ¢"pe~"TeQ,, we conclude that
im(eTpe~")n K=H,. On the other hand, Rp,=p,R (=0) so that
e®?, = p,e'® also and therefore ¢'® Jeaves kernel and image of p, invariant.
Thus e®*K= K and finally

erRH]e—rR :erR(im(eerefrT) I K) eer

=im(eFpe "F)n K.
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But e"®pe™'® is B,-symmetric and therefore- S(y(z)) =e'Tp,e='T (where
Y=[R|g, p,]) is a geodesic. The length of S(y(¢)) is || ¥]| = |m| = || X]|, and
9.5 foliows.

Proof of 9.6. Intreduce in Q,(K) the Riemannian structure given by
(X, Y>={Xk, Yk}, for X, YeT,Q, (K) and keim(p,) with |k[;=1. The
connection of @, (K) is the Levi-Civita connection of this metric. On the
other hand it is clear that |X|,= {X, X>"2 It only remains to calculate
the sectional curvature of Q, (K). For this purpose let V, W be tangent
vectors at ge@,(K) and write their matrix representations in the
decomposition K=H, ® H,

0 —v* 0 —w?*
=i o ) )
Wc assume that ¥ and W are orthogonai for ¢, ) in T,0,(K).
The curvature of Q, (K) is given by R(X, )Z=[[X, Y], Z] for X, ¥,

ZeT,Q,(K), where [X, Y]=XY— YX as operators (see [3]).
Accordingly,

R(W, VYV = (2 _g#)

with y= —wo* v+ 2ow* 0 — w*w, so
{(R(W, VYV)k= —ww¥ok + 2ow* ok — vo*whk = —wk
because v*v=1, w*»=0, v*w =0 by orthonormality. Hence
CR(W, VIV, W= ( ~wh, wky, = —1.

This concludes the proof of 9.6.
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The set A* of positive invertible elements of a C*-algebra has a natural structure of reductive
homogeneous manifold with a Finsler metric, Because pairs of points can be joined by uniquely
determined geodesics and geodesics are “short” curves, there is 2 natural notion of convexity:
€ = A is convex if the geodesic segment joining a, b € C is contained in €. We show that this
notion is related to the classical convexity of real and operator valued functions. Several results
about convexity are proved in this paper. The expressions of these results are closely related to
the operator means of Kubo and Ando, in particular to the geometric mean of Pusz and
Woronowicz, and they produce several norm estimations and operator inequalities.

Introduction

Let A be a C*-aigebra with identity. In a series of papers the authors have studied
geometrical aspects of several subsets of 4 or sets related to A: the set O of all
idempotents of A4, the set g, of all n-tuples of idempotents of which are pairwise
orthogonal and decompose the identity, the set G° of ali selfadjoint invertible elements
of A, the set A™ of all positive elements of G*, etc. (see [4]-[12]). As a common feature,
the group G of invertible ¢lements of A operates on these sets defining on them
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194 G. CORACH, H. PORTA and L. RECHT

homogeneous spaces or, more generally, discrete unions of such spaces. Each of these
manifolds carries a natural connection with its corresponding exponential map and a
natural Finsler structure, i.e. a natural norm on each tangent space. Several results
relating the differential geometry with the metric structure, which are well known in
Riemannian geometry, have been proved in this Finslerian context. In each case, the
result depends on an operator norm inequality. Let us explain this assertion with some
examples.

Example 1, Let O be the set of all elements & of 4 such that & = 1 and P the set
of all selfadjoint elements of Q. For each & € A its unitary part (in the polar decomposi-
tion), denoted =(g), belongs to P ([6], Sec. 3). The map =n: Q — P is differentiable so
that we can consider its tangent map (TQ), — (T P),. It turns out that this tangent
map does not increase norms, if the norm (the Finsler structure) is given by | X||, =
|41 X A| for each X € (TQ),, where ¢ = A?p, A positive and p unitary (see [6], Sec. 7).
What is relevant for this paper is that this result depends on the inequality ||»] <
llena + bn*b|, for all g, b e A, a = (1 + b*b)*? and ¢ = (t + bb*}*? (see [5]).

Example 2. Let G* be the set of all selfadjoint invertible elements of A, As in the
preceding example, given a € G* its unitary part z(a) belongs to P. A natural Finsler
structure can be defined in G* by | X ||, = A7 X172, if a = Axn(a), with 1 positive,
is the polar decomposition of g and X belongs to (TG"),. The fact that the tangent map
(Tr), : (TG)y — (T P)py does not increase norms depends, again, on a norm inequality:
ISTS™! 4+ S7'TS| = 2||T|, valid for every S, T & L{H), H a Hilbert space, S invertibie
and selfadjoint (see [8], [9]).

Example3. Let A" bethe set of all positive invertible elements of A. As a connected
component of the space G* considered before, A* carries a natural structure of Finsler
manifold. The fact that the exponential map exp, : (TA"), - A" increases distances
(see Sec. 1 below) is equivalent to Segal’s inequality |e* *Y|| < |e¥2e¥e*?||, valid for
all selfadjoint X, Y (see [10]).

In this paper we continue the study of the Finsler properties of A*. A* has a natural
connection for which the geodesics can be explicitly determined. Moreover, because
every two points a, b € A* can be joined by a unique geodesic y it is natural to call
convex a subset C of A" such that for every a, b € C the geodesic segment joining them
is contained in C. The main theme of this paper is that this geometric notion of
convexity is deeply related to the classical convexity of certain operator valued
functions. To be more precise we need to recall the following property of A*: defining
the length of a differentiable curve by means of the Finsler norm, it can be shown that,
for every a, b € A" the geodesic y is the shortest curve joining them (see [9]) so that
we get a complete metric on A* by putting d(a, b) = length of y. The convexity of the
balls B = {x e A* :d(a,x) < «} can be proved by showing that the functions f(t) =
(x"2yx~'2)* are convex (x,y € A"). Analogously, {x € A" : ¢(x) < 1} (where ¢ is a
positive lincar map) is a convex subset of A",

The main result of the paper is that A* has the following property, which in
Riemannian geometry is equivalent to the nonpositiveness of the sectional curvature
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(see [3]): for s € [0, 1] let p,: A™ — A™ be defined by p,(x) = exp,(sexp, Yx)) for a fixed
ae A*); then d(px), p(y)) <s-d(x,y) for all x, ye A". This convexity property
depends on the norm inequality |[log(a~2b%a *?)| < s|log(a”*?ba"?)||, which is
proved here.

All the geometric notions have expressions closely related to some operator means
in the sense of Kubo-Ando [21]. Each result mentioned above can be translated to
the language of operator means producing an operator inequality; for instance, Segal’s
inequality gives a lower bound for the relative entropy studied by J. I Fujii and E.
Kamei [15].

The paper is divided into three sections. Section 1 contains the description of the
geometry of A*. Section 2 contains the convexity results mentioned above. The
relationship with the operator means is described in Sec. 3.
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(von Neumann algebra case), preprint.

1. Basic Facts and Inequalities

Let A be a C*-algebra with identity, A* the real subspace of selfadjoint elements of
A, A* the set of all positive invertible elements of A and G the group of invertibie
elements of A. We describe briefly the differentiable structure of A* {for details, see [9])-

Because A is an open subset of A%, it carries a natural structure of (real) differ-
entiable manifold and its tangent space (TA*), (a e A*) can be identified to A" The
group G acts on A* by L,a={g*)ag™ (g€ G,ae A™). The action is transitive
because every a € A* can be expressed as L,-.»1. Forafixedae At, themapn,:G—
A* defined by =,(g) = L,a (g € G} is a principal fibre bundle with structural group
U,={ueG:n(u)=a} = {ueG:u*au=a}.Sct W, = {seG:as = s*a} and, in gen-
eral, W, = gW, for g € G. An easy computation shows that W, = Wuforeveryge G,
u € U,. Thus, by [20], g — W, is the distribution of horizontal spaces for a connection
on the principal bundle n,: G —+ A* (the “canonical” connection). This connection
induces a connection on the tangent bundie (TA™), with covariant derivative for a
tangent field X along the curve y given by

DX _dX
e dt

| S i
— 50 ‘X + Xy7H).

The corresponding exponential is
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(aeA*, X e(TAY),).

Observe that exp, : (TAY), - A" is a diffeomorphism, with inverse

x = a'?log(a ¥ xg ¥2)g!2,

Furthermore, for a, b in A* the curve

'y(l‘,) = al,IZetlog(n‘”zba‘”z}alfz

=a 12 (a—ljzba—lﬂ)raljz

is the unique geodesic in A* joining a to b.

Assume now that 4 is faithfully represented in a Hilbert space (H, ¢ , )). For each
a€ A" define an inner product in H by (&, ), = <aé,n) (&,n € H). On the other hand,
each X e (TA"), determines the sesquilinear form By (&, 1) = {X& 1) (&, € H). Notice
that, if H, denotes the Hilbert space (H,{ , },), then every ge G is an isometry
g:H,— H; ,and thenorm of By: H, x H, — Cis | a~"*Xa~"2||. This defines a Finsler
metric by | X ||, = jla™*Xa 2| (X e (T4"),).

Proposition 1.

G acts isometrically on A* for the Finsler metric.

Proof. Denote by T the linear map (TLg)ﬂ:(TA+)a—>(TA+)Lg,,. Then TX =Y
means that By(g¢, gn) = By(¢,n) (¢,1 € H,). Because g: H, > H L,q 18 an isometry for
each g € G, || By|| = | Bx|| or, by the definition of the Finsler metric, | Y| £ = 1 X1
More explicitly, ||L,X || Lo = [ X, as claimed.

We can recast the previous statement as follows: for any X e A%, ac A" and g€ G

la™2Xa™ 2| = |((g*)"ag ") (g*) " Xg (%) ag™) .

Remark. This equality is well-known for a positive invertible X (see [197]), because
in this case [|a™Xa™"?|| = inf{a > 0: X < aa}.

As usual, the length of a C' curve y in A* is defined by

ity) = J 19 oo A2

0

and the (geodesic) distance between a, bin A™ is

d(a, b) = inf{l{y): y joins a and b} .

Observe that, by Proposition 1, d(L,a, L,b)=d(a,b)foralla,be A" and g e G.
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Proposition 2. Givena,be A"

d(a,b) = flog(a™"*ba™ )|l

Proof. In [9], Theorem 6.3, it is proved that the geodesics are the shortest curves
joining pairs of points. Then, given a, bin A", the distance d(a, b) is given by I(y), where
(1) = a*(a Pba~)'a'%, Because each L, (g € G) is an isometry, we get

15 = lla(ogla™ba” 1)) (@ Pba™PYa Pl
= [log(a~*2ba *?)],

and this finishes the proof.

The invariance of distance under the action by G can be rewriften as
lHogla—ba~2)| = |log(((g*) *ag™*)2(g*)"bg ™" ((¢*) 'ag™ ).
Remarks. 1. Givena, b,ce A"
llog(a~"2ba™'?)| < Ylogla™2ca )|l + llog(c™2bc™ )1,

by Proposition 2.

2. For each ac A* and o > 0 the exponential exp,: (TA"), » A* maps the ball
{X e(TAY),: |X|, < «} onto the (geodesic) ball {x € A* 1 d(a,x) < a}.

The Finsler structure of A* is not Riemannian. However, as proved in [10], [1t]
and [12], A* shares several properties of Riemannian manifolds of non-positive
curvature. One of the properties is that the exponential exp, (TA"), = A" increases
distances; d{exp, X,exp, Y} = | X — Y[, (X, Yin (TAY),). For a = 1, this gives

log(e™*2e’e )i = | X — Y1,
which can also be written, puﬁing x=eX, y=e" as
log(x~"?yx"2)] = |logx — log yl.
This is, essentially Segal’s inequality leX2e¥eX?|| > |le**¥|; see [10].

2. Convexity

In a manifold with unique geodesics joining pairs of points, it is natural to label
convex any subset C such that for all x, y in C the geodesic segment joining x and y is
contained in C.

Theorem 1. Givenae A* and & > 0 the ball B = {x € A* : d(a,x) < a} is a convex
set.
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Proof. Because G operates transitively and isometrically on A* we may assume
a=Lsothat B={x=e":Xe 4" |X|| <a}.

Consider therefore X, Yin (TA*), = A% with | X|| <o, | Y| <aand x = e¥, y = o,
The unique geodesicin A™ joining x and yis y(£) = x¥?(x 2yx~12)x 12, We want to see
that d(1, y{t)) < «, or equivalently, that ||log y(£)|| < o, for each z. The following remark

will be useful: given a faithful representation of A in a Hilbert space H and ¢ € H then
2

the real function f(t) = (y(t)¢, £ is convex: in fact, ;? Jdt) = {a'(loga}n, (loga)n) >

1 1/2

0, where a=x""yx™'? 5 =x"¢ As a consequence, max{f(t):0<t <1} =
max { f,(0), f(1}}. Fix £, € [0, 1] and set y4 = y(¢,). :

We choose a representation on a Hilbert space H and £ € H with ||€|| = 1 such that
logyoll = t<(logyo)é, &). Supose first that [logyell = {(logy,)&, ). Then, by the
remark about, [,(ty) < max{f;(0), (1)}, which means that ol &) < (xé > <
[Xl < e® or that (&, &> < (¥&,E) < ||y|| < e® Thus, Yo < e as operators; so we get
logye < « and, then [[logy, | = {(logy,)¢, &) < a. Thus, the theorem is proved in the
case [|logyell = {(logy,)¢, &>,

Suppose now that |logy,|l = —{(logy,)é, £>. The hypothesis can be rewritten as
log o'l = {(logys")¢, &D. Observe that y is the geodesic in 4* joining x™! = ¢7¥
to y~' = e ¥, which also belongs to B. By the argument above applied to y~' we get
llogyo* Il < «, so that [logy,| < a.

Observe that, essentially, the theorem states that if llog x| < «and |llog y|| < « then
log(x"2(x "2 yx 12y x )| < a.

The next result gives an order relation between the geodesic segments and usual
segments, ‘

Theorem 2. For every x, yin A* and t € [0, 1]

xm(x_l""yx_“z)'xm <(1 —Ox + ty.

Proof. It suffices (o prove that (x V2yx 12y <1 — ¢ + tx~Y2yx 12, For this, we
will prove that, for every ae A*, a* <1 — £ + ta. Consider a faithful representation

of A in a Hilbert space H, ¢ € H and the real function hel(t) = (1 — t + ta — a')&, &,
2

Then ﬁfé(t) = —<a'(loga)é,(loga)¢> < 0 so that h(t) > min{h.(0), h(1)} = 0. This

concludes the proof.

The next theorem exhibits another type of convex subsets of A*.

Theorem 3. Let ¢: A — C be a positive linear Junctional, a € A and

L={xedA":¢(x)<1}.

Then T is a convex subset of A™.

Proof. Given x, y in X we will prove that x'?(x~"2yx~*2)'x12 belongs to X, for
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te[0,1],or f(t) = PP (xHyx"12yx ) < 1 for t € [0, 1]. For this, we observe that
dz

fis convex, because P f(6) = $(x1?Ze'2Zx'?) 2 0, where Z = log(x~*2yx 7). Then,

f(6) < max { f(0), f(D} = max {¢(x), (¥} < 1 and this concludes the proof.

Remark. An analogous results holds if ¢ is not scalar valued but any positive map
of C*-algebras.

The next theorem gives another evidence that A* has some sort of “nonpositive
curvature”.

Theorem 4. For every a,be A and 5 € [0,1]
log(a~*2bta~2)|| < s|llog(a*ba” P

Proof. The inequality la=*2b%a™ 52|} < [|[@™?ba™"|}" is an casy consequence of the
identity |la*?ba*?| = inf{a > 0:b < aa} and the fact that f(x) = x* is operator-
monotone (see [19] and [2], respectively; the related inequality ||a®6®|| < [lab]’ is also
studied in [13], Chapter 1, [17] and [16]). In order to prove the theorem we shall use
the following remarks: (1) for all x € A*, log [[x[| < Ilog x|; (2) for all x € A™, log I x|l =
|log x|| orlog ||x~*|| = |[logx|. Set x = a~2h*a~2, Suppose first that logl|x| =
|logx|. Then |log{a—?b%a *?}|| = log la=2b*a~|| < slog la~"?ba || by the in-
equality mentioned above, and log lla~2ba 2| < [flogla ?ba™'?)|| finishes the
proof if log [|x|| = [[log x|l. Suppose now that log |x~*|| = |log x[l. Then x~* is in the
first case and, because [logx| = [logx™'|, we get again [log(a~**b%a™)| =
llog(a™b*a~*)|| < s|log a2h 1a'2|| = siloga™"ba”1?|.

There is a clear geometric interpretation of the theorcm above. In fact, in a
Riemannian manifold M the sectional curvature is nonpositive if and only if

d(py(x), p(3) < 5d(x, ) (%}

for all x, y € M and all s € [0, 1], where p(x) = exp,(sexpy (x))and pe M is fixed (see
[3], Lecture I). In our case M = A% is not Riemannian but inequality (¥) holds. To
prove this it suffices to consider p = 1 because G acts transitively and isometrically on
A*; then px) = x5 py) =¥ dpdx),p(y) = log(x~*?y*x~*?)| and d(x,y)=
llog(x*2yx~*2)|. Inequality (*) for p = 1 is exactly Theorem 4.

3. Operator Means

Recall the notion of operator mean, as axiomatized by Kubo and Ando [21]. A mean
is a binary operation m on the set of positive operators in a Hilbert space, satisfying
the axioms

() If a < cand b < d then m(a, b} < mc, d).
(IT) cmfa, b)c < mlcac, cbe).
(II) If a, | a and b, | b then m{a,, b,) | m(a,b).
vy m(1,1) = 1.
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A few examples are the arithmetic mean L(a + b), the left trivial mean (a,b) a,
the right trivial mean (a,b) s b, the parallel sum [1], and the geometric mean
a'*(a'Pba~"2)"2¢"2 first introduced by Pusz and Woronowicz [22]. (The geometric
mean can be defined also for operators that are not necessarily invertible, but we do
not pursue this issue here). The reader is referred to [2], [21] and [1 8] for an extensive
study of the subject.

An interesting fact is the bijective correspondence between operator means and
operator-monotone functions f:R* — R*. This theorem, due to Kubo and Ando
[21] gives explicitly the correspondences (we only consider invertible clements):

m = f,, with £,(t) = m(1, £);

S mg, with m(a, b) = a'2f(a 2pa12)g2,

This theorem has been extended for not necessarily positive functions which are
operator-monotone by J. I. Fujii, M. Fujii and Y. Seo [14]. We only consider the
notion of relative entropy (see [15]) which is defined, for invertible elements, by

s{a, b) = a' log{a™"Pba~1?)a'2

The geometrical results described above can be translated to this language of
operator means. First, we observe that the geodesic y(t) = a'?(a 2ba 2)q'? ex-
presses a particular parametrization between the left trivial mean and the right trivial
mean. The middle point of the geodesic is the geometric mean of Pusz and
Woronowicz. The velocity vector $(0) is exactly the relative entropy s(a, b). Observe,
also, that s(a, b) = exp;*(b) for exp, : (TA™), - A*.

The fact that exp, increases distances is expressed by the inequality

[loga - logb| < log(a '?ba 1?)|,

which implies the following estimation of )|s(a, b)]|:

||10ga - lOgb" < Hlog(a—lfzba—uz)"

= lla™"s(a, b}a~"?

< fla "Ils(a, b))

Thus we get

Corollary. Foreverya be A*

1
"S(a: b)" = W ||10ga — IOgb" .
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The Geometry of the Space of Selfadjoint
Invertible Elements in a C*-algebra

GusTAVO CORACH, HORACIO PORTA AND LAZARO RECHT

Let A be a C*-algebra with identity and G*® the set of all selfadjoint
invertible elements of A. This paper is a study of the geometric properties
of the manifold G°. The action of the group G of invertible elements of A
over G*, given by g-a = (¢g71)*ag™!, defines Banach homogeneous spaces
G — G**, where G**° is the orbit of a € G*. It turns out that the G** are
open and closed subsets of G* and the principal bundles G — G**° carry
natural connections. The horizontal lifting of (differentiable) curves v in G*
are controlled by the differential equation I = —274T, which is called here
the transport equation (an alternative approach based on multiplicative
integrals is given in Section 8). Several G—bundles are studied, in particular
the tangent bundle TG*. One relevant point here is that the (left) polar
decomposition a = vp (a € G°, v > 0, p unitary) provides two structures:
first it is easy to see that p is a reflection so that 7(a) = p defines a map
7 : G* — P where P is the set of all p € A such that p* = p~! = p; second
for a tangent vector X € T,G* the norm || X||, = ||[v~Y/2Xv~1/2| defines
a Finsler structure on the bundle T'G®. This bundle carries a canonical
connection determined by the transport equation, with covariant derivative

defined by
DxY = X(¥) - -;:(Xa’lY +YalX)

Research partially supported by CONICET, Argentina and by Funda-
cion Antorchas, Argentina.
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and parallel transport along a curve v in G* given by the transport function

I’ of 4. Thus TG* is endowed with the resulting structure of Finsler bundle

with a transport connection. The exponential map of this connection is
exp, X = e730 X g =30 XgeraT X,

The restriction of the bundle TG? to P splits as TG*|p = TP @ N where

the “normal bundle” N has over p € P the fiber

N,={XeT,G°: Xp=pX}.

The restriction to N of the exponential map is a diffeomorphism from N
onto G° which preserves the fibers. In Cheeger-Gromoll theory (see [3])
this is expressed by saying that P is a soul of G*.

Returning to the study of the fibration 7 : G° — P we give a de-
scription of the fibers of # and of the group of all ¢ € G that preserve
the fibers. The tangent map T7 : TG® — TP decreases norms in the
sense that ||[(T,7)X|| < || X|l. (X € T,G*). This theorem is based on the
inequality ||ST'S™! + S™ITS|| > 2||T) valid for bounded linear operators
S,T on a Hilbert space with S selfadjoint and invertible [4]. The main
result of this paper is that given two points in the same fiber G} there is
a unique geodesic fully contained in G} joining them, which is the shortest
curve in G* with the same endpoints. A basic tool of the proof is the above
mentioned contraction property of T'r.

In finite dimensional cases, Riemann metrics can be defined on TG*
and we show an example where the canonical connection is the Levi-Civita
connection of such a metric. This paper is part of a series devoted to the
study of the geometry of several reductive homogeneous spaces which ap-
pear naturally in Banach and C*-algebra theories: the space of idempotents
in a C*-algebra ([17], [18], [6]), the space @, of n-tuples of idempotents
decomposing the identity in a Banach algebra [5], the space of relatively
regular elements in a Banach algebra [8]. The subset At of G*® of all posi-
tive invertible elements of A is also considered in [T], where it is shown that
the well-known Segal’s inequality (see [21]) |[eXFY)] < ||e(X/DeY £(X/2))|,
where X,Y are selfadjoint elements of A, is equivalent to the property that
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the exponential map of A1 increases distances, a property which At shares
with Riemannian manifolds with nonpositive curvature. The geometry of
some Hilbert homogeneous spaces has been previously studied by P. de la
Harpe ([12], [13]) and Finsler structure of some groups of operators on a
Hilbert space has been studied by Atkin ([1], [2]) who proves some results
on uniqueness and minimality of geodesics. The transport equation of @,
has been independently found by Daleckii and Kato (see [9], [14] and also
[13], [10]); its geometric meaning, however, was first established in [5]. In
the case n = 2, 3 can be identified with the space of all the reflections and
its transport equation takes the same form as that of G°, a phenomenon
which will be studied in a forthcoming paper.

1. Preliminaries

Let A be a C*-algebra with 1 represented as an operator algebra in a
Hilbert space H. Also denote by G = G(A) the group of invertible elements
of A and G° = G*(A) the space of invertible selfadjoint elements of G. For
each a € G° there is a form B® defined on H by B%(z,y) = {az,y). The
B?%’s are hermitian non-degenerate bilinear forms. The B%-adjoint of u € A
is u® = a~lu*a. Hence the unitary group U? of B? consists of the u € G
with the equivalent properties u™!=a 'u*a or (v*) lau!=a.

In order to study the natural geometry of G* we introduce the following

action of G on G*:
1

g-a=(g"")ag™".
This action fits into the following picture: consider E = G* x H as a
product bundle over G° with fiber E, = H over a € G°. Then E is a
pseudo—Riemannian bundle when each fiber E, is provided with the form
Be.
E can also be considered as a G-bundle with the action

g(a,z) = (g - a,g7).

It is clear that this action is isometric on fibers (because BY%(gz,gy) =
B%(z,y)) and that the isotropy group of a € G* for the action ¢ - a is the
unitary group U? of the form B®.
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Using BY9%(gz,gy) = B*(z,y) with ¢ = o(b) the geometric interpreta-
tion interpretation of o is that o(b) an isometry from E, = (H, B*) onto
Ey = (H, BY).

In the sequel we denote G*°® the orbit {g-a;g € G} of a.

1.1 PROPOSITION The orbits G** are open and closed in G* and for
each a € G°, the map
GG, g—oyg-a

is a smooth principal bundle with group U*®.

Proof: It suffices to show that G — G** has a smooth local section near
a € G*. For b € G° near a put o(b) = (b~ a)!/2. Here b~'a is close to 1
and the square root has the usual meaning (see [20] for example). Routine
calculations show that

o(b)-a = (((57"a) ) a((b1a) /%) < b

so that o is a local section, as needed. This completes the proof of 1.1.

It is readily seen that G* has a functorial character in the category
of C*-algebras and *-homomorphisms. In particular, using Michael’s result
[16] that G(A) — G(B) is a Serre fibration if f : A — B is a surjective
*_homomorphism, Proposition 1.1 implies that f : G*(4) — G*(B) is onto
if and only if every component of G*(B) contains some element of the image
of f. This result is useless in the case when A is the algebra of all bounded
linear operators on a Hilbert space H and B is the quotient of A by the
ideal of all compact operators (the Calkin algebra of H) since in this case
the natural projection G*(A) — G*(B) is onto ([13], p. 197). However in
general there is no way of lifting elements and the criterion above may be
adequate.

We use a = vp as the polar decomposition of @ with v = |a} = (a?)¥/? >
0 and with p unitary. Since |a| and a commute we have

o = (la] )" = ala]™ = el a = p

whence p is a selfadjoint unitary element of A, or p* = p~l=p.
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2. The canonical connection

Denote by U the Lie algebra of U®. It is clear that #/® is a subalgebra
of the Lie algebra G of G and that G can be identified with A (since G is open
in A). In this identification, U* corresponds to the set of B®-antisymmetric
elements of A, i. e.,

Ut ={z € A;a  2%a = —2}.

2.1 PROPOSITION  Let S denote the set of elements s of A which are
B®—symmetric, i. e., with a”'s*a = s. Then A = U* @ S® and the elements
of U® conjugate S° into itself: if s € S* and g € U®, then gsg™! € S°.

Proof: Only the last statement needs a proof:

a Ngsg™)a=(a" (g7 Y a)(a T s*a)(aT g"a) = gsg ™.

2.2 PROPOSITION  For g € G define W, = {¢s;s € S*}. The the map
g — W, C T,G(= A) is a distribution of horizontal spaces for a connection
on the principal bundle G — G*°.

Proof: (W,)u = W,, for u € U% g € G is equivalent to uS%u~! = 5°,
which is shown in Proposition 2.1.

The connection defined by the distribution W, is the canonical con-
nection of the bundle G — G*°.

2.3 PROPOSITION  If4(t), u <t <wisa curve in G>*, a curve ['(t) in
G is a horizontal lifting of v(t) if and only if T'(t) satisfies the “transport

equation”

: 1
I'=—=4714T.
27 7

Proof: Suppose that I'(¢) lifts (t), or I'(#)-a = () or (T71(¢))*al () =
4(t). Then =1 = T'a™'T* and by differentiation we get

_7—1;)/7—1 — ]:'\a—llﬂ* +1‘1a—1f\*
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or
—y 7y =Ta T al ™ + Ta™'T*(I ) el ™
= (0 +M)r*

where M = Ta~1(I'"'I')*a. Hence the equation I' = —(1/2)y~'4T holds if
and only if M = I'. This in turn is equivalent to

r=1f = oY1),

or I~1T" € §° or finally I' € Wr. This completes the proof.

In the sequel we shall be interested only in solutions I' of the transport
equation with I'(u) = 1. These satisfy I'(¢) - y(u) = (¢) for all u < ¢t <
v. This T will be refered to as the “transport function” of the path ~(t)
(cf. [5], [10], [14], [15], [18]). The transport function has the following
fundamental property:

2.4 PROPOSITION  If4(t) is a curve in G*® with transport function I'(t)

then for ¢ € G the transport function of g - v = (g7 )*yg™? is ¢gTg™ L.

3. Induced Connections

Suppose C is a G—manifold (G = G(A)) and C — G* is a C* G-
Banach bundle, ie., G operates in a compatible C* way on C and G°.
A connection D on C is a transport connection if parallel transport in C
along a curve a(t) is given by the transport function of a(¢). This means
that a section o(t) of C along a(t), 0 < t < 1, is D-parallel is and only if
() = T(¢)(5(0)) where () satisfies ' = —(1/2)a'al’, I'(0) = 1.

3.1 PROPOSITION Transport connections are G—-invariant.
Proof: Use Proposition 2.4.

We define several transport connections resulting from the systematic
use of the transport functions in appropriate contexts.
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The bundle F

Let E = G* x H as a G-bundle with the action ¢(a,z) = (¢ - a, gz)
described above in Section 1 and define the connection on E by

Dv d,_ _,
= = 7T @Ov(t)l=o
for any section v(t) = (a(t),z(t)) over a(t).

3.2 PROPOSITION D is a transport connection on E and
I
Dxv = X(v)+ 50 Xv.

The curvature of D at a € G is:

R(X,Y) = —i[a_lX, a”Y].

Next define a Riemannian metric { , }) on E as follows. For a € G* let
a = vp be the polar decomposition of a with v = |a| = (a?)/2 > 0 and p
unitary. We define on the fiber £, = H the metric

(2,900 = (ve,y) = @1/ 22,0 7y).
Define also a 1-form on G* with values in A by setting at each a € G*:
1
S = —§a"1[dp,1/]
where again a = vp is the polar decomposition of a.

3.3 PROPOSITION  For any tangent field X on G*, and any sections z,y
of E we have:

X{(z,y) — (Dxe,y)) — (=, Dxy)) = (S(X)z,y)).



340 Corach, Porta and Recht

Proof: D D
X ) — () — (o 22
d

R
= E(ux,y} —{v(& + 5& laa:),y}

- (e, (3 + 5 i)

= (vz,y) + (ve,y) +{ve,7)

1
- (any> - —2_<Ua_1d$ay>

But ) 1
v o= gv T p(py + pir) = Sy (Up + vp)p
1 1 1 1
=v7ly - 5:/_1;);51/ — -2-7/_11'/ — év'li/ — §pp
1 4. 1
=——v v— =
oV PP 5 PP
1 . . n 1.
=—zv v+
oV PP o PP
1

1
= —§a_l(r37/ ~vp) =—5a” [, v,

as claimed.

3.4 COROLLARY  Parallel transport on E preserves the metric on curves
with p = constant.

The bundle M

We define M as the product bundle M = G® x V where V is the
space of bounded conjugate bilinear forms on H. The group G acts on V
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by gB(z,y) = B(g7 z,¢71y). If B(t) is a curve in M on the curve a(t) we

define
Dp d Du Dv
? = a(ﬁ(uav)) - /8('%7”) - ﬂ(ua —;ﬁ_)

for any sections u,v in E. The right hand side has the form
B(u, v)+B(t,v) + B(u, v)
— Biv) — 5 A(adu,v)
— B(u,v) — %ﬁ(u,a‘ldv)
— Blu,v) — %,B(a_ldu,v) - %ﬁ(u,a—ldv),

which obviously depends only on the values of u,v at each point but not on
their derivatives. This means that:

3.5 PROPOSITION  The connection on M is a transport connection with
covariant derivative

(DxB)(w,v) = (X(B))(wyv) — 58 Xu,0) — 5 B(u,a™ Xv)

The bundle L = G* x A

The elements b in A can be interpreted as bilinear forms by S(u,v) =
{bu,v) and the connection on M induces a connection on L = G* x A by

Do D
(B2, 0) = 22 (u,0)

where f(u,v) = (ou,v).

3.6 PROPOSITION The connection on L is a transport connection with
covariant derivative

1
Dxo=X(o)— = Xa Yo+ oa1X).
2
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The curvature of D satisfies:

4R(X,Y)o = ola™ ' X,a”'Y] - [Xa ', Ya 0.

Proof: The fact that D is a transport connection on L results from calcu-
lating for a fixed b € A:

D - D —=1\kgpp—1
—(T-b)= (7))
— —(F_l)*f*(F—l)*bF—l . (F—-l)*br-—lfr—l
- %(da_l(I“l)*bF_l + (I H*r e ta)
= %aa—l(r—l)*br—l + —12-(F_1)*b1"_1a_1d

1
- §(da_1(I‘"1)*bF_l + (T~ H*rteta) = 0.
3.7 PROPOSITION The section a — B* in G® x A is parallel.

Proof: D 1
d_ta =a-— i(da_la +aa"'a) = 0.

3.8 COROLLARY  The section a — (a,a) in L is parallel.

Proof: Since B%(z,y) = {az,y), B® corresponds to the tautological section
in G® x A.

The metric {{ , )) in E defines a Finsler structure on the bundle of
bilinear forms M = G* x V, as follows. If 5 € M, then

1Blla = sup{|B(z, y)l; (=, 2)}a <1,y ya <1}

With the interpretation of u € A as the bilinear form #(z,y) = {uz,y), this
translates into a Finsler norm on the bundle L = G* x A given explicitly
by: for u € L, = A,

lulla = llv ™ a2
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(|| ||=ordinary operator norm calculated from { , }).

—1/2 |

Notice that if a =vp = v p (v >0, p= unitary) then the map

u— Y2,

u, L,— L,
is an isometry for the norms || ||, (=|| 1), || |le- In the sequel length of
curves and related concepts refer to this metric through the usual definition

Length(y) = / (0o .

The tangent bundle T'G*®

The set G° is open in the real subspace A® of symmetric elements of A.
Hence TG® = G° x A® is a subbundle of L = G* x A. Since the covariant
derivative in L defined by 3.6 produces symmetric results from symmet-
ric data, we can restrict this connection to T'G*®. This is the canonical
connection on G*, with covariant derivative defined by

1
DxY = X(¥) - 5(Xa™'Y + Ya'X)

and parallel transport along a curve a(t) in G* given by the transport func-
tion I'(t) of a(t) acting on tangent vectors by I'(t)- X = (T'(¢)~1)*XT(¢)™1.
Since the term Xa™'Y + Ya™'X in DxY is symmetric in X and Y, the
connection in T'G® is a symmetric connection. Similarly, the curvature of
TG is given by

4R(X,Y)Z = Z[a™' X,a™'Y] - [Xa™,Ya 12

The Finsler structure of L = G* x A can be restricted to TG*. In the
sequel we will always consider TG* as endowed with the resulting structure
of Finsler bundle with a transport connection.

Finally we briefly describe the exponential mapping of this connection.
Direct computation shows that given ¢ € G* and X € T,G*, the curve
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() = etX . q, where X = —(1/2)a”'X, is the geodesic with ¥(0) = a,
%(0) = X. Therefore the exponential mapping is

-1
exp, X = e~ X/2.q,

- . ~-1/2 —-1/2
This can also be written as exp, X = all2ea” "X q1/2,

4. The structure of G*

Let P C G° be the set of orthogonal reflections of A, i.e, p € P if
and only if p* = p = p~'. We define a fibration = : G° — P by setting
7(a) = p where a = vp is the polar decomposition of a. As noticed in the
preliminaries section, p is a selfadjoint unitary, hence an element of P.

Given p € P we write each v € A as a 2 X 2 matrix

11 Ui2
U =
(um u22>
where u1y = pup, u12 = pu(1l — p), ua1 = (1 — p)up, uzz = (1 — pju(l — p),

for p = (p + 1)/2 the associated symmetric projection. This decomposes
the algebra as A = Ag @ A; where Ap consists of the diagonal elements

u = (7551 0
- O U929

and A; consists of the codiagonal elements

u = 0w
- U2t 0 '
Equivalently, A = {u;up = pu}, A1 = {u;up = —pu}. We say that

degree(u) = 0 for u € Ag and degree(u) = 1 for u € A;. Then A = A ® Ay
is a Zo—graded algebra.

4.1 PROPOSITION  Denote by G, the fibers 7Y p) of 7 : G* — P.
a) G5 ={a€ G NAgap>0}={vpv>0vp= pv}.
b) The group of all ¢ € G that preserve the fiber G}, ie., g-a € G}
for each a € G}, is G N Ap.
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Proof of a): a € G° N Ay and ap > 0 imply @ = (ap)p is the polar
decompostion of a.

Proof of b): Let ¢ € G commute with p. Then for any a = vp € G}, we
have g-a = (¢~ !)*vpg~!. Then ¢ a is in Ay (as a product of degree zero
elements) and it is symmetric. Also (g-a)p = (¢7!)*rg~"! > 0 so that by a)
we get g-a € G;. Conversely, assume that ¢ € G acts on G;. Then for each
v > 0 with vp = pv, there exists v' > 0 with v/p = pv' and ¢ (vp) = V'p.
Decomposing ¢~ = hg + hy with hy € A¢ and h; € A; we get

V'p=g-(vp) = (ks + h)va(ho + hy)
= (i + hi)v(ha — h1)p,

so that after cancelling p and comparing terms of the same degree we get
hyvhg — hjvhy =/ hgvhy — hivhy = 0.
Taking v = 1 it follows that hjho = v' + ATh; > 0 and hyg is invertible. But

the equality hfrhy = hivhy can not hold for all » > 0 commuting with p
unless A; = 0. In fact consider the example

_fa 0

V= 0 B
_f{hi1 O {0 Ay
h0_<0 h22> hl—(hzl 0)'

Then from hjrhy = hivhy we get

and write

h;lah12 = h3,Bhas

and since we can take a, 8 > 0 arbitrary real numbers, we get h} b1y = 0
and h3;hgz = 0. Cancelling h}; and Ay we conclude that hyp =0, hg; =0
and therefore h = 0. This means that ¢! (whence g) has degree 0 and the
proof is complete.
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The restriction to P of the bundle T'G* splits as a sum T'G*|p = TP®N
where the “normal” bundle N is defined by N, = {z € T,G*;zp = pz}.

4.2 THEOREM Let Z: N — G° be the restriction to N of the exponen-
tial mapping of G*, so that Z(p, X) = e~?X/2.p. Then E is a diffeomorphism
satisfying E(N,) = G,

Proof: The inverse of Z is given at a = vp by Z7(a) = (p, pInv).

We close this section with the remark that geodesics in a fiber with
given endpoints are unique. This follows from the fact that positive elements
have unique symmetric logarithms. In fact, if z € G} and H = H, @ H_
with Hy = {z; pz = £z}, then

X

can be written in a unique way as a = e” « p where

S
_ 2+
£ (700 )

and X4 symmetric. So there is a unique geodesic joining p with a. For
arbitrary b,a € G, operate first with a convenient g € G A¢ to reduce to
the case b = p.

5. Projecting on the base

The basic fact of this section is the following.

5.1 THEOREM  The tangent map Tr : TG® — TP decreases norms.

Proof: We want to prove that

1Ta X || < [[ X[
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for all a € G*. Let a(t) be a curve in G* and X = a(t). Let p(t) = m(a(?))
and let T'(¢) be the transport function of p(t). Finally define a;() = I'(¢) -
a(0). Since n(a(t)) = w(a1(t)) (T'(t) is unitary) we get that Xo = a(0)—ay(0)
is tangent to the fiber 771(p(0)). Next calculate at ¢ = 0:
. d 1 . .
X1 = a1 = (D) - a0)) = 5(~ppa + app).

Writing at ¢ = 0 the polar decomposition a = vp = pv we get

Xy = %(—pbpv +vppp) = %(/’w +vp).
Then calculate
X o = [lv~* X073
= ||1/_%X11/—% + V—%X21/~%H
= |5 ot ) b
Recall the inequality ([4]):
[STS™ + 57175 > 2||T]|

valid for any symmetric invertible operator S and any operator 7. This
reduces the proof of the theorem to the inequality

I Xv 3| > v xR

But

1., _1 _1 _1 _1 ~1
vV Xy T =0Tt X2 T2 XT3

is the decompostion of ¥"3Xv~% in degree 1 and degree 0 components
determined by p(0). This is clear because pp = —pp and X, is tangent to
Gf(o)' Therefore if we write

(s )
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V—%Xlll—% = (g ﬁO*)

V_%Xgll_%— (a 0)
0 ~

1 1 —1 Y
72 Xv = 2 1Bl = |72 Xav 77,

then clearly

5.2 THEOREM A geodesic of length less than w contained in P is the
shortest curve in G° joining its endpoints.

Proof: Let v be the geodesic in P joining py and p; and let § be any other
curve joining pg and p;. Then §; = 7(é) is contained in P and according
to Theorem 5.1, the length of 8; does not exceed the length of 6. Then
observing that the Finsler metric of G*® restricted to P is given by ordinary
operator norm, a direct application of [18] gives the desired minimality and
uniqueness.

6. Geodesics in a fiber

Suppose a(t), 0 <t < 1isa curve in G* with m(a(0)) = a(1).

Denote p(t) = m(a(t)), v(t) = a(t)p(t), and I'(¢) the transport function
of p(t). Next define o(t) = I'"'(¢)a(t)['(t). Since I'(t) is unitary, the polar
decomposition of o is

o = (I 1WI)(T™1pl),

or 7(0) = I 1pI' = p(0) for each ¢. This means that ¢ is a curve in G0y
Observe that o has the same endpoints as a because

o(0) = T71(0)a(0)I'(0) = a(0)
and by the hypothesis m(a(0)) = a(1) we have p(1) = a(1) and therefore

5(1) = T (Da(D)T(1) = T-{(D)p(LT(1) = p(0) = p(1) = a(1).
We claim that

Q) ol < llalla -
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First (use pp = —pp, a = vp, etc.):
. -1 1, -1 1 . —1-
6=-T (———2-pp)aI‘ +T a(—ipp)l" + I al
1,1, . N
=T7'(5(ppa - app) + &)L

:P_l——pl);f/pl‘

and therefore

Iolle = [(T1v /2 D)a (D~ w2
T 24 "; 7'/PV—1/2F“

1
= gl i+ oo™
On the other hand, a = vp = pv gives
1o 1,, _
and then
. 1, _ o _ _ . L
llalla = §||V 1/2(1”/ +vp)v 12 4y 1/2(py +vp) 1/2“

But in the matrix decomposition at each p(t)

V—l/?(pl'/+1'/p)y—l/2: (a 0)

0 ~
_ . - 0 p*
1/2 1/2:
vy +vpl (5 0>

(because the former commutes with p and the latter anticommutes with p).

G 2)I=1G 2

implies ||a|ls = ||&]|s - This is inequality () and the claim is proved.

2 ‘
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This inequality shows that:

6.1 PROPOSITION. For any curve joining a € G* with w(a), there is a
shorter curve in the fiber Gfr(a) with the same endpoints.

The following technical result is needed in the proof of Theorem 6.3:

6.2 LEMMA. Let p be a rank 1 orthogonal projection in the Hilbert
space H, a: H — H positive definite, X : H — H selfadjoint. Then

lpa'/? X a'?p|| < ||papl| || X|| -

Proof: Decompose H = Ce @ H; where |le]| = 1, p(e) = e, and Hy =
ker(p). Then we have matrix representations

A B*
12 _
) (B c )
_(&
*= (n 0
where A, are scalars, B € Hy and B* : H; — C is the functional B*(h) =
{h, B}, and 8, C are operators in H. Define also a bilinear map F': HxH —

C by F(u,v) = (Xu,v). Then calculating we find that the (1,1) entry Wy,
of W = a'/?Xa'/? is F(Ae + B, Ae + B). Then

Wil < ||F|l | Ae + B|? = ||X|| || Ae + B||* = | X |I(A* + |B|*) .
But

B ~ \BA+CB BB* + C?
and so

Wl < [ X flandl 5

as claimed.
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6.3 THEOREM. The unique geodesic in G joining two points a,b € G,
is the shortest curve in G° joining a and b.

Proof: We consider first the case where b = p. Let w(t), 0 <t <1bea
curve joining p and a, and y(t) = e!X - p, 0 <t < 1, the geodesic in G;
=~ 1
joining the same endpoints where X = ¥(0) € T,G4 and X = —§pX. We
will show that
Length(w) > Length(vy) .

By 6.1 we may assume that w is fully contained in G;. We handle first the
case p = 1.

By changing the representation if necessary, we can find e € H with
Xe = Me, |le]| =1and |A| = || X||. Next, we decompose H as H = Ce®Ce™
and therefore we can obtain by compression to Ce two curves 7;; and wqq
defined as the (1,1) entries of the matrices of ¥ and w in the decomposition
H = Ce @ Ce. By 6.2 we have Length(w;;) < Length(w). Also, 111(t) =
(eX - p) = e** and '
Fatllne = [ Ay, = le™2ere™2)] = |

so that
Length(v11) = |A| = || X|| = Length(y) .

Since wq1(t) > 0 we can calculate

Leng’ﬁh(wn)=/0 [[@011(Eleons 9y 2t
/0 o2 (#)on (thwry 2(2) |t
~ / (@1 (8) fwnr ()]t > |log wir (]3] = A

since w11(1) = 111(1) = €*, w11(0) = 41:1(0) = 1. This shows that v is
minimal in the case p = 1.
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Consider next an arbitrary p and decompose H = H, & H_ where
Hy ={z; pr = £z}. Then

X: 0 > -i1x, 0
X = = 2
( 0 X_) » X ( 0 +%X-)

and
- X4
== (0" o)
Similarly,
 {wi(?) 0
=" L)
But,
[ X[ = [ X4l or [IX] = |l X-]
and

() ey 2 ot (Ellws o

so that by choosing the half where X keeps its norm we are (up to sign) in
the case p = 1, and the proof is complete.

To complete the proof, operate with an element of G N Ay to reduce
the general case to b= p.

7. An example

We consider now the algebra A of linear endomorphisms of the Hilbert
space C? with the standard inner product. Then G = GL(2,C) and G?*
has three connected components determined by signature. Denote G3 the
component consisting of the positive definite elements of A. The level
manifolds My, = {a;det(a) = h} of the determinant function det : G§ —
R* form a smooth foliation with three dimensional leaves. Also the rays
N, = {ra; r > 0} with a € M, form a one dimensional foliation and
{Mp} is transversal to {N,}. The leaves M} are the orbits of the action
g.a={(g71)*ag™! of the subgroup SL(2,C) C GL(2,C) and the leaves N,
are the orbits of the center {z1; z # 0} of GL(2,C).

Since a curve through a(0) = 1 with det(a(t)) = 1 satisfies tr(a(0)) =
0, by translation we have tr(a='a) = 0 for all curves in Mj;. Then the



Corach, Porta and Recht 353

. 1
solution T of the transport equation I' = —§a—1c'z1" is contained in SL(2, C).

Therefore the canonical connection on TG} preserves the leaves M), (in the
sense that DxY is tangent to M} whenever both X and Y are), and these
leaves are totally geodesic.

Introduce a Riemannian metric on G by (X,Y), = tr(a™'Xa™'Y) for
X,Y € 1,G7. Writing

(X,Y), = tr((a—l/ZXa—1/2)(a—l/zya_l/z))

shows immediately that (X,Y), is positive definite. The foliations {M),}
and {N,} are orthogonal for { , ).

7.1 PROPOSITION. The canonical connection in TG} is the Levi-Civita
connection of the Riemann metric tr(a™'Xa™'Y) and GL(2,C) acts iso-
metrically on Gj.

Proof: We already observed that the canonical connection is symmetric.
Using 3.6 one verifies that, for X, Y, Z tangent fields, it holds that

Z(X,Y)=(DzX,Y)+(X,DzY)

and this completes the proof.
The tangent space Ty M to det = 1 at @ = 1 is the space of symmetric
2 x 2 matrices with trace zero. Using

=) G ) =)

we can write the arbitrary element

in Ty M, as

(1) X = ~i(z] +yJ + 2K)
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(z,y, z are real). Further, each g € SU(2) has the form

o=(5 7). lareisr -

and writing & = s + u¢, 8 = v + wi we can expand g¢ as
g=s+ul +vJ+wk.
The condition |a|? + |B]? = s + u? + v? + w? =1 implies
g l=s—ul —vJ] —wK =g"

and therefore
g9-X =gXg™'.

This shows that the action of SU(2) on Ty M; corresponds to the action
by inner automorphism of quaternions g with |[g| = 1 on the 3-space of
purely imaginary quaternions. Then with elements of SU(2) we can obtain
any rotation of R? identified to Ty M; through X — (z,y,z) as in (}). In
particular any plane in 73 M; can be mapped onto any other plane.

Observe next that SU(2) operates isometrically on M; and leaves 1
fixed. Hence the action of SU(2) leaves sectional curvature K(X,Y) =
(R(X,Y)Y, X) invariant. This shows that the sectional curvature in TM;
is the same for all planes in TM;. Then operating with g € SL(2,C) we
conclude the M; has constant sectional curvature. For any pairs X,Y €
Ty M, we can calculate

4(R(X,Y)Y,X) = tr((XY)?) — tr(X?Y?)

_ V2/2 0 0 V2/2
so that taking X = ( 0 V32 )’ Y = V2/2 0 ) we can
verify that (X,X) = (¥,Y) =1, (X,Y) = 0 and therefore the sectional

curvature of Mj is

1 2v2yy L
Z(t;r(XY)2 —tr(X°Y*)) = e
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More generally (with the same proof!):

7.2 PROPOSITION.  The submanifolds M, C G3 defined for each h > 0
by det = h have constant sectional curvature —1/4+/h.

8. Appendix

There is an alternative way of obtaining the transport function of 5
in terms of multiplicative integrals (see [19], [11], [22]). Consider a curve
¥(t), v <t < v in G°. Assuming (%) continuous we can find a partition
O={u=1t <t <--+ <t, =v} with y(¢;) and ¥(¢i41) close for all s.
Next define

1/2

B = (2t () ()7 2)) ()2 (0)

which makes sense because v(t;11)~17(¢;) is close to 1 for all :. Since

(’Y(ti+1)—l’r(ti))l/2 ~y(t:i) = y(tig1)

(proof of Proposition 1.1) we get Py - y(u) = 4(v). Taking limits on the
partition (assume that the curve is smooth) we can define the multiplicative
integral

P(v,u) = liﬂn Py

and then
P(v,u) - y(u) = ~(v).
From the definition of P we see also that for v < w < v:

P(w,v)P(v,u) = P(w,u)

or

P(w,v) = P(w,u)P(v,u)"! = P(w)P(v)™?
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where we abbreviate P(t) = P(t,u) with u the left endpoint.

8.1 PROPOSTION  Given a smooth curve (t), u < t < v in G°, the
horizontal lifting T'(t) of v(t) with initial condition I'(u) = 1 is given by
(1) = P(t,u).

Proof: We will see that P(t,u) satisfies the transport equation I' =
—(1/2)y~*4T. For that approximate the curve 4(t) by a piecewise linear
curve 7(t) joining ¥(%0),¥(t1), - - - ,7(tn) so that between ¢; and ¢;;, we have
r(t) = y(t;) + s(v(ti41 — ¥(t;) where s = (t — ¢;)/(tiy1 — t;). Abbreviate
a = y(t;), b =~(tit1). Then

r=a+s(b—a)=a(l+sa'(b-a))
T =3$(b—a)

so that letting ¢ = a=1(b — a) we can write
7 = a(l + sc)
771 b—a)=(1+sc) e

and
771 = 5(1+sc) e

Then the function Ty(t) = (1 + s¢)~1/? satisfies T?(t) = (1 + s¢)™! and
T.T; + TiT,- =—(1+ sc)_l.éc(l + .sc)_1
S0
T + TTT7% = —(1 + s¢) tée = —77 17,
Therefore 1 1
T.I = —57 M - 5[:r,-,T,—]T,.—?.

Now at t = t; we have T; = 1 and then [T,-,Ti]Ti_2 = ( there. Hence if a
and b are close then: 1
T = -§T-I+ - K
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with K small. Define now for ¢; < ¢ < ¢;41 the function
T[[(t) = Ti(t)Ti_l(ti)Ti_z(ti_l) - To(tl).

Taking limits on the partition II we get the function

T, =limT;
1 11II[11 II
and the identities
¥ = lil'IIn T, 0= lirI[n K.
Hence T satisfies
1

But 77 = P. In fact, let us calculate:

Ti(tig1) = (L + )7/
=(1+ a_l(b - a))—1/2
=(Q+4atb—1)"1/2
— (a_lb)_1/2 — (b_la)1/2.
Then
TH(tn) = Tn—l(tn)Tn—Z(tn-—l) oo

= (0t tnm)) T (Hnm) M 1tn))

and therefore Ty = lim Ty = P as claimed.
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ABSTRACT

Let A be a C*-algebra with 1 and denote by A7 the set of invertible positive
elements of A with its canonical connection and Finsler structure (see [2]). Then a
Jacobi field J() along a geodesic in A™ with initial conditions J(0) = 0 or DJ /dtli=o
has increasing Finsler norm for ¢ > 0.

Let A be a C*-algebra with 1, and denote by A™ the set of positive
invertible elements of A. We use G to denote the group of invertible
elements of A. Notice that G operates on the left on A" by the mle
Lya=(g)"ag™! (g€ G, a € A"). This action allows us to introduce a
natural reductive homogenous space structure in the sense of [6]. For details
see [2]. :

The corresponding connection—which is preserved by the group action
—is given by the covariant derivative

DX dX
— = X+ x),

£ e e v b T b A ATTIN TAC AT T AT AATO 170 A™1 o {1009°) O71
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where X is a tangent
givon by gent field on A+ along the curve y. The exponential is

1
exp, X = ¢2X0-1, 347X
+
» @EAT, XeTAT.
For each q € Ao+

we identi Wi
curvature tensor for by TAT with A

this connection is ={XeA:X* = X). The

R(X, Y)Z = %(Z[a_lX, a"lY] —[Xa~! Ya_l]Z)
for X,Y,Z e TA*+,
The ifold A+
la=1s2 X:ln_aln/lzfﬁlﬁorAX éla; :Lso a natural Finsler structure given by || X[, =
Finsler metric, « - The group G operates by isometries for l;his

Recall th i
at a Jacobi field along a geodesic y(¢) is a field J(@®) such that

D?]

—& T R(L.V)V =, O
where V(£) = %(¢). We wi

of type 2] if e will say that a Jacobi field is of type 1 [respectively

Dy
dt |i~o -0

[respectively, JO) = 0],

THEOREM.  If Jisa bi fi
increasing function of t >]a(§_0 i field of type 1 or type 2, then ||J(2)||

¥(#) IS an

Proof. Not
metric lﬁlder (t)l?: (Zcftii:)slz (t)lEaE;' by the invariance of the connection and the
. we may assu - ;
st_ar;}? & at_ ll €A, where X=X *y S A.m;ﬁhat ?G) =eisa geodesic
e~ #X]()e hix en for the field K(z) =

the differentia] equation (1) changes into

4K =~ KX? + XK — 2 xkx, (2)

tive with respect to ¢. The field
0) = 0 or K(0) = 0. The theorem

'whefre the dots indicate the ordinary deriva
is of type 1 or 2 according to whether K(
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then reduces to showing that
IK(s)] <l K@) for 0<s<t,

where the norm is the ordinary norm in the C*-algebra A.

Consider first the case where the self-adjoint element X € A has the
form

X= Y Ap (3)
i=1
with A, A,, ..., A, real numbers and p;, py,..., P, self-adjoint idempotent

elements of A that are pairwise “disjoint,” i.e., p;p; = 0 for i # j, and with
prtpyt o tp, =1

Let s > 0 be given. Represent A faithfully in a Hilbert space # in such a
way that for a unit vector x €2 we have [|[K(s)Il = KK(s)x, x)|. Also
decompose x € # as x = LI, &x,, where x, is a unit vector in the range of
p; and the & are scalars. Then Lp_) £ = llxlI* = 1. Define also the matrix
k(t) = (kij(t)) by k;(t) = (K(t)x;, x;) for all £.

12 j
Assume now that ¢ > s is fixed. Then

1K) =K K(s)x, D =| Lkyy(s) &5 |
—Kk(s)€, & <lk(s)l,
where we write £ = (&, &,. .., £,). Suppose that we know that
k() < k(@)1 (4)

Choose m = (1, Mg, ...,M,) € C" of norm 1 such that k(I =
KK k(£)m, p)l. Setting y = Lin,x; €%, we conclude that ||yl = 1, and from
(Ck(m, n> = (K®)y, y» it follows that

1K () <lk(s) I <lk(e) | =Kk(E)n, ] =KK(2) y, 5]
<&@l

Thus the theorem follows for X of the form (3) when we know (4).
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To prove (4) JACOBI FIELDS OF POSITIVE OPERATORS 275
) we proceed as follows, The diff . , :
. orential equation (2) reads positive definite function, or equivalently that W(¢, s) is a positive semidefi-
kij(t) = 5,~?7k,~-(t) nite matrix: V(t, s) > 0.
where 8, = () A : (2 bis) On the other hand, a theorem of Davis [4, 7] for matrices U,V € M, (C)
bis) has ,{%he fo;m 21:).6‘(;"=Iféh(zt§izkzo§ is of type 1, then the solution of (9 says that
k() = C(t)k(0), whgre ° den’jt ) where Ciyt) = cosh(§,:¢), so that UV < max \/d—u max /ey IV,
the field ] is of type 5, the solution wp (o oot Of matrices (see [4], 1¢ " ¢
¢ ) u .
Sij(t)kij(o), where on of (2 bis) has the form k,j(t) = where d;; are the entries of the matrix (U*U)? and e, j the entries of the
matrix (UU*)'/2. Because the matrix W(t, s) is positive, we conclude that
1 dy; = e; = (¢, s);;. Therefore ||¢ll < max ¥(t,s),;, =1 by definition of
5,(¢) = 8‘1 sinh( §, jt) for ), # A, }P(t, s().)This proves the inequality (4) (and hence the theorem) for X of the
. : orm (3).
4 for A, =) In the general case—when X is an arbitrary self-adjoint element of
‘ »” A—the spectral theorem allows us to approximate X (in operator norm) b
and th - o] P PP P y
Wr(iatr(la ig; _ ‘S,_‘St) k(0). elements of the form (3). From the well-posedness of the problem (2) we
= B(t, s)°k(s) with conclude that (t, X) — K(t) is norm continuous, and the inequality [|K(s)l|
< IK(@)|| for 0 < s <t for arbitrary X follows from the same inequality for
Ci(t) X of the form (3). This concludes the proof of the theorem.
m for type 1,
B(t,s), = J REMARK. For fixed ¢ € A™ and X € TA] the derivative of the expo-
M " nential
o
Sij(S) rtype 2’ (T expa)X T(TA:)X - TAexp”X

increases norms (see [3]). This can be used to obtain a different proof of the

and define the J
= M, (C) [where M.(C) is theorem for fields of type 2.

the space of n x 5 co
: mplex matri _
=[E(t,5), 1 1t sufﬁcgs toma rices] by ¢(m) = W(t, s)om, where W(e, S)ij

- . prove that the .
$(k() = k(s) implies (4). Abbreviate " #%5 < 1 because then REFERENCES
f( )l) _ Cosh( S/\) 1 S. Bochner, Vorlesungen iiber Fouriersche Integrale, Leipzig, 1932.
T 2 G. Corach, H. Porta, and L. Recht, The geometry of the space of self-adjoint
cosh(¢A) & Y P J
for type 1, and invertible elements of a C*-algebra, Preprint, Trabajos de Matemética 149, Inst.
» an Argentino de Matematica; to appear.
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A GEOMETRIC INTERPRETATION OF SEGAL’S
INEQUALITY |[eX*Y| < ||eX/2e¥ X/2|

G. CORACH, H. PORTA, AND L. RECHT

(Communicated by Paul S. Muhly)

ABSTRACT. It is shown that the exponential mapping of the manifold of posi-
tive elements of a C*-algebra (provided with its natural connection) increases
distances (when measured in the natural Finsler structure). The proof relies on
Segal’s inequality [leX*Y|| < |leX/2e¥ /2| , valid for all symmetric X, Y in
any C*-algebra. In turn, this geometric inequality implies Segal’s’ inequality.

Let 4 bea C*-algebra with 1 and denote by A* the set of positive invertible
elements of 4. Then A% is an open subset of A°, the real Banach space
of symmetric elements in A, and therefore, the tangent space 7,4% to the
manifold A% at a € AT can be identified to 4°. The manifold A* carries
a natural Finsler metric (see [1]) defined by || X||, = |la~/2Xa~!/?| for X €
TA} . This norm corresponds to the following interpretation: assume A is
falthfully represented in a Hilbert space (L, ( , )), and for each a € 4%,
define an inner product in L by (¢, ), = (a, 71) . On the other hand, each
X € TA} determines the bilinear form B(¢, n) = (X¢, n) on L. Then the
Finsler norm || X||, coincides with the norm of the bilinear form B in the
Hilbert space (L, ( , )a)-

The group G of invertible elements of 4 acts on A* by #za=(g*)"'ag™!
(g € G, a e A") making A" into a reductive homogeneous space (see [2]) with
the natural connection given by

DxY = X(Y) - {(Xa”'Y + Ya~'X),
where X(Y) denotes the derivative of the field Y in the direction X in the
Banach space A4°. In this connection, the geodesic y with y(0) = a and
#(0) = X has the form y(f) = etXa™'/2geta™'X/2

Further, for each g € G and a € A", the map g is an isometry from the
Hilbert space (L, (, )s) onto (L, (, ).¢4) and consequently the tangent map
(THy)o: TAY — TA}g . is an isometry for the Finsler metric.

The geometry of A™ in this setting was studied in [1] where, in particular,
the following result is proved [1, Theorem 6.3]: the distance d(a, b) in the
Finsler metric defined by

d(a, b) = inf{length(y); y joins a to b},
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230 G. CORACH, H. PORTA, AND L. RECHT

is given by d(a, b) = length of the unique geodesic in A* joining a to b, i.e.,
d(a, b) =|X|s where b=eXa'/2qea™"X/2

Notice that the Finsler structure in A* does not come from a Riemannian
metric. However, A+ shares with Riemannian manifolds of nonpositive cur-
vature the following metric property, which is the main result of this note.

Theorem 1. For each a € A", the exponential map exp,: TA} — At increases
distances in the sense that

(%) d(exp, X, exp, ¥) > || X = Y4

Jorall X, Y eTA}.

Proof. Since G acts isometrically, it suffices to prove the inequality for a = 1.
Set x =exp; X = eX, y =exp; Y = e¥. The geodesic that joins x to y in
time 1 has the formula

(1) = eZX ' 2xex T 212

where b = y(1) = eZ*'/2xe*"'Z/2 | The inequality we are after is
IX =Y SIZ|lx = llx~"2Zx~ 17|
or
|| log x —logy|| < lx~'/2Zx~'/2).
But
x—1/2yx—1/2 — x—1/2(e2x—'/2xex—lz/2)x_1/2

—1/27,—1/2 —1/27,.—1/2 —1/27,—1/2
— e(x Zx )/2e(x Zx )2 — e* Zx .

Then x~'/2Zx~1/2 = log(x~!/2yx~1/2) so we must prove |logx —logy| <
|| log(x~1/2yx—1/2)|| or, changing x into x~!,

|| log x +logy|| < || log(x'/2yx'/?)]|.

Replacing x, y by kx, ky with k a large positive number allows us to
assume without loss of generality that logx > 0 and logy > 0. Then, the last
inequality is equivalent to

”elogx+logy” < ||x1/2yx1/2||.

But this is equivalent to Segal’s inequality (see [3, Theorem X.57, p. 260, vol.
], or [4])

(x%) leX*+¥|| < [le*/2e¥e/2|

and this concludes the proof of Theorem 1. Obviously all steps in the proof can
be reversed, so that (xx) implies (*).

As an application of Theorem 1, consider a C*-algebra 4 with a distin-
guished family p;, p,, ..., p, of selfadjoint orthogonal projections satisfying
pipj =0 if i #j and py+pr+---+p, = 1. Let B C A be the C*-
subalgebra of elements of 4 that commute with all p; and H C A be the
Banach subspace of elements 4 € A satisfying p;ap; = 0 for each i. Let also
E={et:h=h*c H}.
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Theorem 2. For each b > 0 in B, the distance (in the Finsler metric) from b
to the submanifold E C A" is attained at 1 € E .

Proof. Set X = logh. By definition X = X; +--- + X,,, where X; = p;Xp;.
Since ||X|| = max| X;||, we can assume that || X|| = ||.X;]|, and accordingly,
we choose a faithful representation of 4 in a Hilbert space L with the addi-
tional property that, setting L = L; & --- & L, with L; = p;(L), the subspace
L; contains a “norming eigenvector” for X, i.e., a unit vector £ € L; with
Xi& = £||X1||€. Let Y be an arbitrary selfadjoint element of H . Then, by the
definition of H, Y€ L, ®---® L, and therefore X& = X & is perpendicular
to Y¢. As a consequence we have

dib, ) =X =X <N|XE-YE| <X =Y.
Then using Theorem 1, we conclude that d(b, 1) < d(b, e¢¥) and we are done.

Remark. Notice that the tangent map to exp also increases norms. In fact it
suffices to show this property for a = 1. For that we estimate
Y+Z _ Y
e e _ l_lllle_y/zeY+zze—Y/2 —1
t t

eY

using Segal’s inequality |e~Y/2e¥+Ze=Y/2|| > ||e'?||. Assume that ¢ > 0 and
that maxSpec(Z) = || Z||. Then ||e'?| = e'lZl > 1. Hence in this case

il 2T H2e IR — 1) = 2(je ]~ 1) 2 (121 - 1) 2 |2].
Then Y+tZ Y
lim | ———| > )Z].
t—0+ eY

For other Z’s, change Z into —Z.
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ABSTRACT

For Hilbert space operators, with S invertible hermitian, it is proved that
ISTS L+ S~1TS|| = 2||T}I.

For a Hilbert space H consider the set G* of bounded linear hermitian
invertible operators in H and the subset P CG* of unitary reflections (i.e.,
operators with R*=R=R"!). If we writte A€G® as A=NR with N
positive and R unitary (the polar decomposition of A), then R € P, and
A - R defines a map 7:G* — P. The sets G* and P are smooth submani-
folds of the C*-algebra of bounded linear operators in H, and 7:G* = P is a
smooth fibration. Furthermore, we introduce on G* a natural Finsler

*Research supported by CONICET, Argentina.
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structure by assigning to a tangent vector X € T,G° the norm [|X||, =
INY2XN'2| (operator norm). In [2] we prove that the tangent map
Tym:T,G* > T, 4P decreases norms, together with some geometric conse-
quences similar to those shown in [3]. The essential step in obtaining this
result is the following operator inequality, whose proof is the objective of this
note:

Tueorem. Let S,T be bounded linear operators in Hilbert space, with S
invertible hermitian or invertible skew-symmetric. Then

ISTS ™! + S~ITS|| = 2||T|. (%)

Proof. Changing S into iS allows us to consider only the case of S
symmetric: $* =S§. Decompose S using its spectral measure S= [AdE,.
Then Q= [|A|dE, and R=f(A/|ADdE, give the polar decomposition
S=0QR of S, with Q>0 and R unitary and symmetric (so that R = R* =
R™'). Hence S=QR=RQ, S~'=Q 'R =RQ™!, and therefore

ISTS™* + S~'TS|| = |[RQTQ 'R + RQ'TQR|
=[10TQ™ "+ Q~'TQl.

Replacing S by Q, we may assume S > 0.
Next consider

sl=jh(/\) dE, = h(S),

where h(A) is a function of the form h(A)=k /n for k /n<A<(k+1)/n
and k=0,1,2,.... Then the spectrum of S; is finite, and ||S—S,|| and
IS™' — S7Y|| are small for n large. This is clear because if spectrum(S)C
[m,M], then |h(A)—A|<1/n and 1/hR(A)—1/A|<1/m(mn—1) for all
A € spectrum(S) and all n>1/m.

Hence it suffices to prove (*) under the additional hypothesis that the
spectrum of S is a finite set of positive real number A}, A,,...,A;. In this
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case there exists a family of orthogonal projections {P,} with the properties

() P.S=SP,,

(ii) rank(P;) <e,

(iif) Py —1 strongly, ie., ||Px — x|| > 0 for all x in the Hilbert space
when F grows.

The existence of such a family {P,} follows simply by taking an orthonor-
mal basis in each eigenspace {x; Sx = A jx} of S, and then using as P, the
orthogonal projection on the subspace generated by a finite set F of
elements of the union of these bases. For any operator A we have

sup[{ PpAPpx, y) |=| Ax, y) |
where the sup is taken over all F for each x,y with |x| <1, ly| <1; hence

sup (| Py AP = [|A]}.
F

Since S,S™! leave invariant the range of each Py, this identity allows us
to consider the special case where the Hilbert space is C", and the operators
are n X n matrices. Define a linear map on matrices

®:M,(C) » M,(C)

by ®(T)=STS™'+ S 'TS, where S stands now for a positive definite
matrix.

We may also assume that S is diagonal by a unitary change of basis in C".
Denote by s;,s,,...,s, the diagonal elements of S, so that §;>0 for all
j=12,...,n. Then ®(T)=Z-T, where Z'T denotes the Schur product
(Z-T),;=27,T,; of T and the fixed matrix Z with entries

The map ®:M,(C)— M (C) is invertible with inverse ®~(T)=W-T,
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where

1 S;S.
W.. = i
Uz s24g?
ij  Si TS

Notice that W,; = ;. We claim that W is a positive definite matrix. In fact we
can write W= SMS, where M is the matrix with M, = 1/(s? + sjz). But the
identity

1 i].:.[j(xi_xj)z
det(x,.+xj) N H(x,.+xj) ’

valid for x;>0, i=1,2,... (see [1, Solution I] or [5, Absch. 7, Aufg. 3]),
shows that M is positive definite, whence W = SMS is also positive definite.
Recall the inequality (due to Davis [4] and Walter [6])

I1B-Cll < maxy/d; max /e [C]

where || || denotes operator norm, B and C are n X n matrices, and d; [e;;]
are the entries of the positive square root (B*B)'/2 [(BB*)'/?].
In our case, we take B=B*=W and C=T. As proved above, W=
(B*B)'/? =(BB*)"/* and so d,; = ¢;, = 3. Thus
IW-T|| <3IITll,

or || ®~X(T)|| < 5liT|, which can be written as 2||T|| < ||®(T)|}, an equivalent
form of ().

Remark 1. If T*=T or T*=—T, then the inequality (*) implies
ISTS™*)j > IIT|l.

Remark 2. The companion operator
W(T)=STS ' —-S!TS

has a geometric meaning in the context of the fibration G®— P mentioned
above. However, the norm of W(T) is in general unrelated to the norm of
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®(T). For example, when TS = ST we have W(T') = 0, ®(T)=2T. For 2x2
matrices |[W(T)|| > ||®(T)||, where T is hermitian. Finally, if

_ _ 1.2
k2 0 o 1 _k *k
4 k2+1  k*t+1
—k -
s=lo % of, r-|—~ L k|
k2+1 4 k2+1
— k2 —k 1
0 0 1 __ _
kt+1 k241 4
then
0 [ | kt—-1 )
k2+1 kT4l : ~1 -l
k?2-1 k2-1
LY (T)=| —— -], ®(n)=]|- 1 _
k2+1 0 k2+1 () .]. 9 ]. >
k-1 k2-1 .
k*+1 . kZ+1 0 -1 -1 3

and therefore
k2-1\2 (k117
||w<r>||=[2(m) + i) }
and
le(T) | =5
Taking k large, we get ||¥(T)|| near
Jim | W(T)||=V3,
and therefore [[W(T)||> ||B(T)|

We thank E. Andruchow and D. Stojanoff for valuable comments.
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ABSTRACT

A shuffle is the horizontal interchange of a pair of blocks of the same size in a

" matrix. A general algorithm using row reduction and shuffles was first introduced by

Luenberger, and then used by Anstreicher and Rothblum to give an algorithm to
compute generalized nullspaces. We present a new, concise proof of this shuffle
algorithm, and show how the shuffle algorithm can be used in deriving the Jordan
blocks for a square matrix with known eigenvalues.

INTRODUCTION

A general shuffle algorithm was first introduced by D. G. Luenberger [3],
and ingeniously used by K. M. Anstreicher and U. G. Rothblum [1] to give an
algorithm to compute the generalized nullspace of a square matrix and the
Drazin inverse. A new, concise proof of the main theorem of [1] is presented
here. The shuffle algorithm is then used to find bases for the generalized
eigenspaces of a square matrix T whose eigenvalues are known. Finally we
describe a simple algorithm to compute an invertible matrix P such that
PTP~! is in Jordan form.

*This research was supported in part by grants NSERC A7171, A18603, and A22101 and
NSERC GR-5 824102.
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DIFFERENTIAL GEOMETRY OF SPACES
OF RELATIVELY REGULAR OPERATORS

G. CorACH, H. PORTA AND L. RECHT

Given an idempotent r of a Banach algebra A we study the space
§=8={(a,b)e AxA:ar=a,rb=0b, ba =r},

and in particular the fiber bundle induced by the action of the group of
units G of A, and the associated bundle § : § — Q@ = {¢g € A : ¢* = ¢}
defined by 6(a,b) = ab. When A is a C*-algebra and r € @ is symmetric,
we also study a real-analytic retraction of S onto R = {(a,b) € §: b= a*}

related to the polar decomposition of a reflection.

INTRODUCTION

Let F be a Banach space and @ the space of projections of F', i.e. @
consists of all linear bounded operators ¢ € L(F) such that ¢* = ¢. Asin
the finite dimensional case, one can consider the canonical vector bundle
£ ={(¢g,v) € @ X F:v € im q} over @ (here we use im ¢ for the range of
g). On the other hand if F is a Banach space which is isomorphic to some

im ¢q, q € @, one defines

S=S8(E,F)={(i,j) € L(E,F) x L(F,E) : ji = 15} .

Research supported by CONICET, Argentina
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There is a natural map 8 : & — ¢ given by 8(¢,7) = 13, whose image @’ is
open and closed in Q. The map §: S — @' is a principal fiber bundle with
group H = GL(E).

Observe that £]@Q' — Q' is the vector bundle £|Q’' = 8§ x i E, associated
to # and the natural representation of the group H on E.

This paper deals with the topological and geometric structure of S.
Each (i, 7) € S defines a decomposition of F into two direct summands, one
of which is isomorphic to E. This justifies the name of space of decompo-
sitions we have chosen for §.

It is readily seen that S is a closed analytic submanifold of L(E, F') x
L(F,E). The projections define locally trivial fiber bundles with affine
fibers pry : & = I, pro ¢ § — J; I (resp. J) consists of all direct
monomorphisms (resp. epimorphisms) from E into F' (resp. from F onto
E). As a consequence, §, I and J are homotopy equivalent. The group
G = GL(F) of all invertible operators on F' operates on § by ¢.(i,7) =
(gi,jg'); for each (z,7) € § the map 7 = 74,5 : g = ¢.(4,7) defines a
principal fiber bundle over the orbit §' of (2,7) in S. In particular, curves
in 8" lift to G. But for €' curves an explicit lift can be found as the solution
of a linear differential equation, as shown below. This way of lifting curves
is related to the geometry of the bundle 7 : G — &' in a very precise sense: a
natural connection is defined on 7 and the horizontal lifts of C! curves in 5
are, precisely, the solutions mentioned above. Several geometric invariants
of the connection are calculated. Also a natural connection is defined on the
principal bundle 6 : S(E, F) — Q. In this case, the horizontal lift of a C*
curve v in Q' with origin 8(z,3) is (D(¢)z, jT(¢)71), where T is the solution
of the initial value problem I' = (¥y — ¥4)T, T(0) = 1.

If E and F are Hilbert spaces, it is natural to consider the “symmetric
part” of S, i.e. the space R = {(z,7) € § : ¢* = j}. The unitary group U
of F acts on R and defines, for each (z,2*) € R, a principal fiber bundle
U — R' (= orbit of (¢,7*) in R) with a connection induced by that of S'.
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Observe that 6(i,:*) € P = {p € L(F) : p* = p, p* = p}. In [5] it is shown
that the polar decomposition, which can be seen as a map G — U, induces
a map 7 : Q — P; we call p= n(q) the polar decomposition of q.

We conclude the paper by introducing a “polar decomposition” of pairs
(1,7) € 8, which seems to play a relevant role in the study of the geometry
of S.

The results described above are developed in the following, more gen-
eral, context: given a Banach algebra A andr € Q = {g € A : ¢® = ¢},
we consider § = &, = {(a,b) € AX A:ar =a,rb="5, ba =r}. We show
that S(E, F') can be identified with a convenient S, (see the end of §1). All
the results we get for § can be translated to the spatial case, S(E, F), with
no extra effort. One advantage of this presentation is that it has functo-
rial character. Of course, in the last part of the paper, which is concerned
with Hilbert space operators, we deal with C*-algebras instead of general
Banach algebras.

This paper is part of a series ([5], [6], [7], [18], [19]) devoted to several
aspects of the geometry of spaces of projections of a Banach algebra A.
The space S(E, F), when E = A and F = A", has been considered in [4].
Prof. B.E. Johnson suggested some generalizations which motivated our
interest in the space S. In another context, Taylor [23] has also studied the
space § (see, in particular, section 3.6 of his paper). Related aspects can be
found in papers by Douady [10] and Koschorke [13]. Finally, we mention the
connections of our work with that of Gramsch concerning relative regular
elements of topological algebras. Recall that a € A is relative regular or
pseudo inversible if there exists b € A such that aba = a and bab = b (see
(1], [16], [3]). In this case ab and ba are idempotent and it is clear that the
union of the spaces Sy, when r runs through @, coincides with the set W
of such pairs (@, b). The differential structure of W has been considered by
Gramsch [11] whose work has some connections with ours.

The minimality of geodesics in the fibers of 7 : Q — P in a C*-algebra
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A has been studied in [5] and [19]. We study this problem for the case of
7 : S — R in a forthcoming paper.

We thank Prof. B.E. Johnson for several valuable comments.

§1. ANALYTIC STRUCTURE OF §
Let A be a Banach algebra with identity 1, G its group of units and @

the set of idempotent elements of A. Throughout r is a fixed element of @
and S is defined by

S=8 ={{a,b)e AxA:ar=aq,rb=b, ba=r}.

1.1. Theorem & s a closed analytic submanifold of A x A. The tangeni
space of S at (a,b) € S is (isomorphic to) {(X,Y) € AxA: Xr=X, rY =
Y, bX + Ya = 0}.

Proof. Observe, first, that S is contained in the direct (=complemented)
subspace M of A x A consisting of all pairs (z,y) such that zr =z, ry =y
(a complement of M is {(z,y) : zr =0, ry = 0}). Then, it suffices to show
that S is a closed analytic submanifold of M. Observe, next, that § =
#~1(r), where ¢ : M — rAr is defined by ¢(z,y) = yz = (ry)(zr); then, by
the implicit function theorem, it suffices to show that T' = T{, p)¢ is right
invertible. For this, an easy computation shows that T(X,Y) = Ya + bX
and W : rAr — M defined by W(Z) = (1/2)(aZ, Zb) verify TW = ud.

1.2. Proposition For ¢ € G the map (a,b) w— (ag™',gb) defines a
diffeomorphism from § = 8, onto Sypq-1.

Thus, S, depends, as a Banach manifold, not on r but on its conju-
gation class. We shall see later {5.8) that, as a principal fiber bundle over
Q, S. depends on a certain equivalence class of v, which is smaller than
its conjugaiton class.

1.8. Remark Recall that every idempotent ¢ €  induces matrix represen-
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tations for all elements of A,

(au aiz )

a= ,

a21 a3

where a1 = qagq, aj2 = qa(l—q), as = (1—qlag, azs = (1 - g)a(l —gq).

Product in A corresponds ot matrix multiplication in this representation.

In this matrix decomposition induced by r, an element (a,b) € § can be

<( ) ) ( 1 2))
[25) 0 ’ O O
Wlth b1a1 + bgag =1.

We end this section by observing that the sets S(E, F') described in the
Introduction are special cases of § = §,. In fact, let (4,70) € S(E, F) be
fixed and let A = L(F), r =10j0 € @ = Q(L(F)). Then T : S(E,F) — &,
defined by Y(2,7) = (¢J0, %) is a diffeomorphism with inverse Y~1(a,b) =

written as

(aiﬂajﬁb)'

§2. THE FIBRATION G — S

Let 7: G — & be the map defined by 7(g) = g.(a,b) = (gag, bog™?),
where (ag, by ) is a fixed element of §. There is a neighborhood U of (ao,b0)
in § such that og(a,b) = aby + (1 — ab)(1 — agbo) is invertible for all (a,b)
in U. In fact, go(a,b) - (aob + (1 — agbp)(1 — ab)) = 1 — (1 — ¢)go(1 — ¢)
(where o = agby, ¢ = ab), which is invertible for gy close to ¢. The map
oo : U — G is a cross section of 7, i.e. 7(09(a,b)) = (a,bd) for all (a,b) € U.
More generally, if (ay,b;) = 7(g) and Uy = ¢.U then o7 : Uy — G defined
by 01(a,b) = goo(g7 e, bg) = goo(g~".(a, b)), is a cross section of T over Uj.
These remarks show that the image S’ of T isopenin S and that 7 : G — &'

admits local cross sections. Moreover, if K = {g € G : gag = ag, byg =
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bo} (K is the isotropy group of (ap,bo)), then ¢ : Uy x K — 771 (Uy),
defined by ¥((a,b),h) = o1(a,b)h, is a diffeomorphism, with ¥ 7'(g) =
(r(g), o1({g))"g). This proves the following result:

2.1. Theorem The map 7w : G — 8’ is a principal fiber bundle with
structural group K = {g : gap = ag, bog = bo}.

2.2. Corollary 7 induces the exzact homotopy sequence

4 7r,-+1(8',(a0,b0)) — ’R'i(K, 1) — 71’,'((;, 1) - wi(S’, (ag, bg)ﬁ) - ...

In particular, if G is coniractible then m;41(S',(ag,by)) is isomorphic to
Wi(K).

2.3. Remarks i) In terms of the idempotent gy = aoby, K can be
expressed as {g € G : ggo = ¢og = ¢o}; thus, in the matrix representation

determined by go, K consists of all invertible matrices of the form

(o #)

ii) Consider the commutative diagram

S Y Q

8

where p(g) = gpog~! and 6(a,b) = ab. Then the isotropy group of go in G
is H = {g € G: gqo = qog}, i.e. H' consists of all invertible matrices (with

0
respect to gq) of the form ); thus K is a normal subgroup of H'

hy

and therefore § — @ is a principal fiber bundle, as will be shown in section
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5 (cf. [22)).

i) ¥ (a1,b1) = 7(g) then the tangent map of 7 at g, Tyr : T,G —
Ty 508" = T(a1,8,)S 1s given by (T,7}(X) = (Xao, —bog™'Xg™ 1), X €
TyG ~ A. (As a rule we shall write tangent vectors with capital letters).
In particular, for g = 1 we get (T17)(X) = (X ao, —boX) so that the kernel
of Ty7 consists of all vectors X in A such that Xgy = goX = 0; in other
words, ker(T17) ={X € A: X = (1 - q)X(1— q0)}. In go—matrix form,

i ={(0 ).

which is clear because it consists of tangent vectors at

o={(o 1)}

iv) If we let (ag,bo) vary in S and consider the corresponding maps 7 =
T(ao,bo)> the results above show that § is a discrete union of homogeneous
spaces §' C § of G (here discrete means that each &' is open and closed
in §). This type of Banach manifolds has been considered by Raeburn
[20]. By combining his results and ours it is rather easy to obtain a ho-
motopy equivalence between S(B®A) and the space of continuous maps
C(X(B),S(A)), where B is a complex commutative Banach algebra with
identity and X(B) is the space of maximal ideals of B [20].

v) Even if we shall not consider the functorial character of S, it is worth
mentioning that an epimorphism f : A — C of Banach algebras induces a
Serre fibration S(A) — S(C). The proof of this fact follows the argument
used in [6].
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2.4. Example Let ¥ be a Hilbert space, E a closed subspace and p £ 4 =
L(F) the orthogonal projection on E. Let § = &,, so that the isotropy
group of (p,p) € S is

Hy={geG=GL(F):g|lp=1g, g(E*)=E"}.

Thus, Hy is isomorphic to GL(E1). When the codimension of & in F is
oo, Kuiper’s theorem [14] shows that G and H are contractible, so that, by
2.2, mi(S)=0"for all ¢ > 1.

We turn now to the study of the projections
pry : (a,b) — a, pro(a,b) — b

Denote by I the image of § by pr; and J the image of S by pra. We study
pri, the case of the other projection being similar. Let (ag,bp) € S and
T : G — S as before. Consider a local cross section of pry o7 : G — I
(for instance, s(a) = 1+ aby — agby for a € I close to ag, or sy{a) =
g(1 + g7 aby — agbp) for a close to gag). Let N be the left annihilator of
ap: N={X € A: Xag = 0}. Then ¢ : pri* (V) = V x N defined by
¥(a,b) = (a,b s4(a) — by), where V is the domain of the section s,, is a
diffeomorphism and ¥ ~1(a,X) = (a1(X + b)sy(a)™?). Thus prq : & — I
is a locally trivial fiber bundle with affine (a fortiori contractible) fiber.
Analogous results hold for pry : § — J. In particular &, I, J have the
same homotopy type (in the case S(E, F') where E is a Banach algebra and
F = E™, this result has been obtained in [4]).

In certain cases, the surjectivity of the map 7 : G — & is related to the
so called stability problems in K-theory. For instance when B is a Banach
algebra, A = M,(B) and r is the idempotent matrix with 1 in the (1,1} en-
try and 0 elsewhere, S can be identified with {({(z1,...,2Zn),(y1,...,Yn)) €

B*xB™: Z yrzr = 1}; K-algebraists look for sufficient conditions for the
k=1
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map G — pri§ = {(z1,...,2,)}, which assigns to every invertible matrix
o € G its first column, to be onto (see [15] for an excellent description of
these problems). The results above show that those conditions depend only

on the homotopy type of G and S (see [4]).

§3. THE TRANSPORT EQUATION

We use the notations of §2. From the fibration propertiesof 7 : G — &'
it follows that for every continuous curve v : [a, 8] — 8§’ and every g € G
such that 7(¢g) = y(a) there exists a continuous curve T' : [0, 8] — G
such that 7T" = v and I'(a) = ¢g. We shall prove that, for C? curves v, a
lifting I can be obtained by solving a linear differential equation. Indeed,
a more involved procedure yields a rectifiable continuous lifting ' under
the assumption that v is rectifiable and continuous. See [18] for such a

construction for the case of curves in @, where multiplicative integrals are
used (see Volterra [24], Schlesinger [21], Potapov [17] and Daleckii [8]).

Consider a C! curve v : [a, 8] — &' with y(a) = (ao,bp) and take a
partition Il : & =15 < #; < -+ < t, =1t of [a,t] (¢ € [a, B]) such that,
for each k = 0,1,...,n 1, gr41 = a(tr41)b(te) + (1 — q(tx)) € G, where
38 = (alt), b)), a(t) = a(t)b(t). Observe that gy - (a(te), b(ts)) =
(a(tr41),b(tk41)), so that 7(gr419k...91) = ¥(tk+1)- Set g1 = gn... 1.
It can be shown, under the weaker assumption that « is rectifiable and
continuous, that the limit I'(#) = limy—ogn exists for all ¢ € [a, 8] and
I' is a rectifiable continuous curve [e, 8] — G such that 7T = 4. We shall
assume this fact without proof and derive a differential equation such that
its unique solution I' with initial value ¢ € G with y(a) = 7(g), satisfies

[ = ~.

First, observe that, for any real number h small enough, I'(t + k) —
I'(#) = geaT(£)—T(t)+o0(h), where gein = a(t-+h)b(t)+(1—q(t+h))(1—q(t))



780 Corach, Porta and Recht

and o(h)/|h| — 0 when A — 0. Then

gean — 1 =a(t +h)b(t) — g(t + h) — q(t) + gt + hjg(7)
= alt + h)(b(t) — b(t + h)) + (q(t + h) — q(t))a(?)

Fh)—1
M._.,p(t}

T(t 4+ h)—T(t) .
A = jm h

= (—a(t)b(t) + §(t)g(t)L(2) -

and I‘(t) = ’};int

3.1. Theorem Let v = (a,b) : [a, 8] = S’ be a C* curve. The solution of

the instial value problem

(3.1.1) I' = (—ab+ ¢q)T, D(a) =1
is o C! curve T : [, 8] — G such that
(I'(t)) =v(t) for all t € [a,d].

Proof The existence, uniqueness and invertibility of the solution of
3.1.1 follow from the general theory (see e.g. [3], [9]). It suffices to show
that 7T = v, i.e. T'(t)ag = a(t) and be['(¢)™! = b(t) for all ¢. Since the
curves I'"ta, b begin at ag, by, respectively, it suffices to show that they
are constant.

First, write the differential equation as

I = (—afa + ab+ abab)F



Corach, Porta and Recht 781

since ba = r and ar = a, so that ar = a.

Then (I'la) =TT a4t
= —T"Y(—ab+ ab+ abab)IT a + T 14
= —I’_l(—aba + aba + ababa — a)
= —T7Y(—aba + & + aba — &)
=0, and

(bT) = bI' 4 b1
= b + b(—ab + ab + abab)T
= (b~ rb+ bab + rbab)T
= (bab + bab)T', sincerb=15
=0

since ba = r so that 0 = r = ba -+ ba.

¢4. THE CONNECTION ON G — &'

As usual, let (ag,bp) be a fixed element of § and 7 : G — &' be the
corresponding fibration. A tangent vector X € T,G is called vertical if
(Ty7)X = 0. We denote V, the set of all vertical vectors at g € G:

V,={X¢€ T,G: (Tyr)X =0} .

As remarked before (2.3.3) V, = {X € T,G : X¢o = 0 and ¢og71X = 0},
where qo = apbp € Q. It is easy to see that V, = ¢V4 and V; = {X ¢
TG : X =(1—-qo)X(1—qo)}. But then it is clear that Hy := {X € T\G :
(1 —qo)X(1 —go) =0} is a direct supplement of V; in A = T} G.

Define Hy := gH; for all ¢ € G. Then H; @V, = TG and H,h =
Hypforall g € G, he K ={g9g€ G:gq = qg = ¢} Finally we
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have the operators vy, h, € L(A) defined by vy(X) = g(1 — go)¢ ' X(1 -
90), he(X) = 99097 Xq0 + 99097 ' X (1 — q0) + (1 ~ q0)9™ ' X g for X €
A=T,G.

It is clear that vy and h, are the projections of L(A) determined by
the decomposition A = V, § H,;. It is also clear that v, and %, depend
analytically on g¢.

All these remarks, put together, prove that the subspace distribution
g — H, defines a connection on the principal bundle 7 : ¢ — .

The connection form w is defined for X € T,G by w,X = v1{g™* X).
Then wy X = (1—qo)g ' X(1—go). The 2—form dw is easily calculated from
its definition, for X,Y € T,G:

dwy(X,Y) = (1/2{X .w Y =Y . wy X — wy[X, Y]}

= (1/2)(1 - q)lg”'Y, g7 X|(1 — q0)
= (1/2)wr[g7"Y, g7' X] .

Analogously, the curvature form € of the connections is

Q,(X,Y) = dwy(hy X, hyY)
=(1/2)(1 — g ){¢ ' Yq09 ' X — g7 Xgog 'Y }{1 ~ q0),

and obviously we get the structure equations
dwg(X,Y) T+ (1/2)[wa7 ng] = QQ(‘X’ Y) .

Recall [12, p.69] that a differentiable curve v : [a, ] — §' admits a unique
horizontal lift with origin 1, i.e. a differentiable curve I' : {a, 3] — & such
that D(a) = 1, «(T(t)) = () and I'(t) € Hr( for all t € [a, B]. We show
next that the lifting constructed in Theorem 3.1 by means of the differential
equation I' = (—al; + qq)T" is exactly the horizontal lift of v = (e, &).

4.1, Theorem For every Ct curve v : [a, 8] — S' the horizontal Lift T

with origin go, for w(ge) = (), is the solution of the initial value problem
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(4.1.1) I'=(—ab+¢g)T, T{(a)=go.

Proof Both objects, the horizontal lift and the solution of the differential
equation, are unique, so it suffices to prove that the horizontal lift I" with
origin go satisfies (4.1.1).

By definition, 7(T(t)) = y(t), T'(e) = go and I'(t) € Hryy = D(t)Hy;
this means that T'(£)ag = a(t), boI'(¢)~* = b(¢) and I'(#)"I(t) € H; for all
¢, so that (from now on we omit writing the variable t) (1 — qO)F_lf(l -
go) = 0; but go = apby = ' tabl, so

(4.1.2) 0=(1=qo) T 'I(1 - qo) =T"(1 — ad)IT (1 - ab) .
On the other hand, & = I'ag, b= —b '™ I'T~* and

T +ab— g =TTt 4 a(—boD " TT 1) — (abab + abab)
=TT 4 a(—(BD)T 7 IT 1) (Tagh — aby T IT 1 abd)
=TT~ — abI'T™" — I'T ab + abI'T " ab
= (1-ab)IT7}(1-ab)=0, by (4.1.2).

This shows that I' = (—ab + ¢¢)T", which proves the theorem.
From the transport equation, a natural connection on the tangent bun-
dle T'S is constructed as follows.

Given a C! curve (a,b) = (a(t),b(t)) in S and a tangent vector field

D d
;i-t(U, V) iS a(r U, VF)]t=0.

D . . . .
Then E(U’ V) = (U — cU,V + Vc), where ¢ = —ab + ab + abab. The

curve (a,b) is a geodesic of this connection if and only if it verifies @ = ca

(U,V) along (a,b), the covariant derivative

and & = —be. The following proposition, whose proof is straightforward,

describes all geodesics through the point (ag,bp) € S.
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4.2. Proposition Given a tangent vector (X,Y) € T4, 5,)S the curve ¥(t) =
(9(t)ao, bog(t)™1), where g(t) = etXo—aoY+aoYaoo) is the geodesic through
(ag, bo) with the initial velocity vector (X,Y).

4.3. Remark The exponential map of the connection is given by

Exp(ao,bo)(Xv Y) = e(Xb"'IY""“Y“b) ,

for (X,T) € T(a,50)(X,Y).

§5. THE PRINCIPAL BUNDLE § — @

In this section, we study the map 6 : § — @ defined by 8(a,’) = ab.
We shall prove that 8 is a principal fiber bundle with structure group H =
{h€ G:hr=rh, (1-r)h=1-r} and define a connection on 4. We also
determine the horizontal liftings, with respect to this connection, of curves
in Q.
5.1. Lemma H acts freely on S by (a,b).h = (ah, h™1b).

Proof Observe, first, that in terms of r the elements of H have the form

AT 0)
\ o 1)
Suppose that {a,b).h = (a,b) for some {a,b) € §, h € H. This means

that ah = a and h™1b = b, or, matricially,

(alhll 0> _ (al 0)
aghu 0 - an 0
<h1‘11b1 h;;bz) ~ <bl bz>
0 o ; \o 0

so that a1y = a1, ag2hy1 = ag and multiplying at left by b; and by,

and

respectively, and adding we get {b;a; +baas)h1y = byay +bya,, which means

precisely, hyy = 1,1i.e. A =1.
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Observe that the action of H preserves the fibers §71(q) (¢ = ab).

5.2. Lemma Given (a,b),(a', ') in §71(q) there exists a unique h € H such
that (a',b') = (a,b). h.

Proof We continue with the same matrix notation. If (a’,8') = (a,b). A
then ajhy; = @} and azhqy = ab, so that, byaihyy = bia), brashy; = bad)
and hy1 = (brar1+bzas)hi1 = bia) +beal. Thus, hyy (and so k) is completely
determined by (a,b) and (a’,d"). For the existence, it suffices to show that

h
h::( i1 0)
0 1

is actually invertible. But it follows from the equalities a;br = a}b), that
hi1(byaq + bhas) = (bjay + bhaz)hyy = 1, so that h is invertible.

5.3. Lemma The map 0 : § — @ admats local sections; in particular, 1is
image 18 open and closed in Q.

Proof Let ¢ = ab = 6(a,b) € Q and n, : G — Q be defined by
74(9) = gqg~". It is well known that 7, admits analytic local sections [1§],
[6]. Then, there exists a neighborhood V C @ of ¢ and an analytic map
o'+ V — G such that o'(s)go’(s) ™ =sforall s € V. Thus,0: V — 8
defined by o(s) = 0'(s).(a,b) = (o'(s)a, bo'(s)™!) is an analytic cross
section of §. This shows, also, that §(S) is open in Q. But Q\4(S) is the
union of sets of the form 6(S5,) so that 6(S) is also closed.

The lemmas above imply, together, the following result
5.4. Theorem The map 6 : § — @ is a principal fiber bundle with structural
group H.

5.5. Remarks 1) The image of § clearly contains the similarity orbit of
r, but examples can be easily obtained in which it is strictly greater. In
fact, when A = L(F') the image of § : § — Q consist of all ¢ € Q such that
im ¢ is isomorphic to im r; however, if ¢ € Q) belongs to the similarity orbit
of r then ker ¢ is isomorphic to ker r (and, of course, im ¢ is isomorphic

to imr). It can be shown that 6(S,) is the equivalence class of r for the
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relation ~ defined on @ as follows: g ~ ¢' if there exists w, z in A such that
wq = q¢'w, qz=zq', 2wq = q and wzq' =¢'.
2) Observe that, in the spatial case S(E, F), the associated vector bundle
corresponding to the action of the group H = GL(F) over E coincides with
the canonical vector bundle {(z7, im ¢j) : (3,7) € S(E, F)}.

Next, a connection will be defined on the bundle 8 : S — Q. Recall
that for (a,b) € S, the tangent space T = T, S is

T={X,Y): Xr=X,r¥Y =Y, Ya+bX =0} .

Observe also that the vertical vectors, i.e. the elements of T which are

tangent to the fiber §71(ab), form the subspace
Viaw = {(X,¥) €T : Xb+a¥ =0} .
Let us define the following direct complement of V(4 5) in T
Hipn={(X,Y)eT: 50X =0}
and consider the projection Fig 3y : T — T
Flan(X,Y) = (abX, —5X0b).

Tt is straightforward verification that F' is the projection onto Vi, 3 with
kernel Hq 3)-
5.6. Lemma Given (a,b),(d’,b') € 971 (q) and h € H such thai (a',¥') =
(a,b). h the respective projections Fiq 3y, Flar sy verify Fio p)((X,Y) . h) =
(Flap)(X,Y)). h for all (X, Y)eT.

This equivariance property, whose proof is straightforward, shows that
the distribution (a,b) — H, 3y defines a connection on 4 : & — ). We shall
determine the horizontal liftings of C* curves in Q.

5.7. Theorem Let v : [a, B] — @ be a C' curve with origin v(a) = q = ab,
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for some (a,b) € S. Let T : [a, ] — G be the unique solution of the initial

value problem

F=[,yT, T(a)=1.

Then 6() = I'(t).(a,b) = (L(t)a, bT(¢)~") is the horizontal lift of v with
origin (a,b).

Proof By the uniqueness of horizontal liftings with fixed origin, it suffices
to show that T'(¢)abl'(t)™! = 4(t) and §(t) € Hgyy for all t € [, 5]. The
first property is known ([18], [6]). Observe that

8(t) = (D(t)a, —bL() 7 D(OL(H) ™)

and

Hsy = {(X,Y) € Ty : bT(¢) ' X = 0}.

We must show, then, that bI'(¢)"I'(t)a = 0. But T is the horizontal lift of
v to G so that
qD(t) 7T (t)g =0

(see [6,(4.6)]). Multiplying by b on the left and by a on the right and using
rb = b and ar = a we get the desired equality.

5.8. Remark In 1.2 we have observed that, as Banach manifolds, S, and
Sgrg-1 are isomorphic for all ¢ € G. We now prove that, as principal fiber
bundles, 8, : S, — @ and 6, : S — @ are isomorphic if rr' = ' and
r'r =r.

In fact, using matrix representations in terms of r: we have

(1 0) , <1 m>
r= , T =
0 0 0 0

for some z; the map
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0 b b
(o o) (0 1))
as ) 0 0
(G o) (6 %))
— 5
as as 0 0
is a diffeomorphism of S, onto S+, the isomorphism of H, onto H,s having

(/’z 0) <h hm-—m)
v — )
0 1 0 1

\
It is easily verified that: a) the isomorphism respects also the connec-

the form

tions, i.e. horizontal vectors on T{, 3)S» are sent onto horizontal vectors
in 7o p)Sr, and b) Tr((a,b). h) = (Trr(a,b)). v(h) for all (a,8) € &,
he H,.

§6. THE C*~ALGEBRA SETTING

When E and F' are Hilbert spaces, the most relevant pairs “inclusion—
projection” (i,7) are those in which the inclusion ¢ is an isometry whose
image is orthogonal to the kernel of the projection j.

6.1. Proposition Let E, F be Hilbert spaces and (1,7) € S = S(E, F). Then
¢ 18 an isometry and kerJ L imi if and only of j = ¢*.

Proof Suppose that j = i*, so that ¢*¢ = 1z. Then clearly ¢* is an
isometry and, for y € ker j and z € E, {(y,i(z)) = {(i*y,z) = (j(y),z) = 0.
Conversely, let 7 be an isometry with im ¢ L ker j. Fori € ker jand 2 € E
we have {j(y),z) = 0 = (y,i(z)}) = (#*(y),z), so that j = 2* on ker 7; for
y € (ker j)* =im: and z € E, (i*(y),z) = (i*(i(2")), z) for some 2’ € E,
so (i*(y),z) = {i(z"),i(z)) = (z',z) = (yi(z'),z) = (j(y),z) and j = * on
(ker j)t.

Let A be a C*—algebra with unitary groupf and P = {p € @ : p* = p}.
Given a fixed r € P we consider the subset R of S consisting of all pairs
(a,b) such that b= a*, ie. R = {(a,a*):ar =a, a®a=r}.
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The following facts can be proven as above:

6.2. R is a closed real-analytic submanifold of A x A; for (a,a*) € R,
T(a,a+yR can be identified with {(X,X*) € Ax A: Xr =X, a*X 4+ X"a =
0}.

6.3. U acts on R by inner automorphisms defining, for each (a,a*) € R,
a principal fiber bundle 7 : & — R with structure group Hy = {u € U :
ua = a}.

6.4. There is a principal connection on 7 : Yf — R; for u € U the
horizontal vectors are those X € A such that X* = X and (1 —aa*)uX(1—
aa*) = 0; the horizontal lifting of a C-curve 7 : [a, 8] — R with origin u,

(T(ug) = ¥(a)) is the solution of the initial value problem
I' = (—ad* + aa* + ad*aa®)T, T(a) = ug .

6.5. The map 8 : R — P is a principal fiber bundle with structure group
H={ucl :ur=ruy, l-—rju=1-r}

6.6. There is a principal connection on 6 : R — P whose horizontal
vectors at (g, a*) are those (X, X*) satisfying a* X = 0; the horizontal lifting
with origin (a,a*) of a C* curve v : [a, 8] — P such that y(a) = aa* is given
by ¢t +— (I'(t)a, a*I'(t)*), where I is the unique solution of the initial value
problem I' = [4,4]T, T(a) =1 (T is unitary because [¥,v] is antisymmetric
9)).

6.7. Remark When E is a Hilbert space and A = L(E) then R can be
thought as the space of all partial isometries with the same kernel as r;
thus, the map 60 is a way of fibering over P these partial isometries.

We proceed now to define the “polar decomposition” of a pair (a,b) €
§. The definition of the polar decomposition of an idempotent ¢ of 4 is in
order [6, §2]. Given ¢ € ), 2¢ — 1 is invertible so it admits the (uniquely
determined) polar decomposition 2¢ — 1 = A*p where A > 0 and p* = p~ L.
It follows that p* =1 and Ap = pA~%, s0 that p = (1/2)(p + 1) € P. Define
m(q) = p; pis what we call the polar decomposition of g.
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In order to find what should be the polar decomposition of a pair
(a,b) € S be, we start by considering the spatial case. Thus, as in the
beginning of the section, § = S(E, F') where E and F' are Hilbert spaces
and R = R(E, F) = {(k, k*): k*k = 1g}.

Given (7,7) € § we look for a pair (k,k*) € R such that if ij = ¢
then kk* = w(gq). Thus we have to twist (z,7) into (¢',7') in order to
transform imgq into im7(g) and then convert ¢’ in an isometry without
changing im(z'j").

6.8. Theorem There exists a real-analytic retraction II : § — R such that

the following diagram commutes

i
S — R

|

Q —— 7P

where 8(2,7) =1J.

Proof Write ¢ = ¢ and p = n(q). Using the same notations as above, we
observe that A~1¢g = pA~1: in fact, A™1¢ = A71(1/2)(A%p+1) = (1/2)(\p+
AT = (1/2)(pA" T+ A7) = (1/2)(p + 1)A! = pA™!, where we have used,
for the third equality, that A\p = pA~1.

Thus A™' € GL(F) satisfies A71(im¢) = A~!(img) = imp. Now
(z,y) = {A7liz,A"iy) is an inner product in E, so there exists a posi-
tive ¢ € GL(E) such that {\iz, \"1iy) = (gz, gy} for all z,y € E. This
shows that & = A~ lig™! : E — F is an isometry and then (k,k*) € R.
Notice that, when 7 is an isometry, i.e. (¢,¢*) € R, then A = 1p, g = 1
and k = 1.

Define II(¢,7) = (k, k*). The analyticity of II is obviously determined
by that of m. Thus, it suffices to prove that the diagram commutes, i.e.

that kk* = p. But, kk* and p are both orthogonal projections with the
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same image, for imkk* = imk = im A" 'ig™! = im A~ = imp. It follows
then that kk* = p.

In the general case we have:

6.10. Theorem Let A be a C*-algebra and r € Q. Then there is a reai-
analytic retraction Il : 8, — Ry(y) such that the diagram (6.9) commuies.

Proof In view of Remark 5.8 we can suppose that r € P (replacing, if
necessary, r € @ by the unique r' € P such that r'r = r* and rr’ = r').
Given (a,b) € S let ¢ = ab and decompose, as usual, 2¢—1 = A2p with A > 0
and p* = p = p~. Observe first that a*A"2a+4 1 —r is a positive invertible
element (with inverse bA26* +1 —r) so that & = A" la(a* A 2a + 1 —r)~1/2
is a well-defined element of A. It suffices to verify (a) a*a =r, (b) ar = «
and (¢) aa® = p = 7(q) and define II(q, b) = (a, a*).

Proof of (a): a*a = {(a*A"%2a + 1 — r)"2a*XA" 1} { A a(a* A" 2a +
1— 7")_1/2} = (a*A"%a + 1 — r)_1/2a*)\_2a(a*)\"2a +1— r)_l/z =1
(@* A 2a+1—-r) Y21 —r)(a*A2a+1—7)"Y2 =1~ (1 —r) =r, because
(a*A7%a+1—r)(1=r)=1—r (see Lemma 6.11 below).

Proof of (b): @ = A7ta(a*A"2a + 1 — r)~/2 = X\"lg(a*A2a)71/2,
where the inverse square root is taken in the C* algebra rAr, whose unit
is r, and then ar = A™la(a*A72a)~1/2r = A~1a(a*A"2a)~1/2 = @, because
ar =r (see Lemma 6.11 below).

Proof of (¢): aa* = A7 ta(e*x%2a) 1a* A7 = A7 1gA%¢* A7) now ¢ =
ApA~! by (6.8), so that ¢* = A™'pA, ¢A2¢* = ApA~"A2A7pA = Ap) and
aa® = p, as claimed.

Thus, the proof of Theorem 6.10 is finished, modulo the following
lemma, whose proof is an easy exercise:

6.11. Lemma Let A be a C*-algebra, z,c € A, such that 2* = z and zc = z.
Then for every continuous function f on the spectrum of z, f(z)c= f(z).

6.12. Remark Denote S|P = {(a,b) € S : ab € P} = §71(P).
Then S|P can be identified with R xy H, where H has the same meaning
as before, and for every u € U, h € H and aR(«,h) is identified with
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(au,u"1h); the projection S|P — R xy H is determined by (a,b) — {a, k),
where h is the unique element of H such that (a,b) = (a,a*}. h (see 5.2).
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DIFFERENTIAL GEOMETRY OF SYSTEMS
OF PROJECTIONS IN BANACH ALGEBRAS

Gustavo CorAcH, HOrRACIO PORTA, AND LAZARO RECHT

Let A be a Banach algebra, n a positive integer and Q, =
{(@,....an) € A": qiqk = Oudi» @1 + -+ gn = 1}. The dif-
ferential geometry of O, , as a discrete union of homogeneous spaces
of the group G of units of A is studied, a connection on the principal
bundle G — Q, is defined and invariants of the associated connection
on the tangent bundle 7Q, are determined.

Introduction. The structure of the set Q of all idempotent elements
of a Banach algebra A4 plays a fundamental role in several aspects of
spectral theory. This work deals with the differential structure of the
space

n
On= {((11, oo On) €A™ Qi = 8yeis Y di = 1}

i=1

of systems of n “orthogonal” projections in A.

The manifold Q, appears as a universal model when certain poly-
nomial equations are considered. More precisely, if ay, ..., ay
are different complex numbers and «(X) denotes the polynomial
(X —ap) (X —ay,), then the set A, = {a € A: a(a) = 0} is a
closed submanifold which is diffeomorphic to Q,. Thus Q, is the
model for all simple algebraic elements of A4 of degree n. More-
over, Q, plays a role in the study of arbitrary algebraic (in particular,
nilpotent) elements (see [AS]).

Section 1 contains the description of the differential structure of Q,
and A, as closed analytic submanifolds of A" and A, respectively;
it contains also the proof that Q, and A, are diffeomorphic.

Using Kaplansky’s notion of SBI-rings, we recover a result of Barnes
[Ba] concerning the surjectivity of 4, — B, when B is the quotient
of A by its Jacobson radical. In §2 we show that Q, is a discrete
union of homogeneous spaces of G, the group of units of A; this
fact, together with a classical result of Michael [Mi], shows that an
epimorphism f: A — B of Banach algebras induces Serre fibrations
On(A4) — Qn(B) and A4, — B,. In §3 we obtain an explicit way of

209
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lifting differentiable curves in Q, to G by solving a linear differen-
tial equation which we call the transport equation; this fact is due to
Daleckii and S. G. Krein [DK] and T. Kato [Kal] but its geometrical
meaning is new. In fact, in §4 we define a connection in the principal
bundle G — @, and show that the horizontal liftings of differentiable
curves in Q, are precisely the solutions of the transport equation.

Several invariants of the tangent bundle of Q, are calculated in
§5 (covariant derivative, curvature, geodesics, etc.). As observed by
Kato [Kal], [Ka2, I1.4] the lifting theorem has important applications
in quantum mechanics (see [Ga], [GS]). A remark about C*-algebras is
in order: our results extend to the case of some involution algebras, in
particular to all C*-algebras. For instance, the transport equation has
a unitary solution if the curve has selfadjoint values; in a forthcoming
paper the immersion of

Py={p€Qn:p;=pi, i=1,...,n}

into @, will be studied, together with associated fibrations Q, — P, .

Concerning the references, the reader may consult Rickart’s book
[Ri] for the literature up to 1960; the topology of the space of idem-
potents Q = O, has been considered in [PR1], [Ra], [Ko], [Ze], [Au],
[Gr] and with special emphasis on the differential struture of Q in
[Ra], [Gr], [Ki], [HK]; for the transport equation the reader may con-
sult [Kal] and [DK2]; in [PR2] the differential geometry of P = P, is
needed for the study of minimality of geodesics; see also [CPR2] for
a related problem; finally, the case of algebraic operators on Hilbert
space, the reader may consult the books [He] and [AFVH]. In particu-
lar, some problems concerning the set P, in this context are discussed
in [CH]. The set Q, appears, implicitly or explicitly, in various works;
we only mention [Ja, p. 54], [Ka2, II.5] and [DK2, Chapter IV].

1. Differential structure of systems of projections. Let 4 be a real
or complex algebra with identity 1. Denote by G = G(A4) the group
of units of 4 and by Q = Q(A) the set of all idempotents of 4.

Suppose that the polynomial a(X) = [];(X — «;) has differ-
ent roots aj, ..., @, in the field. Let g;(X) = [[;,;(X —a;) and
qj(X) = gj(X)/gj(a;). Then g;(X) has degree n—1, g;(a;) = dj;,
for i #j qi(X)gq;(X) = h(X)a(X) for some polynomial 4(X) and
Y1 4i(X) =1 (because 1 — 3 7 ¢;(X) has degree < n—1 and it
vanishes at n values, the a;).

Let A, denote the solution set of «, i.e., the set of all a € 4 with
a(a) =0.
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1.1. PROPOSITION. Let a € A(a). Then
(i) 20, gi@) = 1;
(i) gi(a)gj(a) =0 if i #J;
(i) ¢gi(@)eQ, i=1,...,n;
(iv) gi(a@)a=agqgi(a)=ca;qi(a), i=1,...,n.

Proof. (i) follows from 7, ¢;(X) = 1 and (ii) follows from the
equality ¢;(X)g;(X) = h(X)a(X). From (i) and (ii),

gi(a) = qi(a)Y_ ax(@) =Y _ gi(a)g(a) = gi(a)?,
k=1 k=1

which gives (ii1). Finally from o(X) = c(X — a;)g;(X) (with ¢ =
gi(a;) # 0) it follows that 0 = a(a) = c(ag;(a) — a;g;(a)) and this
completes the proof because g;(a) commutes with a.

Let Q, = 0,(A4) denote the set of all n-tuples of idempotents g;
of A which satisfy g;q; =0 if i#j and Y} ;q;=1.

1.2. PROPOSITION. The mapping a — (gi(a), ..., gu(a)) is a bijec-
tion from A, onto Q, whose inverse is (qy, ..., qn) — Y1y @iq; -

The proof is a straightforward application of Proposition 1.1. Thus,
from a set-theoretical view point, Q, is a universal model for the sets
A, . We shall extend this result to the differential geometry setting.

1.3. REMARK. I. Kaplansky introduced the notion of SBI-rings
(SBI = suitable for building idempotents) as those rings 4 such that
the natural mapping Q(A4) — Q(4/R) is onto, where R is the Jacob-
son radical of 4.

It is known that for a SBI-ring 4, the map Q,(4) — Q,(4/R) is

also onto foreach n=1, 2, ... (see [Ja, p. 54]).
It is also known that all Banach algebras are SBI [Ri, p. 58]. These
facts and 1.2 imply that, for every a = (ay, ..., ay) (With o, # a;),

A, — (A/R), is onto, a result due to Barnes [Ba, Theorem 7].

From now on, we will assume that A4 is a real or complex Banach
algebra with identity. For n-tuples Z = (Z;, ..., Z,) in A" we use
the norm || Z|| = max;<;<, ||Z:||. The general facts on Banach algebras
and Banach manifolds needed below can be found in [Ri] and [La],
respectively.
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1.4. THEOREM. Let a € A, be a fixed element, q = q(a) =
(q1(a), ..., qu(a)) € Qn the corresponding system of idempotents. Set

T={Xe€d; qXqi=0foralli=1,...,n},
S={Yed;, gYq =0 forallk #1}.

1.4.(1) A is the Banach space direct sum A=T & S.
1.4.(i1) Foreach Z=X+Y, Xe€T, Y €S, set

X'=Y"qiXqi /(o — o)
i#k
and define
$(Z) = exp(X')(a + Y) exp(—X).
Then ¢ is a diffeomorphism from a neighborhood U of O € A onto

a neighborhood V' of a. Moreover, ¢|ynr is a homeomorphism onto
VNA,.

Proof. 1t is clear that every Z € 4 decomposes as X + Y, where

X = ququ eT and
J#k

Y:Zq,Zq,eS, for iq,:l and
1 I=1
Z = (ZCI[) 4 (ZCI/) =Y giZa+Y_ aZqg.
J#k l

It is also clear that the decomposition is topological, for 7 and S
are respectively defined as the images of the projections

Z — ququ and Z — Zq,Zq,.
J#k /

An easy computation shows that the derivative of ¢ at O is the
identity: in fact, for Y € S D¢(0O)Y = Y obviously; for X € T
Dp(0)X = [X', a]l = X'a — aX' = X; the assertion follows from the
decomposition A =T & S.

Then, by the inverse function theorem, there exist open neighbor-
hoods U’ of O and V' of a such that ¢ maps U’ diffeomorphi-
cally onto V. Consider next Z = X +Y with ¢(Z) € 4,. Since
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#(Z) = M(a+ Y)M~!, then a+ Y is also a root of a. Then
O =T];(a+Y —«;) and using Prop. 1.1.(iv):

O=qu(a+Y—a,-)=qu(aj+Y—a,-)
i i
=quL

where L = [, (Y — (a; — ;)). If Y has small norm (||Y] <
min{|a; — «j|, i # j} suffices) then L is invertible and therefore
q;Y =0 foreach j. Hence ¢(Z) € A, with Y small implies Z € T .
This means that (perhaps for smaller neighborhoods) ¢ is a homeo-
morphism from U'NT onto V'NV,.

Considering the maps ¢ as analytic local coordinates in A, we
obtain:

1.5. COROLLARY. A, is a closed analytic submanifold of A whose
tangent space at a € A, can be identified to the Banach space T .

1.6. REMARKks. (i) The choice of the chart ¢ may seem rather
artificial, for instance, the derivative at O of (X + YY) =
exp(X)(a+ Y)exp(—X) is X+Y - Xa—aX +Y =[X,a]l+7Y
and the equalities ¢;[X, a]q; = (a; — «;)q;Xq; (i # j) show that
D¢(O) maps T onto 7 and S onto S. Thus, ¢; also provides
charts for the analytic structure of 4,. However, we have chosen the
map ¢ because it is the exponential map of the natural connection
to be studied later (see §4). This remarks applies also to the charts
chosen below for Q.

(i1) An obvious consequence of 1.3 is that A, is locally arcwise con-
nected for all a as above. For the simpler case of a(X) = X(X —1)
this is a result of Zemanek [Ze, 3.2] for complex Banach algebras,
which was generalized for real algebras by Aupetit [Au, p. 413). How-
ever both results have been also proved in [PR1, 4.3] (see also 2.2(iii)
below).

1.7. THEOREM. Q, is a closed submanifold of A" .
Proof. Fix q € Q, and define 7" = {X = (X1, ..., X») € A": ¢, X;g;s

=0 for r#i and s#i or r=s=1, and ¢;X;q; + q; Xxq;r =0 for
i#k}.



214 GUSTAVO CORACH, HORACIO PORTA, AND LAZARO RECHT

The map 6: A" — A", 0(Z;,...,7Z,) = (X1,...,X,) defined
by
X, => a1Z1g; + 4:Z141 ,
i>1
Xy = (Z 029 + 611'22(11') - (012192 + ©2Z:191),
i>2

Xe =D (aZidi + 6 Zkax) - >_(0iZig + acZigi)  (k<n—1),

i>k i<k
n—1
Xn = — ZXk

k=1
is a projection onto 7" whose kernel is the set S’ of all ¥ = (Y1, ...,
Y,) € A" with ¢, Y;qs =0 for r=i and s>i or s=i and r>i.

Thus 7" S’ = A”. For X € T’ put

q,'quj lf_] < i,

X = X;; where X;; =
Z Y Y {—in,-qj 1fl<]

i#]
Observe that qi/\~’qi =0fori=1,...,n.
Consider now the map y: A" — A" defined by
w(Z)i = y(X +Y); = exp(X)(a;Y;) exp(- X)
for XeT', YeS'. Then Dy(O)Y =Y for Y € § and, calculating,
Dy (O)X);=[X,q]=X; forXeT', i=1,...,n.

This means that Dy (O) = identity and y is a diffeomorphism from
a neighborhood of O onto a neighborhood of g. For Y € §’ such
that ||Y|| < 1 itis easily shown that g+Y € Q, ifand onlyif ¥ = O.
This completes the proof.

REMARK. According to Proposition 1.2, the bijections connecting
A, and Q, are given by algebraic expressions.

The next result, whose proof follows easily from the theorems above,
shows that Q, is a universal model for the sets A, of simple algebraic
elements of degree .

1.8. THEOREM. The map a — (qy(a), ..., gu(a)) is a diffeomor-
phism from A, onto Q, whose inverse is given by (qi, ..., qn) —
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b, aiq;. Consequently, for any other B = (Bi, ..., Bn) with B; #
Bj the map a — Y_7_, Biqi(a) is a diffeomorphism from A, onto Ag.

2. Fibrations. The group G of invertible elements of A4 acts on
O, by inner automorphisms on each coordinate: if g € G and g =

(41, --.,qn) € P, then ggg~'=(gq1g7 ', ..., 8an87) € Qn.

2.1. THEOREM. Let q be a fixed element of Q, and define n: G —
Qn by n(g)=gqg™". Then

(i) there exist an open neighborhood U of q in Q, and a local
section 0: U —- G of &,

(ii) the orbit V; = {gqg~"': g € G} is open (and closed) in Qy;

(iii) m: G — Vy is a principal fiber bundle with structure group Gy =
{geG:gq1=q18, i=1,...,n}.

Therefore Qy is a discrete union of homogeneous spaces of G .

Proof. Given ¢q' € Q, define
o(d)=(q,49")=aq191 + - + qnan.

It is clear that g(q) = 1 and o(q)q; = gjo(q’). Thus, for every ¢’ in
a neighborhood U of ¢, we have o(q') € G and o(q')qa(q')"! =¢'.
This proves (i) and (ii) and the rest of the statement follows from
standard arguments (see [St, §7]).

2.2. REMARKS. (i) An invertible element g belongs to G, if and
only if g,gq;, =0 for all k # [. Thus, the Lie algebra of Gy can be
identified to {X € 4: ¢, Xq; =0 for all k #[}.

(i1) With the notations of 2.1 and 1.6 it is easy to describe trivializa-
tions of the tangent bundle 7Q, and of a suplement NQ, of TQ,
in the trivial bundle ¢: @, x A" — Q,. We call NQ, the “normal
bundle” of Q,. Given q € Q,,let U; = {q¢' € Qn: d(¢') € G}. Then
h: U; x A" — Uy x A", defined by

hg',Z)=(q,0(q)Zo(g)™").

is a diffeomorphism which trivializes simultaneously 7: 7Q, — Q,
and a bundle v: NQ, — Q, where (NQ,); =" (asin 1.6).

(iii) Given g € Q,, its connected component (in Q,) can be de-
scribed as the set {ggqg~!: g € G}, where GP is the connected com-
ponent of 1 in G: in fact, it suffices to replace G by G° in the proof
of 2.1. Of course, similar statements hold for A4,. This generalizes
[Ze, Theorem 3.3] and [Au].
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2.3. CoroLLARY. Consider a fixed q € Q, and a continuous curve
y: [0, 11 — Qy such that y(0) = q. Then, there exists a continuous
curve I': [0, 1] = G such that T'(0) =1 and noy =y, where n(g) =

gqg~!.

We consider now the behaviour of the functor Q, under epimor-
phisms.

Let f: A — B be a continuous homomorphism of Banach algebras
which preserves the identity

Clearly f induces maps G(f): G(4) — G(B), and f,: Qn(4) —
0,(B). We shall prove that f, is a Serre fibration when f is an
epimorphism [Sp].

2.4. THEOREM. Let f: A — B be a (continuous) epimorphism of
Banach algebras. Then f,: Qn(A) — Qn(B) is a Serre fibration. In
particular, f, is onto if and only if its image intersects every connected
component of Qn(B).

Proof. Replacing 4 and B by C(I™, A) (= algebra of all maps
I — A) and C(I™, B) respectively (where I = [0, 1]), it suffices to
show that if y: I — Q,(B) is such that y(0) = ¢’ = f,(q) for some
q € Qn(A) there exists a curve y: I — Q,(A) such that f,op =7y.

For this, we consider the commutative diagram

Qn(4) - Qn(B)
where 7,(g) = gqg™", ny(h) =hq'h™! (g € G(4), h € G(B)). By
the local triviality of 7, proved in 2.1, there is a curve J: I — G(B)
with 6(0) = 1 and =6 = y. Michael [Mi] proved that f: G(4) —
G(B) is a Serre fibration; therefore, there is a curve ¢: I — G(A4) such
that ¢(0) =1 and f o ¢ =4d. To finish the proof it suffices to define
y =m4 o &, which satisfies f,o0y =7y.

The next theorem extends results of Raeburn [Ra] concerning the
set mo(P(A ® B)) of all connected components of the idempotents of
A ® B, where A is supposed to be commutative.

We omit its proof and that of the proposition below because they are
simple combination of Raeburn’s techniques without previous results.
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2.5. PrROPOSITION (c¢f- [Ra, p. 383]). Let A be a Banach algebra and
B, ..., B, beopen balls in C with pairwise disjoint closures, centered
at ay, ..., ay, respectively. Let U =BjU---UB, and Ay ={a€ A4:
the spectrum of a is contained in U}. Then Ay is open in A and
f=0U1,..., fn): Ay — A" is an analytic retraction onto Q, , where
fi: U — C isdefined by fi(z) =0y for z € B, and f,(a) is obtained
by means of the holomorphic functional calculus.

2.6. THEOREM (cf. [Ra, 4.5,4.7]). Let A and B be complex Banach
algebras. Suppose that A is commutative with spectrum X . Then the
Gelfand map A — C(X) induces bijections

n0(Qn(A®B)) — [X, On(B)],
{Qn(49B)} — {Qn(C(X, B))}

where [ , | denotes homotopy classes of maps and {Q,(C)} is the set
of orbits of the action of G(C) on Q,(C).

2.7. REMARK. If A is the algebra of complex continuous functions
on the 3-sphere, B is the algebra of all 2 x 2-matrices over C and
n = 2, we reobtain the example of [PR1, 7.13].

3. Lifting C!-curves. The transport equation. In this section we
describe a method which leads to a lifting I" of a curve y: [a, b] —
Q. , as in Corollary 2.3, valid when y is rectifiable and continuous.
For the sake of simplicity we only consider n = 2, the general case
being similar and somewhat more involved. The reader can find the
details (for n = 2) in [PR1]. Our present interest in this construction
lies in that it leads to the transport equation.

Consider a continuous rectifiable curve y: [a, t{] — Q and a par-
tition Il: {p = a < t; < --- < t, =t such that ||y — vl < 1

(k=0,...,n—1), where y, = y(); then
ok =MW1+ (=)l =-»n-1)€G (k=0,...,n—-1) and
Ukyoafl =71,
02017007 ‘o = a0y =2, oo 0w ooy o = v

Thus, ¢ can be thought of as a “discrete” curve of units which con-
jugates yo with y,. Putting u(Il) = g, --- 0, it can be shown [PR1,
§5] that the limit I'(¢) = lim u(IT), when the length of the partition
I1 tends to zero, exists and defines a unit of the algebra. Moreover
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I': [a, b] — G is continuous and rectifiable. If the original curve y
has a continuous derivative, then the value
(1/h)(T(¢t+ h) —I'(¢) is, approximately,
(1/h)(onT (1) = T'(2)), where
Open =Y+ h)y(0) + (1 —y(t + h))(1 = (1))
Then,
(1/h) (Xt + h) — (1)) = (1/h)(0n — DI(2)
= (1/h)(2y(t + )y(2) — y(t + h) — y())T(2)
= (1/W){y(+ ) (@) =y +h)) + (vt +h) —y()r()}(2)

and
I(¢) = im(1/R)(T(¢ + h) = T(1)

= {90 +7(@)»()}T(2).

Thus, the lifting I" of y constructed by the limiting process described
above satisfies the initial values problem

=@y -79),
) = 1.

In the general case n > 2 the initial value problem is

I= (E ?k)’k) r,
1
ro) =1,

where Y = (71, ..., 7x): [a, b] — Q, is of class C!. Observe that
S ivk = 2iy1 — 11(1 = 1) = 171 — 7171 because y = 1 -y, and
71=7171+ 719 (differentiate y2 = ;).

As we said before, we shall not justify all the assertions about I".
Instead we include the proof of the following result due to Daleckii,
Krein and Kato, for the sake of completeness (see [DK2, IV, Theorem

1.1]).

3.1. THEOREM. Let y:[a,b] — Qn be a C' curve. Then, the
unique solution in A of the initial conditions problem

I'=5T,
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where p =3y _| Wiy, satisfies
(1) I't)eG (te]a, b)),
(ii) T(t)y(@)C()~' = y(¢) (t€la, b]).

Proof. Existence and uniqueness of I follow from general facts [La,
p. 71]. To prove (i) consider the companion problem

Aa) =1,

and observe that (A')’ = AT’ + A" = 0. Then AL is constant on

[a, b] and, since A(a) =T(a) =1, itis A’ = 1. Thus I'(¢) is left

invertible in A4 ; moreover, I'(¢) belongs to the connected component

of the identity in the set of left invertible elements. It is easy to see

that this component is completely contained in G. This proves (i).
To see (ii) we compute ('3 ) (k=1,...,n):

Ty D) = —T-UT 'y T+ Ty T+ Ty I
= =T 'y — iu — 2T
observe that y;, = (3 7iv:)7x = Vk7x » because y;yx = 0 for i # k,
and that 9 = y(QCVivi) = —n(Q?i%) = —V¥k, because ¥ =
Pk + Ve and Yo = (") =1 =0. Thus
D) = =T vk — i + e }L =0
and I'"!y,T is constantly y,(a). This completes the proof of (ii).

3.2. REMARK. The proof of part (i) could have been omitted be-
cause it is a general fact that the solution of I" = ¢I", I'(a) = 1, where
¢:[a, b] — A is a continuous curve, is a curve of invertible element
of 4.

If A is an involutive Banach algebra, i.e. there exists a continuous
antilinear mapping x — x* such that (xy)* = y*x*, 1* = 1 and
x*=x (x,ye€ A), we consider the unitary group of 4

U={ueG:u'=u"}
and the selfadjoint part of Q,
Pn={p=(pls--~spn)€Qn:P/t=Pk (k=1,...,n)}.

For these algebras more specific results hold. We omit the details
about the differential structure of P, .
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3.3. CorROLLARY. If y:[a,b] — Py isa C U curve then the solution
of I' =9I, T'(a) = 1, defines a curve T': [a, b] — U which conjugates
the curve y.

Proof. It suffices to show that I'(¢) € U for every ¢ € [a, b]. Ob-
serve first that

I* = {(Z 5’ka> =TI (Z ?kYk>*
=I" (Z Vk?k) =-I" (Z J"k)’k) :
because
Yo temct =Y = (T w) =1 =0

Thus (I"I")" = I*T"'+ I*I"' = 0 and I'*T is constant. But I'(0) =
I'(0) =1,s0 I'*I'=1. Now, I'(¢) is invertible for all ¢, by Theorem
3.1,s0 T())*=T(1)~".

3.4. REMARK. Of course many liftings of y may exist. But I' is
the unique horizontal lifting of y with respect to the connection we
shall define in the next section. This fact completes Kato’s remark [Ka,
I1.4.2, Remark 4.4]. Moreover, if our ¢’s, used to obtain the transport
equation, are multiplied (at left or at right) by (1 — (yx — 7k—1)3)" /2,
where (1-r)"1/2=Y"%_(“12)(—r)™ for ||r|| < 1, we get a different
“discrete” lifting of y but in the limit it becomes the same continuous

curve I'. In this sense, the local solution [Ka, p. 102, (4.18)]

Ty (2) = (1= (y(t) = 7(0)*) "2 (»(1)y(0) + (1 — y(2)))(1 — 7(0))
is related to the global solution I".

4. The connection. Let g € Q, be fixed and 7n: G — Q, defined

by n(g) = ggg~'! = (gq1g™", ..., gang™'). It is very easy to show
that the derivative of 7 at g € G(T7)g: (TG)g: (TG)g — (TQn)r(g)

is given by
(Tr)e(X) =glg™' X, qlg”™" (X €(TG)g)

where [Z,q9)1=(Z,q1],...,[Z, qn]) forall Ze A4.
We say that X € (TG)g is vertical if (Tn)g(X) =0 or, what is the
same, if [g7! X, g] = 0. Then, if Vg ={X € (TG),: [g7'X, q] =0},
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it is clear that V, = g -V} and that

Vi={XeAd=(TG),:[X,q]=0}
={Xe€eA: qXq;=0foralli#k}
n
= {Zq;Xqi: XEA}.
i=1

This shows that

H ={X€A:9Xq;=0@=1,...,n)}
= quXq,'IXeA
k#i

is a supplement of 7} in A (= (TG),) and, in general H, = gH, isa
supplement of V; in 4 (= (T'G)g). Moreover, H,-h = H,), (g€G,
h € H). Finally, the projections hg: (TG)gs — Hg, vg: (TG)y — V,
given by

he(X) =g ag ' Xq;,
i#k

nh
vg(X)=¢Y 487 Xq;,

i=1
verify
he(X) = ghi(g7'X),
vg(X) = gui(g™' X).

Clearly the mappings ¢ — hg and g — v, from G into the
bounded linear operators on A are differentiable. All these facts show
that ¢ — H, defines a connection in the principal bundle n: G — Q,, .

For the theory of connections we refer the reader to [KN]. However,
we are dealing with Banach manifolds and bundles, which requires a
few notational changes.

From now on by “curve” we mean a C* curve.

Given a curve y: [a, B] — O, a horizontal lifting of y is a curve
I': [a, B] — G such that #al' =y and I'(¢) € Hr(,) (t€]a, B]).

It is a general fact that, for each gy € G such that y(a) = gop gy L
there is a unique horizontal lifting I" such that I'(a) = go. In par-
ticular, if y(a) = ¢ there is a unique horizontal lifting I" such that
I'a)=1.
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4.1. THEOREM. Given a curve y: [a, Bl — Qn the horizontal lifting
I" such that T'(a) =1 is the solution of the transport equation

n

(4.2) =3I, where)=>_ i,
i=1

with initial condition T'(a) = 1.

Proof. We have seen that the solution I' of (4.2) is a lifting of =,
i.e. moI’ =y (see 3.1). By the uniqueness of both objects it suffices to
show that the horizontal lifting I' with I'(a) = 1 satisfies (4.2). We
recall that I" satisfies
(4.3) ()T~ =y(t)  (t€la, B]),

(4.4) I'e H-=TH,, ie. I(¢))eT(t)H, (t€][a, B))
or, what is the same

and
(4.6) I'''T"e H,.

Differentiating (4.5) we get 0 = I'"!(-IT-!y +  + yIT-1)I' and
cancelling I'"! and T, we get

(4.7) p=[0T"", 1.

Now, (4.6) means that ¢;T~'I'q; =0, (i=1, ..., n), which can also
be written as

(4.8) gI' 'I'=T"'I'(1 — q).

Replacing (4.5) in (4.8) we get I~!1yI' = I !T" = "~ 'TT-!yT" which,
after cancellation, gives

(4.9) VT L =IT"1(1-7)

and

(4.10) IT 'y = (1 =T
Finally,

n
= (Z i’i)’i) r
M 1

=Y [T, yinl (by 4.7)
1

n
= Y {IT !y, — pIT 1yT.
1
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This last expression coincides with I‘ because »,IT-! =IT-1(1-7)
by (4.9) and therefore y,I'T~'y; = IT~!(1 — y,)y; = 0. This proves
the theorem.

4.11. REMARK. In general, if y: [a, ] — Q. is a curve with origin
q' = goqg;"' then I is the horizontal lifting with origin gy if and
only if it is the solution of the problem I' = JT", I'(a) = g9.

We compute next the 1-form, the 2-form and the curvature form of
the connection.

We recall that the 1-form 6 assigns to each X € (T'G), the hor-
izontal component of g='X € (TG), = .Z, the Lie algebra of H.
More explicitly,

n
0, X =v1(g7'X) = g7 vg(X) = ZQig_qui'

i=1
The 2-form df of the connection is defined by
do(X,Y)= %{XvGY— Y -0X-6([X, Y]},

where X,Y € (TG)g, [ , ] denotes the Lie bracket and Z - W
denotes the derivative of W in the direction of Z, i.e. W 1is ex-
tended to a vector field on a neighborhood of g and given a curve
d:(—¢, &) — G such that §(0) =g and 6(0)=Z,

d
dt;—o

Although the notation is the same, the Lie bracket should not be
confused with the commutator bracket of the algebra.
From the computations

n
X 0y =X- (Z qig‘Iqu)
i=1
n n
=-> g ' Xg7'Yai+ ) qig7' X Yqi,
i=1 i=1

n h
Y 0X=-) qg 'Y¢ ' Xqi+) q¢7 'Y Xq,,

=1 i=1

Z- W= W (5(1)).

and i
O(X, YD) =) ag '[X, Vg,

=1
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we get

1 n
do(X,Y)= EZQi[g—lY: g ' X1

—
l 1 .

= (—§> Y ale'X, g7 Yg..
i=1

The horizontal differential of 6, also called the curvature form of
the connection is Q(X,Y) = dO0(hgX, hgY) for [X, Y] € (TG)g.
Explicitly

1 n
X, ¥) = (-3) Lale heX . ¢~ heYla

= <—l> Zn:CIi

i=1

N

[Z ag " Xay, Y arg™! qu} g

k#l r#s

[u—y

(-3) Cas 01 - a)e™'Y - Y(1 - a)g~ X

i=1

n
) > aig” ' {Xag™'Y - Yag~' X}q;,

i=1

[\

N —

(where G=1-g =) Qi)

ik
NN i _ - -
B <_§>qug "(Xg™'Y - Yg'X — Xgig”'Y + Yaig ™' X)g;.
i=1

The structure equation Q(X,Y)=d0(X, Y)+($)[6X, 0] is thus
trivially satisfied.

5. Calculations on the tangent bundle, geodesics. Consider g € Q,
fixed and let 4; = {X € 4: ¢;Xq; =0, i =1,...,n} (in §4 we
called it Hy). Itisclearthat H ={ge G: gg;=¢q,8, i=1,...,n}
operates at left on 4; by £- X :=hXh~!.

Thus we define the associated bundle of n: G — Q, with standard
fibre 4;, denoted by G® A; — Q,, where G® 4] := G x A,/ ~,
(g, X) ~ (gh,h 'X) for h € H and the map G® 4, — Q, is
determined by (g, X) — m(g). It is a general fact that this vec-
tor bundle is isomorphic to the tangent bundle 7Q,, by means of
(€. X) = (n(g), 8X8™") € (TQn)n(y) - Given a curve y: o, f] —
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QOn the parallel displacement of the fibre (7°Qy),) along y from
a to t € [a, B] is defined by 7: (TQn)y) = (TQn)y), TH(Z) =
[(1)ZT(t)~', where T is the horizontal lifting of y with origin
INa)=1.

Given X € (TQn), and a vector field Z defined near g the covari-
ant derivative DxZ is DxZ ;=X - Z +[Z, X], where

n
- d

i=1
for a curve d: (—¢, &) — Q, such that §(0) =g and 4(0) = X.
5.1. PROPOSITION. For every curve a: [a, B] — A" the element
Da/dt = a+[a, 9] is well defined and has the following properties:
(@) if yiay; =0 forall i =1,...,n then y;(Da/dt)y; =0 for all
i=1,...,n (inother words, Da/dt is tangent if a is tangent).
(b) if yiay, =0 forall i # k then y;(Da/dt)y, =0 forall i #k
(i.e. Da/dt is normal if a is normal).
Proof. (a) Differentiating y;ay; = 0 we get
0 = piay; + viayi + yiap;.
Multiplying by y; at right and left we have
(5.2) viviayi + viayi + viapy; = 0.
On the other hand
Da , .
vig v = viayi+vila, i
= 74y + i (GZ Pevk =Y i’k?ka) Vi
= iy + viahivi — vi ), Y eavi

and ¥; ), ViV = Vi dop(l — i)k because ji = Jivr + vi¥i (differ-
entiate y2 = y;); thus

Vi) Pk = ViD= Vi Y VP = =vidi,
K k

because Y ;, 7 =0 and y;y, =0 if i #k.
This shows that

Da . . :
Vigrvi =iy +viahivi+viviayi =0, by (4.2).

The proof of (b) is similar.
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This shows that for every vector field Y of Q, along y, the formula
Da/dt =Y +[Y, 9] defines another vector field of Q,, the covariant
derivative of Y .

The torsion of the connection, definedby T (X, Y)=DyY—-DyX —
[X, Y] in general, turns out to be in our case

(5.3) T(X,Y)=[Y, X]-[X, Y],
where X, Y € (TQn), and X = Z;’zl Xiq;, Y = ZL] Yiq;.

5.4. REMARK. For n = 2 the connection is symmetric, in the
sense that its torsion is zero everywhere: in fact, for n = 2 we have
Xi+X2=0, T+1HLh=0,q1+q=1, ¢X; = Xi(l —q;), ¢:X; =
-X idj -

These equalities, when replaced in (4.3), prove the assertion. How-
ever, for n > 3 this is no longer true.

The curvature of the connection, expressed by R(X,Y)Z =
Dx(DyZ) - Dy(DxZ) - Dix,v)Z for X,Y,Z € (TQy)q, is given,
in our case, by

(5.5) R(X,Y)Z = {Z X, Yilai, Z]

i=1
or, abbreviating
(5.6) RX,Y)Z=1lX,Y]", Z].
We study now the geodesic curves of the connection, that is, the
curves y: [a, f]1 — Qn such that Dy/dt = 0. It is a well-known fact

that this condition is equivalent to 7/ ((a)) = 7(¢), (t € [a, B]). The
equation defining the geodesic curves can be written as

(57) j)k+[')-’k,5)]=oa k=1,...,n.
Using the commutation rules obtained from 3 y; =1, y? = y; and
yive =0 for i # k, we get

() givi=(L=p)p (i=1,....n);

(i) 7ive +7ile =0 (i #K);

(i) 37 i = 0;

) 7ipf =9y (i=1,....n);

V) 7:i7:=0 (i=1,...,n).
These equalities imply that (5.7) is equivalent to

n n
(5.8) ¥ + i (Zﬁ) + (Z??) w—-292=0, (k=1,...,n).
1 1
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It is easy to exhibit all the solutions of (5.8) which satisfy y(7) € Qn

forall ¢. In fact, for g € Qn, X € (TQn)g, 7(t) =eXge X (t€R),
satisfies (5.8) and all the solutions of (5.8) with the additional condi-
tion y(t) € Qy, have this form. The connection is also complete, in
the sense that its geodesics are defined for all 1 € R, and the expo-
nential map of the connection is given by

~

Exp,: (TQn)g — On, Exp,(X) =e¥ge™*.

Properties of minimality of length of geodesics are studied in a
forthcoming paper ([CPR2)).
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Two C*-Algebra Inequalities

GusTAVO CORACH, HORACIO PORTA! AND LAZARO RECHT!

Dedicated to Mischa Cotlar on his 75th birthday.

The purpose of this note is to prove the following inequalities

(1 finll < liena + by*b|
(2 llenb™ + by*c|| < K ||ena 4 by*b|]

where  and b are elements of a C*-algebra A, a and ¢ are the positive square roots of
1+b%b and 1 + bb* respectively, and K = 2ljbll/1 + [18]12 /(2 + 21J5)|2).

Inequality (1) has a geometric interpretation that can be briefly described as follows.
Denote by @ and P the subsets of .4 formed by all projections (=idempotent elements)
and all self-adjoint projections. The polar decomposition allows us to define a retraction
7 :Q — P from Q to P and inequality (1) applies to conclude that the tangent map
dr : TQ — TP is a contraction. Inequality (2) has similar application to the study of
hyperbolic unitary groups. Suppose p € P and B(z,y) = ((2p — I)z,y) (here we assume
that A is represented in a Hilbert space). Denote by U the group of B-unitary elements
of A and by V the subset of positive elements of U. The “bending” of V in U can be
partially described by the following fact: for Z € TV, decompose v™1Z = Z, + Z, where
Zo commutes with p and Z; anticommutes with p; then 1Zo]] < ||Z1)l. This follows from
inequality (2). For details and complete proofs we refer to our forthcoming paper The
structure of projections in a C*-algebra.

Some abbreviations will be helpful: r = loll, T = ba™! = c™b, D = b*b(1 + b*b)~! =
I*T, F = bb*(1 + bb*)™! = TT*. Define also real-linear maps from A into itself by
An) = T*T, ¥(n) = n — A(n), 8(n) = cna — bn*b. Calculations give A2"(n) = FrpD®,
AMH(p) = FPTp*TD™ for n = 0,1,2,... Hence using ||D|| = ||F|| = r2/(1 + r2),
1Tl =r/V1+r? we get

A ()| < (2 /(L + )2l
IAZ 4 m) < (72 /(1 + 72))2 4 |1y

so that 372 AF converges to the inverse of ¥ = I — A. This means that @ is also
invertible, and

®1(¢) = \I/_l(c"l.fa_l) = ZAk(c_lfa_l)

k=0
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whence -
e (@)l < (k_Zo(l_: ) e e el
But [la™!|| = Jic™!|| = (1 +r%)~1/2 implies
1 1

(}:(H D e ™ = sy T =

and so [[®71(&)|| < [|¢]l. Setting & = cna — by*b gives (1) with — sign. Changing 7 into 9
gives the + sign,
To prove (2) we will calculate:

c®(E)b* —b(271(€)) e
= Z(cAk(c_lfa'l)b* —b(AF(c ¢a™))%e).
v k=0

The term of order 2n reads
A (¢ ea1)b" — b(A2"(c_1§a_1))*c
= cF"c 1¢a™ ' D"b* — bD a1 ¢*c 1 F" e

The identities cF' = Fe, Db* = b*F, T = ba™!, and T* = a~1b* reduce this expression to
P (§T* — Tﬁ*)F". Similarly for terms of odd order 2n + 1:

CA2n+l(c_lfa_1 )b* _ b(A2n+1(c—1£a——1))*c
= cF"Ta ™ ¢*¢ I TD™b* — bD™T™* ¢ ta 1 T* F"e,

and using now also the identities cTa™ = T, ¢71Tb* = bT*c™! = TT* = F, and bD = Fb
we obtain the simpler expression F* (Tf*F — FET*)F™. Thus combining the terms of
order 2n and 2n + 1 the series has the form :

@ (E)b* —b(271(€)) e
=Y F"((1 - F)ET* - Te*(1 — F))F™.

n=0
From |1 — F|f = ||(1 + b6*)7 | = (1 4+ r?)~! and ||T|| = r/v/1 + 2 we get
(1~ F)ET* — Te(L — B < 201 + 122 |
and therefore

lle@=(€)8* — b(27(&)"ell
(D UFIEmar(L+92)7272) g

n=0

IA

2

(i(ﬁ?z)zn 21+ r2)-3/2> el
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This proves (2) with — signs; changing 7 into 45 produces the + signs, so the proof is
complete.

GusTAVO CORACH, Instituto Argentino de Matemdtica, Buenos Aires.
Horacio PoRTA, University of Ilinois, Urbana.
LAZARO RECHT, Universidad Simén Bolivar, Caracas.
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