
A note on morphisms for

Hilbert-C* manifolds

Wend Werner

Abstract. This note deals with a clash of categories. For Hilbert-C* manifolds, ternary
ring morphisms are the adequate morphisms for a transfer of some well-known results on
finite dimensional symmetric spaces to the infinite dimensional set-up, whereas the class
of adjointable mappings yield the appropriate definition of the cotangent bundle. It turns
out that the intersection of both classes is very small.
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1. Basic definitions and results

1.1. Recall that a (left) Hilbert-C* module over a C*-algebra A is a complex vector
space E which is a left A-module with a sesquilinear pairing E×E → A satisfying,
for r, s ∈ E and a ∈ A, the following conditions:

(i) 〈ar, s〉 = a〈r, s〉

(ii) 〈r, s〉 = 〈s, r〉∗

(iii) 〈s, s〉 > 0 for s 6= 0

(iv) Equipped with the norm
‖s‖ =

√
‖〈s, s〉‖,

E is a Banach space.

Right Hilbert-C* modules and Hilbert bimodules are defined similarly (with ap-
propriate compatibility conditions in the latter case). Whenever we want to refer
to the algebra A explicitly, we speak of a Hilbert-A module.

1.2. The objects defined above coincide with the so called ternary rings of oper-
ators (TRO), which are intrinsically characterized in [8, 11]. On such a space E,
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a triple products {·, ·, ·} is given in such a way that E, up to (the obvious defi-
nition of) TRO-isomorphisms, is a subspace of a space of bounded Hilbert space
operators L(H), invariant under the triple product

{x, y, z} = xy∗z.

The relation to (left) Hilbert-C* modules is based on the equation

{x, y, z} = 〈x, y〉`z,

connecting triple product to module action (under A = EE∗, where the latter
algebra does not depend on the chosen embedding) as well as to the scalar product
of a Hilbert-A module. Not surprisingly, there is also an action of a C*-algebra
B = E∗E on the right, and the right Hilbert-C* module structure shows up in

{x, y, z} = x〈y, z〉r

Note also that the norm of an element e ∈ E must coincide with ‖e‖ = ‖{e, e, e}‖1/3.
If, in the following, the bilinear form 〈·, ·〉 does not carry one of the indices `, r the
left module structure is addressed.

Definition 1.3. Let M be a Banach manifold and A a C*-algebra. M is said to
be a (right-, left-) Hilbert-A manifold if on each tangent space Tp(M) there is given
the structure of a Hilbert-A module depending smoothly on base points.

1.4. TRO-morphisms are those mappings that respect the product {·, ·, ·}. These
mappings differ in general from what is considered to be the natural choice for
Hilbert-A morphisms, the so called adjointable maps. The latter are in particular
A-module morphisms, a property that would be too restrictive for what is needed
below. Adjointable maps, on the other hand, yield a duality theory that resembles
the commutative situation and thus seem to be more adequate for dealing with
cotangent bundles, for example. We will come back to this point in the following
section.

1.5. There is no method, in general, to provide an arbitrary Banach manifold
with a Hilbert-C* structure. This is due to the fact that, on one hand, it is
unclear, when a Banach spaces is (topologically, linearly isomorphic to) a Hilbert-
C*-module, and, on the other hand, there is, on arbitrary Banach manifolds no
substitute for smooth partitions of unity.

It is helpful, though, if M is homogeneous with respect to the action of a
Banach Lie group. In such a situation, we can try to convert M into a homogeneous
Hilbert-C* manifold, where we call a Banach manifold M a homogeneous Hilbert-
C* manifold iff it is a Hilbert-C* manifold for which AutM acts transitively.
Here, AutM , the group of automorphisms of M , consists of all diffeomorphisms
Φ : M →M so that dΦ is (pointwise) a TRO-morphism.

1.6. Suppose that M is a homogeneous Banach manifold with respect to a smooth
Banach Lie group action, o ∈M is fixed, the isotropy subgroup at o is denoted by
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H, and that To(M) carries the structure of a Hilbert-A module with form 〈·, ·〉o and
module map x 7→ a ·ox. Then a Hilbert-A module on Tp(M) for any p = g(o) ∈M ,
is (well-)defined through

〈x, y〉p = 〈dpg
−1(x), dpg

−1(y)〉0 and a ·p x = dog
(
a ·o dpg

−1(x)
)
,

where x, y ∈ Tp(M) and a ∈ A, if, for all h ∈ H, x, y ∈ To(M), and a ∈ A we have

〈doh(x), doh(y)〉o = 〈x, y〉o as well as doh
(
a ·o doh

−1(x)
)

= x.

1.7. An important example for this situation is given in the following way. For a
TRO E denote by U its open unit ball. Define a triple product for TaM at a ∈ U
by

{xyz}a = x(1− a∗a)−1y∗(1− aa∗)−1z,

so that
〈x, y〉a = (1− aa∗)−1/2x(1− a∗a)−1y∗(1− aa∗)−1/2

as well as
γ ·a z = (1− aa∗)1/2γ(1− aa∗)−1/2, γ ∈ EE∗.

We will refer to this structure as the canonical Hilbert-C* structure on U . It is
well known (cf. [4]) that HolU , the group of all biholomorphic automorphisms U ,
consists of mappings of the form T ◦Ma, where for a ∈ U ,

Ma(x) := (1− aa∗)−1/2(x+ a)(1 + a∗x)−1(1− a∗a)1/2,

and T is a (linear) isometry of E, restricted to U . It is furthermore well known
that HolU acts transitively on U , and that the isotropy subgroup at the point 0
consists of all the (linear, surjective) isometries of E, restricted to U . We have

dxMa(h) = (1− aa∗)1/2(1 + xa∗)−1h(1 + a∗x)−1(1− a∗a)1/2.

This equation is used to show that the Hilbert-C* structure from 1.7 is constructed
according to the construction in 1.5 for a group G, somewhat smaller than HolU .

Definition 1.8. Suppose X is a (closed) subspace of L(H). Equip

Mn(X) = {(xij) | xij ∈ X for i, j = 1, . . . , n}

with the norm it carries as a subspace of Mn(L(H)) = L(H ⊕ · · · ⊕H), and, for a
bounded operator T : X → X, denote by T (n) = idMn(C) ⊗X : Mn(X) → Mn(X)
the operator (xij) 7−→ (Txij). Then T is said to be completely bounded, iff

‖T‖cb := sup
n∈N
‖T (n)‖ <∞.

Similarly, T is called a complete isometry iff each of the maps T (n) is an isometry.

We have the following
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Theorem 1.9 ([3, 8]). Let E be a TRO. Then Mn(E) carries a distinguished
TRO-structure, and the group of TRO-automorphisms of E coincides with with
the group of complete isometries.

Theorem 1.10 ([10]). Let U be the open unit ball of a TRO E, equipped with
the canonical Hilbert-C* structure, and suppose Mn(E) carries the standard TRO-
structure for each n ∈ N. Then A diffeomorphism Φ : U → U is a Hilbert-C*
automorphism iff Φ = T ◦Ma, where a ∈ U , and T is the restriction of a linear
and completely isometric mapping of E to U .

1.11. Let M again be a Hilbert-C* manifold. Then the tangent space at each
point m of M carries an essentially unique norm, naturally connected to the TRO-
structure by ‖x‖m = ‖{x, x, x}‖1/3. Since TROs embed completely isometrically
into some space of bounded Hilbert space operators, this norm naturally extends
to the spaces Mn(TmM). We will call a Banach manifold M an operator Finsler
manifold in case each tangent space carries the structure of an operator space
depending smoothly on base points. In this sense, any Hilbert-C* manifold carries
an operator Finsler structure in a natural way. If, as before, U is the open unit ball
of a fixed TRO (E, {·, ·, ·}, ‖ · ‖), furnished with its invariant Hilbert-C* structure
then

Theorem 1.12 ([10]). If the open unit ball of a TRO is equipped with the natural
invariant operator Finsler structure its automorphism groups coincides with the
automorphism group of the underlying homogeneous Hilbert-C* manifold.

1.13. The reader should note that the above results support the statement that
the most adequate morphisms for Hilbert-C* manifolds are those mappings whose
derivatives are pointwise TRO-morphisms. That structure of this type is very
natural in the treatment of symmetric spaces has been known for a long time (see
[7] for example). Another result which illustrates this point is the following one,
taken from [10].

Theorem 1.14. On the Hilbert-C* manifold U there exists exactly one invariant
connection whose Christoffel symbol at a is given by

Γa(x, y) = y(1− a∗a)−1/2a∗(1− aa∗)−1/2x+

+ x(1− a∗a)−1/2a∗(1− aa∗)−1/2y = 2{x,M ′a(0)a, y}sa,

where {x, y, z}s = 1
2 ({z, y, x} + {x, y, z}) denotes the (symmetric) Jordan triple

product on E.

1.15. It is important here that the definition of a connection for Banach manifolds
cannot be, due to the scarcity of smooth functions, the usual one. The right
definition seems to be [5, 1.5.1 Definition]:

Definition 1.16. Let M be a manifold, modeled over the Banach space E, and
denote the space of bounded bilinear mappings E × E → E by L2(E,E). Then M
is said to possess a connection iff there is an atlas U for M so that for each U ∈ U
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there is a smooth mapping Γ : U → L2(E,E), called the Christoffel symbol of the
connection on U , which under a change of coordinates Φ transforms according to

Γ(Φ′X,Φ′Y ) = Φ′′(X,Y ) + Φ′Γ(X,Y ).

The covariant derivative of a vector field Y in the direction of the vector field X
is, locally, defined to be the principal part of

∇XY = dX(Y )− Γ(X,Y ),

where, in a chart, the principal part of (u,X) ∈ U × T (U) is X.

2. Ternary morphisms, adjointable mappings and
the cotangent bundle

Our basic references for the structure of TROs and Hilbert-C* modules are [1], [6],
[9].

2.1. Let E be a TRO which we often will suppose to be embedded into some space
L(H) of bounded Hilbert space operators. The linking algebra of E is

L(E) =
(
EE∗ E
E∗ E∗E

)
Under the module action of EE∗ and E∗E on E and E∗, respectively, L(E) carries
the structure of a C*-algebra, which is independent of the chosen embedding.
Furthermore, the TRO-structure of E is the canonical TRO-structure of L(E)
restricted to E. We will also write L0(E) for the subspace of L(E) which on the
main diagonal contains finite linear combinations of elements of the form xy∗ and
x∗y, respectively.

We will equip L(E) with EE∗ ⊕ E∗E-valued forms, which are obtained from
extending〈(

〈e1, ê1〉` g1
g∗2 〈e2, ê2〉r

)
,

(
〈f1, f̂1〉` h1

h∗2 〈f2, f̂2〉r

)〉
`

=

= (〈e1, ê1〉`〈f̂1, f1〉` + 〈g1, h1〉`, 〈e2, ê2〉r〈f̂2, f2〉r + 〈g2, h2〉r)

as well as〈(
〈e1, ê1〉` g1
g∗2 〈e2, ê2〉r

)
,

(
〈f1, f̂1〉` h1

h∗2 〈f2, f̂2〉r

)〉
r

=

= (〈ê1, e1〉`〈f1, f̂1〉` + 〈g2, h2〉`, 〈ê2, e2〉r〈f2, f̂2〉r + 〈g1, h1〉r)

linearly and forming limits. It is easily seen that this form provides L(E) with
the structure of an Hilbert-EE∗ ⊕ E∗E bimodule. We will call this structure the
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canonical Hilbert bimodule structure on L(E). Note that the left form restricts
on E∗ to 〈·, ·〉r and vice versa. We will consider E∗ equipped with the Hilbert-C*
structure which is obtained in this way.

2.2. Let E,F be TROs and Φ : E → F a TRO morphism. Important in the sequel
is the following construction. Observe first that for any x1, . . . , xn, y1, . . . yn ∈ E
we have∥∥∥∥∥

n∑
k=1

Φ(xk)Φ(yk)∗
∥∥∥∥∥ = sup

{∥∥∥∥∥
n∑

k=1

Φ(xk)Φ(yk)∗f

∥∥∥∥∥ | f ∈ Φ(E), ‖f‖ ≤ 1

}

= sup

{∥∥∥∥∥
n∑

k=1

Φ(xk)Φ(yk)∗Φ(e)

∥∥∥∥∥ | e ∈ E, ‖e‖ ≤ 1

}

≤ sup

{∥∥∥∥∥
n∑

k=1

xky
∗
ke

∥∥∥∥∥ | e ∈ E, ‖e‖ ≤ 1

}
=

∥∥∥∥∥
n∑

k=1

xky
∗
k

∥∥∥∥∥ .
In this estimate, the following facts have been used: In any TRO, the map

θ : EE∗ → L(E),
n∑

k=1

xky
∗
k 7−→

(
e 7→

n∑
k=1

xky
∗
ke

)
is an isometry (this we used three times), the image of Φ is a (closed) sub-TRO of
F and, finally, Φ is a quotient map onto its image.

2.3. The above inequality shows that

Φ11

(
n∑

k=1

xky
∗
k

)
:=

n∑
k=1

Φ(xk)Φ(yk)∗

is a well defined contraction which extends to a mapping EE∗ → FF ∗, which we
continue to denote by Φ11. In quite the same way, we define a mapping Φ22 :
E∗E → F ∗F . Denote by E,F the complex vector spaces conjugate to E and
F , respectively, and let Φ : E → F , Φ(e) = Φ(e). If E ⊆ L(H) then E can be
identified with the space E∗ = {e∗ | e ∈ E }. Put

L(Φ) : L(E)→ L(F ), L(Φ) =
(

Φ11 Φ
Φ Φ22

)
.

Then L(Φ) is a C*-morphisms whose restriction to (the canonical copy of) E
coincides with Φ.

2.4. The morphisms for Hilbert-C* modules prevailing in the literature are the
adjointable maps, i.e. maps Φ : E → F between Hilbert-A modules E and F such
that there is an adjoint Φ∗ : F → E so that 〈Φ(e), f〉 = 〈e,Φ∗(f)〉 for all e ∈ E and
f ∈ F . Adjointable maps are A-module mappings. Had we based our approach
to Hilbert-C* manifolds on these mappings then the action of the isotropy group
in the previous section would have dropped out of this category. The definition of
the cotangent bundle, on the other hand, depends on duality, and, as we will see
below, adjointable maps seem to be a much better choice in this case.
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2.5. If E is a Hilbert-module then we say that E has a real form iff there is an
involutory and antilinear mapping e 7→ e∗ on E such that {a, b, c}∗ = {c∗, b∗, a∗} for
all a, b, c ∈ E (cf. [2]). If Φ : E → L(H) is a TRO-embedding, then Φ(a) = Φ(a∗)∗

and

e 7−→
(

0 Φ(e)
Φ(e) 0

)
is a TRO-embedding of E into L(H ⊕ H) which respects the real form. If we
apply this to the linking algebra of E, the involution on E then coincides with the
one of L(E) restricted to (the canonical copy of) E. In this way, we obtain an
anti-isomorphism between the C*-algebras EE∗ and E∗E, denoted by S and given
by

S

(∑
i

êie
∗
i

)
=
∑

i

eiê
∗
i .

Equivalently, for all x, y, z ∈ E,

zS(〈x, y〉`) = (〈x, y〉`z∗)∗ = z〈y∗, x∗〉r.

2.6. It should be noted, though, that existence of a real form is a rather restrictive
condition. For example, if (H, 〈·, ·〉) is a (complex) Hilbert space which we equip
with the structure

{h1, h2, h3} = 〈h1, h2〉h3

then H possesses a real form only in case its dimension equals one. In fact, for any
pair of norm-one elements x, y, self-adjoint under the involution *, we have

y = (〈x, x〉y)∗ = 〈y, x〉x,

whence the real space of self-adjoint elements is one-dimensional as must conse-
quently be H itself. (This also follows from the fact that HH∗ = C and H∗H
consists of the compact operators on H.)

Lemma 2.7. Let E and F be Hilbert-A bimodules. Suppose that F has a real form
and that Φ : E → F has an adjoint Φ∗ : F → E. Then all of Φ : E∗ → F ∗, Φ11

and Φ22 are adjointable, and Φ
∗

= Φ∗. If the linking algebras carry their canonical
Hilbert module structures, then L(Φ) has the adjoint

L(Φ)∗ =
(

Φ11 Φ∗

Φ
∗

Φ22

)
.

Proof: Using the real form of F we have, for all y ∈ E and x, z ∈ F

x〈Φ(y∗), z〉r = (〈z∗,Φ(y)〉`x∗)∗ = (〈Φ∗(z∗), y〉`x∗)∗ =

= x〈y∗,Φ∗(z∗)∗〉r = x〈y∗,Φ∗(z)〉r
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and, consequently, that Φ has the adjoint Φ
∗

= Φ∗. (Recall that E∗ carries the
right module structure.) With this fact kept in mind, we find〈

Φ11

(∑
i

eiê
∗
i

)
,
∑

j

fj f̂
∗
j

〉
=
∑
i,j

Φ(ei)Φ(ê∗i )f̂jf
∗
j =

∑
i,j

eiΦ∗(ê∗i )Φ
∗
(f̂∗j )∗f∗j =

=
∑
i,j

eiê
∗
i Φ(f̂j)Φ(fj)∗ =

〈∑
i

eiê
∗
i ,Φ11

∑
j

fj f̂
∗
j

〉

and so Φ11 is adjointable, as well. A similar calculation proves that also Φ22 is
adjointable, from which the statement on L(Φ) follows. 2

Proposition 2.8. Let E and F be Hilbert-A bimodules. Suppose further, that
F has a real form. Then the mapping Φ : E → F is adjointable iff L(Φ) is
adjointable for the canonical Hilbert module structure on the linking algebras of E
and F , respectively. Furthermore, there exist central projections p1,2 in MA, the
multiplier algebra of A such that a1,2 ∈ A such that

〈Φ(x),Φ(y)〉` = 〈x, y〉`p1 and 〈Φ(x),Φ(y)〉r = p2〈x, y〉r

for all x, y ∈ E

Proof: The first statement is a direct consequence of the above Lemma. The second
follows from the fact that a map x 7→ px, where p is in the multiplier algebra of A
is a C*-morphism iff p is a central projection. 2

2.9. Suppose that E is a Hilbert-A module and that Φ : E → A is adjointable. If
A has a unit, then, for all e ∈ E,

Φ(e) = 〈Φ(e), 1〉 = 〈e,Φ∗(1)〉

It follows that Φ is adjointable iff there is an element z ∈ A such that Φ(e) = 〈e, z〉
for all e ∈ A. (Note that this statement remains true also when A does not have
a unit. The element z is then in M(A).) Thus, concerning duality, Hilbert-A
modules behave like Hilbert spaces, so that the cotangent bundle of a Hilbert-C*
manifold behaves like its classical counterpart when the underlying morphisms are
adjointable mappings. This is not so for TRO morphism, as will be shown below.
The difference, between TRO-morphisms and adjointable maps can be measured
by the size of the intersection between these classes of mappings:

Corollary 2.10. Let E be a Hilbert-A bimodule. Then ϕ : E → A is adjointable
and a TRO-morphism iff there is an element w ∈ E such that ww∗ ∈ A is a central
projection and

ϕ(e) = 〈e, w〉

for all e ∈ E.
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Proof: By the above results, there are elements a ∈ E and b ∈ M(A) so that
b = b∗ = b2 is central, and

b〈x, y〉 = 〈ϕ(x), ϕ(y)〉 = 〈a, x〉〈y, a〉 = 〈{a, x, y}, a〉

for all x, y ∈ E. Using (two-sided, approximate) units in EE∗ = E∗E = A we find
that aa∗ = b, and the result follows. 2
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