A Hilbert space operator $A \in B(H)$ is compact iff the mapping $X \rightarrow XAX$ is weak*-continuous on the closed unit ball of $B(H)$. This characterization makes it possible to extend the notion of compact elements to JBW*-triples: dual Banach spaces with a triple product $x, y, z \rightarrow \{xyz\}$, which satisfies a certain Jordan triple identity and $\|\{xxx\}\| = \|x\|^3$. The purpose of this paper is to characterize compact elements in JBW*-triples and to provide a spectral theorem for such elements:

$$a = \sum_{i \in I} \alpha_i e_i \quad (\alpha_i - \text{coefficients}; e_i - \text{compact atoms}).$$

K.N. Boyadzhiev (Ada)

Keywords: triple product; Jordan triple identity; compact elements in JBW*-triples; spectral theorem

Classification:

* 46L70 Nonassociative selfadjoint operator algebras
 17C65 Jordan structures on Banach spaces and algebras