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1. INTRODUCTION

This paper is intended to complete a series of our earlier works [14-18]
with the aim of describing the CO-semigroups (CO-SGR) of Carathéodory
isometries of the unit ball in a generic infinite dimensional reflexive JB*-
triple. Recall [10,11,12] that JB*-triples are complex Banach spaces with
holomorphically symmeric unit ball, and actually the infinite dimensional re-
flexive ones among them are finite £*°-direct sums of Cartan factors of types
1ren and 4 i.e. isometric copies of L(H,K) spaces with Hilbert spaces H, K
such that dim(H) = co > dim(K) resp. infinite dimensional spin factors.
Recall also [5] that the Carathéodory metric dg on the unit ball B of a
Banach space E is the unique holomorphy invariant distance on B which
coincides with the norm distance in first order around the origin (in the
sense that dg(0,x) = ||x|| + o(||x|])). It is also well known [7] that dg-
isometries are factor preserving. Hence the task of describing a CO0-SGR
of dp-isometries in our setting reduces just to the cases of Cartan factors
of the types l,en,4 and this is done already for the non-spin cases in [18].
Thus it only remains to focus our attention to an arbitrarily fixed spin factor
associated with the complexification H = Hy @ iHy of an infinite dimen-
sional real Hilbert space Hy with scalar product (-|-) extended naturally as

(z1+ixa|y1+iyz) = [(z1|y1)+{(@aly2)| +i[(x1]y2) — (x2ly1)] (21,22, y1,y2 € Hy)
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to H and the canonical conjugation = + iy = = — iy (x,y € Hy). Henceforth
we fix the notation E := S(H,~) for this spin factor. Thus E is H (as complex
vector space) equipped with the spin norm

o+ vl = [[@? + )2 + 2[@2w)? — @) 2] @y e H)

in terms of the standard abbreviation (z)? := (z|z) giving rise to the square
of the Hilbert norm on H, and with the JB*-triple product [12]

(1.1) {zay} = (z|a)y + (yla)z — (z|y) = (z|a)y + (yla)z — (y[Z)a.

In particular, for the open unit ball of E we can write
1
B— {z €H: ()2 < J(1+ ][R < 1}7

and the family of spin tripotents (idempotents of the triple product i.e. ele-
ments satisfying the identity e = {e}® = {eee}) has the form

Tri(E) = U?_, T- Trix(E) where
Trig(E) := {0}, Triy(E):={e € Hy: (e)® = 1},
Tris(E) := {u+iv: u,v € Hy, (u)? = (v)*> =1/4, (ulv) =0}

where T = {\ € C : |A\] = 1} is the standard notation for the unit circle
of the complex plane C. To manipulate the triple product, we shall also use
its binary versions i.e. the linear- resp. quadratic operator representations
L(z,a) : y — {xay} resp. Q(x,y) : a — {xay}with the usual abbreviations
L(a) = L(a,a) resp. Q(z) = Q(=z,x). It is crucial that any holomorphic
dp-isometry ® (even in a generic reflexive JB*-triple) admits a finite closed
formula in terms of the triple product as the composition

(1.2) ®=M,oU, M,y(x)=a+B(a)/? 1+ L(z, a)]flx

of a Kaup type Mobius shift M, and a linear {...}-homomorphism U [1,2,17]
where B(a):=1+2L(a)+Q(a)? is the Bergman operator associated with the
triple product [12]. In spin factors in (1.2) we can write [21]

Uz = kUyz = k[Upz +iUgy|, (2 =2x+ 1y, z,y € Hy)

with a suitable constant k€ T and a real-linear isometry Uy of Hp. In particu-
lar, the holomorphic automorphisms of B, called also Mdbius transformations,
are precisely the transformations (1.2) where U is a surjective E-isometry. In
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the sequel we shall rely upon Vesentini’s linear spin representation [21] de-
veloped from Hierzebruch’s finite dimensional considerations [9] resp. Harris’
description [8] of holomorphic JC*-automorhisms: Given any operator matrix

Vv B M b by M e L(Hy),
(1.3) G= [CT E] =|c¢f Eun Ewn|, EweR,
cd FEy FE
2 21 22 b, cy € Hy

such that’ GTdiag (IdHO , —Idg2 ) G =diag (IdH0 ) —IdRz) , det(E)>0 that is

MTM =1+C"C, MTB=CE,

14
(14) EYE =1+ BB, E|Ey» > Ej2Es,

the mapping

O (2) :=Fg(2)/pa(z)  with

Fa(z) :=(by —iby) + 2Mz + (21 2)(by + iby),

0c(2) =(E1+Eag —iE12+iEs ) +2(ct +ic) 2t
+ (B11—Bag+iF1a+iF)z" 2

(1.5)

is a holomorphic continuation of a Carathéodory isometry ® € Iso(dp) to some
neighborhood of the closed unit ball B and, conversely, any transformation
¢ € Iso(dp) can be written in the form ® = ®5|B where the matrix G is
determined up to a constant factor A € R\ {0}.

2. MAIN RESULTS

Henceforth let ® := [®' : ¢t € R} ] denote an arbitrarily fixed CO-SGR. in
Iso(d). According to the the CO-property, we have

d' =1Idg, ' =d'0d® (t,5>0), t+ d'(2)is continuous for any z € B.

We shall write ® for the infinitesimal generator of ® that is

d 1+
/ o t AN 1 —1 t o :
D'(2) := pn t:0<1> (z), dom(®'):= {Z €B: thmwt [(ID (2) z] ex1sts}.

! As usually, we write - T for transposition and identify G with the operator [(m, &,86)" —

(MJJ + &1b1 + &2b2, (z|c1) + E1E11 + E2Fh2, (z|c2) + €1 Ea1 + szgg)T] acting on columns.
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In [21, Section] E. Vesentini determined the infinitesimal generator of a CO-
SGR [G! : t € R, ] realizing a (1.5)-representation of @ under the hypothesis
of differentiable 0-orbit ¢ + ®%(0), and he outlined a method how to retrieve
the terms G! in terms of the infinitesimal generator G’ without achieving
closed formulas. Since the only ambiguity in the representation (1.5) is the
equivalence & = &y <= H = =G, it is a harmless task to establish a
CO-SGR [G? : t € Ry] in L(Hp @ R?) such that ® = & (t € Ry). Hence
Vesentini’s considerations on CO-SGR. of holomorphic spin isometries by means
the linear representation (1.5) require no further adjustment arguments in
contrast with his works on Cartan factors of type l..4. Also the technical
assumption 0 € dom(®’) is harmless from the view point of finding closed
formulas (observed in [19] already): dom(®’) is a dense subset in B and hence,
by taking any point a € dom(®’), we can pass to the CO-SGR [®! : t € R,],
Ot := M_, 0 ®' o M, with Oedom(@):M,a(dom(CI)’)) since M;1=M_,.

We present a JB*-theoretical approach based on our previous works [17,18] to
the structure of ® with the following improvements of earlier results.

THEOREM 2.1. (i) There exists a Mdébius transformation © defined on
some neighborhood of the closed unit ball B such that the infinitesimal gener-
ator of the CO-SGR W = [W! : t € Ry] with ¥! = Q0 ®' 0 O~ ! € Iso(dg) is of
Kaup’s type, i.e.

V'(2)=a—{zaz}+U'z (zeBNJ)

where a € E, U’ is the infinitesimal generator of some CO-SGR [U' : t € Ry]
of linear E-isometries, J = dom(U’) is a dense subtriple of E with respect to
the triple product {...}. Furthermore there exits a tripotent e € Trig(E) NJ
for some k € {0,1,2} such that

a—{eae} +U'e =0.

(ii) There exists a CO-SGR [H': t € Ry] of Ho®R®R type real operator
matrices® providing a Hierzebruch-Vesentini representation (1.5) W' = &
(t € Ry) for the CO-SGR W above whose infinitesimal generator has the form

M by by Y ,

(2.2) H = b 0 —e| with M==M"=U }Ho.m dOT(U)’
T 0 eeR, by =a+a, tbs =a — a.
2

2That is H = [Hfj}fvjzl with Hi, € £L(Ho), Hi; € L(R,Ho) ~ Ho, H{, € L(Ho,R) ~
Ho and H{ ;1.0 € L(R) ~ R (k, £ = 1,2). We identify Ho®R& R with HoBR? as usually.
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In terms of H', the infinitesimal generator of ¥ has the form
V(@) = 5b1— gba ) + Mz = {(alby —ibo)x + ([z) | Sb1+ 5bs ) -

REMARK 2.3. As an immediate consequence, the CO-SGR ¥ consists of
linear E-isometries if we have e = 0 above. That is if the members of ®
admit a common fixed point within the open unit ball B (namely ©~1(0) €
Fix(®)) then ® is Mobius equivalent to CO-SGR of linear E-isometries, thus
d! = 0o Ul 0 O7! for some CO-SGR [U! : t € Ry] of E-isometries. This was
known by Vesentini [19] already. In contrast, as we mentioned in [17], it is
still an open problem whether every CO-SGR of holomorphic non-surjective
Carathéodory isometries of the unit ball in a Banach space leaving the origin
fixed consists of linear maps.

The ultimate goal of our series of our papers [14-18] is establishing alge-
braically closed formulas for CO-SGR of holomorphic Carathéodory isometries
in JB*-triple in terms of the underlying triple product. If we rely upon linear
represenations, this task involves naturally the application of the Bounded
Perturbation Theorem [6] leading to nested convolutions.

THEOREM 2.4. (i) In the non-linear cases e # 0 of Theorem 2.1, the
C0-SGR [H! : t € Ry] is linearly equivalent to a CO-SGR [G' : t € Ry] of
operator matrices of the type RFGH, ®R? where H =HoO[Re] if e€ Triy (E)
resp. Ha = HoS[(RRe(e)) ® (RIm(e))] if e € Tria(E) whose generator is
lower triangular perturbed with a unique non-zero superdiagonal entry. The
only possibly unbounded entry of G’ is located in the diagonal with the value
ProijU"Hk, the remaining entries are simple algebraic expressions of the
tripotent e and a parameter € € R.

(ii) All the entries Gﬁj of Gt are convolution polynomials formed by [t —
U], the solution [t — u(t)] of a Volterra equation u = u x w + w with scalars
or 2 X 2 matrices, exponential and trigonometric functions with coefficients
in terms of the triple product, entries of U’, the fixed point tripotent e and
the parameter €, respectively. The Laplace transforms E{ij}(s) are all ra-
tional fractions of the Laplace transforms L{U"}(s) and s — L{u(t)}(s) with
operator coefficients in Jordan triple expessions of U’ and e.

In Theorems 6.4 resp 6.9 we furnish all the details being sufficient to con-
struct explicit finite formulas for the matrices G*.
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COROLLARY 2.5. (i) There ezists a CO-SGR [G" : t € R] of the form (1.3)
providing a Hierzebruch- Vesentini representation ®f = @ whose entries are
convolution polynomials of the CO-SGR [U' : t € Ry], the solution u of the
governing scalar of 2 x 2-matrixz Volterra equation and special functions with
paramers in Jordan terms of the generator.

(i) The CO-SGR [®' : t € Ry] admits a group dilation in the sense
that there is a strongly continuous one-parameter group [®' : t € R| of a

Carathéodory isometries of the unit ball of a spin factor E containing E as a
subtriple such that ®' = ®2|B (t € Ry).

The content of Theorem 2.1 is covered by the results of Section 4. A
simple version of Theorem 2.4 with an infinitesimal generator of the form
(2.2) is available immediately from Proposition (3.6) with a governing 2 x 2-
matrix function. Theorem 3.10 improves Vesentini’s approaches with infinite
dimensional Riccati equations considerably. The complete version along with
Corollary 2.5(i) is covered by Sections 5-6 giving a deeper geometrical insight
to the structure, in particular we find an essential reduction to a scalar valued
governing function in the case if some extreme point is a common fixed point
of the holomorphic extensions ® to the closed unit ball.

As for numerical aspects: the linear vector field (2.2) is a bounded pertur-
bation of the diagonal and hence its integration can be done with a Dyson-
Phillips series [6] of convolution polynomials with infinite dimensional rank
4 operator matrices but consisting of 2" monomials in the n-th summand.
In contrast, our governing functions are obtained by means of Dyson-Phillips
series of at most 2 x 2-matrices.

Corollary 2.5(ii) is a direct consequence of the fact of a theorem due to
Deddens [4] stating in particular that any CO-SGR of Hilbert space isometries
can be emebedded into a CO-group of sujective isometries of a larger Hilbert
space. The argument is the same as in [16 Sect.5].

3. TRIANGULAR SYSTEMS WITH PERTURBATUION

Let Ey, ..., E, denote Banach spaces and let [T'(t) : t € Ry ] be a C0-SGR
of lower triangular n X n type operator matrices with entries

T;;(t) € L(E;, E;) = {bded. lin. op.-s E; —» E;}, T;;(t) =0 (i < j)
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such that its infinitesimal generator can be written in the matrix form

Uy 0 0 . 0 0
By U, 0 . 0 0
T = : : : . : :
Bn11 Buoi2 Bpaaz ... U,y 0
| Bu1 By 2 Bns ... Buyn—1 U}

where each diagonal entry U] is the generator of a CO-SGR [U;(t) : ¢t € Ry|
of bounded linear E;-operators and the subdiagonal entries B;; (i > j) are
bounded linear operators E; — E;.

Recall [16, Lemma 3.8] that in the case n = 2 we can write

Ul(t) 0 :| (t c R.,.)

T() = hw)BmJ ()] Ualt)

in terms of the convolution

F0 5o = [ se-rgtryar

By induction on n, we infer that

T(t) = diag(U1(t), ..., Un(t)) + subdiag(7T'(t))
with the entries
(3.1) Ty;(t) = Z Uiy (t)Big iy ) * Uiy () Biyig)*. . % [Ui,,_, (t)Biy i) % [Ui, (1))

(104i1 -yt ) €Ls;

where Z;; denotes the family

i—j

;= {(@0,...,¢k):¢:¢0>¢1 > > >ik:j}

k=1

of all decreasing index paths (of various lengths k) between ¢ and j.

Notice that, in general, the convolution of two strongly continuous bounded
linear operator valued functions f : Ry — L(F2,F3), g : Ry — L(F1,F2) (ie.
we have g(t) : F1 — Faresp. f(t) : Fo — F3 (t € R;) and the maps t — g(t)z
resp. t — f(t)y are continuous for any choice of x € Fg resp. y € F2)
between Banach spaces F1, Fo, F3 is well-defined and also strongly continuous
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[6, Appendix|. The operation * is always associative even for operator valued
functions, but we have no commutativity in general. In the sequel, without
danger of confusion, we write f(t) * g(t) instead of the theoretically more
rigorous form {f % ¢g}(¢) if the terms f, g are expressions with variable symbol
t. E.g. we have [Uz(t)Ba]  [U1(t)] = [E1 2 2 > [ Ua(t — 8)Bay Uy (t)z].

Next we consider a CO-SGR [G(t) : t € R, ] of operator matrices

Gu(t) Gha(t) i C
(3:2) G(t) = [G;l(t) Gii(t)]’ “= [Bl Vz]

where the lower tringular part is the infinitesimal generator of a triangular
CO-SGR of the type described previously: we are given a CO-SGR

2 _ Vi(t) 0 ’_ Vi 0
T =T “”w:l—[wwﬁwwm v2<t>]’ T‘[Bl VJ

where [V;(t) : t € R4] (i = 1,2) are CO-SGR in some Banach spaces F1, Fy and
B :F; — Fyis a bounded linear operator. In applications here we only consider
cases with dim(F3) < oo and with [V} (¢) : t € R4] being lower triangular type
with isometric diagonal. Since [G(t) : t € R4] is a bounded perturbation of
[T(t) : t € Ry], by [6 IIL.Cor.1.7] we have the Volterra convolution equation

(3.3) a(t) = / ; T(t - 1) B (5] G(r) dr +T(t).

0 i

Thus G =
us G [0 Vs # (BViC)

]*G—FT, that is

G111 = (ViC) * Goy + V1, G1o = (V1C) * Gaa,

3.4
(34) Go1 = w * G1 + Vo % (BVY), Goz = w x Giag + Va.

in terms of the operator valued function
t
(3.5) wi= Vo (BViO)] : t / Va(t — 1) BVA(r)C dr-
r=0

We shall call the solution u : Ry — L(F3) of the Volterra convolution equation
U=w+u*xw

with the function (3.5) the governing function of the system (3.2).
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PROPOSITION 3.6. In terms of the governing function u of (3.2) we
have

1 il \% 0

(3:7) G:[O 1 ]*{VQ*(BVl)—&—u*VQ*(BVl) Vat+usVal|

Proof. According to (3.4), for j = 1,2 we have Goj = w * Ga; + Th; i.e.
Tyj = Goj — w * G;. Therefore

ng—l—u*ng:ng—w*ng—l—u*ng—u*w*ng:
=G+ (—w+u—uxw)* Gy = Gyj.

Hence also G1; = (ViC) xGa; + T = (ViC) * [ng +u>|<T2j] +T1;. It follows

Go1 = Vox (BVy) +uxVox (BVy), Goo=Vo+uxVs,
Gi11 = (V1C) x [Vo x (BVy)+ux* Vo x (BV1)] + V1, Gi2 = (V1C) x [Vo4u x V3]

whence the stated matrix convolution form is immediate.

COROLLARY 3.8. For any 1 € F1 and zo € Fo. the functions t —
Gij(t)z; with (i,7) # (1,1) are continuously differentiable.

Proof. This is a folklore consequence of the Newton-Leibniz formula and
the local uniform continuity of continuous Banach space valued functions of a
real variable that we have f * g € C'(R,K) whenever K, L Banach spaces,
f€C(Ry, L(K,L)), g € C(Ry,L) and f or g is continuously differentiable.?
In the expressions of G12,Go; and Ga2 every monomial involves the factor
Va. However, since dim(Fy < oo and V' € L(F2) by assumption, necessarily
Va(t) = exp(tVy) t € Ry ) i.e. the function V3 is analytic. Hence the statement
is immediate.

As a first relevant consequence, we can integrate the vector fields (2.2) in
terms of convolution polynomials of the rotation group

¢ |cost —sint ,_d ¢ |10 1
(3.9) R = [sint cost ] » = dt‘tZOR - [—1 0|’

the CO-SGR [U! : t € Ry] with infinitesimal generator M.

3C"(R+,K) is the usual notation for the family of n times continuously differentiable
functions [0, c0) — K.
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THEOREM 3.10. The CO-SGR [H! : t € R.]| of infinitesimal generator
(2.2) has the convolution form

.1 ute Ut 0
(3.10) H" = [0 1 | ¥ |R * (BUY) +u* B % (BUY) R+ u(t) « Re| "

T
where B = [ZlT} ,C= [bl bg] and the governing function u is associated with
2

sinet coset

w(t) = R % [BUtBT] _ [Cosst —smet} . |:<bk‘Utb€>:|Z

REMARK 3.11. In Theorem 3.10 we have dim(F3) < 2, that is the oper-
ators w(t) (t € Ry) can be regarded a 2 x 2 or 1 x 1 matrices with entries de-
pending continuously on the parameter t. Analogously as in the classical scalar
case, with the (matrix valued) kernel function K (¢, s) := w(t —s) and with the
spectral norm we can see that the (necessarily unique) solution of the equation

u = w~+wx*u is the Neumann sum u =) 7, w*™ = wwsw+wswxw-+---

n
with locally uniform convergence because m[gbx} |lw*(t)] < [max] ||wH] " /n!
te

5T )T

as it can be seen by a straightforward induction on n.

COROLLARY 3.12. The C0-SGR (3.2) is a convolution polynomial of the
operator functions Vi(-), Va(-) and the solution u : Ry — L(F3) of the Volterra
equation u = [Vo x (BV1C)] 4+ u x [Va = (BV1C)].

REMARK 3.13. The matrix function v above is no convolution polynomial
but an infinite convolution Neumann series of V; and V;. We can apply the
Laplace transform [3]

CUONs) = [ feyetods

t=0

with strongy continuous bounded operator valued functions to infer finite ra-
tional formulas for the entries G;;(t) in terms of convolution and the CO-
SGR [V(t) : t € Ry]. Notice that the product rule L{f(t) x g(t)}(s) =
L{f(t)}(s) L{g(t)}(s) holds even in operator context with strongly continuous
outcome [6]. In particular from the relation u = w + u * w we infer that

LD} s) = [1 - LIBOHDBLOANEC] LV} (5) BEWV (1)} (5)C.

COROLLARY 3.14. The entries L{G;;(t)}(s) of the Laplace transform of
the CO-SGR (3.2) are rational fractions of the Laplace transforms L{V;(t)}(s).

10
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4. KAUP’S TYPE VECTOR FIELDS AND FIXED POINTS

Henceforth E denotes an arbitrarily fixed spin factor with trailer Hilbert
space H = Hy ® tHg and unit ball B as described in Section 1 with the triple
product (1.1). We also reserve the notation ® = [®! : t € R, ] for a fixed CO-
SGR in Iso(dg) such that 0 € dom(®’) and we write a = ®(0). As mentioned,
this can be done up to Md&bius equivance, that is without loss of generality. It
is also well-known (valid for all reflexive JB*-triples [17]) that the infinitesimal
generator @' is of Kaup’s type, that is

(4.1) '(z) = a— {zaz} +iAz  (z € INB)

where J is a dense (complex) subtriple of E and iA is the infinitesimal gener-
ator of a CO-SGR [U? : t € R, ] of E-isometries 4 with dom(iA) = J. On the
other hand, Vesentini [21] proved that the generic form for ® is given by the
linear representation (1.3 — 5) with a C0-SGR

My b b
Gt:[Gtu]S =l 0 —&

_ | My B
vlig=1 " -
Co € 0

C: E;

where the infinitesimal generator has the form

M by by
G'=1|w o - where

b;f € 0

b1 =
(4.2) M=M=-MTccR

This corresponds to the transcription
1 ; 1 j
(4.1’) (I)/(x) = (§b1 — %bg) +Mx+icx— <.%"bl —ib2>x+ <$’T> (§b1 + %bg)

of (4.1) in terms of the real Hilbert space Hy. Since G’ is a finite rank pertur-
bation of the operator matrix diag (M, [g 5 ]) with domain dom(M") HR?, by
the Bounded Perturbation Theorem [6] we have also dom(G’) = dom(M ) ®R?
and hence

(4.3) dom(M) = {z € H: [t~ M;z] € C'(R,H)}.

Notice any choice above with b1,b2 € Hp, ¢ € R and M : dom(M) — E being
a the complex linear extension of a maximal closed antisymmetric unbounded
Hy-operator is admissible.

“Extendig the term E-hermitian used by Kaup [KaupR] in bounded context, we may say
that A is a (possibly) unbounded E-symmetric operator.

11
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REMARK 4.4. (i) Vesentini proved [21] that %‘tZOth(x)/gpgt(x) =
[right hand side of (4.1")] under the tacitly used hypothesis that = € dom(M),
e1a(z) # 0 and @'(0) exists.

(ii) Forerunner results are due to Hierzebruch [9] in finite dimensions and
L. Harris [8] in general setting. W. Kaup [12] established first (4.1) for uni-
formly continuous groups [®' : ¢t € R] (necessarily with dom(A4) = E) for the
complete holomorphic vector fields of a bounded circular symmetric Banach
space domain and derived the JB*-axioms from their Banach-Lie algebra.

(iii) The fact that J is closed under the triple product even in the setting
of generic reflexive JB*-triples is shown in [17,2].

(iv) Notice also that there is a misprint related to (1.3—5) in [21p.438.1.11]:
76(G(X))=2(X|C1—iC3)” should stay instead of "0(G(X))=2(X|C1—C2)".

PROPOSITION 4.5. Suppose z is a common fized point of the continuous
extensions ® of the maps ® onto the closed unit ball B. Then we have z € J.

Proof. We may apply Corollary (3.8) to the C0-SGR [G* : t € R] since

all the entries Gj; resp. Gj; with (4,i) # (1,1) are necessarily of rank 1.
Hence we conclude that the maps ¢ +— G} ; with indices (i, ) # (1,1) are all
continuously differentiable. In particular, the the scalar function resp. vector
valued functions

t = par(z) = (Bfy + ESy — iBjy +iE5;) 4+ 2(c1 +ic2) 2+

+ (Efy — B3 + B}y +iE3)z" z,

t Fai(z) —2Mz = (b — ibh) + (2% 2) (0% + ibh)
with (1.5) are continuously differentiable. On the other hand, since [G' :
t € Ry] is CO-SGR, for t N\, 0 we have M;z — z, b;-,CE — 0 in Hy resp.
El,,E5 — 1 and ES), E5y — 0 in R. Tt is also well-known [17] that each

map ®! admits a holomorphic extension to the ball of radius ||®*(0)||~! > 1.
Therefore we have pgt(z) # 0 for the denominator function of (1.5) and

D= (2) = Far(9)Joer(z)  (0<t<7)
for some 7 > 0. Hence we conclude that the vector valued function
t > 2Myz = g (2)z — [(B) — ibh) + (27 2) (b} + ibh)]

is continuously differentiable in some right neighborhood of 0 € R and hence
on the whole non-negative semiaxis [6]. The proof is complete in view of (4.3).

12
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REMARK 4.6. A similar argument can be applied with the projective
representation of reflexive a TRO (Cartan factor of type 1). In [18] we used
this fact tacitly in the concluding sentence of the proof of Lemma 3.1. On the
other hand, all the arguments, used in course of the proof there, are purely
Jordan theoretical and rely upon only the finite rank property (i.e. every
element is a finite linear combination of a Jordan orthognal family) without
referring to any further specific featutes of reflexive TRO-s. Thus the following
holds as well:

LEMMA 4.7. In a reflexive JB*-triple F, every point = € By of the
closed unit ball can be mapped into a tripotent with a suitable Mobius shift
which preserves the intersection the open unit ball with the (necessarily finite
dimensional) subtriple J, generated by z.

Proof. 1t is well-known [11] that reflexivity in JB*-triple is nothing else
than being of finite rank. Thus we have a (unique) finite decomposition of the
form z = )", _, Ape, where eq,. .., e, € Tri(F) are pairwise Jordan orthogonal
tripotents (in the sense that L(ex,es) = 0 for k # ¢) and Ay > --- > A\, >0
with Ay = ||z]|. If ||z]| < 1i.e. A; < 1 then the Mobius shift (1.2) with a := —z
is well-defined and takes z into the origin. It also is well-known (cf. [18]) that
Jo=31_1Cep,and Be NI, = {>;_; Grex : |G, -, |Gl <}. Furthermore,
in the case 1 = Ay = ||2[, the Mdbius shift (1.2) with a := —) ;.| Axer takes
z into A\ie; = e; and maps By NJ, onto itself.

COROLLARY 4.8. Since J = dom(®’) ia a Jordan subtriple of E, given
any point z € BN J in the closed unit ball of the spin factor E, there is a
Mébius transformation © (actually a Mébius shift composed with a modulus
1 scalar multiplication) such that ©(z) € Uizo Trip(E) and 0 € ©(J,) C
mtERJr dom(© o ®! o @_1).

Since the holomorphic Carathéodory isometries of the unit ball of a reflex-
ive JB*-triple are factor preserving [17] and since the analogous statement to
Proposition 4.5 is trivial for finite dimensional Cartan factors, in view of [18,
Lemma 3.1] we have proved the following

THEOREM 4.9. Any C0-SGR of holomorphic Carathéodory isometries of
the open unit ball in a reflexive JB*-triple is Mobius equivalent to a CO-SGR
with Kaup’s type infinitesimal generator whose membes admit a tripotential
common fized point when extended continuously to the closed unit ball.

13
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5. TRIANGULARIZATION WITH FIXED POINTS

Throughout this section we keep the previously established setting and
notations. Furthermore we write [U® : ¢t € Ry] for the CO-SGR of bounded
linear E-isometries with

U' = M +ie = [C-lin. extension of M to J = dom(M) & idom(M)] + eldg.

According to Corollary (4.8) and in view of Remark 4.4(i) applied at the
common fixed points z of the maps ®? resulting in z € dom(®’) = J N B with
®’(z) = 0, we are lead to the followig alternatives.

ALTERNATIVES 5.1. Any CO-SGR in Iso(dg) is Mobius eqivalent to a
CO0-SGR @ = [®' : t € R, ] with Kaup’s type infinitesimal generator (4.1’) and
admitting a tripotent e € Trigx(E) N Fix(®) (k = 0, 1,2) such that

Case (0): e =0. Then ®'(0) =0, ®'(z) = Mz +icx (z € JNB),
that is ' = U*|B  (proved by Vesentini [21] already).

Case (1): e € Tri(E) is a real extreme point of B, e = e, (e|e) = 1. Then
0=3®'(e) = a+ide— {ea*e} =
= (%bl — %bg) + Me +ice — (e|by — iby)e + <e|e>(%b1 + %bg) =
= by — (bi]e)e + Me +i(e — (by]e))e.
Case (2): e € Trip, is a face middle point of B, e 1 €, (e)? = 1/2. Then
0= @'(e) = (3h1 — 2b2) + Me +ice — (elbr — iby)e =
= 2b1— (hilede + Me+ie — (bafe))e — 2.

Our next aim will be to find almost lower triangular linearly equivalent
forms for the infinitesimal generator G’ of the Hierzebruch-Vesentini represen-
tation ®" = & with a CO-SGR [G! : ¢t € Ry] of real operator matrices over
H, @ R? by means of the refinements

Hy=[Re]®H; ~R®H; with H;:=HjoS [Re,
Hy~R’®H, with Hs:=H, o ([RRe(e)] @ [RIm(e)])

of the underlying spaces in Cases 1-2, respectively. We shall also write P;
(j = 1,2) for the orthogonal projections Py, : Ho — Hj for short.

14
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Case (1). With the orthogonal decompositions
bj :=pje+xj, pj= <bj‘e> eR, zjle (j=1,2)

we have 0 = z1 + Me + i(e — p2)e implying p2 = € and Me = —z; € Hj.
Hence, with the restricted operator My := PlM‘Hlﬂ dom(M ), we can write

M b by 0 —(Me)' p  —¢ 0 af p —¢
o — b1T 0 —el = Me My . —Me x4 _ | ]\4% T1 o '

o0 p1 —(Me) 0 —¢ pr x; 0 —e

2 —€ Ty € 0 — 23 ¢ 0

Almost triagular linearly similar form can be obtained with the coordinatiza-
tion matrices

1/2 0 0 1 1 0 -1 0
o n oo 4 |0 L 0 o0 B
(5:2) Si:= -1/2 0 0 1|’ S =10 o o 1| DTl
0 0 10 1/2 0 1/2 0
as
—p1 0 0 0
Ava _ |mT1 My oz O
(5.3) SpiGs = | 00

0 zf —e p

REMARK 5.4. The operator M is the restriction of the bounded pertur-
bation PLM P = (1 — Pre|M[1 — Ppe] = M — PgeM — M Pye + PreM Pre of
M to ran(Py) = ran(PRe)J'. Since M is the infinitesimal generator of the CO-
SGR [U'|Hj : t € Ry] of H-isometries, M is a possibly unbounded maximal
skew symmetric closed R-linear Hj-operator being the infinitesimal generator
of a CO-SGR [U} : t € R,] of Hj-isometries. The matrix S; 'G’S; is lower
triangular if 2 = 0 that is if b, = 2Im(®’(0)) € Re. This latter means that
either Im(®’(0)) = 0 or one of £Im(by)/||Im(®’(0))|| is common fixed point

of [®! : ¢ € Ry] and it belongs to ext(B) in the same time.

Case (2) We may assume without loss of generality that

1 .
e:§u+%v, ulveHy, (u)?=@w?=1.

15
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Since M is the complexification of a possibly unbounded real antisymmetric
E = (Hp @ iHp)-operator, M = M Cc —M7T = —M" = M~ along with
dom(M) = {Z : # € dom(M)}, we have u,v € dom(M) with

(Mulu) = (Molo) = (Mulo) + (Mou) =0,
(Mele) = —5(Mulv), (Me[e) =o.
Hence, using the identities (bj|u) = (ulb;) resp. (bj|v) = (v]b;), we get
0= (¥/(e)]e) = <%b1 - %bg’e> + (Mele) + %5 - <e‘%bl - %b2> =
= e~ (Mufo) — (ha]o) — {ba]u)],

0= (#(e)[e) = (3h1 — 2hafe) = F[alu) + (bolo) + ifbalv) — ifbalu)].

Considering the real and imaginary parts, therefore
(5.5) (bru) =—(b2|v), (b1]v)=(b2lu), (Mu|v)=e—(b1|v)—(ba|u)=e—2(b2|u).
Thus in terms of the orthogonal decompositions resp. constant

bj =pjutowta;, x;€{uvyr=Hy (j=1,2), p:= (Mulv)

we have
o2 = —p1, O01=p2, [=¢E—2p.

Hence, with the notations
My := P,M|HyNdom(M), qi:=PMu, qo:=P,Mv

we can write

0-p —4f  p1 p2

/ ]\ﬁ by by p 0 —qF  p2 —p1
G=|bj 0 —|l=|qg @@ My z1 x2
b;r e 0 p1 p2  TL 0 —e

P2 —p1 zd e 0

Observe that from the relation
1 )
0= Pd'(e) = P, Kibl — %bg) + Me + ice — (e|by — ib2>e] =

1
:i[xl—ixg—l—PM(u—i-z’v)—i-O]

16
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we infer also ¢; = —x1 and ¢o = x2. Therefore
0 2p2—e x;F P11 P2
e=2p2 0  —2T  p2—p1
G = |2, zo My x1 29
p1 P2 z] 0 -—¢
P2 —p1 z3 e 0

A convenient quasi lower triagular form can be obtained with the coordinati-
zation matrices

01 0 1 0 01 0 0 1
10 0 0 -1 10 0 -1 0
(5.6) Se:=1{0 0 Ib 0 O, S;':=[0 0 I, 0 0|, I:=1Idgm,
00 0 1 0 00 0 1 0
00 0 0 1 00 0 0 1
as
—p1 e€—py O 2e 0
p2—€ —p1 0 0 2e
(5.7) 52_1(;’/52: T2 —X1 M2 0 0
P2 P1 $1T P1 —&€ = P2

-p p2 x3 pate  p

REMARK 5.8. Analogously as in Remark 5.4, the operator Ms is a pos-
sibly unbounded maximal skew symmetric closed R-linear Hy-operator being
the infinitesimal generator of a CO-SGR. [US : t € Ry] of Hy-isometries. The
matrix Sy ' G’Sy is upper triangular if ¢ = 0. In view of (5.5), this means that
Muv —2by L w.

6. INTEGRATION OF THE QUASI-TRIANGULAR SYSTEMS

With the tools developed in of Section 3, it is a voluminous but feasible
work to find explicit formulas for the entries of the matrices in the Hierzebruch-
Vesentini representation [G? : ¢t € R ] described in Section 5. This will be done
below.

Case (1). We can write the matrix (5.3) in the triangular block form

-p1 0 O T — _ [T 7
STIGESi = |~ Ty 0|, Th= []f% %2] ) [fl 1
0 Té2 P1 2 T32 = [.’Ifl — E] .

17
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Notice that T3, is the compression of an infinitesimal generator into a 1-
codimensional subspace of J and therefore it is the infinitesimal generator
of a CO-SGR [T%, : t € Ry] of operator matrices. According to (3.1), in terms
of T4, : t € Ry] we can write

t ¢ T T —p1t
Ty =Tso| —xy,—¢] * e P,

-t
€ t _ _pit, [T t
6.1) S7ctsi=| T T, o |, Te=ex o, —e]Th,
t ot _pit _ .
T31 T32 et T?fl:emt* [x; _S]ng[ _'1;1:|*e—2p1t‘

We can evalute the entries [T} 2'52]“ (i,j = 1,2) of the matrices T%, by the aid
of Proposition 3.6 applied with V5 := [t~ 1], B := x5 (~ [H1 2 z — (z]22)]),
C:=z( ~[R > &ag]), and V) = [t — W] where [W!: ¢t € Ry] is the
CO-SGR of Hj-operators with the generator Mj. Let us introduce the scalar
valued function u € C(R) as the solution of the Volterra convolution equation

(6.2) u=w+u*xw where w(t):=1x [x;FWt:L‘Q] = f::O (Wizy|za) dr.

It follows
(T3] 1= = [W'zy]  [1x 2, SWE+u(t) * 1% x4 Wt] + W
(6.3) [T2t2} 12 = [th] [ + u(t) * 1],
(T3], = 1% (= W) +au(t) « [Lx (23 W],
(T3]0 = 14 u(t) « 1.

Notice that if ¢ € C(R), even in with operator functions g€ C(R+, L(Fy, Fl))

we have [¢(t)Idg,] * g(t) = g(t) * [¢(t)Idp,] since f:zo ot —r)g(r)zdr =
fstzog(t — s)¢(s)rds (x € Fg). Thus we can rearrange (6.3) by shifting the
scalar terms to the left in the form

t T t t
(6.30)) T, = u(t) * [[W xQ]T* [“? Wi w ‘Tz] + diag(W*, u(t)).
o W 0

in terms of the primitive of the governing function
(6.2") u(t) =14+ 1x*u(t) =1+ fst:O [ (Wiag|ao) drds.

Substituting back into (6.1), we get
Tél = T2tz [_xl] x e Pt = ePit T§2 [_‘Tl} =

T t t t
— Pty ﬁ(t) . |:[th2] * [SU2 w ]$1 +eW 1’2:| _ et |:W $1:|

—xQthl Eﬂ(t) '

18
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Since each term a3 Wlzy = [(W'z|22)] is a scalar (real 1 x 1-matrix),

TZtl =
(6.30) o [ePrtst(t) « (Whey|wo) +ee P xu(t)] « Wizgte Pris«Whay
B e~ Ptxq(t)x (Wi |za) +€ ePrsu(t)

Analogously
T§2 = Pt x [;1:1, —5] Tiy = ePtlx [azrlrWt—z—: H(t)} +
(6.369) = 4P 57 (t) * [xlT[thg][ngt] —exa W :clTWta:Q] =
= [[eplt « () * (Whaalzr) — e’ «u(t)] « xg W'+ e s af W,
el x q(t) x (Whag|ay) — e efrt % ﬂ(u)}

Furthermore

T = et [af el | T et =

= Pt x g7 P1t [w}, —5]T§2 [x;} —
(6.3 = _,011 sinh(p;t)x* <x;f [(t)« [W'mo] % [z3 W + Wz +
e [i(t) < W] — 2i(t) « @3 Whan] - %ii(1)) =

N _/)11 sinh(p1?)* (ﬁ(t)* (Whaa|wo)x (W'hailaz) + (W'ai|e)+
(

()% (Whao| o) — ()% (W a2) — 5217(25)).
We can summarize the above considerations as follows.

THEOREM 6.4. Let e € Hy be an arbitrarily fired unit vector and de-
fine Hy := Hyp © (Re). A generic CO-SGR [V : t € Ry] of holomorphic
dg-isometries, whose continuous extension to the closed unit ball admits a
common fixed point which is an extreme point on the unit sphere, can be writ-
ten in the form

Ul =00 by 0@ ! (teRy)

W1,21,%2,p1,€

where
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(i) © is any E-Mdobius transformation, Wy = [W' : t € Ry] is any CO-SGR
of Hi-isometries, x1,x2 € Hy and p1,¢ € R,

(il) (G, 2100 pme it € Ry] is a CO-SGR of LR® [H & (Re)] ® R)-type
operator matrices such that
t _ t 73 -1
GW1,$17$279176 - Sl([Tij] i,j:l)S (t € RJF)
with the coordinatization matrices (5.2), the entries Titjfor(i,j) # (2,2)
are described in (6.1), and Tk, is given in (6.30~™)) arising from a quasi
triangular system with scalar-valued governing function.

Case 2, triangular subcase ¢=0. In terms of the decomposition HPR? ~
[Ru] @ [Rv] @ Hy @ R? where e = (u + iv)/2, u,v unit vectors in Hg and the
rotation group (3.9), we can write

—p1+p2 R 0 0
(6.5) S;lG/SQI [x2, —21] Mo 0
p2—pi R [, 22T prtpeR

The integration of (6.5) is immediate with (1.6):

e PURP () 0
(6.50) Gt=| a% Wi 0
Chi Gl e
where
G5 =(Wilza, —21]) * (e PR,
sy Gl =(e R )T e W

G :(epltR”t(pg—le’)) * (e_”ltRp?t)ﬂL
+ (epltRth[:Ul,:rg]T) * (WQt[JL'Q, —1:1]) * (e_pltR”t).

Case 2 quasitriangular case ¢ # 0. We can improve the coordinatization
(5.7) as

é/ — 7T [S;lG/SQ} 77 —

0 e—p2 0 2¢e 0 o
(6.6) p2—€ 0 0 0 2¢e T= %
= | @ —x1  M> 0 0 ) 2
A 0 ot 0 —€ — pa A= % — P2
0 A 2l e+p 0 c
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where
10000
01 0 00
(6.6') ZT=10 0 L 0 0|, [27] =2
70 0 10
07 0 01

To find the convolution structure of the CO-SGR (G : ¢ € R, ] with infinitesi-
mal generator G', we apply Proposition 3.6 with the grouping (3.2) with

G_[ V3]’ = [z1, —x2]  Ma]’ ¢= [0,0] |’

B - [ [71 Vi = R’
- ) .Z'T ) 2—(P2+€)
2

in terms of the rotation group (3.9). According to (1.6), by writing w = py—¢
for short, the CO-SGR [V : t € R,] with infinitesimal generator V/ has the
form

Vt B th 0 B th 0
P WS s e, —a RO W [X(1), Y ()] W
where [W! : ¢t € R,] is the CO-SGR with infinitesimal generator M and
X1(t)=Wj3 * [(cos(wt)xs — (sinwt)ay | = (cos wt)* Wiza — (sinwt) * Wiy,
Xo(t) =Wyx[— (sinwt)zs — (coswt)z] = —(sinwt) «Wizs — (cos wt )« Wiz,

since convolutions commute in case of a scalar valued term. By introducing
the lower triangular CO-SGR

¢
Tt — [ Vi 0 ] with generator T’ = {

Vi 0
W2t * ([CCQ, —xq | R+ Wzt ’

B v

the CO-SGR [G! : t € Ry] is the solution of the Volterra equation

~t 0 VltC ~t t
¢ = [0 Vi« (Byic)| *¢ T
whence ~t ¢ ~t ¢ ~t ¢ ~t
G = (Vi) x Gy + V7, Gy = (Vi C) * G,
Ghy = w* Ghy + Vi % (BVY), Ghy = wxGhy + V3,
where

w(t) = Vi x (BVLO).
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The governing function u associated with w assumes values as real 2 x 2-
matrices and it is the solution of the convolution equation v = w + u * w
where w is the 2 x 2-matrix valued function defined in 3.5). Actually, since
p2+e=w+ 2¢,

(6.7) w(t) = Vy = (BV{C) = (V3 B) * (12C) =

B [cos(w—i—ZE)t —sin(w+25)t] [)\ 0 mT] coswt —sinwi 0 2¢ 0

1 .
sin(w+2e)t  cos(w+2e)t | [0 A x5 x|sinwt coswt 0 0 2

Xt Y@ Wi lo o

In view of Proposition 3.6 we get

A |1 ViC Vi 0
(68 G = [O 1" Vi (BVE) +u(t) « Vi« (BVY) Vi4+uxVY|"

Here we have

vte - [ R%t 0 ] [25}30] _
(6.80)) 1 W3 * ([z2, —21]R*") W3] [[0,0]
' B 2e R
| 2eWE ([xg, —a:l]R‘“t) ’
T th 0
vt = et (3] | -
(68(11)) ! erT W2t * ([1’2, _x2]R ! W2t

- [)\R“’t + [i”ﬂ [Xl(t%Xz(t)}’ E%H '

We can summarize the results concerning Case 2 in a context free manner
as follows.

THEOREM 6.9. Let u,v € Hg be an arbitrarily fired orthonormed couple
and define Hy := Hy © [(Ru) ® (Rv)]. A generic CO-SGR [V : t € Ry] of
holomorphic dg-isometries, whose continuous extension to the closed unit ball
admits a common fixed point on the unit sphere which is not an extreme point
of the unit ball, can be written in the form

U =00dq 0@ ' (teRy)

Wo,x1,22,p1:02,€

where
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(i) © is any E-Mdobius transformation, We = [Wi : t € Ry] is any CO-SGR
of (necessarily linear) Hy-isometries, x1,xo € Hy are arbitrary vectors
and p1, p2,€ € R are arbitrary real constants,

(i) the factors Gt are L(R*®[Hy® (Ru)® (Rv)])-type operator

' Wa,21,22,p1,p2,€
matrices of the form

GI{/VQ x1,T2,01,02,€ = ZT(pl,&)S2 (ét) S;lz_T(PLE)

in terms of the coordinatization matrices (5.6) resp. (6.6") with 7(p,€) :=
[0 ife =0, p1/(2) else] where G'( = G} ) is given as

Wa,21,22,01,02,€

(iiiy) in the case e = 0 we can write 6%2@1@2’[)17[,270 = [G? given in (6.50710)].
(i) in the case of € # 0, the éntfz"es of 6%27061@2,;)1,02,5 are described in (6.8)
with the subentries (6.8(”*(”)) arising from a quasi triangular system
with the 2 x 2 matrix-valued governing function u which is the solution
of the Volterra convolution equation u = w + w * u where w is given in

(6.7) with w := pa —e.

QUESTION 6.10. Is it possible to find a coordinatization in Case 2 which
gives rise to a treatment with a unique or more but independently defined
scalar-valued governing functions?
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