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Abstract. This paper deals with a special class of ‘non-compact’ hermitian infinite di-
mensional symmetric spaces, generically denoted by U . We calculate their invariant con-
nection very explicitly and use the concept of a Hilbert-C*-manifold so that the Banach
manifold in question is of the form Aut U/H, where Aut U is the automorphism group
of the Hilbert-C*-manifold. We finally use results previously obtained with D.Blecher
to characterize causal structure on U that comes from interpreting the elements of U as
bounded Hilbert space operators.

Mathematics Subject Classification (2000). Primary 17CXX, 22E15, 22E65, 22F05,

22F50, 46L89, 46L08, 46T05, 53CXX, 58BXX; Secondary 06F20, 06F25, 22E70, 46C99,

46G20, 46L07, 46L65,

Keywords. Ternary rings of operators, Hilbert-C*-modules, Hilbert-C*-manifolds, in-

variant connections, symmetric spaces, causal structure.

1. Introduction

This note has two objectives, an explicit calculation, for all vector fields, of the
invariant connection on a certain type of infinite dimensional symmetric space and,
using results from [1], to characterize those invariant cone fields on a similar kind
of spaces that can be thought of as the result of some kind of ‘quantization’. Both
questions are related since the invariance of the cone fields is intimately connected
to the behavior of parallel transport along geodesics.

Invariant connections for finite dimensional symmetric spaces have long been
known to exist and to be unique. One has to be a little bit more careful in the in-
finite dimensional, Banach manifold setting since there the existence of a sufficient
amount of smooth functions no longer can be proven. The type of calculations we
are interested in here have been carried out under similar circumstances in [2].

Important for our approach is to use an invariant Hilbert-C*-structure on the
fibers of the tangent bundle. We show that the symmetric space we are dealing
with can be defined in terms of the automorphism group of this structure.

The theory of invariant cone fields on finite dimensional spaces is very well
developed. A comprehensive account is [5]. We will see in the last section that the
infinite dimensional theory might behave slightly different.
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2. Hilbert-C*-manifolds

2.1. Recall that a (left) Hilbert-C*-module over a C*-algebra A is a complex vector
space E which is a left A-module with a sesquilinear pairing E×E → A satisfying,
for r, s ∈ E and a ∈ A, the following requirements:

(i) 〈ar, s〉 = a〈r, s〉

(ii) 〈r, s〉 = 〈s, r〉∗

(iii) 〈s, s〉 > 0 for s 6= 0

(iv) Equipped with the norm
‖s‖ =

√
‖〈s, s〉‖,

E is a Banach space.

Right Hilbert-C*-modules are defined similarly. Whenever we want to refer to the
algebra A explicitly, we speak of a Hilbert-A-module.

2.2. The objects defined above coincide with the so called ternary rings of opera-
tors (TRO), which are intrinsically characterized in [9, 11]. On such a space E, a
triple product {·, ·, ·} is given in such a way that E, up to (the obvious definition of)
TRO-isomorphisms, is a subspace of a space of bounded Hilbert space operators
L(H), invariant under the triple product

{x, y, z} = xy∗z.

The relation to (left) Hilbert-C*-modules is based on the equation

{x, y, z} = 〈x, y〉z,

connecting triple product to module action (under A = EE∗, where the latter
algebra does not depend on the chosen embedding) as well as scalar product of
a Hilbert-A-module. Note that in particular the norm of an element e ∈ E must
coincide with ‖e‖ = ‖{e, e, e}‖1/3.

2.3. TRO-morphisms will be those that respect the product {·, ·, ·}. In the lan-
guage of a Hilbert-A-module, a TRO-morphism is an A-module map preserving
the form 〈·, ·〉. This is where both categories become different since Hilbert-A-
morphisms are usually supposed to be adjointable with respect to the pairing 〈·, ·〉.

Definition 2.4. Let M be a Banach manifold and A a C*-algebra. M is said to
be a (right-, left-) Hilbert-A-manifold if on each tangent space Tp(M) there is given
the structure of a Hilbert-A-module depending smoothly on base points.

Definition 2.5. Let M be a Hilbert-C*-manifold. The group of automorphisms,
AutM consists of all diffeomorphisms Φ : M → M so that dΦ is (pointwise) a
TRO-morphism.
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2.6. It is not clear under which circumstances a Banach manifold can be given the
structure of a Hilbert-C*-manifold. This is so because, first, no characterization
seems to be known of Banach spaces that are (topologically linear) isomorphic to
Hilbert-C*-modules, and, second, because in general, there is no smooth partition
of the unit that would permit the step from local to global.

We will use group actions instead. Suppose M is a homogeneous space with
respect to a smooth Banach Lie group action. Fix a base point o ∈ M , and denote
the isotropy subgroup at o by H. Suppose that To(M) carries the structure of a
Hilbert-A-module with form 〈·, ·〉o and module map x 7→ a ·o x. If for all h ∈ H,
x, y ∈ To(M), and a ∈ A we have

〈doh(x), doh(y)〉o = 〈x, y〉o as well as doh
(
a ·o doh

−1(x)
)

= x

then a Hilbert-A-module on Tp(M) for any p = g(o) ∈ M , is defined through

〈x, y〉p = 〈dpg
−1(x), dpg

−1(y)〉 and a ·p x = dog
(
a ·o dpg

−1(x)
)
,

where x, y ∈ Tp(M) and a ∈ A. As an illustration, if

〈x, y〉o ·o z = {x, y, z}o,

then both of the above conditions can be equivalently combined into

doh{x, y, z}o = {doh(x), doh(y), doh(z)}o for alle h ∈ H, x, y, z ∈ To(M),

so that for the TRO-structure at a

{x, y, z}a = dog{dog
−1(x), dog

−1(y), dog
−1(z)}o.

2.7. Our example here is the following. Fix a TRO E and denote by U its open
unit ball. If we follow the path laid out above, we find the following invariant
Hilbert-C*-structure on U . Define a triple product for TaM at a ∈ U by

{xyz}a = x(1− a∗a)−1y∗(1− aa∗)−1z,

so that
〈x, y〉a = (1− aa∗)−1/2x(1− a∗a)−1y∗(1− aa∗)−1/2

as well as
γ ·a z = (1− aa∗)1/2γ(1− aa∗)−1/2, γ ∈ EE∗.

We will refer to this structure as the canonical Hilbert-C*-structure on U .

2.8. This definition is motivated in the following way. As shown in [4], HolU , the
group of all biholomorphic automorphisms U , consists of mappings of the form
T ◦Ma, where for any a ∈ U ,

Ma(x) := (1− aa∗)−1/2(x + a)(1 + a∗x)−1(1− a∗a)1/2,
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and T is a (linear) isometry of E, restricted to U . Then HolU acts transitively
on U , and the group of (linear) isometries is the isotropy subgroup at the point 0.
For later use, we include here the fact that

dxMa(h) = (1− aa∗)1/2(1 + xa∗)−1h(1 + a∗x)−1(1− a∗a)1/2

as well as

d2
xMa(h1, h2) =

= −(1− aa∗)1/2(1 + xa∗)−1h2a
∗(1 + xa∗)h1(1 + a∗x)−1(1− a∗a)1/2

− (1− aa∗)1/2(1 + xa∗)−1h1(1 + a∗x)−1a∗h2(1 + a∗x)−1(1− a∗a)1/2.

Definition 2.9. Suppose X is a (closed) subspace of L(H). Equip

Mn(X) = {(xij) | xij ∈ X for i, j = 1, . . . , n}

with the norm it carries as a subspace of Mn(L(H)) = L(H ⊕ · · · ⊕H), and, for a
bounded operator T : X → X, denote by T (n) = idMn(C) ⊗X : Mn(X) → Mn(X)
the operator (xij) 7−→ (Txij). Then T is said to be completely bounded, iff

‖T‖cb := sup
n∈N

‖T (n)‖ < ∞.

Similarly, T is called a complete isometry iff each of the maps T (n) is an isometry.

We have the following

Theorem 2.10 ([3, 9]). Let E be a TRO. Then Mn(E) carries a distinguished
TRO-structure, and the group of TRO-automorphisms of E coincides with with
the group of complete isometries.

2.11. The Hilbert-C*-structure from 2.7 is in fact constructed according to the
construction in 2.6 for a group G, somewhat smaller than HolU .

Theorem Let U be the open unit ball of a TRO E, equipped with the canonical
Hilbert-C*-structure, and suppose Mn(E) carries the standard TRO-structure for
each n ∈ N. Then a diffeomorphism Φ : U → U is a Hilbert-C*-automorphism
iff Φ = T ◦ Ma, where a ∈ U , and T is the restriction of a linear and completely
isometric mapping of E to U . Furthermore, the canonical Hilbert-C*-structure on
U is uniquely AutU -invariant, if E = ToU carries the given Hilbert-C*-structure.
Proof: That each map of the form T ◦Ma is in Aut U follows from the construction
of the Hilbert-C*-structure on U as well as from Theorem 2.10. Since the derivative
of any element Φ ∈ AutD is complex linear by definition, AutD ⊆ HolD, and
hence Φ = T ◦ Ma for some a ∈ U and an isometry T . Because the linear map
T fixes the origin, dT must be a TRO-automorphism, and the result follows, by
another application of Theorem 2.10. 2
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3. The invariant connection

3.1. The definition of a connection for Banach manifolds cannot be, due to the
scarcity of smooth functions, the usual one. We follow [6, 1.5.1 Definition].

Definition 3.2. Let M be a manifold, modeled over the Banach space E, and
denote the space of bounded bilinear mappings E ×E → E by L2(E,E). Then M
is said to possess a connection iff there is an atlas U for M so that for each U ∈ U
there is a smooth mapping Γ : U → L2(E,E), called the Christoffel symbol of the
connection on U , which under a change of coordinates Φ transforms according to

Γ(Φ′X, Φ′Y ) = Φ′′(X, Y ) + Φ′Γ(X, Y ).

The covariant derivative of a vector field Y in the direction of the vector field X
is, locally, defined to be the principal part of

∇XY = dX(Y )− Γ(X, Y ),

where, in a chart, the principal part of (u, X) ∈ U × T (U) is X.

The reader should note that this definition is equivalent to specifying a smooth
vector subbundle H of TTM with the property that Hp is for each p ∈ TM closed
and complementary to the tangent space ker(dpπ) of the fiber Eπ(p) through p. It
is not, however, equivalent to the requirement that ∇ be C∞(M)-linear in its first
variable and a derivation w.r.t. the action of C∞(M) on vector fields, although
connection as defined above do have this property.

3.3. We can keep the notion of invariance of a connection under the smooth action
of a (Banach) Lie group, however. In fact, if such a group G acts on M then, for
each g ∈ G a connection g∗∇ is defined by letting

g∗∇XY = ∇g∗Xg∗Y, g∗X(gm) = dmgX(m).

Christoffel symbols then transform as in the definition above,

Γg(m)(g′(m)X(m), g′(m)Y (m)) = g′′(m)(X(m), Y (m)) + g′(m)Γm(X(m), Y (m)),

and we call ∇ invariant under the action of G whenever g∗∇ = ∇ for all g ∈ G.

3.4. If M is the Hilbert-C*-manifold U that was defined in the last section, there
can be at most one connection which is invariant under the action of the group of
biholomorphic self-maps of U . This is because the difference of two of them is the
difference of their Christoffel symbols which have to vanish at each point according
to the way they transform under the reflections σa = MaσoM−a, σo(x) = −x. To
find one, we let

Γo(x, y) = 0.

Then, for any g leaving the origin fixed, g′′ = 0 and so Γ0 remains zero when
transformed under g. Using the transformation rule for Christoffel symbols we
find
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Theorem 3.5. On the Hilbert-C*-manifold U there exists exactly one invariant
connection whose Christoffel symbol at a is given by

Γa(x, y) = y(1− a∗a)−1/2a∗(1− aa∗)−1/2x+

+ x(1− a∗a)−1/2a∗(1− aa∗)−1/2y = 2{x,M ′
a(0)a, y}s

a,

where {x, y, z}s = 1
2 ({z, y, x} + {x, y, z}) denotes the (symmetric) Jordan triple

product on E.

3.6. The reader should observe that the form {·, ·, ·} defined above is parallel for
the invariant connection, i.e. for all vector fields X, Y, Z and W we have

∇W {XY Z} = {∇W XY Z}+ {X∇W Y Z}+ {XY∇W Z}.

This follows either from direct calculation (using the Jacobi identity for {·, ·, ·}), or
from the fact that the covariant derivative of {·, ·, ·} is invariant under reflections.
This condition shows that ∇ behaves like the Levi-Civitá connection with respect
to the Hilbert-C*-structure on M . Under what conditions such a connection exists
under more general circumstances, is investigated in [10].

4. Causality

4.1. It is customary in a number of physical theories to pass from a Lorentzian to a
Riemannian manifold (‘Wick Rotation’). This is due to the difficulties one is faced
with in a truly Lorentzian situation and which disappear in the Riemannian set-up.
One peculiarity of Lorentzian manifolds can still be modeled in the Riemannian
situation: Light cones in the fibers of the tangent bundle which specify those pairs
of points on M that may interact with each other and are thus intimately connected
to the notion of causality.

Definition 4.2. A cone field on a manifold M is, for each m ∈ M , an assignment
of a cone Cm ⊆ Tm(M).

Here a cone is always supposed to be pointed but not necessarily to be gener-
ating.

4.3. Our interest here is with cone fields that are invariant under the action of a
group G, i.e. that Cgm = dmg(Cm) for all m ∈ M and g ∈ G. In our case, G will
be a certain subgroup of Aut U . Though it might be tempting to see invariance
under HolU (or a large subgroup) as a substitute for diffeomorphism invariance
in the complex case, the main motivation here comes from the property that the
connection defined in the previous section has the property that for an invariant
cone field (Cm) parallel transport along a curve γ from γ(a) to γ(b) ends in Cγ(b) if
it began in Cγ(a). This is well known in the finite dimensional situation (see [7, 8])
and, in this regard, not much is changing in passing to infinite dimensions.
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4.4. In the following we will suppose that ‘space’ is represented by a certain set of
self-adjoint operators, and that on this set there is defined an invariant cone field.
The question we would like to answer is this: How can such fields be characterized,
which come from interpreting the points of D as bounded Hilbert space operators?

In the following, denote by E a fixed (abstract) ternary ring of operators, and
by U its unit ball.

4.5. On top of the causal structure of U we need ‘selfadjointness’, which for us
will be the existence of a ‘real form’ for U , compatible with the (almost) complex
structure. We do this by requiring that E carries an involutory real automorphism
‘*’ so that (ix)∗ = −ix∗ for all x ∈ E. Since we will be studying TRO-embeddings
into L(H) that respect the real form, it will be necessary to impose the additional
condition that, for all x, y, z ∈ E, {xyz}∗ = {z∗y∗x∗}. (Note that then each
x ∈ E has a unique decomposition into real and imaginary part, with some norm
estimates.) A ternary ring of operators E that meets all these conditions, will be
called a *-ternary ring of operators. We will suppose in the following that E is a
space of this kind.

4.6. The ‘space manifold’ here will be the open unit ball Usa of the selfadjoint
part of E. Usa is itself a symmetric space. If Gsa consists of all elements in
AutU which leave Usa invariant, then Usa = Gsa/Hsa, where Hsa comprises the
TRO-automorphisms that are *-selfadjoint. In fact, it follows from {x, y, z}∗ =
{z∗, y∗, x∗} for all x, y, z ∈ E (and an expansion into power series) that Ma(x)∗ =
Ma∗(x∗) for all x ∈ U and so Ma ∈ Gsa iff a∗ = a. A TRO-automorphism T is in
Hsa iff T (x∗)∗ = T (x) for all x ∈ U , and so

Gsa = {T ◦Ma | T ∈ Hsa, a ∈ Usa } ,

as well as Usa = Gsa/Hsa.

4.7. In order to comply with the requirement that causality be invariant under
parallel transport we have to impose the condition that the field of cones we fix in
TUsa must be invariant under the action of Gsa. We consider smooth embeddings
Φ : U → L(H) which respect

• the Hilbert-C*-structure

• the complex structure as well as the (canonical) real forms

• the action of the automorphism groups.

And we want to know: What characterizes the Gsa invariant cone fields that are
pulled back to U via Φ? Whenever a cone field meets these properties we will call
it natural.

4.8. Since a natural cone field is supposed to be invariant under the action of
Gsa, we may restrict our attention to cones in ToU = E. Furthermore, any cone
in E that gives rise to a Gsa invariant field of cones has to be invariant under
the action of Hsa. It can also be shown that under the above assumptions made,
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dΦ has to respect the ternary structure of each tangent space TpU . The question
we were asking thus becomes: What properties must an Hsa-invariant cone in
Esa possess so that it is of the form Ψ−1(L(H)+) for a *-ternary monomorphism
Ψ : E → L(H)? For the sake of simplicity, we restrict our attention to the case
where E is a dual Banach space. Then

Theorem 4.9 ([1]). Let E be a *-ternary ring of operators, which is a dual Banach
space. Define the center of E by

Z(E) = {e ∈ E | exy = xye for all x, y ∈ E }

and call u ∈ E tripotent whenever {u, u, u} = u. Then a cone C ⊆ Esa is natural
iff there is a central, selfadjoint tripotent element u ∈ E so that

C = Cu := {eue∗ | e ∈ E } .

Definition 4.10. If E is a TRO with real form *, and u ∈ Esa, then u is called
rigid iff Φ(u) = u for all *-selfadjoint TRO-automorphisms Φ of E.

The following result is now easy to prove.

Theorem 4.11. The only cones Cu in E that give rise to a Gsa-invariant causal
structure on Usa, coming from an embedding of E into some space L(H), are those
for which the central, selfadjoint element u is rigid.

Note that the existence of a rigid selfadjoint central tripotent u is impossible
in finite dimensions. In fact, Z(E) is a weak*-closed commutative von Neumann
algebra (see [1, Lemma 4.10]) in which the tripotents are projections, which is
invariant under any TRO-automorphism Φ of E, and for which Φ|Z(E)

is a C*-
automorphism whose properties essential here are best understood by means of
the underlying homeomorphism of the spectrum of Z(E).
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