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I. Finite Dimensions

Recall that the open unit ball of the C*-algebra

Mp is a symmetric space: Let

U(p, p) = {A ∈ GL(2p) | A∗Ip,pA = Ip,p} ,

Ip,p =

(
Ip 0
0 −Ip

)
.

Writing each element A in U(p, q) as

A =

(
A11 A12
A21 A22

)
we obtain an action on the open unit ball Dp

of Mp by

AZ = (A11Z + A22)(A21Z + A22)
−1
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The isotropy group of this action at 0 turns

out to be

U(p)×U(p) =

{(
A11 0
0 A22

)
| Aii ∈ U(p)

}
,

and

Dp = U(p, p)/U(p)×U(p).

Since U(p) × U(p) is the fiexd point group of

the involution

A 7→ Ip,pAIp,p,

Dp is a symmetric space according to the Lie

group definition.
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II. The open unit ball of a C*-algebra

Denote by DA the open unit ball of a C*-

algebra A and let

GA = {Φ : DA → DA | Φ is biholomorphic}

It is well known that any Φ ∈ GA is of the form

a 7−→

Ψ
[
(1− bb∗)−1/2(a + b)(1 + b∗a)−1(1− b∗b)1/2

]
where b ∈ DA and Ψ is the restriction of a

Banach space isometry of A.

Furthermore, GA is a (Banach) Lie group ac-

ting transitively on DA.

The isotropy group of this action is the group

of all linear isometries, and DA again satis-

fies the (Lie group) definition for symmetric

spaces.
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There is also the notion of a Riemannian sym-

metric space, which is defined by requiring that

the geodesic reflections around every point of

a Riemannian manifold extend to globally de-

fined isometries.

Both these definitions of symmetric spaces coin-

cide when this formally makes sense.

The requirement of a Hilbertian structure on

the tangent bundle of a Banach manifold is

too restricitive in general. W.Kaup, H.Upmeier

and others have studied various invariant Fins-

ler structures instead, where, however, GA ne-

ver seems to appear as the full group of iso-

metries.

It is, however, possible to replace the Rieman-

niannian metric by an (invariant) affine connec-

tion, and then things look different.
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II. Connections

Let π : E → B be a fibration of Banach mani-

folds.

A connection for π is a smooth vector sub-

bundle H of TE with the property that:

Hp is for each p ∈ E closed and complementary

to the tangent space ker(dpπ) of the fibre Eπ(p)

through p, i.e.

TpE = Hp ⊕ ker(dpπ)

Since the fibres of π usually are considered to

be vertical, Hp is called the horizontal subspace

of TpE at p.
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In such a situation, the mapping

dpπ|Hp
: Hp → Tπ(p)B

is a continuous linear isomorphism, and so the-

re is, for each vector field X on B a unique

vector field Xh on E such that

dpπ(Xh(p)) = X(π(p)),

called the horizontal lift of X w.r.t. the connec-

tion H.

For a Banach space bundle π : E → B, the co-

variant derivative corresponding to a connec-

tion H of a section s at b ∈ B in direction

X ∈ TbB can be defined by

∇Xs(b) = dbs(X(b))−Xh(s(b)),

which can be shown to be an element of

ker ds(b)π = Ts(b)Eb
∼= Eb.
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A connection is called affine if the covariant

derivative is linear on vector fields.

A Banach manifold M is called affine if its tan-

gent bundle carries an affine connection.

A diffeomorphism Φ of the manifold M is called

an affine automorphism for (M,∇), iff

Φ∗∇XY = ∇Φ∗XΦ∗Y

for all vector fields X and Y . Here,

Φ∗X(p) = dΦ−1pΦX(Φ−1p)

If a Banach Lie group acts on M , then a connec-

tion ∇ is called invariant iff the subbundle H

of T (TM) is G-equivariant.
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III. Affine symmetric spaces

An affine manifold is called an affine symmetric
space, if for each point p ∈ M there is an affine
automorphism sp such that s2p = id, p is an iso-
lated fixed point for sp, and dsp(p) = −idTpM .

If M is Riemannian and ∇ the Levi-Civita connec-
tion then M is affine symmetric iff it is Rieman-
nian symmetric, i.e. iff sp can be chosen to be
an isometry.

All these notions coincide with the Lie group
definition: M is symmetric, iff M = G/H, where
G is a Lie group, and H a (closed) subgroup
for which there is an involutive automorphism
σ of G so that H is essentially the subgroup of
fixed points.

If M is affine symmetric, then G can be chosen
to be the group of affine automorphisms. If, on
the other hand, M = G/H there is a ‘canonical
connection’ for which G = Aut(M,∇).
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IV. Invariant connections

Using the way we have defined affine connec-

tions, it ist possible to extend results of Nomi-

zu, Kostant, Wang and others to the infinite

dimensional set-up.

Theorem Suppose M = G/H is a symme-

tric Banach manifold and denote by g = h⊕m

the decomposition given by the symmetry se.

Then there is a bijection between the set of

G-invariant connections and the set of

• AdH-invariant closed subspaces of g, com-

plementing h

• continuous bilinear mappings S : m×m → m

so that for all m1,2 ∈ m and h ∈ H

S(Ad(h)m1,Ad(h)m2) = Ad(h)S(m1, m2).
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In the case of the open unit ball of the C*-

algebra A the above result reads

Theorem On the open unit Ball DA of a C*-

algebra A the set of all GA-invariant connec-

tions is in 1-1 correspondance with the conti-

nuous bilinear mappings S : A× A → A so that

S(Ψa1,Ψa2) = ΨS(a1, a2) for all Banach space

isometries Ψ of A.
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IV. A more appropriate category

C*-algebras actually do not form the most na-

tural category for this kind of results.

In finite dimensions, an exact 1-1 correspon-

dance of hermitian symmetric spaces of non-

compact type (to which the open unit balls

of the spaces Mp belong) exists with the open

unit balls of the so called JB*-triple systems.

These are, up to some very few exceptional ca-

ses, the self-adjoint subspaces T of C*-algebras

for which for all x, y, z ∈ T

{xyz} :=
xy∗z + zy∗x

2
∈ T.
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The canonical connection ∇0 is the connection
that belongs to the decomposition g = h ⊕ m,
induced by s0 : x 7→ −x. It has the following
properties:

(i) The automorphism group of (M,∇0) coin-
cides with G.

(ii) Since G contains so many reflections, a
great number of tensor fields have to va-
nish. Among them is the covariant deriva-
tive of the ternary structure on D, obtained
through the action of G. ∇0 can thus be
considered as a noncommutative version of
the Levi-Civita connection on a hyperbolic
manifold.

(iii) The geodesics are precisely the subgroups
exp(tX), X ∈ T0D, and parallel transport
along them is induced by the exponential
map as well.
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V. Causality

Why all this?

It seems that the manifold on which we are

living is Lorentzian.

Quantum field theory is much harder on Lor-

entzian manifolds than on Riemannian mani-

folds, and so one often tries to avoid the Lor-

entzian case by passing to an underlying Rie-

mannian manifold (‘Wick Rotation’).

One of the byproducts of the Lorentzian struc-

ture is the existence of the so called light cones

in each tangent space.
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These cones help in deciding which points in

space-time are allowed to interact and thus are

responsible for any form of ‘causality’.

It is therefore important to maintain this infor-

mation under the passage from the Lorentzian

to the Riemannian situation.

Causality also shows the following behavior:

Whenever a tangent vector is being moved

along a geodesic γ from one point on γ to

another by parallel transport, it must remain

in the light cones all the time.
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Guided by classical quantum theory, we will

furthermore suppose, that ‘space’ itself corre-

sponds to selfadjoint operators.

The question we would like to answer then is

this:

How can ‘reasonable’ causal structures be cha-

racterized, which come from an interpreting

the points of D as bounded Hilbert space ope-

rators?

We will formulate this question more rigorously

and answer it in the next section.
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Cones and embeddings

In the following, E denotes a fixed (abstract)

ternary ring of operators, D its unit ball. Such

objects have been intrinsically characterized by

Zettl.

Important for us here is also the Neal-Russo

Theorem which states that a ternary ring of

operators E is characterized by the fact that

(not only the unit ball of the space itself but

also) all the the matrix spaces

Mn(E) =
{
(eij)i,j=1,...,n

∣∣∣ eij ∈ E
}

carry norms which turn E into an operator

space and for which the open unit balls are

bounded symmetric domains.

This reveals why we, in the first place, had to

restrict the attention to ternary rings of ope-

rators.
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We need one more structural element which is

connected to the notion of ‘selfadjointness’.

We will need, more precisely, the existence of a

real form, compatible with the (almost) com-

plex structure.

This boils down to requiring that E carries

an involutory real automorphism ‘*’ so that

(ix)∗ = −ix∗ for all x ∈ E.

Since we will be studying embeddings into L(H),

it will be necessary to impose the additional

condition that {xyz}∗ = {z∗y∗x∗}.
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An ternary ring of operators E that meets all

these conditions, will be called a *-ternary ring

of operators.

We will suppose in the following that E is a

space of this kind.

The ‘space manifold’ now is the open unit ball

Dsa of the selfadjoint part of E.

Denote by G the group of biholomorphic map-

pings of D.
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Dsa is itself a symmetric space. Its underlying

group of automorphisms, Gσ consists of all ele-

ments in G which leave Dsa invariant.

The isotropy subgroup at 0, denoted by Hσ

contains all selfadjoint linear isometries of D,

i.e. the selfadjoint ternary automorphisms of

D.

In order to comply with the requirement that

causality be invariant under parallel transport

we have to impose the condition that the field

of cones we fix in TDsa must be invariant under

the action of Gσ.
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We now consider smooth embeddings Φ : D →
L(H) with the following properties:

• Φ is an affine isomorphism onto the open

unit ball of a ternary subsystem of L(H).

• Φ is equivariant w.r.t. the action of the

group of biholomorphic mappings

• Φ respects the complex structure as well as

the (canonical) real forms on both sides.

And we want to know:

What characterizes the causal structure that

is pulled back to D via Φ?
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Since the causal structure must be invariant

under the action of Gsa, we may restrict our

attention to cones in T0D = E.

Furthermore, any cone in E that gives rise to

a Gsa invariant field of cones has to be AdHsa

invariant.

It can also be shown that under the assumpti-

ons made, dΦ has to respect the ternary struc-

ture of each tangent space TpD.

The question we are asking thus becomes:

What properties must an AdHσ-invariant co-

ne in Esa possess so that it is of the form

Ψ−1(L(H)+) for a *-ternary monomorphism

Ψ : E → L(H)?

If a cone does come from such an embedding

we will call it natural.
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Theorem (D. Blecher/WW) Let E be a *-

ternary ring of operators, which for the sake of

brevity is supposed to be a dual Banach space.

Then a cone C ⊆ Esa is natural iff there is a

central, selfadjoint tripotent element u ∈ E so

that

C = {eue∗ | e ∈ E}

Here, the center of a *-ternary ring of opera-

tors is defined to be

Z(E) = {e ∈ E | exy = xye for all x, y ∈ E}

Since Adh(e) = h(e) for all e ∈ Hσ and e ∈
E = T0D, it is clear that a cone C as above is

AdHσ-invariant and thus gives rise to a causal

structure (in the real part) of D.
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In the last result, we have refrained from put-

ting everything into a more geometrical lan-

guage.

Given the fact that a number of different theo-

ries overlap here, other characterizations are

possible.

Causal structure on finite dimensional symme-

tric spaces (without being concerned with em-

beddings into L(H)) have extensively been stu-

died by e.g. Faraut, Hilgert and Olafsson. In

these investigations, the approach is purely Lie

theoretic.

More general manifolds with causal structure

have been taken up, among others, by A.D.

Aleksandrov, J. Hofmann, Lawson and Neeb.
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