Let f be a holomorphic function on $A = \{z : r < |z| < R\}$. Avoiding the use of the Cauchy integral formula and contour integrals, but adding the hypothesis that the derivative of f is bounded on A, the author obtains the Laurent series expansion of f on A. Lebesgue’s dominated convergence theorem is used twice in the proof. Its first use is to obtain a formula for $f(z)$ as a limit of integrals, while its second application shows that the coefficients are independent of ρ in (r, R). The paper concludes with a sketch of how to use Goursat’s theorem to relax the hypothesis of local boundedness of the derivative.

F.W. Carroll (Columbus / Ohio)

Keywords: Laurent expansions

Classification:
*30B99 Series expansions (one complex variable)