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Abstract—We generalize the model of automatic speech recog-
nition (ASR) based on maximization of products of probability
likelihoods of speech frame-phoneme correspondences by apply-
ing strict t-norms. We formulate it as a minimization problem

in terms of the logarithmic generator of strict t-norms and A (M r
investigate the experimental solutions in cases of piecewise linear I 'y i h I
logarithmic generators. The performance of the best fit t-norms H ‘ ‘ il
found in this manner for a database used in earlier papers with ———— ——r v v v
classical t-norms is proved to be essentially superior than the ~ n E + 'd v E n ~
results there.
|. INTRODUCTION Fig. 1. An example utterance of the Hungarian word "negyvenégning

forty) portrayed in its spectral form, and divided to smallualysized parts
Most speech recognition systems rely on assigning a g&ames).

guence of parameters with values between 0 and 1 to short
time speech segments, that show the probability likelihood )
of the given segment to correspond phonemes. On the otH¥"® aré even better ones among the family of general T-
hand, we are given a dictionary of strings of phonemes (wor€'ms- It is well-known that any continuous Archimedean T-
or complete sentences) which should be compared with tA@™ is of equivalent order topologically either to the prod
matrix consisting of the mentioned probability likelihgogf NOrM or to the Lukasiewicz norm [7]. Here we shall be
the speech signal unit in order to determine which sequehce@ncerned with finding the best fit T-norm. Taking into acdoun
items in our dictionary should be taken as the best gueshéor f€ fact that the classical Lukasiewicz norm produces a very
speech signal. The traditional strategies try to identidytpof OW Performance in this context, it can be expected that even
the speech signal which may correspond to a given dictiondf ©rder topological equivalents would be less suitabfetis
item. Given a sequence of shorter consecutive speech segmgfd of application, thus we will focus on product-equivate
which are regarded as guessed performances of phonemg2'ms.
one can deftermine fitniss parameterhs for d;)ction?r% wqrds Il. THE SPEECHRECOGNITION PROCESS
consisting of as many phonemes as the number of the give L . .
speech s%gments. (Tyhig procedure can be easily extendgd fg? the speech recognition problem the task is to assign the

; correct word from a dictionary to a given speech signal. But
words having less phonemes that the number of segments % o L .
without a priori knowledge it is not possible to tell for sure

stretching some phonemes.) This fithess parameter determin . ; : .
. ! : hether a given word is the correct one or not, so in practice
tion mostly done on the basis of the above mentioned speech-

honeme probability likelinood values. namelv by simplV'e aim for the word which is the "most fitting” one. This
pNo P y ' y by p>éhould be done strictly without human interaction, but the
taking their products.

. . - - ._procedure of course should result in the correct word in as
In this paper we shall be primarily interested in |mprovm§]

the seemingly arbitrary step of replacing the simple prigluc any cases as possible. There is a common way of doing i,

o . fzvhich we will describe in the following, and then define a
of speech-phoneme probability likelihood values by their Way for improving it (i.e. making it supply the correct words
norms. In several earlier articles [6], [5] we investigatee Y P 9 ol 9 PPl

. : . . .. in more cases than it did before).
effect of applying some widespread T-norms in this decision : . .
The speech signal, after some signhal processing steps,

procedure. In particular the parameters of the family of-gen defined as a series of equal-sized vectors that describe

X X - ) [
eralized Dombi norms were optimized for this purpose. Bui?gnificant information fort short time, equal-sized speech

though these norms cover several classical ones, they are’t .
. i ngments callefames For an example, see Figure 1. (Note
from being of a general character and it is natural to ask

that this paper follows a frame-based description of thedpe

The work was supported by the NKTH grant of Jediloyos ReD €COgNition problem. For details, se®.] Now we will con-
Programme 2007 of the Hungarian government (codename TUDORKA?7) sider the set of possible phonemgsos, ..., on, and use a



Frames Frames
1 2 3 4 5 6 T . ¢ 1 2 3 4 5 6 T - ¢

or—a [03 02 02 03 04 02 03 - 01 or—a [03 02 02 03 04 02 03 - 01
oo=b |01 03 02 01 02 01 01:--- 02 oo=b |01 03 02 01 02 01 01--- 02
oss=n |02 02 01 03 04 03 05-.- 01 oss=n |02 02 01 03 04 03 05 --- 01
ous=z |01 01 02 01 00 02 01--- 01 ous=2z |01 01 02 01 00 02 01--- 01
osg—~ | 06 06 05 06 04 04 02-.- 05 osg—~ | 06 06 05 06 04 04 02 --- 05

TABLE | P, ] 06 06 05 06 04 03 05.. 05

EXAMPLE OF PROBABILITY ESTIMATES FOR PHONEMES TABLE Il

THE py,~ VALUES FOR A GUESS OF THE WORD NEGYVEN", WHICH HAS
SILENCE AS FRAMES1 TO 5, THE PHONEME"N"” STARTING FROM FRAME
6, AND SILENCE FRAMES AT THE END

standard procedure to calculate freme-phoneme probability

matrix
P= [pr: 1<i<N, 1<r<{ well-known simple heuristical methods not being in the fcu
pi- = |prob. likelihood of phonemeé of this paper. Next, let
corresponding to frame]. v(n,7) := [ the index of ther-th phoneme in guess).
This step is usually done by some machine learning methtiiour examplev(1,1) = v(1,2) = v(1,3) = 49,v(1,4) =
such as the Gaussian Mixture Model (GMM) [4] or Artificial¥(1,5) = --- =v(1,10) =1, v(1,11) = --- = v(1,21) = 2,
Neural Networks (ANNSs) [1]. As an illustration let us takeeth #(1,22) = --- = v(1,28) = 1, 1(1,29) =--- =v(1,100) =

pronounced wordegyven(forty in Hungarian) witht = 100 49 because our first guess begins with 3 consecutive silent
and N = 49. As a starting step with the GMM procedurefames { ~ 7 = o49) followed by 7 "a” frames € o) etc.

we get the matrixP as in Table |, for instance p;; = For a sample suclr values for our example "negyven” see
0.3, P12 = 0.2, ..., D49,100 = 0.5. Table Il above.

Then we turn to the word set. For this purpose we have aln course of the classical procedure the fitness vaije
dictionary which contains all the possible words which are for guessn is simply calculated by taking the product of the
be matched against the speech signal. Each word (or even wii@Pability likelihood values of its phonemes as
sequences) can be treated simply as a sequence of phonemes t
already transcribed manually or by some algorithm, hence we F, = H Pu(nyr)r Q)
can treat them as phoneme-sequences. A sample dictionary r=1
would be one like this: and our final guess should be the one whetexx, F,, is
taken. Heuristically, taking the product of probabilitkeli-
hoods for the fitness value corresponds to assuming higk scal
independence between the consecutive frames in the speech
signal. Though even this standard approach has proved to be
quite successful, it is natural to expect that it can be imgdo

The crucial step of a recognition procedure at this staflarther by replacing the product in the formula Bf, with a
is to associatditness valuegor word-pronunciation guesses more general binary operation on the inter{@l1] which is
These guesses are words from the dictionary, with phonensesnmutative, associative and increasing with unit 1 an#t sin
stretched so that one phoneme is assigned to each frame. &.d.-hese operations are exactly the so-called T-norms affuz

logics and they are used to calculate the certainties (pititya

~abba~ for the word "abba”
~nE+'dvEn~ forourpronounced "negyven”

~r~rsaaaaaaabbbbbbbbbbbaaaaaaa - ~ likelihood) of an element belonging to the intersection of
for the word "abba” two fuzzy sets from the certainties of its belonging to the
~r~r~aaaaabbbbbbaaaaaa - - - ~ intersecting sets. Thus we will now give a brief discussibn o
for "abba” pronounced shorter T-norms.
: I1l. STRICT TRIANGULAR NORMS
~~vrorsMNNNEEEEEE++d"d"d VWVEEEENNNA - - ~ A strict triangular normis a binary operatiofi” : [0, 1]? —
for our pronounced "negyven” [0,1] such that

@) T(z,y) =T(y,z), T(T(x,y),2) = T(x, T(y, 2)),
There could of course be many such guesses, but the num@ey 7'(0,z) =0, T'(1,z) = z,
of investigated guesses should be drastically reducedyusifc) T'(z1,y) < T(x2,y) for all z; < za,y # 0.
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Fig. 2. A histogram of the- log p values appearing during a standard speechig. 3. Two sample logarithmic generator functions with cohpoints
recognition process using multiplication, on the inter\@al100] corresponding to Figure 2

IV. CHOICE STRATEGY FORLOGARITHMIC GENERATORS

Recall [3], [10] that all strict continuous t-norms admieth  Henceforth letp = ¢mi-mn ¢ [0,00] — [0,00] be
i A1,...,0n N b )
representation the piecewise linear, strictly increasing function withedk
_ ints0 = ag < a1 < ag,...,a, < a = oo and with
T _ 1 poin 0 1 2,-+-,0n ntl =
(@.y) = f7(f(z) + () steepness values, ma, ..., m, > 0 respectivelym,; =

with some suitable strictly decreasing continuous fumctidilz—oo ¢'(z) = 1. That is,

f : 10, 1] — [0, 00] such thatf(0) = co and f(1) = 0. The

fuqctionf abovg is saiq to 'be aaddi'Five generatoof T An_y o) = (x — a;)m 1 + Z —aj_1)my, a; <& < ajy.
strictly decreasing surjective functiofi : [0,1] — [0, 0] is

the additive generator of some strict t-norm, and two adsliti __, .
eneratorsf;, and f, give rise to the same t-norm i and onl This representation has several advantages. If the control
g L 29 ypoints are fixed, a functiop can be described by the vector

if they are po§|t|ve multiples .Of each other. i of the n steepness values, making it easy to optimize. On
In the classical approach (i.e. Eq. (1)) the fitness values e other hand, the functios is unique up to a positive

calculated with a strict t-norrf’(x, y) = xy corresponding to multiplicative constant; now, by settings,.; to 1, we fix

the add|t_|ve generatqf () = _.l(?g?' F_or numerical reasons exactly one of these equivalent representations. Furitrerm
we consider the equivalent minimization problem we have the possibility of placing these control paints
t to values where they represent the problem we are currently
Z log py(n,r),+) — MINin n modelling, as accurately as possible.
=1 This way, by fixing all thea; values, and every other
instead of F, — Hi:lpl/(”ﬂ')ﬂ' . MAX. in n. Thus, possible settings of the speech recognition environméig, t

. . : : problem can be simplified to that of a maximization one
in general, when we replacey with an arbitrary strict t- . ; : . .

. o : : in an n-dimensional space. That is, given a vectar =
norm with generatorf, it is also convenient to introduce the

logarithmic generator functiog(z) = f(e~*) and rewrite the (m,ms, ... ’m.".)’ we seek to maximize the aceuracy .Of the
L speech recognition system as a function of thisector (i.e.
general maximization problem —
Ace(m)).
t
_I(Zf(pu(n T)_T)) . MAX in n A. The Choice of Control Points

= The only task left now is to accurately place the control

to the equivalent minimization points. For this we suggest a simple test: let us perform an

ordinary speech recognition process with the default dpera
i.e. with T'(x,y) = xy, f(x) = —logx. During this test let
Fn = qu’(* l0g Py (n,r),7)) = MINin 7. us note wrgicch) andjvzj;lsje)s are pagssed to tﬁe operator (and
=1 thus to the generator functigfy. Owing to the commutativity
It is important to notice that the family of all strict t-noswith property we do not need to distinguish between the two
piecewise linear logarithmic generatgr: [0,00] — [0,00] arguments, i.ex andy. Next, calculate a histogram of the
with finitely many breakpoints and such thah,_.., ¢'(x) = —log of recorded values, i.e. for each value note how many
1 is dense in the family of all strict t-norms with respect te thtimes it has appeared. Finally, to actually assignstheontrol
topology of uniform convergence. The proof is just a staddapoints, divide this histogram inta + 1 equal-sized parts;
compactness argument. the control points will be the borders between these regions

t



This way, during a typical usage, roughly the same number Bf Measurements of Performance
evaluations will fall into each part of the functionhbetween  1pq performance of a speech recognition system can be
two adjacent control points, so that each steepness valle Whsjly measured on word recognition tasks: we only have to
have about as importance as the others. compute the ratio of the correctly recognized words over the

In our case it means a speech recognition test using multigsted words. However, we cannot use this method on sentence
cation, i.e.f is —logz. The resulting histogram of appearingecognition because just one badly identified word would rui
—logz values and a sample list of control points can bge whole sentence. We cannot compare the two sentences
seen in Figure 2, while some possible logarithmic generatoryord for word either, because one incorrectly inserted cit-om
functions are shown on Figure 3. ted word would also corrupt the calculated performancerati

Finally, the actual functiorf (and thus, the triangular normFor this reason, usually the edit distance of the two seetenc
T) can be easily calculated from. Of course it will not be (the original and the resultant) is calculated on wordst tha
piecewise linear, but piecewise an exponential functiath\ai s, we construct the resulting sentence from the original by
negative index. It will be continuous, but not smooth, its. i using the following operations: inserting and deleting agr
derivative will be a discontinuous function (except, of s®) and replacing one word with another one. These operations
the case where every steepness value, ihich is exactly have some cost (in our case the common values of 3, 3 and
the product case). 4, respectively), and then we pick an operation set with the

lowest cost. Now we can calculate the following measures:
V. EXPERIMENTS AND RESULTS N-S-D

Correctness = ————— 2
orrectness N (2)

Having our problem and solution defined, we now turn t?md
testing. We will describe the speech recognition enviramme N-S—-D-1T
the actual definition of the function to be optimized, and the Accuracy = N ’ ®)

software package we used for the optimization processIIFine\NhereN is the total number of words in all the original

we will present our results and draw our conclusions. sentencessS is the number of substitutiond) is the number
of deletions and! is the number of insertions. Under these
A. The Speech Recognition Environment circumstances, the baseline values wafer6% and 98.38%

(accuracy and correctness, respectively), which is pigbab

First let us describe the environment this method of t-norg),e to the large number of words and the simple nature
modelling was tested in. All testing was done in our OASIgt the |anguage model. Besides the word-level correctness
speech recognition framework, which, due to its moduleelas, g aecuracy scores, we calculated the number of correctly
structure and script-based execution, was quite suitablis recognized whole sentences, which appeared t®h66%
kind of experimental testing [11]. (i.e. 139 correct sentences out of a total of 150).

The probability estimates for a frame being a particular
phoneme were supplied by an Artificial Neural Network€. Setting the Logarithmic Generator Function

(ANNs) method [1] with a classic structure of one hid- As mentioned earlier, we set the control points of the
den layer. The feature vectors (the values) were also |ogarithmic generator function by running a standard speec
ones commonly used for speech recognition: the 13 Mgkcognition test, and then calculated the histogram of the
frequency Cepstral Coefficients (or MFCC) were calculategalues appearing there. The points were then placed to the
along W|th their deriVatiVeS, and the deriVatiVeS Of the“dﬁr Values betweem + 1 equal_sized regions' We Carried out
tives (MFCC +A + AA for short), making 39 features inexperiments withn = 8 and n = 16. For the steepness
total [8]. values, asg is a strictly monotonously increasing function,

The ANNs were trained on a large, general database. 3g2 can say thatn; > 0. On the other hand, there is no sure
people of various ages spoke 12 sentences and 12 wongper bound; but sincer, 1 = 1, we thought thatn; < 10
each, which were recorded with different microphones amould be sufficient. Thus we looked for a point in an
different computers and sound cards [13]. This way a speakeimensional hypercube, name(y, 10]", which results in a
independent classifier was created, which can be usednaximal function value.
practically any situation. _

The tests were done not on simple words, but on whole The Snobfit Package
sentences taken from the field of medical reports. In similar Since we are modelling the generator function as a multi-
cases it is common to have some sort of language model;parameter function, we definitely need a global optimizatio
our case a simple word 2-gram was used, i.e. the likelinessméthod. We chose the Snobfit (Stable Noisy Optimization by
a word was only decided by considering it and the previol&anch and FIT) [9] package for this task. It is available as
word (based on a statistical investigation of similar texthe a Matlab 6 [12] package, and it is an optimization system
tests were finally run on 150 randomly selected sentences, alesigned for noisy functions which have parameters that var
after the other. between fixed bounds. The ranges of the steepness parameters



were fixed betweerd and 10, and the function value waswas not the case, so this choice ofseems to be a good
calculated from the accuracy value. Since Snobfit seeks dmmpromise between easy optimization and robustness in our
minimize this function value, we calculated the recipraeaé case.
of accuracy. Another reason for choosing Snobfit is that theLastly, we would like to stress that the usage of the loga-
calculation of this function involves the execution of dret rithmic generator function to model t-norms is not reséutt
application (i.e. our OASIS speech recognition system}l ato the field of speech recognition. Although our tests were
this operation is also supported. limited to this field, we see no reason why this idea should
not work in any field that makes use of triangular norms. Its
E. Results application may require, of course, some small modification
Table 11l shows the best performances of each method ustaifind a good value of..
Beside the baseline values of the product operator and the
results of our new modelling approach, the performance of
two other t-norms are shown for reference: that of the Dombi One possible application domain for triangular norms is
triangular norm family, and that of the generalized Domphat of calculating word probability estimations from prob
operator family [2]. The parameter value of the former on@bility estimations of phonemes for small speech segments.
was determined via a simple sequence of tests, where B finding an appropriate operator for this problem we can
latter one, having two parameters, had to be also Optimizgi@nificantly improve the performance of the speech recogni

VI. CONCLUSION

with Snobfit [6], [5]. tion system. Many triangular norm families have one or more
parameters to fine-tune them in this task, but the question
Method | Accuracy  Correctness  Sentences  which naturally arises is that are they flexible enough to- ade
groduq (baseline) 96.76% 98.38% 92.66% quately fit to the given problem? To answer this we introduced
o borts cpery w1y s o4y (e logaritmic generator functianand by optimizing i for
Modelled t-normz = 8 98.97% 98.84% 92.00% piecewise linear terms with 16 break points on a sample of
Modelled t-norm,n = 16 98.84% 99.19% 96.00% 150 sentences with 865 words, we could indeed significantly
TABLE IlI increase the precision of this speech recognition proeedur

THE BEST ACCURACY AND CORRECTNESS VALUES FOR THE DIFFERENT gver the results achieved with classical and Dombi t-norms.
METHODS TESTED AND THE RATIO OF CORRECT SENTENCES This positive outcome of our experiments raises the intéoes
testing out best fit t-norm with a much lager database. Itds al
worth to remark that our optimization method is not limited

It can be seen that beyond the baseline values (which méarthe setting of speech recognition, actually applicatiom
the usage of the product operator), significant improvemenfnproving some fuzzy control algorithms can also be expgecte
can be attained. Even by using the somewhat simple Dombi July 14, 2008
operator can reduce the error rates significantly. Using the
generalized Dombi operator leads to even better resultstsou

application is more complicated because it has two paramete?] < gf{;‘oféglse”ra' Networks for Pattern Recognitio@larendon Press,

instead of only one. However, with the logarithmic generato2] . pombi. Towards a universal fuzzy concept: General aipes.
function no further difficulties arise, and it could lead to  Accepted for IEEE Transaction on Fuzzy Syste2087.

a better performance (i.e. higher accuracy and correctne$ Bua‘ijsbhcgf %’B%E"Pradé_?“”damema's of Fuzzy Setluwer Academic

values). In addition, the ratio of correct sentences can bg@] Rr. buda and P. HartPattern Classification and Scene Analysisiley
increased. To obtain this result, however, there should be a & Sons, New York, 1973.

F A ; ; ; _[5] G. Gosztolya, J. Dombi, and A. Kocsor. Applying the Getigeal
sufficient number of control points in order to provide the t Dombi Operator family to the speech recognition taSubmitted for

norm with enough freedom to fit the problem it is applied to.  ¢T, 200s.
This could be the reason why our proposed method with8  [6] G. Gosztolya and A. Kocsor. Using triangular norms in ansegt-

; ; +  based automatic speech recognition systdmternational Journal of
could not attain the performance of the generalized Dombi Information Technology and Intelligent Computiri(3), 2006.

operator. (It still performed much better than the producty7] p Hajek. Metamathematics of Fuzzy Logikluwer Academic Publish-
however, especially regarding the accuracy score, whiglast ers, 1998.
A [8] X. Huang, A. Acero, and H.-W. Hon.Spoken Language Processing
optimized for.) ,
. . Prentice Hall, 2001.
But with n = 16, it was able to outperform all the methods [9] w. Huyer and A. Neumaier. Snobfit - stable noisy optimizatioy
tested in all measurements. Quite clearly, when we have branch and fit. citeseer.ist.psu.edu/681619.html.

. ; | E. Klement, R. Mesiar, and E. Pafriangular Norms Kluwer Academic
enough freedom to optimize the generator function (and, thi Publisher, 2000.

the behaviour of the triangular norm it generates), it can fit1] A. Kocsor, L. Toth, and J. A. Kuba. An overview of the OASIS speech
to the particular problem even better than the well-perfogm recognition project. IProceedings of the 1999 International Conference

classical t-norm families we tested. The usage of too mapy, &”aﬁm'ri‘; 'r,{;c;rt:gﬁt'cfg'%%‘z&%sz‘éﬁ‘b,;'unga%'a tlhgvgv’gm

control points, however, may lead to a case where the seafe} k. vicsi, A. Kocsor, C. Teleki, and L. dth. Beskdadatbzis irodai
space is so high dimensional that finding an optimum can sznitogep-felhaszaloi kornyezetben (in Hungarian). IRroceedings
be hard or almost impossible. Fortunately with= 16 this of MSZNY 2004pages 315-318, Szeged, Hungary, 2004.
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