On the level set method in minimax theory

L. L. STACHÓ 1,2

Abstract. Our purpose is to give a unified treatment along with some new generalizations of a series of non-linear minimax theorems of Sion type involving one or two functions proved via intersection theorems applied to their level sets.

1. Introduction. Since the appearance of von Neumann’s minimax theorem [14] the phenomena of inequalities of the type \(\inf_{x \in X} \sup_{y \in Y} f(x,y) = \sup_{y \in Y} \inf_{x \in X} f(x,y) \) attracted mathematicians continuously. The idea of attacking the problem through the structure of the level sets \(L \) \(\{ x \in X : f(x,y) \geq \alpha \} \), \(y \in Y : f(x,y) \leq \alpha \) appeared first perhaps in a work of M. Sion [16]; to conclude \((\ast) \) in topological vector spaces, along with the continuity of the function \(f \) it suffices to require the convexity and compactness of all the level sets \(L \). In 1972, Brézis-Nirenberg-Stampanacch [1] established that \((\ast) \) holds if each member of \(L \) is only algebraically closed and some of them is compact. Later on, it was shown [7, 18] that this theorem implies Ky Fan’s minimax theorem [4] and its extended version by König with \(\frac{1}{2} \)-convexity [13] via a bilinear lifting procedure.

Still in 1969 Wu [20] suggested that the notion of convexity should be extended toward non-linearity; in particular he observed that the system of straight line segments can be replaced by certain systems of Jordan arcs for the definition of convex sets in a minimax theorem of Sion type. In 1980 Joo [6] rediscovered Wu’s trick in the context of classical convex-concave functions and his simple proof became popular. The author [17] recognized that modifications in this proof lead to minimax theorems far beyond the context of topological vector spaces: the latter can even be replaced by general topological spaces and a system (called interval space structure) of arbitrary connected sets joining all couples of points can play the role of straight line segments in a Sion type minimax theorem. In 1989 Kindler-Trost [16] deduced the natural analogue of the Brézis-Nirenberg-Stampanacch theorem in the setting of interval spaces and, by introducing the concept of pavements [11], recently Kindler gave an interesting axiomatic study of sufficient conditions on the level sets of \(f \) leading to minimax theorems. In 1981 Komiyà [12] suggested that an abstract convex hull operation for the purposes of mathematical economy and minimax theory should be nothing else as a finitely generated monotonone singleton preserving closure operation. In 1991 C. Horvath [8] found a theorem which enabled applications of continuous selection arguments, Brower’s fixed point theorem and Kastner-Kuratowski-Mazurkiewicz type arguments analogous to the familiar ones used in the context of classical linear convexity in the case of any Komiyà type convex hull operation with contractible values for finite sets (called now H-convexity in a widespread terminology).

Recently completely abstract minimax theorems without even topology [8,22] and two functions minimax problems of the type \(\sup_{x} \inf_{y} f(x,y) \leq \inf_{y} \sup_{x} g(x,y) \) with \(f \leq g \) [9,3,19 and references therein] turned to focus of attention. Concerning the level set method, besides positive results, in the pioneering work of Thompson and Yuan [19] an example appears indicating the limits of the use of successful arguments for one function minimax theorems in interval spaces. In contrast, very recently Wu and Zhang [21] found a far reaching two functions minimax theorem in terms of H-convexity of level sets.

1 Address: JATE Bolyai Institute, Aradi Vértanúk 1, 6720 Szeged, Hungary.
Tel./fax: 36-62-320240, E-mail: stacho@math.u-szeged.hu
2 Supported by the grants OTKA T26532 and U30994 of the Hungarian Science Foundation
In this paper we present a lemma (called Metatheorem) which covers the schemes of the proofs of the above mentioned two functions minimax theorems in interval spaces and which leads to a new and natural one function minimax theorem. We show that some new results stated in terms of Chang’s W-convexity [2] respectively in pure terms of topology involving seemingly no convexity are available by interval spaces. On the other hand, by a careful logical analysis, we point out that several minimax results concerning H-convexity can be extended beyond the setting of Komiya type convexity.

2. Generalized convexity

Definition 2.1. Let X be any set and let $s : 2^X \to 2^X$ be a given map assigning some (possibly empty) subset to any subset of X. We say that a subset C of X is s-convex (or we write C s-convex in X) if $s(C) \subseteq C$. We refer to s as the generator map of a convexity or simply as a convexity on X. A convexity s on X is **finitey generated** if $s(C) = \emptyset$ for any Z infinite $C \subseteq Z$.

A function $\phi : X \to \mathbb{R}$ is s-quasiconvex if $\{x : \phi(x) < \alpha\}, \{x : \phi(x) \leq \alpha\}$ s-convex in X ($\alpha \in \mathbb{R}$). Furthermore ϕ is s-quasiconvex if ϕ is s-convex.

Remark 2.2. The following fundamental properties of s-convexity are straightforward.

1) Intersections of families of s-convex sets are s-convex.

2) The union of an increasing net of s-convex sets is s-convex if s is finitely generated.

3) The map $s(X) := \{C \subseteq X : C \subseteq C\}$ (which s is a Komiya type convex hull operation whenever s is finitely generated and $s(x) = \{x\} (x \in X)$. Conversely, a finitely generated convexity $s : 2^X \to 2^X$ is a Komiya type convex hull operation if and only if $s(x) = \{x\} (x \in X)$ holds along with the monotonicity property $s(A) \supseteq s(B) \supseteq B (X \supseteq A \supseteq B)$.

The postulate $s(x) = \{x\} (x \in X)$ seems to be superfluous even in several typical applications of Komiya type convexities as we shall see in the context of generalized H-convexities. One of the key observations in [20,6,17] giving rise to several KKM-type arguments can immediately be generalized to s-convexity as follows.

Lemma 2.3. Let $f : X \times Y \to \mathbb{R}$, $s : 2^X \to 2^X$. Given $a \in \mathbb{R}$, equivalent statements are

(i) $\{y : f(x,y) \leq \alpha\}$ s-quasiconvex in Y for all $x \in X$.

(ii) $K^{(\alpha)}(y) \subseteq \bigcup_{x \in X} K^{(\alpha)}(x)$ whenever $y \in s(Z)$ and $Z \subseteq X$.

In the sequel we shall be interested in the following two extreme types of convexities.

Example 2.4. 1) **Convexities of internal spaces.** Recall [17] that an interval space is a topological space X equipped with a map $\{,\} : X \times X \to \{\text{connected subsets of } X\}$ such that $a, b \in [a,b]$ ($a, b \in \mathbb{R}$). For $a,b \in X$, the figure $[a,b]$ is usually called the internal between the points a, b and a set $C \subseteq X$ is convex (with respect to internal structure $\{,\}$) if $[a,b] \subseteq C$. Clearly, the set C is $\{,\}$-convex if it is s-convex for the finitely (actually binary) generated convexity $s(a,b) := [a,b]$ for $a,b \in X$, $s(Z) = \emptyset$ for $\# Z \neq 2$ or $\# Z \neq 1$.

In [10] even the axiom of symmetry $[a,b] = [b,a]$ is relaxed, however, the symmetric interval structure $(a,b) := [a,b] \cup [b,a]$ ($a,b \in X$) leads to the same convex sets as $\{,\}$.

Convex sets in Chang’s W-spaces [2] can completely be characterized as s-convex sets for some finitely generated $s : 2^X \to 2^X$ with connected values with respect to some topology on X such that $s(F) \supseteq F$ (F finite $C \subseteq X$) and $s(\emptyset) = \emptyset$. By passing to the truncated generator $s(z) := \{s(F) \cap (F \subseteq Z) \subseteq C \}$ we get the convexity of an interval space such that \{s-convex sets\} $\subseteq \{s-convex sets\}$. Thus, since internal spaces can also be regarded as W-spaces, interval structures are order dense among W-structures on a given set with respect to the ordering by inclusion of the families of convex sets. Therefore a statement is valid for all W-spaces if and only if it holds for all internal spaces. In particular the setting of internal spaces is sufficient to deduce Sion type minimax theorems with W-convexity.

3. Functions minimax theorems on internal spaces

In general, let X, Y be any non-empty sets and let A, B be an index net directed upward. For any index A, let $K^{(\alpha)}(y) \subseteq C$ be setvalued functions $Y \to 2^X$ such that

- $K^{(\alpha)}(y) \subseteq C^{(\beta)}(y), L^{(\alpha)}(y) \subseteq L^{(\beta)}(y)$, $\emptyset \neq K^{(\alpha)}(y) \subseteq L^{(\alpha)}(y)$ ($\alpha \geq \beta$, $\gamma \in Y$).

Let $K := \bigcap_{(\alpha,\beta) \in \mathcal{F}} K^{(\alpha)}(y) \subseteq F$ definite \mathcal{A} $\subseteq X$. Then $\mathcal{L} := \{\alpha,\gamma) \in \mathcal{F} : L^{(\alpha)}(y) \subseteq F$ definite \mathcal{A} $\subseteq X$.γ.

Lemma 3.1. (Metatheorem). Suppose $I : X \to 2^Y$ is a mapping such that

- $L^{(\alpha)}(y) \subseteq L^{(\alpha)}(y) \subseteq L^{(\alpha)}(y)$ ($x \in (y, y), (\alpha \in A)$).

- $K \subseteq L_1 \cup L_2 \subseteq L_1 \subseteq L_1 \cup L_2 \subseteq K \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq \emptyset$.

- $K \subseteq L_1 \cup L_2 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq \emptyset$.

- $K \subseteq L_1 \cup L_2 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq \emptyset$.

- $K \subseteq L_1 \cup L_2 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq \emptyset$.

- $\emptyset \neq K \subseteq L_1 \cup L_2 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq L_1 \subseteq \emptyset$.

Then $\emptyset \subseteq K$, that is the family K has finite intersection property.

Proof. Let $n := \inf\{\# F : s(F) \subseteq L^{(\alpha)}(y) \neq \emptyset, F \subseteq F \subseteq A \times Y\}$. By 1), $n > 1$. By 5) also $n := \inf\{\# F : s(F) \subseteq L^{(\alpha)}(y) \neq \emptyset, F \subseteq F \subseteq A \times Y\}$. Assume directly $n < \infty$. Choose $\alpha_1, \gamma_1, \ldots, \alpha_n, \gamma_n$ such that $L^{(\alpha_1)}(y) \subseteq L^{(\alpha_2)}(y) \subseteq \cdots \subseteq L^{(\alpha_n)}(y) = \emptyset$. Fix α, γ and α, γ and let

$K := \bigcap_{i \in \gamma} K^{(\alpha)}(y), L_1 := L^{(\alpha)}(y) \cap \bigcap_{i \in \gamma} K^{(\alpha)}(y) \subseteq \gamma \subseteq 1, 2)$.

$\emptyset \neq K$, that is the family K has finite intersection property.

$\{,\}$.

$\emptyset \subseteq K$, that is the family K has finite intersection property.
Then $L_1 \cap L_2 = \emptyset$ and, by the definition of n, $\emptyset \neq K \cap K^{(a)} \subset \bigcup_{y \in [y_1, y_2]} L_1 \cap L_2 \setminus \{y \in [y_1, y_2]\}$. Then K implies either $K \cap K^{(a)}(y) \subset L_1$ or $K \cap K^{(a)}(y) \subset L_2$ for any $y \in [y_1, y_2]$. Thus by 4, we even have the stronger alternatives of either $K \cap K^{(a)}(y) \subset L_1$ for all $y \in [y_1, y_2]$ or $K \cap K^{(a)}(y) \subset L_2$ for all $y \in [y_1, y_2]$. This contradicts the facts $K \cap K^{(a)}(y_2) \subset L_1$, $K \cap K^{(a)}(y_2) \subset L_2$ with $L_1 \cap L_2 = \emptyset$.

Remark 3.2. The minimax theorems in [16,1,20,6,17,10,19] can be deduced by an immediate application of this Metatheorem with $A := \mathbb{R}$ to the level sets $K^{(a)}(y) := \{x \in X : f_1(x, y) > a\}$ and $L^{(b)}(x) := \{y \in Y : f_2(x, y) > b\}$ ($a, b \in \mathbb{R}$; $x \in X$, $y \in Y$) and $f_1 \equiv f_2$ in case of one function minimax theorems.

Theorem 3.3. Let X, Y be interval spaces, $f_1, f_2 : X \times Y \to \mathbb{R}$ with $f_1 \leq f_2$ and

(i) $f_1(x, y)$ is quasiconvex and lower semicontinuous on any interval of X ($y \in Y$),

(ii) $f_1(x, y)$ is quasiconvex and upper or lower semicontinuous on any interval of Y ($x \in X$),

(iii) $\{z : f_2(x, y_1), f_2(x, y_2) \geq b\} \neq \emptyset \Rightarrow \{x : f_1(x, y_1), f_1(x, y_2) \geq a\} \neq \emptyset$

for any $y_1, y_2 \in Y$.

Then the families $\{x : f_2(x, y) \geq b\}$ and $\{x : f_1(x, y) \geq a\}$ have finite intersection property where $f_1 = \sup_{y \in Y} f_2(x, y)$.

Proof. We can apply a modified version of the Metatheorem with the net $A := ((\langle \cdot, \cdot \rangle, (a, b), \in \mathbb{R}), \alpha \beta \beta \alpha
Proposition 4.4. Let X_1, \ldots, X_n be compact generalized H-spaces and let $f_1, \ldots, f_n : X_1 \times \cdots \times X_n \to \mathbb{R}$ be continuous functions such that for any fixed $(x_1, \ldots, x_n) \in X_1$, the subfunction $f_j(x_1, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_n)$ is quasiconvex on X_j $(j = 1, \ldots, n)$. Then there exist $x_1 \in X_1, \ldots, x_n \in X_n$ such that

$$ f_j(x_1, \ldots, x_n) = \min_{y \in X_j} f_j(x_1, \ldots, x_{j-1}, y, x_{j+1}, \ldots, x_n) \quad (j = 1, \ldots, n). $$

Proof. The functions $c_j(x_1, \ldots, x_n) := \min_{y \in X_j} f_j(x_1, \ldots, x_{j-1}, y, x_{j+1}, \ldots, x_n)$ are continuous. To prove this statement, we may assume $j = 1$ without loss of generality. As being the infimum of the continuous functions $f_j(x, x_2, \ldots, x_n)(x \in X)$, the function c_1 is upper semicontinuous. Let $\bar{E} := (x_2, \ldots, x_n) \in \bar{X}_1$ be arbitrarily given and suppose indirectly that $\bar{E} := \{x_2, \ldots, x_n\} = \cap \{i \in I: \min f_i(\bar{E}) < \min c_1(\bar{E})\}$. By passing to a suitable subnet, we may assume that the limit of $(c_i(\bar{E}))$ for $i \in I$ exists. Choose the points $x' \in X_1$ $(i \in I)$ in a manner such that $f_i(x'_i, \bar{E}) = \min f_i(\bar{E})$ $(i \in I)$. By passing to a suitable subnet again, we may also assume that the net $(x'_i, i \in I)$ converges to some point $x \in X_1$. Then we get the contradiction $c_1(\bar{E}) = \lim_{i \in I} c_i(\bar{E}) = \lim_{i \in I} f_i(x'_i, \bar{E}) = f_i(x, \bar{E}) = \min_{i \in I} f_i(x, \bar{E}) = c_1(\bar{E})$.

For any $\varepsilon > 0$ let $a_j := c_j - \varepsilon$ $(j = 1, \ldots, n)$. By the continuity of the functions f_j, we can apply the previous corollary (with a_j instead of a_j) to conclude that for each $\varepsilon > 0$ there exists $x'_j := (x'_1, \ldots, x'_n) \in X_1 \times \cdots \times X_n$ such that $f_j(x'_1, \ldots, x'_n) < c_j(x_1, \ldots, x_n) + \varepsilon$ $(j = 1, \ldots, n)$. Then any cluster point of the net $(x'_i, i \in I)$ suits our requirements.

Corollary 4.5. Let X_1, X_2 be compact generalized H-spaces, $f_1, f_2 : X_1 \times X_2 \to \mathbb{R}$ with $f_1 \leq f_2$ and let $a : X_1 \to \mathbb{R}$ $(k = 1, 2)$ be functions such that

(i) $f_i(x_1, x_2)$ is quasiconvex for any $x_2 \in X_2$;

(ii) $\forall x_2 \in X_2 \exists x_1 \in X_1 \exists V$ neighborhood of $x_2 : f_1(x_1, v) > a(v) (v \in V)$;

(iii) $f_1(x_1, \bullet) : X_2 \to \mathbb{R}$ is quasiconvex for any $x_1 \in X_1$;

(iv) $\forall x_1 \in X_1 \exists x_2 \in X_2 \exists U$ neighborhood of $x_1 : f_2(u, x_2) > a(u)(u \in U)$,

Then there exist $x_1 \in X_1$ and $x_2 \in X_2$ with $f_1(x_1, x_2) > a(x_1, x_2)$.

Proof. By assumptions (i)+(ii), $X_1(x_2) := \{x_1 \in X_1 : f_1(x_1, x_2) > a(x_1, x_2)\}$ is a non-empty convex valued multifunction $Y \to 2^{X_1}$ with local intersection property. Similarly, by (ii)+(iii), $X_2(x_1) := \{x_2 \in X_2 : f_2(x_1, x_2) < a(x_1, x_2)\}$ is a non-empty convex valued multifunction $X_1 \to 2^{X_2}$ with local intersection property. By Lemma 4.4 there exist $x_1 \in X_1$ and $x_2 \in X_2$ with $x_1 \in X_1(x_2)$ and $x_2 \in X_2(x_1)$.

Corollary 4.6. Let X_1, X_2 be compact generalized H-spaces, $f_1 \leq f_2 : X_1 \times X_2 \to \mathbb{R}$ with properties (i), (ii), (iii) and

(iii) $\forall x_2 \in X_1 \exists x_1 \in X_1 \exists a \in X_2 \exists V$ neighborhood of $a : f_1(x_1, x_2) > f_1(x_1, y) - \varepsilon$ $(y \in V)$;

(iii) $\forall x_1 \in X_1 \exists x_2 \in X_2 \exists V$ neighborhood of $x_1 : f_2(x_1, x_2) > f_2(x_1, y) + \varepsilon$ $(y \in V)$,

Then $\min_{x_1 \in X_1} \min_{x_2 \in X_2} f_1(x_1, x_2) \leq \sup_{x_1 \in X_1} \min_{x_2 \in X_2} f_1(x_1, x_2)$.

Proof. The contraposition $\sup_{x_1 \in X_1} \min_{x_2 \in X_2} f_1(x_1, x_2) > a(x_1, x_2)$ for suitable $a_1, a_2 \in \mathbb{R}$ would imply $x_1 = K_1(x_2)$ and $x_2 = K_2(x_1)$ for some $x_1 \in X_1 : f_1(x, x_2) > a_1$ and $x_2 \in X_2 : f_2(x_1, x) > a_2$.
ON WEAK CONVERGENCE TO FIXED POINTS OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

TOMONARI SUZUKI AND WATARU TAKAHASHI

ABSTRACT. In this paper, we prove the following weak convergence theorem: Let C be a nonempty closed convex subset of a uniformly convex Banach space E which satisfies Opial's condition or whose norm is Fréchet differentiable. Let T be a nonexpansive mapping from C into itself with a fixed point. Suppose that $\{x_n\}$ is given by $x_1 \in C$ and $x_{n+1} = \alpha_n T x_n + (1 - \beta_n) x_n + (1 - \alpha_n) x_n$ for all $n \geq 1$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in $[0,1]$ such that $\sum_{n=1}^{\infty} \alpha_n (1 - \alpha_n) = \infty$ and $\limsup \beta_n < 1$, or $\sum_{n=1}^{\infty} \alpha_n \beta_n = \infty$ and $\limsup \beta_n < 1$. Then $\{x_n\}$ converges weakly to a fixed point of T. This is a generalization of the results of Tan and Xu, and Takahashi and Kim.

1. INTRODUCTION

Let E be a real Banach space and let C be a nonempty closed convex subset of E. Then a mapping T from C into itself is called nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$. For a mapping T from C into itself, we denote by $F(T)$ the set of fixed points of T. Now, we consider the following iteration scheme: $x_1 \in C$ and

\[x_{n+1} = \alpha_n T x_n + (1 - \beta_n) x_n + (1 - \alpha_n) x_n \]

for all $n \geq 1$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in $[0,1]$. Such an iteration scheme was introduced by Ishikawa [3]; see also Mann [4]. Recently Tan and Xu [8] proved the following interesting result (Corollary 1): Let C be a nonempty closed convex subset of a uniformly convex Banach space E which satisfies Opial’s condition or whose norm is Fréchet differentiable and let T be a nonexpansive mapping from C into itself with a fixed point. Then for any initial data $x_1 \in C$, the iterates $\{x_n\}$ defined by (1), where $\{\alpha_n\}$ and $\{\beta_n\}$ are chosen so that $\sum_{n=1}^{\infty} \alpha_n (1 - \alpha_n) = \infty$, $\sum_{n=1}^{\infty} \beta_n (1 - \alpha_n) < \infty$ and $\limsup \beta_n < 1$, converge weakly to a fixed point of T. On the other hand, Takahashi and Kim [7] proved the following (Corollary 2): Let C, E and T be as above and suppose $\alpha_n \in [a, b]$ and $\beta_n \in [0, b]$ for some a, b with $0 < a \leq b < 1$. Then for any initial data $x_1 \in C$, the iterates $\{x_n\}$ defined by (1) converge weakly to a fixed point of T. Note that Tan and Xu’s result is applicable to the case of $\alpha_n = 1 - 1/n$ and $\beta_n = 1/n$ for all $n \geq 1$, while Takahashi and Kim’s result is applicable to the case of $\alpha_n = \beta_n = 1/2$ for all $n \geq 1$.

In this paper, motivated by these two results, we prove the following weak convergence theorem: Let C, E and T be as above and suppose $\lim_{n \to \infty} \alpha_n (1 - \alpha_n) = \infty$ and $\limsup \beta_n < 1$, or $\lim_{n \to \infty} \alpha_n \beta_n = \infty$ and $\limsup \beta_n < 1$. Then for any initial data $x_1 \in C$, the iterates $\{x_n\}$ defined by (1) converge weakly to a fixed point of T. Compare this with Tan and Xu’s result [8] and Takahashi and Kim’s result [7].