
On best fit T-norms in speech recognition
Gábor Gosztolya

Research Group on Artificial Intelligence
of the Hungarian Academy of Sciences

and the University of Szeged
Szeged, Hungary

Email: ggabor@inf.u-szeged.hu

Lászĺo L. Stach́o
Bolyai Institute

University of Szeged
Szeged, Hungary

Email: stacho@math.u-szeged.hu

Abstract—We generalize the model of automatic speech recog-
nition (ASR) based on maximization of products of probability
likelihoods of speech frame-phoneme correspondences by apply-
ing strict t-norms. We formulate it as a minimization problem
in terms of the logarithmic generator of strict t-norms and
investigate the experimental solutions in cases of piecewise linear
logarithmic generators. The performance of the best fit t-norms
found in this manner for a database used in earlier papers with
classical t-norms is proved to be essentially superior than the
results there.

I. I NTRODUCTION

Most speech recognition systems rely on assigning a se-
quence of parameters with values between 0 and 1 to short
time speech segments, that show the probability likelihood
of the given segment to correspond phonemes. On the other
hand, we are given a dictionary of strings of phonemes (words
or complete sentences) which should be compared with the
matrix consisting of the mentioned probability likelihoods of
the speech signal unit in order to determine which sequence of
items in our dictionary should be taken as the best guess for the
speech signal. The traditional strategies try to identify parts of
the speech signal which may correspond to a given dictionary
item. Given a sequence of shorter consecutive speech segments
which are regarded as guessed performances of phonemes,
one can determine fitness parameters for dictionary words
consisting of as many phonemes as the number of the given
speech segments. (This procedure can be easily extended for
words having less phonemes that the number of segments by
stretching some phonemes.) This fitness parameter determina-
tion mostly done on the basis of the above mentioned speech-
phoneme probability likelihood values, namely by simply
taking their products.

In this paper we shall be primarily interested in improving
the seemingly arbitrary step of replacing the simple products
of speech-phoneme probability likelihood values by their T-
norms. In several earlier articles [6], [5] we investigatedthe
effect of applying some widespread T-norms in this decision
procedure. In particular the parameters of the family of gen-
eralized Dombi norms were optimized for this purpose. But
though these norms cover several classical ones, they are far
from being of a general character and it is natural to ask if

The work was supported by the NKTH grant of JedliḱAnyos R&D
Programme 2007 of the Hungarian government (codename TUDORKA7).

Fig. 1. An example utterance of the Hungarian word ”negyven” (meaning
forty) portrayed in its spectral form, and divided to small, equal-sized parts
(frames).

there are even better ones among the family of general T-
norms. It is well-known that any continuous Archimedean T-
norm is of equivalent order topologically either to the product
norm or to the Lukasiewicz norm [7]. Here we shall be
concerned with finding the best fit T-norm. Taking into account
the fact that the classical Lukasiewicz norm produces a very
low performance in this context, it can be expected that even
its order topological equivalents would be less suitable for this
kind of application, thus we will focus on product-equivalent
T-norms.

II. T HE SPEECHRECOGNITION PROCESS

In the speech recognition problem the task is to assign the
correct word from a dictionary to a given speech signal. But
without a priori knowledge it is not possible to tell for sure
whether a given word is the correct one or not, so in practice
we aim for the word which is the ”most fitting” one. This
should be done strictly without human interaction, but the
procedure of course should result in the correct word in as
many cases as possible. There is a common way of doing it,
which we will describe in the following, and then define a
way for improving it (i.e. making it supply the correct words
in more cases than it did before).

The speech signal, after some signal processing steps,
is defined as a series of equal-sized vectors that describe
significant information fort short time, equal-sized speech
segments calledframes. For an example, see Figure 1. (Note
that this paper follows a frame-based description of the speech
recognition problem. For details, see [?].) Now we will con-
sider the set of possible phonemeso1, o2, . . . , oN , and use a



Frames
1 2 3 4 5 6 7 · · · t

o1 = a 0.3 0.2 0.2 0.3 0.4 0.2 0.3 · · · 0.1
o2 = b 0.1 0.3 0.2 0.1 0.2 0.1 0.1 · · · 0.2

...
...

...
...

...
...

...
...

. . .
...

o25 = n 0.2 0.2 0.1 0.3 0.4 0.3 0.5 · · · 0.1
...

...
...

...
...

...
...

...
. . .

...
o48 = z 0.1 0.1 0.2 0.1 0.0 0.2 0.1 · · · 0.1
o49 = ∼ 0.6 0.6 0.5 0.6 0.4 0.4 0.2 · · · 0.5

TABLE I
EXAMPLE OF PROBABILITY ESTIMATES FOR PHONEMES.

standard procedure to calculate theframe-phoneme probability
matrix

P =
[

piτ : 1 ≤ i ≤ N, 1 ≤ τ ≤ t
]

,
piτ =

[

prob. likelihood of phonemei
corresponding to frameτ

]

.

This step is usually done by some machine learning method
such as the Gaussian Mixture Model (GMM) [4] or Artificial
Neural Networks (ANNs) [1]. As an illustration let us take the
pronounced wordnegyven(forty in Hungarian) witht = 100
and N = 49. As a starting step with the GMM procedure
we get the matrixP as in Table I, for instance p1,1 =
0.3, p1,2 = 0.2, . . . , p49,100 = 0.5.

Then we turn to the word set. For this purpose we have a
dictionary which contains all the possible words which are to
be matched against the speech signal. Each word (or even word
sequences) can be treated simply as a sequence of phonemes
already transcribed manually or by some algorithm, hence we
can treat them as phoneme-sequences. A sample dictionary
would be one like this:

∼ a b b a∼ for the word ”abba”
∼ n E + ’d’ v E n ∼ for our pronounced ”negyven”
...

... .

The crucial step of a recognition procedure at this stage
is to associatefitness valuesfor word-pronunciation guesses.
These guesses are words from the dictionary, with phonemes
stretched so that one phoneme is assigned to each frame. E.g.

∼∼∼aaaaaaabbbbbbbbbbbaaaaaaa∼∼ · · · ∼

for the word ”abba”
∼∼∼aaaaabbbbbbaaaaaa∼∼ · · · ∼

for ”abba” pronounced shorter
...

∼∼∼∼∼nnnnEEEEEE++’d”d”d’vvvEEEEnnnn∼ · · · ∼

for our pronounced ”negyven”
... .

There could of course be many such guesses, but the number
of investigated guesses should be drastically reduced using

Frames
1 2 3 4 5 6 7 · · · t

o1 = a 0.3 0.2 0.2 0.3 0.4 0.2 0.3 · · · 0.1
o2 = b 0.1 0.3 0.2 0.1 0.2 0.1 0.1 · · · 0.2

...
...

...
...

...
...

...
...

. . .
...

o25 = n 0.2 0.2 0.1 0.3 0.4 0.3 0.5 · · · 0.1
...

...
...

...
...

...
...

...
. . .

...
o48 = z 0.1 0.1 0.2 0.1 0.0 0.2 0.1 · · · 0.1
o49 = ∼ 0.6 0.6 0.5 0.6 0.4 0.4 0.2 · · · 0.5
pν(5,.). 0.6 0.6 0.5 0.6 0.4 0.3 0.5 · · · 0.5

TABLE II
THE pν,τ VALUES FOR A GUESS OF THE WORD” NEGYVEN”, WHICH HAS

SILENCE AS FRAMES1 TO 5, THE PHONEME” N” STARTING FROM FRAME

6, AND SILENCE FRAMES AT THE END.

well-known simple heuristical methods not being in the focus
of this paper. Next, let

ν(n, τ) :=
[

the index of theτ -th phoneme in guessn
]

.

In our exampleν(1, 1) = ν(1, 2) = ν(1, 3) = 49, ν(1, 4) =
ν(1, 5) = · · · = ν(1, 10) = 1, ν(1, 11) = · · · = ν(1, 21) = 2,
ν(1, 22) = · · · = ν(1, 28) = 1, ν(1, 29) = · · · = ν(1, 100) =
49 because our first guess begins with 3 consecutive silent
frames (” ∼ ” = o49) followed by 7 ”a” frames (= o1) etc.
For a sample suchν values for our example ”negyven” see
Table II above.

In course of the classical procedure the fitness valueFn

for guessn is simply calculated by taking the product of the
probability likelihood values of its phonemes as

Fn =

t
∏

τ=1

pν(n,τ),τ , (1)

and our final guess should be the one wheremaxn Fn is
taken. Heuristically, taking the product of probability likeli-
hoods for the fitness value corresponds to assuming high scale
independence between the consecutive frames in the speech
signal. Though even this standard approach has proved to be
quite successful, it is natural to expect that it can be improved
further by replacing the product in the formula ofFn with a
more general binary operation on the interval[0, 1] which is
commutative, associative and increasing with unit 1 and sink
0. These operations are exactly the so-called T-norms of fuzzy
logics and they are used to calculate the certainties (probability
likelihood) of an element belonging to the intersection of
two fuzzy sets from the certainties of its belonging to the
intersecting sets. Thus we will now give a brief discussion of
T-norms.

III. STRICT TRIANGULAR NORMS

A strict triangular normis a binary operationT : [0, 1]2 →

[0, 1] such that

(a) T (x, y) = T (y, x), T (T (x, y), z) = T (x, T (y, z)),
(b) T (0, x) = 0, T (1, x) = x,
(c) T (x1, y) < T (x2, y) for all x1 < x2, y 6= 0.



0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3
x 10

5

−log p

Fig. 2. A histogram of the− log p values appearing during a standard speech
recognition process using multiplication, on the interval[0, 100]

Recall [3], [10] that all strict continuous t-norms admit the
representation

T (x, y) = f−1(f(x) + f(y))

with some suitable strictly decreasing continuous function
f : [0, 1] → [0,∞] such thatf(0) = ∞ andf(1) = 0. The
functionf above is said to be anadditive generatorof T . Any
strictly decreasing surjective functionf : [0, 1] → [0,∞] is
the additive generator of some strict t-norm, and two additive
generatorsf1 andf2 give rise to the same t-norm if and only
if they are positive multiples of each other.

In the classical approach (i.e. Eq. (1)) the fitness values are
calculated with a strict t-normT (x, y) = xy corresponding to
the additive generatorf(x) = − log x. For numerical reasons
we consider the equivalent minimization problem

F̃n =

t
∑

τ=1

(− log pν(n,τ),τ ) → MIN in n

instead of Fn =
∏t

τ=1 pν(n,τ),τ → MAX . in n. Thus,
in general, when we replacexy with an arbitrary strict t-
norm with generatorf , it is also convenient to introduce the
logarithmic generator functionφ(x) = f(e−x) and rewrite the
general maximization problem

Fn = f−1
(

t
∑

τ=1

f(pν(n,τ),τ )
)

→ MAX in n

to the equivalent minimization

F̃n =

t
∑

τ=1

φ(− log pν(n,τ),τ )) → MIN in n.

It is important to notice that the family of all strict t-norms with
piecewise linear logarithmic generatorφ : [0,∞] → [0,∞]
with finitely many breakpoints and such thatlimx→∞ φ′(x) =
1 is dense in the family of all strict t-norms with respect to the
topology of uniform convergence. The proof is just a standard
compactness argument.

0 10 20 30 40 50
0

20

40

60

80

100

120

Fig. 3. Two sample logarithmic generator functions with control points
corresponding to Figure 2

IV. CHOICE STRATEGY FORLOGARITHMIC GENERATORS

Henceforth letφ = φm1,...,mn

a1,...,an

: [0,∞] → [0,∞] be
the piecewise linear, strictly increasing function with break
points 0 = a0 < a1 < a2, . . . , an < an+1 = ∞ and with
steepness valuesm1,m2, . . . ,mn > 0 respectivelymn+1 =
limx→∞ φ′(x) = 1. That is,

φ(x) = (x − aj)mj+1 +

j
∑

i=1

(aj − aj−1)mj , aj ≤ x < aj+1.

This representation has several advantages. If the control
points are fixed, a functionφ can be described by the vector
of the n steepness values, making it easy to optimize. On
the other hand, the functionφ is unique up to a positive
multiplicative constant; now, by settingmn+1 to 1, we fix
exactly one of these equivalent representations. Furthermore,
we have the possibility of placing these control pointaj-s
to values where they represent the problem we are currently
modelling, as accurately as possible.

This way, by fixing all theaj values, and every other
possible settings of the speech recognition environment, this
problem can be simplified to that of a maximization one
in an n-dimensional space. That is, given a vectorm =
(m1,m2, . . . ,mn), we seek to maximize the accuracy of the
speech recognition system as a function of thism vector (i.e.
Acc(m)).

A. The Choice of Control Points

The only task left now is to accurately place the control
points. For this we suggest a simple test: let us perform an
ordinary speech recognition process with the default operator,
i.e. with T (x, y) = xy, f(x) = − log x. During this test let
us note whichx andy values are passed to the operator (and
thus to the generator functionf ). Owing to the commutativity
property we do not need to distinguish between the two
arguments, i.e.x and y. Next, calculate a histogram of the
− log of recorded values, i.e. for each value note how many
times it has appeared. Finally, to actually assign then control
points, divide this histogram inton + 1 equal-sized parts;
the control points will be the borders between these regions.



This way, during a typical usage, roughly the same number of
evaluations will fall into each part of the functionφ between
two adjacent control points, so that each steepness value will
have about as importance as the others.

In our case it means a speech recognition test using multipli-
cation, i.e.f is − log x. The resulting histogram of appearing
− log x values and a sample list of control points can be
seen in Figure 2, while some possible logarithmic generatorφ

functions are shown on Figure 3.
Finally, the actual functionf (and thus, the triangular norm

T ) can be easily calculated fromφ. Of course it will not be
piecewise linear, but piecewise an exponential function with a
negative index. It will be continuous, but not smooth, i.e. its
derivative will be a discontinuous function (except, of course,
the case where every steepness value is1, which is exactly
the product case).

V. EXPERIMENTS AND RESULTS

Having our problem and solution defined, we now turn to
testing. We will describe the speech recognition environment,
the actual definition of the function to be optimized, and the
software package we used for the optimization process. Finally
we will present our results and draw our conclusions.

A. The Speech Recognition Environment

First let us describe the environment this method of t-norm
modelling was tested in. All testing was done in our OASIS
speech recognition framework, which, due to its module-based
structure and script-based execution, was quite suitable for this
kind of experimental testing [11].

The probability estimates for a frame being a particular
phoneme were supplied by an Artificial Neural Networks
(ANNs) method [1] with a classic structure of one hid-
den layer. The feature vectors (theai values) were also
ones commonly used for speech recognition: the 13 Mel-
frequency Cepstral Coefficients (or MFCC) were calculated,
along with their derivatives, and the derivatives of the deriva-
tives (MFCC +∆ + ∆∆ for short), making 39 features in
total [8].

The ANNs were trained on a large, general database. 332
people of various ages spoke 12 sentences and 12 words
each, which were recorded with different microphones on
different computers and sound cards [13]. This way a speaker-
independent classifier was created, which can be used in
practically any situation.

The tests were done not on simple words, but on whole
sentences taken from the field of medical reports. In similar
cases it is common to have some sort of language model; in
our case a simple word 2-gram was used, i.e. the likeliness of
a word was only decided by considering it and the previous
word (based on a statistical investigation of similar texts). The
tests were finally run on 150 randomly selected sentences, one
after the other.

B. Measurements of Performance

The performance of a speech recognition system can be
easily measured on word recognition tasks: we only have to
compute the ratio of the correctly recognized words over the
tested words. However, we cannot use this method on sentence
recognition because just one badly identified word would ruin
the whole sentence. We cannot compare the two sentences
word for word either, because one incorrectly inserted or omit-
ted word would also corrupt the calculated performance ratio.
For this reason, usually the edit distance of the two sentences
(the original and the resultant) is calculated on words; that
is, we construct the resulting sentence from the original by
using the following operations: inserting and deleting words,
and replacing one word with another one. These operations
have some cost (in our case the common values of 3, 3 and
4, respectively), and then we pick an operation set with the
lowest cost. Now we can calculate the following measures:

Correctness =
N − S − D

N
(2)

and

Accuracy =
N − S − D − I

N
, (3)

where N is the total number of words in all the original
sentences,S is the number of substitutions,D is the number
of deletions andI is the number of insertions. Under these
circumstances, the baseline values were96.76% and 98.38%
(accuracy and correctness, respectively), which is probably
due to the large number of words and the simple nature
of the language model. Besides the word-level correctness
and accuracy scores, we calculated the number of correctly
recognized whole sentences, which appeared to be92.66%
(i.e. 139 correct sentences out of a total of 150).

C. Setting the Logarithmic Generator Function

As mentioned earlier, we set the control points of the
logarithmic generator function by running a standard speech
recognition test, and then calculated the histogram of the
values appearing there. The points were then placed to the
values betweenn + 1 equal-sized regions. We carried out
experiments withn = 8 and n = 16. For the steepness
values, asφ is a strictly monotonously increasing function,
we can say thatmj > 0. On the other hand, there is no sure
upper bound; but sincemn+1 = 1, we thought thatmj ≤ 10
would be sufficient. Thus we looked for a point in ann-
dimensional hypercube, namely(0, 10]n, which results in a
maximal function value.

D. The Snobfit Package

Since we are modelling the generator function as a multi-
parameter function, we definitely need a global optimization
method. We chose the Snobfit (Stable Noisy Optimization by
Branch and FIT) [9] package for this task. It is available as
a Matlab 6 [12] package, and it is an optimization system
designed for noisy functions which have parameters that vary
between fixed bounds. The ranges of the steepness parameters



were fixed between0 and 10, and the function value was
calculated from the accuracy value. Since Snobfit seeks to
minimize this function value, we calculated the reciprocalrate
of accuracy. Another reason for choosing Snobfit is that the
calculation of this function involves the execution of another
application (i.e. our OASIS speech recognition system), and
this operation is also supported.

E. Results

Table III shows the best performances of each method used.
Beside the baseline values of the product operator and the
results of our new modelling approach, the performance of
two other t-norms are shown for reference: that of the Dombi
triangular norm family, and that of the generalized Dombi
operator family [2]. The parameter value of the former one
was determined via a simple sequence of tests, where the
latter one, having two parameters, had to be also optimized
with Snobfit [6], [5].

Method Accuracy Correctness Sentences

Product (baseline) 96.76% 98.38% 92.66%
Dombi t-norm 97.57% 98.84% 93.33%
Generalized Dombi operator 98.49% 98.95% 94.66%
Modelled t-norm,n = 8 98.27% 98.84% 94.00%
Modelled t-norm,n = 16 98.84% 99.19% 96.00%

TABLE III
THE BEST ACCURACY AND CORRECTNESS VALUES FOR THE DIFFERENT

METHODS TESTED, AND THE RATIO OF CORRECT SENTENCES.

It can be seen that beyond the baseline values (which mean
the usage of the product operator), significant improvements
can be attained. Even by using the somewhat simple Dombi
operator can reduce the error rates significantly. Using the
generalized Dombi operator leads to even better results, but its
application is more complicated because it has two parameters
instead of only one. However, with the logarithmic generator
function no further difficulties arise, and it could lead to
a better performance (i.e. higher accuracy and correctness
values). In addition, the ratio of correct sentences can be
increased. To obtain this result, however, there should be a
sufficient number of control points in order to provide the t-
norm with enough freedom to fit the problem it is applied to.
This could be the reason why our proposed method withn = 8
could not attain the performance of the generalized Dombi
operator. (It still performed much better than the product,
however, especially regarding the accuracy score, which itwas
optimized for.)

But with n = 16, it was able to outperform all the methods
tested in all measurements. Quite clearly, when we have
enough freedom to optimize the generator function (and thus,
the behaviour of the triangular norm it generates), it can fit
to the particular problem even better than the well-performing
classical t-norm families we tested. The usage of too many
control points, however, may lead to a case where the search
space is so high dimensional that finding an optimum can
be hard or almost impossible. Fortunately withn = 16 this

was not the case, so this choice ofn seems to be a good
compromise between easy optimization and robustness in our
case.

Lastly, we would like to stress that the usage of the loga-
rithmic generator function to model t-norms is not restricted
to the field of speech recognition. Although our tests were
limited to this field, we see no reason why this idea should
not work in any field that makes use of triangular norms. Its
application may require, of course, some small modification
to find a good value ofn.

VI. CONCLUSION

One possible application domain for triangular norms is
that of calculating word probability estimations from prob-
ability estimations of phonemes for small speech segments.
By finding an appropriate operator for this problem we can
significantly improve the performance of the speech recogni-
tion system. Many triangular norm families have one or more
parameters to fine-tune them in this task, but the question
which naturally arises is that are they flexible enough to ade-
quately fit to the given problem? To answer this we introduced
the logarithmic generator function, and by optimizing it for
piecewise linear terms with 16 break points on a sample of
150 sentences with 865 words, we could indeed significantly
increase the precision of this speech recognition procedure
over the results achieved with classical and Dombi t-norms.
This positive outcome of our experiments raises the interest for
testing out best fit t-norm with a much lager database. It is also
worth to remark that our optimization method is not limited
to the setting of speech recognition, actually applications in
improving some fuzzy control algorithms can also be expected.

July 14, 2008

REFERENCES

[1] C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, 1995.

[2] J. Dombi. Towards a universal fuzzy concept: General operators.
Accepted for IEEE Transaction on Fuzzy Systems, 2007.

[3] D. Dubois and H. Prade.Fundamentals of Fuzzy Sets. Kluwer Academic
Publisher, 2000.

[4] R. Duda and P. Hart.Pattern Classification and Scene Analysis. Wiley
& Sons, New York, 1973.

[5] G. Gosztolya, J. Dombi, and A. Kocsor. Applying the Generalized
Dombi Operator family to the speech recognition task.Submitted for
CIT, 2008.

[6] G. Gosztolya and A. Kocsor. Using triangular norms in a segment-
based automatic speech recognition system.International Journal of
Information Technology and Intelligent Computing, 1(3), 2006.

[7] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publish-
ers, 1998.

[8] X. Huang, A. Acero, and H.-W. Hon.Spoken Language Processing.
Prentice Hall, 2001.

[9] W. Huyer and A. Neumaier. Snobfit - stable noisy optimization by
branch and fit. citeseer.ist.psu.edu/681619.html.

[10] E. Klement, R. Mesiar, and E. Pap.Triangular Norms. Kluwer Academic
Publisher, 2000.

[11] A. Kocsor, L. T́oth, and J. A. Kuba. An overview of the OASIS speech
recognition project. InProceedings of the 1999 International Conference
on Applied Informatics, Eger-Noszvaj, Hungary, 1999.

[12] Mathworks. Matlab, 1984-2008. http://www.mathworks.com.
[13] K. Vicsi, A. Kocsor, C. Teleki, and L. T́oth. Besźedadatb́azis irodai

sźaḿıtógép-felhaszńalói környezetben (in Hungarian). InProceedings
of MSZNY 2004, pages 315–318, Szeged, Hungary, 2004.


