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Communicated by

Based on JB*-triple theory, we refine earlier results on the structure of strongly con-

tinuous one-parameter semigroups (C0-SGR) of holomorphic Carathéodory isome-
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1. INTRODUCTION

This paper is intended to complete a series of our earlier works [14-18]
with the aim of describing the C0-semigroups (C0-SGR) of Carathéodory
isometries of the unit ball in a generic infinite dimensional reflexive JB*-
triple. Recall [10,11,12] that JB*-triples are complex Banach spaces with
holomorphically symmeric unit ball, and actually the infinite dimensional re-
flexive ones among them are finite `∞-direct sums of Cartan factors of types
1refl and 4 i.e. isometric copies of L(H,K) spaces with Hilbert spaces H,K
such that dim(H) = ∞ > dim(K) resp. infinite dimensional spin factors.
Recall also [5] that the Carathéodory metric dB on the unit ball B of a
Banach space E is the unique holomorphy invariant distance on B which
coincides with the norm distance in first order around the origin (in the
sense that dB(0,x) = ‖x‖ + o(‖x‖)). It is also well known [7] that dB-
isometries are factor preserving. Hence the task of describing a C0-SGR
of dB-isometries in our setting reduces just to the cases of Cartan factors
of the types 1refl, 4 and this is done already for the non-spin cases in [18].
Thus it only remains to focus our attention to an arbitrarily fixed spin factor
associated with the complexification H = H0 ⊕ iH0 of an infinite dimen-
sional real Hilbert space H0 with scalar product 〈·|·〉 extended naturally as
〈x1+ix2|y1+iy2〉 =

[
〈x1|y1〉+〈x2|y2〉

]
+i
[
〈x1|y2〉−〈x2|y1〉

]
(x1, x2, y1, y2 ∈ H0)
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to H and the canonical conjugation x+ iy = x − iy (x, y ∈ H0). Henceforth
we fix the notation E := S(H, ·) for this spin factor. Thus E is H (as complex
vector space) equipped with the spin norm∥∥x+ iy

∥∥ =
[[
〈x〉2 + 〈y〉2

]
+ 2
[
〈x〉2〈y〉2 − 〈x|y〉2

]1/2]1/2
(x, y ∈ H0)

in terms of the standard abbreviation 〈z〉2 := 〈z|z〉 giving rise to the square
of the Hilbert norm on H, and with the JB∗-triple product [12]

(1.1) {xay} = 〈x|a〉y + 〈y|a〉x− 〈x|y〉 = 〈x|a〉y + 〈y|a〉x− 〈y|x〉a.

In particular, for the open unit ball of E we can write

B =
{
z ∈ H : 〈z〉2 < 1

2

(
1 +

∣∣〈z|z〉∣∣2 < 1
}
,

and the family of spin tripotents (idempotents of the triple product i.e. ele-
ments satisfying the identity e = {e}3 = {eee}) has the form

Tri(E) =
⋃2
k=0 T · Trik(E) where

Tri0(E) := {0}, Tri1(E) :=
{
e ∈ H0 : 〈e〉2 = 1

}
,

Tri2(E) :=
{
u+ iv : u, v ∈ H0, 〈u〉2 = 〈v〉2 = 1/4, 〈u|v〉 = 0

}
where T = {λ ∈ C : |λ| = 1} is the standard notation for the unit circle
of the complex plane C. To manipulate the triple product, we shall also use
its binary versions i.e. the linear- resp. quadratic operator representations
L(x, a) : y 7→ {xay} resp. Q(x, y) : a 7→ {xay}with the usual abbreviations
L(a) = L(a, a) resp. Q(x) = Q(x, x). It is crucial that any holomorphic
dB-isometry Φ (even in a generic reflexive JB*-triple) admits a finite closed
formula in terms of the triple product as the composition

(1.2) Φ = Ma ◦ U, Ma(x) = a+B(a)1/2
[
1 + L(x, a)

]−1
x

of a Kaup type Möbius shift Ma and a linear {. . .}-homomorphism U [1,2,17]
where B(a) := 1+2L(a)+Q(a)2 is the Bergman operator associated with the
triple product [12]. In spin factors in (1.2) we can write [21]

Uz = κU0z = κ[U0x+ iU0y], (z = x+ iy, x, y ∈ H0)

with a suitable constant κ∈T and a real-linear isometry U0 of H0. In particu-
lar, the holomorphic automorphisms of B, called also Möbius transformations,
are precisely the transformations (1.2) where U is a surjective E-isometry. In
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the sequel we shall rely upon Vesentini’s linear spin representation [21] de-
veloped from Hierzebruch’s finite dimensional considerations [9] resp. Harris’
description [8] of holomorphic JC∗-automorhisms: Given any operator matrix

(1.3) G =

[
M B
CT E

]
=

M b1 b2
cT

1 E11 E12

cT
2 E21 E22

 , M ∈L(H0),

Ek`∈R,
bk, c` ∈ H0

such that1 GTdiag
(
IdH0 ,−IdR2

)
G=diag

(
IdH0 ,−IdR2

)
, det(E)>0 that is

(1.4)
MTM = 1 + CTC, MTB = CE,

ETE = 1 +BTB, E11E22 > E12E21,

the mapping

(1.5)

ΦG(z) :=FG(z)/ϕG(z) with

FG(z) :=(b1 − ib2) + 2Mz + (zTz)(b1 + ib2),

ϕG(z) :=(E11+E22−iE12+iE21)+2(c1+ic2)Tz+

+ (E11−E22+iE12+iE21)zTz

is a holomorphic continuation of a Carathéodory isometry Φ ∈ Iso(dB) to some
neighborhood of the closed unit ball B and, conversely, any transformation
Φ ∈ Iso(dB) can be written in the form Φ = ΦG|B where the matrix G is
determined up to a constant factor λ ∈ R \ {0}.

2. MAIN RESULTS

Henceforth let Φ := [Φt : t ∈ R+] denote an arbitrarily fixed C0-SGR in
Iso(dB). According to the the C0-property, we have

Φ0 = IdB, Φt+s = Φt◦Φs (t, s ≥ 0), t 7→ Φt(z) is continuous for any z∈B.

We shall write Φ′ for the infinitesimal generator of Φ that is

Φ′(z) :=
d

dt

∣∣∣+
t=0

Φt(z), dom(Φ′) :=
{
z ∈ B : lim

t→0+
t−1
[
Φt(z)− z

]
exists

}
.

1As usually, we write ·T for transposition and identify G with the operator
[
(x, ξ1, ξ2)T 7→(

Mx+ ξ1b1 + ξ2b2, 〈x|c1〉+ ξ1E11 + ξ2E12, 〈x|c2〉+ ξ1E21 + ξ2E22

)T]
acting on columns.
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In [21, Section] E. Vesentini determined the infinitesimal generator of a C0-
SGR [Gt : t ∈ R+] realizing a (1.5)-representation of Φ under the hypothesis
of differentiable 0-orbit t 7→ Φt(0), and he outlined a method how to retrieve
the terms Gt in terms of the infinitesimal generator G′ without achieving
closed formulas. Since the only ambiguity in the representation (1.5) is the
equivalence ΦG = ΦH ⇐⇒ H = ±G, it is a harmless task to establish a
C0-SGR [Gt : t ∈ R+] in L(H0 ⊕ R2) such that Φt = ΦGt (t ∈ R+). Hence
Vesentini’s considerations on C0-SGR of holomorphic spin isometries by means
the linear representation (1.5) require no further adjustment arguments in
contrast with his works on Cartan factors of type 1refl. Also the technical
assumption 0 ∈ dom(Φ′) is harmless from the view point of finding closed
formulas (observed in [19] already): dom(Φ′) is a dense subset in B and hence,
by taking any point a ∈ dom(Φ′), we can pass to the C0-SGR [Φ̃t : t ∈ R+],
Φ̃t := M−a ◦ Φt ◦Ma with 0∈dom(Φ̃′)=M−a

(
dom(Φ′)

)
since M−1

a =M−a.

We present a JB*-theoretical approach based on our previous works [17,18] to
the structure of Φ with the following improvements of earlier results.

THEOREM 2.1. (i) There exists a Möbius transformation Θ defined on
some neighborhood of the closed unit ball B such that the infinitesimal gener-
ator of the C0-SGR Ψ = [Ψt : t ∈ R+] with Ψt = Θ ◦Φt ◦Θ−1 ∈ Iso(dB) is of
Kaup’s type, i.e.

Ψ′(z) = a− {zaz}+ U ′z
(
z ∈ B ∩ J

)
where a ∈ E, U ′ is the infinitesimal generator of some C0-SGR [U t : t ∈ R+]
of linear E-isometries, J = dom(U ′) is a dense subtriple of E with respect to
the triple product {. . .}. Furthermore there exits a tripotent e ∈ Trik(E) ∩ J
for some k ∈ {0, 1, 2} such that

a− {eae}+ U ′e = 0.

(ii) There exists a C0-SGR [Ht : t ∈ R+] of H0⊕R⊕R type real operator
matrices2 providing a Hierzebruch-Vesentini representation (1.5) Ψt = ΦHt

(t ∈ R+) for the C0-SGR Ψ above whose infinitesimal generator has the form

(2.2) H ′ =

M b1 b2
bT1 0 −ε
bT2 ε 0

 with
M=−MT =U ′

∣∣H0 ∩ dom(U ′),
ε∈R, b1 = a+ a, ib2 = a− a.

2That is Ht =
[
Ht
ij

]3
i,j=1

with Ht
11 ∈ L(H0), Ht

1j ∈ L(R,H0) ' H0, Ht
i,1 ∈ L(H0,R) '

H0 and Ht
1+k,1+` ∈ L(R) ' R (k, ` = 1, 2). We identify H0⊕R⊕ R with H0⊕R2 as usually.
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In terms of H ′, the infinitesimal generator of Ψ has the form

Ψ′(x) =

(
1

2
b1 −

i

2
b2

)
+Mx− 〈x|b1 − ib2〉x+ 〈x|x〉

(
1

2
b1 +

i

2
b2

)
.

REMARK 2.3. As an immediate consequence, the C0-SGR Ψ consists of
linear E-isometries if we have e = 0 above. That is if the members of Φ
admit a common fixed point within the open unit ball B (namely Θ−1(0) ∈
Fix(Φ)) then Φ is Möbius equivalent to C0-SGR of linear E-isometries, thus
Φt = Θ ◦ U t ◦ Θ−1 for some C0-SGR [U t : t ∈ R+] of E-isometries. This was
known by Vesentini [19] already. In contrast, as we mentioned in [17], it is
still an open problem whether every C0-SGR of holomorphic non-surjective
Carathéodory isometries of the unit ball in a Banach space leaving the origin
fixed consists of linear maps.

The ultimate goal of our series of our papers [14–18] is establishing alge-
braically closed formulas for C0-SGR of holomorphic Carathéodory isometries
in JB*-triple in terms of the underlying triple product. If we rely upon linear
represenations, this task involves naturally the application of the Bounded
Perturbation Theorem [6] leading to nested convolutions.

THEOREM 2.4. (i) In the non-linear cases e 6= 0 of Theorem 2.1, the
C0-SGR [Ht : t ∈ R+] is linearly equivalent to a C0-SGR [Gt : t ∈ R+] of
operator matrices of the type Rk⊕Hk⊕R2 where H1 =H0	[R e] if e∈Tri1(E)
resp. H2 = H0	 [(RRe(e))⊕ (R Im(e))] if e ∈ Tri2(E) whose generator is
lower triangular perturbed with a unique non-zero superdiagonal entry. The
only possibly unbounded entry of G′ is located in the diagonal with the value
ProjHk

U ′
∣∣Hk, the remaining entries are simple algebraic expressions of the

tripotent e and a parameter ε ∈ R.

(ii) All the entries Gtij of Gt are convolution polynomials formed by [t 7→
U t], the solution [t 7→ u(t)] of a Volterra equation u = u ∗ w + w with scalars
or 2 × 2 matrices, exponential and trigonometric functions with coefficients
in terms of the triple product, entries of U ′, the fixed point tripotent e and
the parameter ε, respectively. The Laplace transforms L

{
Gtij
}

(s) are all ra-

tional fractions of the Laplace transforms L
{
U t
}

(s) and s 7→ L
{
u(t)

}
(s) with

operator coefficients in Jordan triple expessions of U ′ and e.

In Theorems 6.4 resp 6.9 we furnish all the details being sufficient to con-
struct explicit finite formulas for the matrices Gt.
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COROLLARY 2.5. (i) There exists a C0-SGR [G̃t : t ∈ R] of the form (1.3)
providing a Hierzebruch-Vesentini representation Φt = Φ

G̃t
whose entries are

convolution polynomials of the C0-SGR [U t : t ∈ R+], the solution u of the
governing scalar of 2 × 2-matrix Volterra equation and special functions with
paramers in Jordan terms of the generator.

(ii) The C0-SGR [Φt : t ∈ R+] admits a group dilation in the sense
that there is a strongly continuous one-parameter group [Φ̂t : t ∈ R] of a
Carathéodory isometries of the unit ball of a spin factor Ê containing E as a
subtriple such that Φt = Φ̂2

∣∣B (t ∈ R0).

The content of Theorem 2.1 is covered by the results of Section 4. A
simple version of Theorem 2.4 with an infinitesimal generator of the form
(2.2) is available immediately from Proposition (3.6) with a governing 2 × 2-
matrix function. Theorem 3.10 improves Vesentini’s approaches with infinite
dimensional Riccati equations considerably. The complete version along with
Corollary 2.5(i) is covered by Sections 5-6 giving a deeper geometrical insight
to the structure, in particular we find an essential reduction to a scalar valued
governing function in the case if some extreme point is a common fixed point
of the holomorphic extensions Φt to the closed unit ball.

As for numerical aspects: the linear vector field (2.2) is a bounded pertur-
bation of the diagonal and hence its integration can be done with a Dyson-
Phillips series [6] of convolution polynomials with infinite dimensional rank
4 operator matrices but consisting of 2n monomials in the n-th summand.
In contrast, our governing functions are obtained by means of Dyson-Phillips
series of at most 2× 2-matrices.

Corollary 2.5(ii) is a direct consequence of the fact of a theorem due to
Deddens [4] stating in particular that any C0-SGR of Hilbert space isometries
can be emebedded into a C0-group of sujective isometries of a larger Hilbert
space. The argument is the same as in [16 Sect.5].

3. TRIANGULAR SYSTEMS WITH PERTURBATUION

Let E1, . . . ,En denote Banach spaces and let
[
T (t) : t ∈ R+

]
be a C0-SGR

of lower triangular n× n type operator matrices with entries

Tij(t) ∈ L(Ei,Ej) =
{

bded. lin. op.-s Ej → Ei

}
, Tij(t) = 0 (i < j)
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such that its infinitesimal generator can be written in the matrix form

T ′ =


U ′1 0 0 . . . 0 0
B21 U ′2 0 . . . 0 0

...
...

...
. . .

...
...

Bn−1,1 Bn−1,2 Bn−1,3 . . . U ′n−1 0
Bn,1 Bn,2 Bn,3 . . . Bn,n−1 U ′n


where each diagonal entry U ′i is the generator of a C0-SGR

[
Ui(t) : t ∈ R+

]
of bounded linear Ei-operators and the subdiagonal entries Bij (i > j) are
bounded linear operators Ej → Ei.

Recall [16, Lemma 3.8] that in the case n = 2 we can write

T (t) =

[
U1(t) 0

[U2(t)B21] ∗ [U1(t)] U2(t)

]
(t ∈ R+)

in terms of the convolution

f(t) ∗ g(t) :=

∫ t

r=0
f(t− r)g(r) dr.

By induction on n, we infer that

T (t) = diag
(
U1(t), . . . , Un(t)

)
+ subdiag

(
T (t)

)
with the entries

(3.1) Tij(t) =
∑

(i0,i1,...,ik)∈Iij

[Ui0(t)Bi0,i1 ]∗[Ui1(t)Bi1,i2 ]∗. . .∗[Uik−1
(t)Bik−1,ik ]∗[Uik(t)]

where Iij denotes the family

Iij :=

i−j⋃
k=1

{
(i0, . . . , ik) : i = i0 > i1 > · · · > ik−1 > ik = j

}
of all decreasing index paths (of various lengths k) between i and j.

Notice that, in general, the convolution of two strongly continuous bounded
linear operator valued functions f : R+ → L(F2,F3), g : R+ → L(F1,F2)

(
i.e.

we have g(t) : F1 → F2 resp. f(t) : F2 → F3 (t ∈ R+) and the maps t 7→ g(t)x
resp. t 7→ f(t)y are continuous for any choice of x ∈ F2 resp. y ∈ F2

)
between Banach spaces F1,F2,F3 is well-defined and also strongly continuous
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[6, Appendix]. The operation ∗ is always associative even for operator valued
functions, but we have no commutativity in general. In the sequel, without
danger of confusion, we write f(t) ∗ g(t) instead of the theoretically more
rigorous form {f ∗ g}(t) if the terms f, g are expressions with variable symbol
t. E.g. we have [U2(t)B21] ∗ [U1(t)] =

[
E1 3 x 7→

∫ t
s=0 U2(t− s)B21U1(t)x

]
.

Next we consider a C0-SGR [G(t) : t ∈ R+] of operator matrices

(3.2) G(t) =

[
G11(t) G12(t)
G21(t) G22(t)

]
, G′ =

[
V ′1 C
B V ′2

]
where the lower tringular part is the infinitesimal generator of a triangular
C0-SGR of the type described previously: we are given a C0-SGR

T (t) =
[
Tij(t)

]2
i,j=1

=

[
V1(t) 0

[V2(t)B] ∗ [V1(t)] V2(t)

]
, T ′ =

[
V ′1 0
B V ′2

]
where [Vi(t) : t ∈ R+] (i = 1, 2) are C0-SGR in some Banach spaces F1,F2 and
B : F1 → F2 is a bounded linear operator. In applications here we only consider
cases with dim(F2) <∞ and with [V1(t) : t ∈ R+] being lower triangular type
with isometric diagonal. Since [G(t) : t ∈ R+] is a bounded perturbation of
[T (t) : t ∈ R+], by [6 III.Cor.1.7] we have the Volterra convolution equation

(3.3) G(t) =

∫ t

r=0
T (t− r)

[
0 C
0 0

]
G(r) dr + T (t).

Thus G =

[
0 V1C
0 V2 ∗ (BV1C)

]
∗G+ T , that is

(3.4)
G11 = (V1C) ∗G21 + V1, G12 = (V1C) ∗G22,

G21 = w ∗G21 + V2 ∗ (BV1), G22 = w ∗G22 + V2.

in terms of the operator valued function

(3.5) w := [V2 ∗ (BV1C)] : t 7→
∫ t

r=0
V2(t− r)BV1(r)C dr.

We shall call the solution u : R+ → L(F2) of the Volterra convolution equation

u = w + u ∗ w

with the function (3.5) the governing function of the system (3.2).
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L.L. Stachó C0-semigroups of holomorhic spin isometries

PROPOSITION 3.6. In terms of the governing function u of (3.2) we
have

(3.7) G =

[
1 V1C
0 1

]
∗
[

V1 0
V2 ∗ (BV1) + u ∗ V2 ∗ (BV1) V2 + u ∗ V2

]
.

Proof. According to (3.4), for j = 1, 2 we have G2j = w ∗ G2j + T2j i.e.
T2j = G2j − w ∗G2j . Therefore

T2j + u ∗ T2j = G2j − w ∗G2j + u ∗G2j − u ∗ w ∗G2j =

= G2j +
(
− w + u− u ∗ w

)
∗G2j = G2j .

Hence also G1j = (V1C) ∗G2j +T1j = (V1C) ∗
[
T2j + u ∗T2j

]
+T1j . It follows

G21 = V2 ∗ (BV1) + u ∗ V2 ∗ (BV1), G22 = V2 + u ∗ V2,

G11 = (V1C) ∗ [V2 ∗ (BV1)+u ∗ V2 ∗ (BV1)] + V1, G12 = (V1C) ∗ [V2+u ∗ V2]

whence the stated matrix convolution form is immediate.

COROLLARY 3.8. For any x1 ∈ F1 and x2 ∈ F2. the functions t 7→
Gij(t)xj with (i, j) 6= (1, 1) are continuously differentiable.

Proof. This is a folklore consequence of the Newton-Leibniz formula and
the local uniform continuity of continuous Banach space valued functions of a
real variable that we have f ∗ g ∈ C1(R+,K) whenever K,L Banach spaces,
f ∈ C

(
R+,L(K,L)

)
, g ∈ C(R+,L) and f or g is continuously differentiable.3

In the expressions of G12, G21 and G22 every monomial involves the factor
V2. However, since dim(F2 < ∞ and V ′ ∈ L(F2) by assumption, necessarily
V2(t) = exp(tV ′2) t ∈ R+) i.e. the function V2 is analytic. Hence the statement
is immediate.

As a first relevant consequence, we can integrate the vector fields (2.2) in
terms of convolution polynomials of the rotation group

(3.9) Rt =

[
cos t − sin t
sin t cos t

]
, R′ =

d

dt

∣∣
t=0

Rt=

[
0 1
−1 0

]
,

the C0-SGR [U t : t ∈ R+] with infinitesimal generator M .

3Cn(R+,K) is the usual notation for the family of n times continuously differentiable
functions [0,∞)→ K.
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THEOREM 3.10. The C0-SGR [Ht : t ∈ R+] of infinitesimal generator
(2.2) has the convolution form

(3.10) Ht =

[
1 U tC
0 1

]
∗
[

U t 0
Rεt ∗ (BU t) + u ∗Rεt ∗ (BU t) Rεt + u(t) ∗Rεt

]
.

where B =
[
bT1
bT2

]
, C =

[
b1 b2

]
and the governing function u is associated with

w(t) = Rεt ∗
[
BU tBT

]
=

[
cos εt − sin εt
sin εt cos εt

]
∗
[〈
bk
∣∣U tb`〉]2

k,`=1
.

REMARK 3.11. In Theorem 3.10 we have dim(F2) ≤ 2, that is the oper-
ators w(t) (t ∈ R+) can be regarded a 2× 2 or 1× 1 matrices with entries de-
pending continuously on the parameter t. Analogously as in the classical scalar
case, with the (matrix valued) kernel function K(t, s) := w(t−s) and with the
spectral norm we can see that the (necessarily unique) solution of the equation
u = w+w∗u is the Neumann sum u =

∑∞
n=1w

∗n = w+w∗w+w∗w∗w+ · · ·

with locally uniform convergence because max
t∈[0,τ ]

‖w∗n(t)‖ ≤
[

max
t∈[0,τ ]

‖w‖
]n
τn/n!

as it can be seen by a straightforward induction on n.

COROLLARY 3.12. The C0-SGR (3.2) is a convolution polynomial of the
operator functions V1(·), V2(·) and the solution u : R+ → L(F2) of the Volterra
equation u = [V2 ∗ (BV1C)] + u ∗ [V2 ∗ (BV1C)].

REMARK 3.13. The matrix function u above is no convolution polynomial
but an infinite convolution Neumann series of V1 and V1. We can apply the
Laplace transform [3]

L{f(t)}(s) :=

∫ ∞
t=0

f(t)e−tsdt

with strongy continuous bounded operator valued functions to infer finite ra-
tional formulas for the entries Gij(t) in terms of convolution and the C0-
SGR [V (t) : t ∈ R+]. Notice that the product rule L{f(t) ∗ g(t)}(s) =
L{f(t)}(s)L{g(t)}(s) holds even in operator context with strongly continuous
outcome [6]. In particular from the relation u = w + u ∗ w we infer that

L{u(t)}(s) =
[
1− L{V2(t)}(s)BL{V1(t)}(s)C

]−1
L{V2(t)}(s)BL{V1(t)}(s)C.

COR0LLARY 3.14. The entries L{Gij(t)}(s) of the Laplace transform of
the C0-SGR (3.2) are rational fractions of the Laplace transforms L{Vj(t)}(s).

10
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4. KAUP’S TYPE VECTOR FIELDS AND FIXED POINTS

Henceforth E denotes an arbitrarily fixed spin factor with trailer Hilbert
space H = H0⊕ iH0 and unit ball B as described in Section 1 with the triple
product (1.1). We also reserve the notation Φ = [Φt : t ∈ R+] for a fixed C0-
SGR in Iso(dB) such that 0 ∈ dom(Φ′) and we write a = Φ′(0). As mentioned,
this can be done up to Möbius equivance, that is without loss of generality. It
is also well-known (valid for all reflexive JB*-triples [17]) that the infinitesimal
generator Φ′ is of Kaup’s type, that is

(4.1) Φ′(x) = a− {xax}+ iAx
(
x ∈ J ∩B

)
where J is a dense (complex) subtriple of E and iA is the infinitesimal gener-
ator of a C0-SGR [U t : t ∈ R+] of E-isometries 4 with dom(iA) = J. On the
other hand, Vesentini [21] proved that the generic form for Φ is given by the
linear representation (1.3− 5) with a C0-SGR

Gt =
[
Gtij
]3
i,j=1

=

Mt bt1 bt2
ct1 0 −εt
c2 ε 0

 =

[
Mt Bt
Ct Et

]
where the infinitesimal generator has the form

(4.2) G′ =

[
M b1 b2
bT1
bT2

0
ε

−ε
0

]
where

b1 := 2Re(a), b2 := −2Im(a),

M = M = −MT, ε ∈ R .

This corresponds to the transcription

(4.1′) Φ′(x) =
(1

2
b1−

i

2
b2
)
+Mx+iεx−〈x|b1−ib2〉x+〈x|x〉

(1

2
b1+

i

2
b2
)

of (4.1) in terms of the real Hilbert space H0. Since G′ is a finite rank pertur-
bation of the operator matrix diag

(
M,
[

0 −ε
ε 0

])
with domain dom(M ′)⊕R2, by

the Bounded Perturbation Theorem [6] we have also dom(G′) = dom(M)⊕R2

and hence

(4.3) dom(M) =
{
z ∈ H : [t 7→Mtz] ∈ C1(R+,H)

}
.

Notice any choice above with b1, b2 ∈ H0, ε ∈ R and M : dom(M)→ E being
a the complex linear extension of a maximal closed antisymmetric unbounded
H0-operator is admissible.

4Extendig the term E-hermitian used by Kaup [KaupR] in bounded context, we may say
that A is a (possibly) unbounded E-symmetric operator.

11
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REMARK 4.4. (i) Vesentini proved [21] that d
dt

∣∣
t=0

FGt(x)/ϕGt(x) =[
right hand side of (4.1′)

]
under the tacitly used hypothesis that x ∈ dom(M),

ϕId(x) 6= 0 and Φ′(0) exists.

(ii) Forerunner results are due to Hierzebruch [9] in finite dimensions and
L. Harris [8] in general setting. W. Kaup [12] established first (4.1) for uni-
formly continuous groups [Φt : t ∈ R] (necessarily with dom(A) = E) for the
complete holomorphic vector fields of a bounded circular symmetric Banach
space domain and derived the JB*-axioms from their Banach-Lie algebra.

(iii) The fact that J is closed under the triple product even in the setting
of generic reflexive JB*-triples is shown in [17,2].

(iv) Notice also that there is a misprint related to (1.3−5) in [21p.438.l.11]:
”δ(G(X))=2

(
X
∣∣C1−iC2

)
” should stay instead of ”δ(G(X))=2

(
X
∣∣C1−C2

)
”.

PROPOSITION 4.5. Suppose z is a common fixed point of the continuous
extensions Φt of the maps Φt onto the closed unit ball B. Then we have z ∈ J.

Proof. We may apply Corollary (3.8) to the C0-SGR [Gt : t ∈ R] since
all the entries G′ij resp. Gtij with (i, i) 6= (1, 1) are necessarily of rank 1.
Hence we conclude that the maps t 7→ Gti,j with indices (i, j) 6= (1, 1) are all
continuously differentiable. In particular, the the scalar function resp. vector
valued functions

t 7→ ϕGt(z) = (Et11 + Et22 − iEt12 + iEt21) + 2(c1 + ic2)Tz+

+ (Et11 − Et22 + iEt12 + iEt21)zTz,

t 7→ FGt(z)− 2Mz = (bt1 − ibt2) + (zTz)(bt1 + ibt2)

with (1.5) are continuously differentiable. On the other hand, since [Gt :
t ∈ R+] is C0-SGR, for t ↘ 0 we have Mtz → z, btj , c

t
j → 0 in H0 resp.

Et1,1, E
t
22 → 1 and Et21, E

t
22 → 0 in R. It is also well-known [17] that each

map Φt admits a holomorphic extension to the ball of radius ‖Φt(0)‖−1 > 1.
Therefore we have ϕGt(z) 6= 0 for the denominator function of (1.5) and

z = Φt(z) = FGt(z)/ϕGt(z) (0 ≤ t ≤ τ)

for some τ > 0. Hence we conclude that the vector valued function

t 7→ 2Mtz = ϕGt(z)z −
[
(bt1 − ibt2) + (zTz)(bt1 + ibt2)

]
is continuously differentiable in some right neighborhood of 0 ∈ R+ and hence
on the whole non-negative semiaxis [6]. The proof is complete in view of (4.3).

12
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REMARK 4.6. A similar argument can be applied with the projective
representation of reflexive a TRO (Cartan factor of type 1). In [18] we used
this fact tacitly in the concluding sentence of the proof of Lemma 3.1. On the
other hand, all the arguments, used in course of the proof there, are purely
Jordan theoretical and rely upon only the finite rank property (i.e. every
element is a finite linear combination of a Jordan orthognal family) without
referring to any further specific featutes of reflexive TRO-s. Thus the following
holds as well:

LEMMA 4.7. In a reflexive JB*-triple F, every point z ∈ BF of the
closed unit ball can be mapped into a tripotent with a suitable Möbius shift
which preserves the intersection the open unit ball with the (necessarily finite
dimensional) subtriple Jz generated by z.

Proof. It is well-known [11] that reflexivity in JB*-triple is nothing else
than being of finite rank. Thus we have a (unique) finite decomposition of the
form z =

∑r
k=1 λkek where e1, . . . , er ∈ Tri(F) are pairwise Jordan orthogonal

tripotents (in the sense that L(ek, e`) = 0 for k 6= `) and λ1 > · · · > λr > 0
with λ1 = ‖z‖. If ‖z‖ < 1 i.e. λ1 < 1 then the Möbius shift (1.2) with a := −z
is well-defined and takes z into the origin. It also is well-known (cf. [18]) that
Ja =

∑r
k=1 Cek, and BF ∩ Jz = {

∑r
k=1 ζkek : |ζ1|, . . . , ‖ζk‖ <}. Furthermore,

in the case 1 = λ1 = ‖z‖, the Möbius shift (1.2) with a := −
∑

k>1 λkek takes
z into λ1e1 = e1 and maps BF ∩ Jz onto itself.

COROLLARY 4.8. Since J = dom(Φ′) ia a Jordan subtriple of E, given
any point z ∈ B ∩ J in the closed unit ball of the spin factor E, there is a
Möbius transformation Θ (actually a Möbius shift composed with a modulus
1 scalar multiplication) such that Θ(z) ∈

⋃2
k=0 Trik(E) and 0 ∈ Θ(Jz) ⊂⋂

t∈R+
dom(Θ ◦ Φt ◦Θ−1).

Since the holomorphic Carathéodory isometries of the unit ball of a reflex-
ive JB*-triple are factor preserving [17] and since the analogous statement to
Proposition 4.5 is trivial for finite dimensional Cartan factors, in view of [18,
Lemma 3.1] we have proved the following

THEOREM 4.9. Any C0-SGR of holomorphic Carathéodory isometries of
the open unit ball in a reflexive JB*-triple is Möbius equivalent to a C0-SGR
with Kaup’s type infinitesimal generator whose membes admit a tripotential
common fixed point when extended continuously to the closed unit ball.
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5. TRIANGULARIZATION WITH FIXED POINTS

Throughout this section we keep the previously established setting and
notations. Furthermore we write [U t : t ∈ R+] for the C0-SGR of bounded
linear E-isometries with

U ′ = M + iε =
[
C-lin. extension of M to J = dom(M)⊕ idom(M)

]
+ εIdE.

According to Corollary (4.8) and in view of Remark 4.4(i) applied at the
common fixed points z of the maps Φt resulting in z ∈ dom(Φ′) = J ∩B with
Φ′(z) = 0, we are lead to the followig alternatives.

ALTERNATIVES 5.1. Any C0-SGR in Iso(dB) is Möbius eqivalent to a
C0-SGR Φ = [Φt : t ∈ R+] with Kaup’s type infinitesimal generator (4.1′) and
admitting a tripotent e ∈ Trik(E) ∩ Fix(Φ) (k = 0, 1, 2) such that

Case (0): e = 0. Then Φ′(0) = 0, Φ′(x) = Mx+ iεx (x ∈ J ∩B),
that is Φt = U t

∣∣B (proved by Vesentini [21] already).

Case (1): e ∈ Tri1(E) is a real extreme point of B, e = e, 〈e|e〉 = 1. Then

0 = Φ′(e) = a+ iAe− {ea∗e} =

=
(1

2
b1 −

i

2
b2
)

+Me+ iεe−
〈
e
∣∣b1 − ib2〉e+

〈
e
∣∣e〉(1

2
b1 +

i

2
b2
)

=

= b1 −
〈
b1
∣∣e〉e+Me+ i

(
ε−

〈
b2
∣∣e〉)e.

Case (2): e ∈ Tri2, is a face middle point of B, e ⊥ e, 〈e〉2 = 1/2. Then

0 = Φ′(e) =
(1

2
b1 −

i

2
b2
)

+Me+ iεe−
〈
e
∣∣b1 − ib2〉e =

=
1

2
b1 −

〈
b1
∣∣e〉e+Me+ i

(
ε−

〈
b2
∣∣e〉)e− i

2
b2.

Our next aim will be to find almost lower triangular linearly equivalent
forms for the infinitesimal generator G′ of the Hierzebruch-Vesentini represen-
tation Φt = ΦGt with a C0-SGR [Gt : t ∈ R+] of real operator matrices over
H0 ⊕ R2 by means of the refinements

H0 = [Re]⊕H1 ' R⊕H1 with H1 := H0 	 [Re],
H0 ' R2 ⊕H2 with H2 := H0 	

(
[RRe(e)]⊕ [R Im(e)]

)
of the underlying spaces in Cases 1-2, respectively. We shall also write Pj
(j = 1, 2) for the orthogonal projections PHj : H0 → Hj for short.

14
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Case (1). With the orthogonal decompositions

bj := ρje+ xj , ρj =
〈
bj
∣∣e〉 ∈ R, xj ⊥ e (j = 1, 2)

we have 0 = x1 + Me + i(ε − ρ2)e implying ρ2 = ε and Me = −x1 ∈ H1.
Hence, with the restricted operator M1 := P1M

∣∣H1∩ dom(M), we can write

G′=

M b1 b2
bT1 0 −ε
bT2 ε 0

=


0 −(Me)T ρ1 −ε
Me M1 −Me x2

ρ1 −(Me)T 0 −ε
−ε xT

2 ε 0

=


0 xT

1 ρ1 −ε
−x1 M1 x1 x2

ρ1 xT
1 0 −ε

−ε xT
2 ε 0

.
Almost triagular linearly similar form can be obtained with the coordinatiza-
tion matrices

(5.2) S1 :=


1/2 0 0 1
0 I1 0 0
−1/2 0 0 1

0 0 1 0

 , S−1
1 =


1 0 −1 0
0 I1 0 0
0 0 0 1

1/2 0 1/2 0

 , I1 = IdH1

as

(5.3) S−1
1 G′S1 =


−ρ1 0 0 0
−x1 M1 x2 0
−ε xT

2 0 0
0 xT

1 −ε ρ1

 .
REMARK 5.4. The operator M1 is the restriction of the bounded pertur-

bation P1MP1 =
[
1− PRe

]
M
[
1− PRe] = M − PReM −MPRe + PReMPRe of

M to ran(P1) = ran
(
PRe
)⊥

. Since M is the infinitesimal generator of the C0-
SGR [U t|H0 : t ∈ R+] of H-isometries, M1 is a possibly unbounded maximal
skew symmetric closed R-linear H1-operator being the infinitesimal generator
of a C0-SGR [U t1 : t ∈ R+] of H1-isometries. The matrix S−1

1 G′S1 is lower
triangular if x2 = 0 that is if b2 = 2 Im

(
Φ′(0)

)
∈ Re. This latter means that

either Im
(
Φ′(0)

)
= 0 or one of ±Im(b2)/‖Im

(
Φ′(0)

)
‖ is common fixed point

of [Φt : t ∈ R+] and it belongs to ext
(
B
)

in the same time.

Case (2) We may assume without loss of generality that

e =
1

2
u+

i

2
v, u ⊥ v ∈ H0, 〈u〉2 = 〈v〉2 = 1.
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Since M is the complexification of a possibly unbounded real antisymmetric
E = (H0 ⊕ iH0)-operator, M = M ⊂ −MT = −M∗ = −M∗ along with
dom(M) =

{
x : x ∈ dom(M)

}
, we have u, v ∈ dom(M) with〈

Mu
∣∣u〉 =

〈
Mv

∣∣v〉 =
〈
Mu

∣∣v〉+
〈
Mv

∣∣u〉 = 0,〈
Me
∣∣e〉 = − i

2

〈
Mu

∣∣v〉, 〈
Me
∣∣e〉 = 0.

Hence, using the identities 〈bj |u〉 = 〈u|bj〉 resp. 〈bj |v〉 = 〈v|bj〉, we get

0 =
〈
Φ′(e)

∣∣e〉 =
〈1

2
b1 −

i

2
b2

∣∣∣e〉+
〈
Me
∣∣e〉+

i

2
ε−

〈
e
∣∣∣1
2
b1 −

i

2
b2

〉
=

=
i

2

[
ε−

〈
Mu

∣∣v〉− 〈b1∣∣v〉− 〈b2∣∣u〉],
0 =

〈
Φ′(e)

∣∣e〉 =
〈1

2
b1 −

i

2
b2

∣∣∣e〉 =
1

4

[
〈b1|u〉+ 〈b2|v〉+ i〈b1|v〉 − i〈b2|u〉

]
.

Considering the real and imaginary parts, therefore

(5.5) 〈b1|u〉=−〈b2|v〉, 〈b1|v〉=〈b2|u〉, 〈Mu|v〉=ε−〈b1|v〉−〈b2|u〉=ε−2〈b2|u〉.

Thus in terms of the orthogonal decompositions resp. constant

bj = ρju+ σjv + xj , xj ∈ {u, v}⊥ = H2 (j = 1, 2), µ :=
〈
Mu

∣∣v〉
we have

σ2 = −ρ1, σ1 = ρ2, µ = ε− 2ρ2.

Hence, with the notations

M2 := P2M
∣∣H2∩ dom(M), q1 := P2Mu, q2 := P2Mv

we can write

G′ =

M b1 b2
bT1 0 −ε
bT2 ε 0

 =


0 −µ
µ 0

−qT1
−qT2

ρ1 ρ2
ρ2 −ρ1

q1 q2 M2 x1 x2

ρ1 ρ2
ρ2 −ρ1

xT1
xT2

0 −ε
ε 0

 .
Observe that from the relation

0 = P2Φ′(e) = P2

[(1

2
b1 −

i

2
b2

)
+Me+ iεe− 〈e|b1 − ib2〉e

]
=

=
1

2

[
x1 − ix2 + PM(u+ iv) + 0

]
16
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we infer also q1 = −x1 and q2 = x2. Therefore

G′ =


0 2ρ2−ε
ε−2ρ2 0

xT1
−xT2

ρ1 ρ2
ρ2 −ρ1

−x1 x2 M2 x1 x2

ρ1 ρ2
ρ2 −ρ1

xT1
xT2

0 −ε
ε 0

 .
A convenient quasi lower triagular form can be obtained with the coordinati-
zation matrices

(5.6) S2 :=


0 1 0 1 0
1 0 0 0 −1
0 0 I2 0 0
0 0 0 1 0
0 0 0 0 1

 , S−1
2 :=


0 1 0 0 1
1 0 0 −1 0
0 0 I2 0 0
0 0 0 1 0
0 0 0 0 1

 , I2 := IdH2

as

(5.7) S−1
2 G′S2 =


−ρ1 ε− ρ2 0 2ε 0
ρ2 − ε −ρ1 0 0 2ε
x2 −x1 M2 0 0
ρ2 ρ1 xT

1 ρ1 −ε− ρ2

−ρ1 ρ2 xT
2 ρ2 + ε ρ1

 .

REMARK 5.8. Analogously as in Remark 5.4, the operator M2 is a pos-
sibly unbounded maximal skew symmetric closed R-linear H2-operator being
the infinitesimal generator of a C0-SGR [U t2 : t ∈ R+] of H2-isometries. The
matrix S−1

2 G′S2 is upper triangular if ε = 0. In view of (5.5), this means that
Mv − 2b2 ⊥ u.

6. INTEGRATION OF THE QUASI-TRIANGULAR SYSTEMS

With the tools developed in of Section 3, it is a voluminous but feasible
work to find explicit formulas for the entries of the matrices in the Hierzebruch-
Vesentini representation [Gt : t ∈ R+] described in Section 5. This will be done
below.

Case (1). We can write the matrix (5.3) in the triangular block form

S−1
1 G′S1 =

−ρ1 0 0
−x1 T ′22 0

0 T ′32 ρ1

 , T ′22 =

[
M1 x2

xT
2 0

]
,

T ′12 = −
[
xT

1 ε
]T
,

T ′32 =
[
xT

1 − ε
]
.

17
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Notice that T ′22 is the compression of an infinitesimal generator into a 1-
codimensional subspace of J and therefore it is the infinitesimal generator
of a C0-SGR [T t22 : t ∈ R+] of operator matrices. According to (3.1), in terms
of [T t22 : t ∈ R+] we can write

(6.1) S−1
1 GtS1=

e−ρ1t 0 0
T t21 T

t
22 0

T t31 T
t
32 e

ρ1t

,
T t21 =T t22

[
− xT

1 ,−ε
]T ∗ e−ρ1t,

T t32 =eρ1t∗
[
xT

1 ,−ε
]
T t22,

T t31 =eρ1t∗
[
xT

2 ,−ε
]
T t22

[
−x1

−ε

]
∗e−iρ1t.

We can evalute the entries
[
T t22

]
ij

(i, j = 1, 2) of the matrices T t22 by the aid

of Proposition 3.6 applied with V2 := [t 7→ 1], B := xT
2

(
' [H1 3 z 7→ 〈z|x2〉]

)
,

C := x2

(
' [R 3 ξ 7→ ξx2]

)
, and V1 := [t 7→ W t] where [W t : t ∈ R+] is the

C0-SGR of H1-operators with the generator M1. Let us introduce the scalar
valued function u ∈ C(R) as the solution of the Volterra convolution equation

(6.2) u = w + u ∗ w where w(t) := 1 ∗
[
xT

2 W
tx2

]
=
∫ t
r=0

〈
W tx2

∣∣x2

〉
dr.

It follows

(6.3)

[
T t22

]
11

=
[
W tx2

]
∗
[
1 ∗ xT

2 W
t + u(t) ∗ 1 ∗ xT

2 W
t
]

+W t,[
T t22

]
12

=
[
W tx2

]
∗
[
1 + u(t) ∗ 1

]
,[

T t22

]
21

= 1 ∗
(
xT

2 W
t
)

+ u(t) ∗
[
1 ∗
(
xT

2 W
t
)]
,[

T t22

]
22

= 1 + u(t) ∗ 1.

Notice that if ϕ∈ C(R+), even in with operator functions g∈ C
(
R+,L(F2,F1)

)
we have

[
ϕ(t)IdF2

]
∗ g(t) = g(t) ∗

[
ϕ(t)IdF1

]
since

∫ t
r=0 ϕ(t − r)g(r)x dr =∫ t

s=0 g(t − s)ϕ(s)x ds (x ∈ F2). Thus we can rearrange (6.3) by shifting the
scalar terms to the left in the form

(6.3(i)) T t22 = ũ(t) ∗
[
[W tx2] ∗ [xT

2 W
t] W tx2

xT
2 W

t 0

]
+ diag

(
W t, ũ(t)

)
.

in terms of the primitive of the governing function

(6.2′) ũ(t) = 1 + 1 ∗ u(t) = 1 +
∫ t
s=0

∫ s
r=0

〈
W tx2

∣∣x2

〉
dr ds.

Substituting back into (6.1), we get

T t21 = T t22

[
−x1

−ε

]
∗ e−ρ1t = e−ρ1t ∗ T t22

[
−x1

−ε

]
=

= −e−ρ1t ∗ ũ(t) ∗
[

[W tx2] ∗ [xT
2 W

t]x1 + εW tx2

−x2W tx1

]
− e−ρ1t ∗

[
W tx1

ε ũ(t)

]
.

18
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Since each term xT
2 W

tx1 =
[
〈W tx1|x2〉

]
is a scalar (real 1× 1-matrix),

(6.3(ii))

T t21 =

=−
[[
e−ρ1t∗ũ(t)∗〈W tx1|x2〉+εe−ρ1t∗ũ(t)

]
∗W tx2+e−ρ1t∗W tx1

e−ρ1t∗ũ(t)∗〈W tx1|x2〉+ε e−ρ1t∗ũ(t)

]
.

Analogously

(6.3(iii))

T t32 = eρ1t ∗
[
x1,−ε

]
T t22 = eρ1t∗

[
xT

1 W
t−ε ũ(t)

]
+

= +eρ1t∗ũ(t)∗
[
xT

1 [W tx2][xT
2 W

t]−ε xT
2 W

t, xT
1 W

tx2

]
=

=
[[
eρ1t ∗ ũ(t) ∗ 〈W tx2|x1〉 − εeρ1t ∗ ũ(t)

]
∗ xT

2 W
t + eρ1t ∗ xT

1 W
t,

eρ1t ∗ ũ(t) ∗ 〈W tx2|x1〉 − ε eρ1t ∗ ũ(u)
]
.

Furthermore

(6.3(iv))

T t31 = eρ1t ∗
[
xT

2 ,−ε
]
T t22

[
−x1

−ε

]
∗ e−ρ1t =

= −eρ1t ∗ e−ρ1t ∗
[
xT

2 ,−ε
]
T t22

[x1

ε

]
=

=− 1

ρ1
sinh(ρ1t)∗

(
xT

2

[
ũ(t)∗[W tx2]∗[xT

2 W
t] +W t

]
x1 +

+ εxT
2

[
ũ(t)∗W tx2

]
− εũ(t) ∗ [xT

2 W
tx1]− ε2ũ(t)

)
=

=− 1

ρ1
sinh(ρ1t)∗

(
ũ(t)∗〈W tx2|x2〉∗〈W tx1|x2〉+ 〈W tx1|x2〉+

+ εũ(t)∗〈W tx2|x2〉−εũ(t)∗〈W tx1|x2〉 − ε2ũ(t)
)
.

We can summarize the above considerations as follows.

THEOREM 6.4. Let e ∈ H0 be an arbitrarily fixed unit vector and de-
fine H1 := H0 	 (R e). A generic C0-SGR [Ψt : t ∈ R+] of holomorphic
dB-isometries, whose continuous extension to the closed unit ball admits a
common fixed point which is an extreme point on the unit sphere, can be writ-
ten in the form

Ψt = Θ ◦ ΦGtW1,x1,x2,ρ1,ε
◦Θ−1 (t ∈ R+)

where
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(i) Θ is any E-Möbius transformation, W1 = [W t : t ∈ R+] is any C0-SGR
of H1-isometries, x1, x2 ∈ H1 and ρ1, ε ∈ R,

(ii) [GtW1,x1,x2,ρ1,ε
: t ∈ R+] is a C0-SGR of L

(
R ⊕ [H1 ⊕ (R e)] ⊕ R

)
-type

operator matrices such that

GtW1,x1,x2,ρ1,ε
= S1

([
T tij
]3
i,j=1

)
S−1 (t ∈ R+)

with the coordinatization matrices (5.2), the entries T tijfor(i, j) 6= (2, 2)

are described in (6.1), and T t22 is given in (6.3(i−iv)) arising from a quasi
triangular system with scalar-valued governing function.

Case 2, triangular subcase ε=0. In terms of the decomposition H⊕R2'
[Ru]⊕ [Rv]⊕H2 ⊕ R2 where e = (u+ iv)/2, u, v unit vectors in H0 and the
rotation group (3.9), we can write

(6.5) S−1
2 G′S2 =

−ρ1+ρ2R
′ 0 0

[x2,−x1] M2 0
ρ2−ρ1R

′ [x1, x2]T ρ1+ρ2R
′

 .
The integration of (6.5) is immediate with (1.6):

(6.5(i)) Gt =

e−ρ1tRρ2t 0 0
Gt21 W t

2 0
Gt31 Gt32 eρ1tRρ2t


where

(6.5(ii))

Gt21 =
(
W t

2[x2,−x1]
)
∗
(
e−ρ1tRρ2t

)
,

Gt32 =
(
e−ρ1tRρ2t[x1, x2]T

)
∗W t

2,

Gt31 =
(
eρ1tRρ2t(ρ2−ρ1R

′)
)
∗
(
e−ρ1tRρ2t

)
+

+
(
eρ1tRρ2t[x1, x2]T

)
∗
(
W t

2[x2,−x1]
)
∗
(
e−ρ1tRρ2t

)
.

Case 2 quasitriangular case ε 6= 0. We can improve the coordinatization
(5.7) as

(6.6)

G̃′ = Z−τ
[
S−1

2 G′S2

]
Zτ =

=


0 ε− ρ2 0 2ε 0

ρ2 − ε 0 0 0 2ε
x2 −x1 M2 0 0
λ 0 xT

1 0 −ε− ρ2

0 λ xT
2 ε+ ρ2 0

 ,
τ =

ρ1

2ε

λ =
ρ2

1

2ε
− ρ2

20
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where

(6.6′) Zτ =


1 0 0 0 0
0 1 0 0 0
0 0 I2 0 0
τ 0 0 1 0
0 τ 0 0 1

 , [
Zτ
]−1

= Z−τ .

To find the convolution structure of the C0-SGR [G̃t : t ∈ R+] with infinitesi-
mal generator G̃′, we apply Proposition 3.6 with the grouping (3.2) with

G̃′ =

[
V ′1 C
B V ′2

]
, V ′1 =

[
(ρ2 − ε)R′ 0
[x1,−x2] M2

]
, C =

[
2εR0

[0, 0]

]
,

B =

[
λR0,

[
xT

1

xT
2

]]
, V ′2 = (ρ2 + ε)R′

in terms of the rotation group (3.9). According to (1.6), by writing ω = ρ2−ε
for short, the C0-SGR [V t

1 : t ∈ R+] with infinitesimal generator V ′1 has the
form

V t
1 =

[
Rωt 0

W t
2 ∗ [x2,−x1]Rωt W t

2

]
=

[
Rωt 0[

X(t), Y (t)
]

W t
2

]
where [W t

2 : t ∈ R+] is the C0-SGR with infinitesimal generator M2 and

X1(t)=W t
2 ∗
[
(cos(ωt)x2 − (sinωt)x1

]
=(cosωt)∗W t

2x2−(sinωt) ∗W t
2x1,

X2(t)=W t
2∗
[
− (sinωt)x2−(cosωt)x1

]
=−(sinωt)∗W t

2x2−(cosωt)∗W t
2x1

since convolutions commute in case of a scalar valued term. By introducing
the lower triangular C0-SGR

T t =

[
V t

1 0
W t

2 ∗
(
[x2,−x1]Rωt W t

2

]
with generator T ′ =

[
V ′1 0
B V ′2

]
,

the C0-SGR [G̃t : t ∈ R+] is the solution of the Volterra equation

G̃t =

[
0 V t

1C
0 V t

2 ∗ (BV t
1C)

]
∗ G̃t + T t

whence
G̃t11 = (V t

1C) ∗ G̃t21 + V t
1 ,

G̃t21 = w ∗ G̃t21 + V t
2 ∗ (BV t

1 ),

G̃t12 = (V t
1C) ∗ G̃t22,

G̃t22 = w ∗ G̃t22 + V t
2 ,

where
w(t) = V t

2 ∗ (BV t
1C).
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The governing function u associated with w assumes values as real 2 × 2-
matrices and it is the solution of the convolution equation u = w + u ∗ w
where w is the 2 × 2-matrix valued function defined in 3.5). Actually, since
ρ2 + ε = ω + 2ε,

(6.7) w(t) = V t
2 ∗ (BV t

1C) = (V t
2B) ∗ (V2C) =

=

[
cos(ω+2ε)t − sin(ω+2ε)t
sin(ω+2ε)t cos(ω+2ε)t

] [
λ 0 xT

1

0 λ xT
2

]
∗

cosωt − sinωt 0
sinωt cosωt 0
X(t) Y (t) W t

2

2ε 0
0 2ε
0 0

 .
In view of Proposition 3.6 we get

(6.8) G̃t =

[
1 V t

1C
0 1

]
∗
[

V t
1 0

V t
2 ∗ (BV t

1 ) + u(t) ∗ V t
2 ∗ (BV t

1 ) V t
2 + u ∗ V t

2

]
.

Here we have

(6.8(i))

V t
1C =

[
Rωt 0

W t
2 ∗
(
[x2,−x1]Rωt

)
W t

2

] [
2εR0

[0, 0]

]
=

=

[
2εRωt

2εW t
2 ∗
(
[x2,−x1]Rωt

)] ,

(6.8(ii))

BV t
1 =

[
λR0,

[
xT

1

xT
2

]] [
Rωt 0

W t
2 ∗
(
[x2,−x2]Rωt W t

2

]
=

=

[
λRωt +

[
xT

1

xT
2

] [
X1(t), X2(t)

]
,

[
xT

1 W
t
2

xT
2 W

t
2

]]
.

We can summarize the results concerning Case 2 in a context free manner
as follows.

THEOREM 6.9. Let u, v ∈ H0 be an arbitrarily fixed orthonormed couple
and define H2 := H0 	 [(Ru) ⊕ (R v)]. A generic C0-SGR [Ψt : t ∈ R+] of
holomorphic dB-isometries, whose continuous extension to the closed unit ball
admits a common fixed point on the unit sphere which is not an extreme point
of the unit ball, can be written in the form

Ψt = Θ ◦ ΦGtW2,x1,x2,ρ1,ρ2,ε
◦Θ−1 (t ∈ R+)

where
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(i) Θ is any E-Möbius transformation, W2 = [W t
2 : t ∈ R+] is any C0-SGR

of (necessarily linear) H2-isometries, x1, x2 ∈ H2 are arbitrary vectors
and ρ1, ρ2, ε ∈ R are arbitrary real constants,

(ii) the factors GtW2,x1,x2,ρ1,ρ2,ε
are L

(
R2⊕[H2⊕(Ru)⊕(R v

)
]
)
-type operator

matrices of the form

GtW2,x1,x2,ρ1,ρ2,ε
= Zτ(ρ1,ε)S2

(
G̃t
)
S−1

2 Z−τ(ρ1,ε)

in terms of the coordinatization matrices (5.6) resp. (6.6′) with τ(ρ, ε) :=[
0 if ε = 0, ρ1/(2ε) else

]
where G̃t

(
= G̃tW2,x1,x2,ρ1,ρ2,ε

)
is given as

(iii1) in the case ε = 0 we can write G̃tW2,x1,x2,ρ1,ρ2,0
=
[
Gt given in (6.5(i−ii)

]
.

(iii2) in the case of ε 6= 0, the entries of G̃tW2,x1,x2,ρ1,ρ2,ε
are described in (6.8)

with the subentries
(
6.8(i)−(ii)

)
arising from a quasi triangular system

with the 2× 2 matrix-valued governing function u which is the solution
of the Volterra convolution equation u = w + w ∗ u where w is given in
(6.7) with ω := ρ2 − ε.

QUESTION 6.10. Is it possible to find a coordinatization in Case 2 which
gives rise to a treatment with a unique or more but independently defined
scalar-valued governing functions?
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[11] W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten

unendlicher Dimension I., Math. Ann., 357 (1981), 463–481.

[12] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex

Banach spaces, Math. Z., 83 (1983), 503–529.

[13] L. Nachbin, Holomorphic functions, domains of holomorphy and local properties, North-

Holland Pub. Co., Oxford–New York–Amsterdam, 1970.
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