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Abstract. We classify all possible local linear procedures over triangular meshes resulting in
polynomial C1-spline functions with affinely uniform shape for the basic functions at the edges,
and fitting the 9 value- and gradient data at the vertices of the mesh members. There is a unique
procedure among them with shape functions and basic polynomials of degree 5 and all other
admissible procedures are its perturbations with higher degree.

2010 Mathematics Subject Classification: 65D07; 41A15; 65D15

Keywords: Polynomial C 1-spline, triangular mesh, gradient data.

1. INTRODUCTION

By a triangular mesh we mean a finite family of closed non-degenerate triangles on
the plane R2 with pairwise non-intersecting interiors and admitting only common ver-
tices or edges. As usually, we regard R2 as the set of all real couples [ξ,η] considered
also as 1×2 (row) matrices. We shall use the standard notations x[1] = x : [ξ,η] 7→ ξ,
x[2] = y : [ξ,η] 7→ η and 〈u|v〉 := ∑

2
j=1 x[ j](u)x[ j](v) for the Cartesian coordinates and

scalar product, respectively. We write ‖u‖ = 〈u|u〉1/2 for the norm of u ∈ R2 and
Co(S) for the convex hull of S ⊂ R2 resp. det(u,v) = x[1](u)x[2](v)− x[1](v)x[2](u)
for 2×2-determinants. Given a triangular mesh T =

{
T1, . . . ,TM

}
, in the sequel

Vert(Tk) and Edge(Tk) will denote the sets of vertices resp. closed edges of the mesh
members, Dom(T ) :=

⋃M
k=1 Tk, Edge(T ) :=

⋃M
k=1 ∂Tk, Vert(T ) :=

⋃M
k=1 Vert(Tk)

will stand for the domain covered by T , the line figure covered by all edges and the
collection of all vertices, respectively. Recall that, given a gradient data

F =
{(

p, fp, [ f ′x,p, f ′y,p]
)

: p ∈ VertT )
}
⊂ Vert(T )×R×R2

on the set of the vertices in T , a function f : D → R is a C 1-extension of F on
D := Dom(T ) if f has a continuous gradient p 7→ ∇ f (p) =

[
∂

∂x f (p), ∂

∂y f (p)
]

on
Interior(D) which admits a continuous extension to D as well (denoted also by ∇ f )
such that

f (p) = fp, ∇ f (p) =
[

f ′x,p, f ′y,p
] (

p ∈ Vert(T )
)
. (1.1)
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A C 1-extension f : D→ R of F is said to be a C 1-spline interpolation of F with
respect to the mesh T if the restrictions f |Tk are polynomials of the coordinates x,y.

There exists a large variety of C 1-splines for any admissible T and F which can
be obtained e.g. as global polynomial extensions with Hermite type interpolation [4].
Obviously global polynomial fitting may primarily be interesting only from a pure
theretical view point due to too large polynomial degree and hence high numerical
instability. A better alternative could be an imitation of tensor product splines (e.g.
with Catmull-Rom type hermition curves on edges developed for rectangular meshes
[6,5]). This consists the construction of C 1-splines as linear combinations on the
rectangular mesh members from affine images of tensor products from only two spe-
cial polynomials Φ,Ψ : [0,1]→ [0,1] (actually Φ(t) = t2(3−2t), Ψ(t) = t2(1− t)).
Postulates A,B below exhibit two main features of most known tensor product spline
procedures which can naturally be generalized even to procedures

S : (T ,F) 7→ fT ,F
(
T triang. mesh, F grad. data on Vert(T )

)
(1.2)

furnishing C 1-spline interpolation functions from gradient data at the vertices over
triangular meshes.
Postulate A. Linearity and being locally generated: There are polynomial functions

ϕ
p
T, ψ

1,p
T , ψ

2,p
T : T→R

(
T ∈ {non-deg. triangles}, p ∈ Vert(T)

)
depending only on the couple of the triangle T with a distingvished vertex such that
the restriction of S to any mesh triangle T ∈ T has the form

fT ,F |T = ∑
p∈Vert(T)

[
fpϕ

p
T + f ′x,pψ

1,p
T + f ′y,pψ

2,p
T

]
. (1.3)

If Postulate A holds and Vert(T) = {a,b,p}, in terms of the canonical frame vectors

e[0] := 0 = [0,0], e[1] := [1,0], e[2] := [0,1]

we necessarily have

ϕ
p
T(p)=1, ∇ϕ

p
T(p)=0, ψ

j,p
T (p)=0, ∇ψ

j,p
T (p)=e[ j];

ϕ
p
T(x)=ψ

j,p
T (x)=0, ∇ϕ

p
T(x)=∇ψ

j,p
T (x)=0

(
x∈Co{a,b}

)
.

(1.4)

The first statement in (1.4) is immediate from (1.3), The second one is a consequence
of the fact that given any point p̃ forming an adjacent triangle T̃ := Co{a,b, p̃}, con-
sidering the mesh T := {T, T̃} with gradient data F(q) = (0,0) where q = a,b, p̃, we
must have fT ,F ≡ 0 on T̃ and hence also ∇ fT ,F ≡ 0 on the common edge Co{a,b}
of the triangles T, T̃.

Locally generated linear spline procedures have the computational advantage that
the resulting functions can be calculated on any mesh triangle regardless to what hap-
pens at vertices outside. A practical disadvantage is that in most cases only function
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values are available (mostly from scanned data) and convenient gradient values must
be guessed or found by optimizing procedres.

Postulate B. Uniform shape on edges: (1.3) holds and there are polynomial func-
tions Φ,Ψ : [0,1]→R such that

Φ(0)=Ψ(0)=Φ
′(0)=Ψ

′(0)=Ψ(1) = 0, Φ(1)=Ψ
′(1)=1 (1.5)

and the graps of the basic functions ϕ
p
T on the edges of the triangle T are affine

images of the graph of Φ, those of ψ
j,p
T ( j = 1,2) are affine images of the graph of Ψ.

That is, under Postulate B, for the generic points yt := tp+(1− t)a on the edge
Co{a,p}, resp. zt := tp+(1− t)b on Co{b,p} we have

ϕ
p
Co{a,b,p}

(
yt
)
= consta,pΦ(t), ψ

j,p
Co{a,b,p}

(
yt
)
= const( j)

a,pΨ(t),

ϕ
p
Co{a,b,p}

(
zt
)
= constb,pΦ(t), ψ

j,p
Co{a,b,p}

(
zt
)
= const( j)

b,pΨ(t)
(1.6)

while for the points xt := (1− t)a+ tb on the edge Co{a,b} we simply have

ϕ
p
Co{a,b,p}(xt) = ψ

j,p
Co{a,b,p},(xt) = 0,

∇ϕ
p
Co{a,b,p}(xt) = ∇ψ

j,p
Co{a,b,p}(xt) = 0.

(1.7)

In the sequel we call Φ,Ψ the shape functions of the spline procedure (1.2) satisfy-
ing Postulate B. Notice that the requirements Φ(0) = Φ′(0) = Ψ(0) = Ψ′(0) follow
automatically from the order condition (1.4) on the edge Co{a,b}.

Our aim in this paper is a parametric classification of all procedures satisfying
Postulates A,B which produce C 1-smooth functions.

It is remarkable that there is a unique one among them with lawest degree (degree
5) which turns out to be homothetically invariant. From the view point of applica-
tions, the results provide the complete list of hermitian C 1-splines with shape uni-
formity over edges from which one can choose the best fit one with respect to various
aspects. It is worth to relate the latter fact to the local linear polynomial spline inter-
polation procedures on the basis of the Zlámal-Ženišek (ZZ) equations [8,9]. These
methods rely upon the fact that, given a triangular mesh with gradient and Hessian
data at the vertices and normal derivative values at edge middle points, there is a
unique fitting spline with 5th degree polynomials. The 21 polynomial coefficients
over any mesh triangle can be obtained as the unique solution of a system of 21
straightforward linear equations. Explicit formulas along with estimates concerning
the approximation of smooth functions with this method were published recently [7].
Recently there are computer algebras (as MAPLE 14 or Wolfram Mathematica 12)
being powerful enough for a completely symbolic solution of the ZZ-equations and
it is easy to give examples where the ZZ-approximaton produces only a C 1-smooth
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function1. It seems that our first order approach with the shape conditions of Postu-
late B provides a geometrically motivated alternative to several problems discussed
in [7]. As remarked also in [1], first order approches with a few (actually 9 in [1])
free parameters may have practical advantages versus higher order methods due to
the fact that data sampling can rarely support Hessian data or even adequate guesses
for them. The usual way to overcome such problems is minimizing curvature func-
tionals with given function values at mesh vertices but varying the data of first and
higher derivatives. This can be carried out with relatively low computational costs for
our splines in Theorem 2.3, namely about at least 5 times less computational effort
than with ZZ-baed procedures.

2. MAIN RESULTS

Recall that given a non-degenerate triangle T ⊂ R2 with {a,b,c} = Vert(T), the
normalized baricentric coordinates of a point x are the terms of the necessarily
unique triple

[
λa

T(x),λ
b
T(x),λ

c
T(x)

]
∈ R3 such that

x = λ
a
T(x)a+λ

b
T(x)b+λ

c
T(x)c, λ

a
T(x)+λ

b
T(x)+λ

c
T(x) = 1.

We reserve the symbols λ
p
T as standard notation. It is well-known from elementary

analytic plain geomertry [2] that

λ
p
T(x) = area(Co{a,b,x})/area(T)

(
x ∈ T

)
thus normalized baricentric coordinates can easily be calculated by means of determ-
inants or inner products with a (π/2)-rotation:

λ
p
T(x)=

det(x−a,x−b)
det(p−a,p−b)

=

〈
(b−a)R

∣∣x−a
〉〈

(b−a)R
∣∣p−a

〉 where R :=
[

0 1
−1 0

]
. (2.1)

For later use we also introduce the abbreviating notations

x[ j]p :=x[ j]−x[ j](p), ξ
v
p,a :=

〈v−a|p−a〉
‖p−a‖2 , ξ

v
p,a :=

〈v−a|(p−a)R〉
‖p−a‖2 . (2.2)

As for geometric interpretation, ξv
p,a resp. ξ

v
p,a are the affine coordinates of the point

v with respect to the orthogonal frame
[
a,p,a+(p−a)R

]
with origin a so that v =

a+ξv
p,a(p−a)+ξ

v
p,a(p−a)R.

Theorem 2.3. There is a unique local linear polynomial C 1-spline procedure acting
on triagular meshes with the property of uniform shape on vertices2 and having shape
functions with minimal computational complexity. Its shape functions are

∗
Φ(t) = t3(10−15t +6t2),

∗
Ψ(t) = t3(t−1)(4−3t).

1 Example: f (x,y) = x2
+y2(1−x−y) on the mesh {Tk : k = 1,2}, Tk = Co{0,(−1)ke[1],e[2]} with

vanishing ZZ data except for the edge middle point 1
2 e[1]+ 1

2 e[2] of T2.
2That is satisfying Postulates A,B with fT ,F ∈ C 1(Dom(T )

)
.
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The corresponding shape functions ( for a non-degenerate triangle T = Co{a,b,p}
with distinguished vertex p) have the form

∗
ϕ

p
T=

∗
Φ
(
λ

p
T
)
+30 [λp

T]
2
λ

a
Tλ

b
T

[
ξ

b
p,aλ

a
T +ξ

a
p,bλ

b
T

]
,

∗
ψ

j,p
T

∗
Ψ
(
λ

p
T
)

λ
p
T−1

x[ j]p +12[λp
T]

2
λ

a
Tλ

b
T

[
ξ

b
p,ax[ j]p (a)λa

T +ξ
a
p,bx[ j]p (b)λb

T

]
.

Theorem 2.4. A spline procedure acting on triangular meshes and satisfying Pos-
tulates A,B produces C 1-smooth splines if and only if its shape functions are of the
form

Φ(t) = ∗Φ(t)+ t3(1− t)3
Φ1(t), Ψ(t) = ∗Ψ(t)+ t3(1− t)3

Ψ1(t) (2.5)

and the shape functions (for a non-degenerate triangle T = Co{a,b,p} with distin-
guished vertex p) can be written in terms of the modified shape function

Θ(t) :=Ψ(t)/(t−1) (2.5′)

and the rotation matrix R in (2.1) as

ϕ
p
T = Φ

(
λ

p
T
)
+[λp

T]
2
λ

a
Tλ

b
TPp

a,b
(
λ

b
T,λ

a
T
)
,

ψ
j,p
T = Θ

(
λ

p
T
)
x[ j]p +[λp

T]
2
λ

a
Tλ

b
TQ j,p

a,b
(
λ

b
T,λ

a
T
) (2.6)

where

Pp
a,b(s, t) = s

{
ξ

a
p,b

Φ′(1− s)
(1− s)2s2 +ξ

a
p,bk0,p

b (s)
}
+

+ t
{

ξ
b
p,a

Φ′(1− t)
(1− t)2t2 +ξ

b
p,ak0,p

a (t)
}
+ stR0,p

a,b(s, t),

Q j,p
a,b(s, t) = s

{
ξ

a
p,bx[ j]p (b)

Θ′(1−s)
s(1−s)2 +ξ

a
p,bk j,p

b (s)
}
+

+ t
{

ξ
b
p,ax[ j]p (a)

Θ′(1−t)
t(1−t)2 +ξ

b
p,ak j,p

a (t)
}
+ stR j,p

a,b(s, t)

(2.7)

with the following free options in (2.6) resp. (2,7):
(i) Φ1,Ψ1 : [0,1]→ R are arbitrary polynomial functions,

(ii) (p,q) 7→ ki,p
q (i = 0,1,2) are arbitrary maps assigning polynomial functions

R→ R to pairs of distinct points,
(iii) (p,q,r) 7→ Ri,p

q,r (i = 0,1,2) are arbitrary maps assigning polynomials R2→
R to triples of non-collinear points with the symmetry Ri,p

q,r(s, t)≡ Ri,p
r,q(t,s).

Remark 2.8. (i) Actually, Theorem 2.3 is simply a corollary of Theorem 2.4 by
setting the options (i)−(iv) to 0. We emphasize it for its potential practical and
educational use.
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(ii) The formally rational expressions in (2.6−2.7) are polynomials. Indeed,
Φ′(1− t)/

[
t2(1− t)2

]
= 30−3(1−2t)Φ1(1− t)+ t(1− t)Φ′1(1− t), resp. Ψ(t)/(t−

1) = t3[(4− 3t)− (1− t)2Ψ1(t)], Θ′(1− t)/[t(1− t)2] = 12+(2− 5t)Ψ1(1− t)−
t(1− t)Ψ′1(1− t).

(iii) λ
p
T,λ

a
T,λ

b
T are the affine functions determined by the properties Line{a,b}=(

λ
p
T=0

)
, Line{b,p}=

(
λa

T=0
)
, Line{a,p}=

(
λb

T=0
)
,λp

T(p)=λa
T(a)=λb

T(b)=1. For the
parametrized edge points in (1.6) we have

λ
p
T(xt) = λa

T(zt) = λb
T(yt)≡ 0,

λ
p
T(yt) = λ

p
T(zt) = λb

T(xt)≡ t,

λa
T(xt) = λa

T(yt) = λb
T(zt)≡ 1− t. • •

•

a b

p = y1 = z1

•xt
•yt • zt

On the other hand x[ j](yt) = (1− t)x[ j](a−p) = (1− t)x[ j]p (a) resp. x[ j](zt) = (1−
t)x[ j](b−p) = (1− t)x[ j]p (b). Hence, with the formulas (2.6), the shape conditions
(1.6) hold automatically with consta,p = constb,p = 1 and const( j)

a,p = x[ j](p−a) resp.
const( j)

b,p = x[ j](p−b), furthermore also (1.7) is fulfilled.

(iv) One can check with symbolic computer algebra that all the spline proced-
ures described in Theorem 2.4 produce C 1-functions. It suffices to establish only
that, given any two adjacent non-degenerate triangles T := Co{p,a,b} resp. T̃ :=
Co{p,a, p̃} with common edge Co{p,a} and distinguished point p, the gradient vec-
tors of the shape functions ϕ

p
T,ψ

j,p
T coincide with those of ϕ

p
T̃
,ψ

j,p
T̃

at the points

yt = (1− t)a + tb. Indeed, hence it follows that the unit spline functions fT ,F i
p(

p∈Vert(T ), i=0,1,2
)

corresponding to the gradient data F0
p :=

{
[p,1,0], [q,0,0] :

q ∈ Vert(T ) \ {p}
}

resp. F j
p :=

{
[p,0,e[ j]], [q,0,0] : q ∈ Vert(T ) \ {p}

}
( j= 1,2)

are continuously differentiable.

3. PROOF OF THEOREM 2.4

Henceforth we consider an arbitrarily fixed procedure S : (T ,F) 7→ fT ,F which sat-
isfies Postulates A,B and produces continuous but not necessarily continuously differ-
entiable functions. We reserve the notations ϕ

p
T, ψ

j,p
T resp. Φ,Ψ,Θ(t) :=Ψ(t)/(t−1)

for the basic functions resp. shape functions as established in Section 1. In accord-
ance with (1.5) we can write

Φ(t) = t2(3−2t)+ t2(1− t)2
Φ0(t), Ψ(t) = t2(t−1)+ t2(1− t)2

Ψ0(t) (3.1)

and Θ(t) = t2 + t2(t−1)Ψ0(t) with suitable polynomials Φ0,Ψ0.
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Next we are going to express the constraints (1.4), (1.6),(1.7) on the basic func-
tions in terms of Φ,Ψ and the baricentric coordinates. To this aim, we recall the fol-
lowing folklore fact from elementary algebraic geometry relating the root curves with
a product decomposition of multivariate polynomials which is an easy consequence
of Bézout’s Theorem [3].

Remark 3.2(i) If L0,L1, . . . ,Lm are distinct straight lines such that Lk =
(
`k = 0

)
with the affine functions (i.e. polynomials of first degree) `k : R2→ R (k = 1, . . . ,m)
then a polynomial R2→R is divisable with ∏

m
k=0 `

νk
k if and only if, for any index k, it

vanishes in order νk at the points of Lk. In particular, given a non-degenerate triangle
T := Co{a,b,p}, a polynomial Q : R2→ R of two variables has the form

Q = [λp
T]

ν0 [λa
T]

ν1 [λb
T]

ν2

for some polynomial q : R2→ R if and only if it vanishes in order ν0 at the points of
Line{a,b}, order ν1 at Line{p,b} and order ν2 at Line{p,a}, respectively.3

(ii) If Q : R2→ R is a polynomial of two variables, we can write

Q(x,y) = Q(0,0)+ xq1(x)+ yq2(y)+ xyq3(x,y) where

q1(x) := [Q(x,0)]−Q(0,0)/x, q2(y) := [Q(0,y)−Q(0,0)]/y,

q3(x,y) :=
[
Q(x,y)− [Q(0,0)+ xq1(x)+ yq2(y)]

]
/(xy)

are well-defined polynomials in one resp. two variables.
We shall call the R2-polynomial Q0(x,y) := Q(0,0)+ xq1(x)+ yq2(y) of first de-

gree the principal part of Q.

Lemma 3.4. The basic functions ϕ
p
T,ψ

j,p
T for T = Co{a,b,p} have the form

ϕ
p
T = Φ(λp

T)+ [λp
T]

2
λ

a
Tλ

b
T Pol(λb

T,λ
a
T),

ψ
j,p
T = Θ(λp

T)x
[ j]
p +[λp

T]
2
λ

a
Tλ

b
T Pol(λb

T,λ
a
T)

in terms of the baricentric coordinates (2.1),, the shape functions 3.1, the modified
shape function (2.5′) and with suitable polynomials of two variables.

Proof. Fix any triangle T := Co{a,b,p}. As mentioned, necessarily (3.1) holds and
Θ is a polynomial. Consider the functions

f := Φ(λp
T), g( j) := Θ(λp

T) · x
[ j]
p .

Along the edge Co{a,p}, at the points yt := (1− t)a+ tp we have λ
p
T(yt) = t,

λb
T(yt) = 0, λa

T(yt) = [1−λa
T(yt)−λb

T(yt) = 1− t. Observe that the functions f ,g( j)

3Q vanishes in order ν at the point [x0,y0] if ∂k+m

∂xk∂ym Q(x0,y0) = 0 whenever k+m < ν.
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suit the shape uniformity conditions because

f (yt)=Φ(t), g( j)(yt)=Θ(t)
〈
e[ j]
∣∣yt −p

〉
=Θ(t)(1− t)

〈
e[ j]
∣∣a−p

〉
=

=
〈
e[ j]
∣∣p−a

〉
Ψ(t)

and since f ,g( j) are polynomial multiples of [λp
T]

2. Also, since y1 = p, f (p) =
Φ(λp

T(y1)) = Φ(1) = 1 and

∇ f (p) = Φ
′(

λ
p
T(y1)

)
∇λ

p
T(y1) = 0 ·∇λ

p
T(y1) = 0,

∇g( j)(p) = ∇x=y1

[
Θ
(
λ

p
T(x)

)
x[ j]p (x)

]
=

= x[ j]p (p)∇x=y1Θ
(
λ

p
T(x)

)
+Θ

(
λ

p
T(p)

)
∇x=y1x[ j](p) =

= 0 ·Θ′(1)∇λ
p
T(y1)+Θ(1)e[ j] = e[ j].

Therefore the difference functions ϕ
p
T− f and ψ

j,p
T −g( j) vanish on the edge

Co{a,p} of the triangle T. Similar arguments with the points zt :=(1−t)b+tp show
that ϕ

p
T−g and ψ

j,p
T −g( j) vanish on Co{b,p}. By (1.7) their gradients also vanish

on the edge Co{a,b}=
(
λ

p
T = 0

)
. Hence (cf. Remark 3.2) they are polynomial mul-

tiples of [λp
T]

2λa
Tλb

T, say ϕ
p
T = f +[λp

T]
2λa

Tλb
TΠ

(0)
p,T and ψ

j,p
T = g( j)+[λp

T]
2λa

Tλb
TΠ

( j)
p,T,

respectively. Since λa
T,λ

b
T are linearly independent affine functionals, the mapping

Λ
p
a,b : x 7→

[
λa

T(x),λ
b
T(x)

]
is an affine coordinatization on the plain R2. Thus we can

express each term ϕ
p
T,ψ

j,p
T as a polynomial of the coordinates Λ

p
a,b which completes

the proof.

Notation 3.5. For later convenience, without danger of confusion, we introduce the
unifying context-free notations

λ
p
a,b := λ

p
Co{a,b,p}, f 0,p

a,b := ϕ
p
Co{a,b,p}, f j,p

a,b := ψ
j,p
Co{a,b,p} ( j=1,2).

Furthermore, in view of Lemma 3.4, we shall write

f i,p
a,b = Φ

[i](λp
a,b)x

[i]
p +[λp

a,b]
2
λ

b
a,pλ

a
b,pPi,p

a,b(λ
b
a,p,λ

a
b,p) (i = 0,1,2) (3.6)

where

Φ
[0] := Φ, Φ

[1] := Φ
[2] := Θ, x[0]p : x 7→ 1 with e[0] := ∇x[0]p = 0

and the terms Pi,p
a,b (i= 0,1,2) are polynomials with coefficients depending on the

ordered tuple (i,p,a,b). Notice that necessarily

Pi,p
a,b(s, t)≡ Pi,p

b,a(t,s) (3.7)

due to the trivial index symmetries λw
u,v ≡ λw

v,u and f i,p
a,b ≡ f i,p

b,a.
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Lemma 3.8. We have fT ,F ∈ C 1
(
Dom(T )

)
for every triangular mesh with arbitrary

gradient data if and only if

b 7→ ∇ f i,p
a,b(y)≡ constp,a,y for fixed p 6= a and y ∈ Co{p,a}. (3.9)

Proof. Given any non-degenerate triangle T = Co{a,b,p}, by construction, for the
points xt := (1− t)a+ tb, yt := (1− t)a+ tp and zt := (1− t)b+ tp on the edges
of the triangle T we have f i,p

a,b(xt) = 0 independently of p, f i,p
a,b(yt) = Φ[i](t) inde-

pendently of b and f i,p
a,b(zt) = Φ[i](t) independently of a. Thus the shape conditions

are automatic from (3.6). Moreover, given any triangle T̃ with a common edge but
disjoint interior to T, the function pairs ϕ

p
T,ϕ

p
T̃

resp. ψ
j,p
T ,ψ

j,p
T̃

touch continuosly.

The analogous necessary and sufficent condition for a C 1-smooth touching is that the
gradient pairs ∇ϕ

p
T,∇ϕ

p
T̃

resp. ∇ψ
j,p
T ,∇ψ

j,p
T̃

coincide on the common edge:

(i) ∇ f i,p
a,b(x) = ∇ f i,p̃

a,b(x) if x ∈ Co{a,b}=T∩Co{a,b, p̃},

(ii) ∇ f i,p
a,b(y) = ∇ f i,b̃

a,p(y) if y ∈ Co{a,p}=T∩Co{a, b̃,p},

(iii) ∇ f i,p
a,b(z) = ∇ f i,ã

b,p(z) if z ∈ Co{b,p}=T∩Co{ã,b,p}.

(3.10)

Observe that (3.10(i)) holds automatically with the trivial value 0. Furthermore con-
ditions (3.10(ii)) and (3.10(iii)) are analogous (by changing the roles of a and b resp.
ã and b̃). Finally we observe that, in (3.10(ii)), for fixed a,p and y∈Co{a,p} we can
choose the points b and b̃ on different half plain components of R2\Line{a,p} arbit-

rarily. This implies that all the vectors ∇ f i,b
a,p(y), ∇ f i,b̃

a,p(y) with b, b̃ ∈ R2\Line{a,p}
must be the same. Due to the construction (1.3), the fact that all the pairs ϕ

p
T,ϕ

p
T̃

resp. ψ
j,p
T ,ψ

j,p
T̃

of basic functions touch C 1-smoothly in case of adjacent triangles

T, T̃, ensures that the splines fT ,F are all C 1-smooth as well.

Notation 3.11. Given any ordered triple (u,v,w) of non-collinear points, we shall
write gw

u,v := ∇λw
u,v for the constant gradient vectors of the baricentric coordinate

functions. Notice that, by (2.1),

gw
u,v :=

(u−v)R〈
(u−v)R

∣∣w−u
〉 = σw

u,v(u−v)R
area(Co{u,v,w})

. (3.12)

where σw
u,v=±1 according as (u,v,w) are oriented anticlockwise or clockwise. In

particular, if T = Co{a,b,p} is a non-degenerate triangle, we have

gp
a,b +ga

b,p +gb
a,p = ∇

[
λ

p
a,b +λ

a
b,p +λ

b
a,p
]
= ∇1 = 0,

gp
a,b ⊥ b−a, gb

a,p ⊥ a−p, ga
b,p ⊥ b−p.
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Lemma 3.13. If T = Co{a,b,p} is a non-degenerate triangle, at the points yt :=
(1− t)a+ tp of the edge Co{a,p} we have

∇ f i,p
a,b(yt) =x[i]

(
(1−t)(a−p)

)
[Φ[i]]′(t)gp

a,b+

+Φ
[i](t)e[i]+ t2(1−t)Pi,p

a,b(0,1−t)gb
a,p.

(3.14)

Proof. With the abbreviations

`0 := λ
p
a,b, `1 := λ

b
a,p, `2 := λ

a
b,p, P[i] := Pi,p

a,b, G[i] := `2
0`2P[i](`1, `2)

we can write

∇ f i,p
a,b = ∇

[
x[i]p Φ

[i](`0)+ `1G[i]
]
=

= x[i]p ∇
[
Φ

[i](`0)
]
+Φ

[i](`0)∇x[i]p + `1∇G[i]+G[i]
∇`1 =

= x[i]p Φ
[i]′(`0)∇`0 +Φ

[i](`0)e[i]+ `1∇G[i]+G[i]
∇`1.

We complete the proof with the observations that

`0(yt)= t, `1(yt)=0, `2(yt)=1−t,

x[i]p (yt)=x[i]
(
(1−t)(a−p)

)
, ∇x[i]p ≡e[i].

Remark 3.15. To prove Theorem 2.4, we need a precise description for the coeffi-
cients of the polynomials Pi,p

a,b in terms of the variables a,b,p such that (3.9) should
hold.

According to Lemma 3.8, the procedure S : (T ,F) 7→ fT ,F produces C 1-splines
for every admissible data if and only if, for any t ∈ [0,1] and for any fixed pair a,p
of distinct points, the gradient expressions (3.14) are independent of the variable b
ranging in R2\Line{a,p}. This latter condition can be formulated in terms of the
b-independent affine coordinates (2.2) as follows. By (3.12) we have

gb
a,p=

(a−p)R
〈(a−p)R|b−a〉

=‖p−a‖−2(1/ξ
b

p,a)(p−a)R,

gp
a,b=

(a−b)R
〈(a−b)R|p−a〉

=
ξ
(a−b)R
p,a (p−a)+ξ

(a−b)R
p,a (p−a)R

‖p−a‖2ξ
b
p,a

=

= ‖p−a‖−2
[
(p−a)+(ξb

p,a/ξ
b

p,a)(p−a)R
]
.

Thus we can rewrite (3.14) in the form

∇ f i,p
a,b(yt) =

[
b-independent terms

]
+

+
x[i]
(
(1−t)(a−p)

)
[Φ[i]]′(t)ξb

p,a + t2(1− t)Pi,p
a,b(0,1− t)

‖p−a‖2ξ
b

p,a

(p−a)R.
(3.16)
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Hence we conclude immediately the following.

Lemma 3.17. We have (3.9) if and only if for every pair p,a of distinct points there
exist polynomials Ki,p

a (i=0,1,2) of one variable such that

Ki,p
a (t) = x[i]

(
(1− t)(a−p)

)
[Φ[i]]′(t)

ξb
p,a

ξ
b

p,a

+
t2(1− t)

ξ
b

p,a

Pi,p
a,b(0,1− t) (3.18)

independently of the choice of b outside Line{a,p}.

We can regard (3.18) as a partial algebraic condition on the polynomials Pi,p
a,b of

two variables, namely the below identity for 0 < t < 1:

Pi,p
a,b(0,1− t) = ξ

b
p,a

Ki,p
a (t)

t2(1−t)
−ξ

b
p,a

x[i]
(
(1−t)(a−p)

)
[Φ[i]]′(t)

t2(1−t)
. (3.19)

Since, for fixed a,p, the coordinates
(
ξ b

p,a,ξ
b

p,a
)

may assume arbitrary values (r,s)
with s 6= 0, from (3.19) we obtain the polynomial divisability relations t2(1−t)

∣∣Ki,p
a (t)

and t2(1−t)
∣∣x[i]((1−t)(a−p)

)
[Φ[i]]′(t), respectively. Since x[0]

(
(1−t)(a−p)

)
≡ 1

and x[0]
(
(1− t)(a−p)

)
≡ (1− t)x[ j](a−p) for j = 1,2, with the aid of (3.22′)

we can state (3.19) in the form

Pi,p
a,b(0,1−t) =

〈
b−a

∣∣p−a
〉

‖p−a‖2 x[i]p (a) χ
[i](t)+

〈
b−a

∣∣(p−a)R
〉

‖p−a‖2 κ
i,p
a (t) (3.20)

with suitable polynomials χ[i] and κ
i,p
a (i = 0,1,2; a 6= p ∈ R2) of one variable. Ac-

tually

κ
i,p
a (t) =

Ki,p
a (t)

t2(1− t)2 , χ
[0](t) =

[Φ[0]]′(t)
t2(1− t)

=
Φ′(t)

t2(1− t)
,

x[i]p (a)χ[ j](t)=
x[ j]
(
(1−t)(a−p)

)
[Φ[ j]]′(t)

t2(1− t)
= x[ j]p (a)

[Ψ(t)/(t−1)]′

t2

for j=1,2 on the basis of (3.19) In terms of the Kronecker-δ, we can write even

χ
[i](t) = t−2(1− t)−δi,0 [Φ[i]]′(t) (i = 0,1,2).

Clearly, the polynomials Ki,p
c cannot be chosen arbitrarily. There is a unique obstacle:

we obtained Lemma 3.13 and hence (3.18) by an inspection of ∇ f i,p
a,b on one of the

edges of a triangle T=Co{a,b,p} at the distinguished point p (namely Co{a,p}with
the parametrization yt := (1− t)a+ tb) while also the analogous conclusion should
also be taken simultaneously in to account with the second edge (namely Co{b,p}
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issued from p. Applying a change a↔ b and taking into account the symmetry (3.7),
we see that also

Pi,p
a,b(1−t,0)=

〈
a−b

∣∣p−b
〉

‖p−b‖2 x[i]p (b) χ
[i](t)+

〈
a−b

∣∣(p−b)R
〉

‖p−b‖2 κ
i,p
b (t). (3.21)

We obtain the complete description for the families of polynomials Ki,p
a,b being ad-

missible by Lemma 3.17 by the next obervation.

Lemma 3.22. For any couple p 6= c∈R2, in (3.20−21) we have χ[i](1)= κ
i,p
c (1)= 0.

Proof. Fix i,p ∈ R2 and ρ > 0 arbitrarily. Consider (3.20−21) for pairs a,b with
‖a−p‖= ‖b−p‖= ρ written in the form

a := cσ, b := cτ where cτ := p+ρuτ, uτ := cosτe[1]+ sinτe[2].

Due to (3.7), with the abbreviations α := χ[i](1) and β(τ) := κ
i,p
cτ
(1) we get

0 = Pi,p
cσ,cτ

(0,0)−Pi,p
cτ,cσ

(0,0) =

=
[(
〈uτ|uσ〉−1

)
x[i](cσ)α+〈uτ|uσR〉β(σ)

]
−

−
[(
〈uσ|uτ〉−1

)
x[i](cτ)α+〈uσ|uτR〉β(τ)

]
=

= (〈uσ|uτ〉−1)
[
x[i](cσ)− x[i](cτ)

]
α+ 〈uτ|uσR〉β(σ)−〈uσ|uτR〉β(τ)

)
=

=
[

cos(σ− τ)−1
][

x[i](cσ)− x[i](cτ)
]
α+ sin(τ−σ)

[
β(σ)+β(τ)

]
.

Since x[0]≡ 1, in any case we have x[i]p (cσ)−x[i]p (cτ)= ρ[x[i](uσ)−x[i](uτ)]. It follows

β(σ)+β(τ) = αρ
cos(τ−σ)−1

sin(τ−σ)

[
x[i](uσ)− x[i](uτ)

]
,

∣∣β(σ)+β(τ)
∣∣≤ ρ|α|1− cos(τ−σ)

sin(|τ−σ|)
∥∥uσ−uτ

∥∥≤
≤ 2ρ|α|[1− cos(τ−σ)].

(3.23)

Suppose indirectly β(τ) 6= 0 for some τ ∈ R. Let ε := |β(τ)| and choose δ > 0
such that 2ρ|α|(1− cosθ) < ε/4 whenever |θ| ≤ ε. Observe that then we have
|β(τ) + β(τ± δ/2)| < ε/4 that is β(τ± δ/2) ∈

[
− ε/4,ε/4]− β(τ). Therefore

β(τ + δ/2) + β(τ − δ/2) ∈
[
− ε/2,ε/2

]
− 2β(τ) ⊂

[
− ε/2,ε/2

]
+ {−2ε,2ε} =[

− 5ε/2,−3ε/2
]
∪
[
3ε/2,5ε/2

]
i.e. |β(τ + δ/2) + β(τ− δ/2)| ∈

[
3ε/2,5ε/2

]
.

However, we also have |β(τ+δ/2)+β(τ−δ/2)|< ε/4 which leads to the contradic-
tion |β(τ+δ/2)+β(τ−δ/2)| ∈

[
3ε/2,5ε/2

]
∩
[
0,ε/4

]
=∅. By the arbitrariness of

the radius ρ, the angle τ and the origin p, we conclude that κ
i,p
c (1) = 0 in any case.

For i = 1,2 we get α = 0 i.e. χ[i](1) = 0 immediately by plugging β(τ) = β(σ) = 0
with σ := τ+ π/4 in the first equation of (3.23). (Remark: x[0](uσ)− x[0](uτ) =
1−1 = 0, thus the argument does not work for i = 0). In the case i = 0 we conclude



HERMITIAN SPLINES ON TRIANGULAR MESHES 13

α = 0 as follows. Consider the difference of equations (3.20−21) for t = 1 with
a := p+e[1] and b := p+e[1]+e[2]. Since κ

i,p
c = 0 (c = a,b is estabished already, we

get simply 0 =−(1/2)χ[0](1) which completes the proof.

Corollary 3.24. The relations (3.9) hold if and only if we have (3.18) with the sym-
metry (3.7) where the polynomials Ki,p

c (t) respectively x[i]
(
(1−t)(a−p)

)
[Φ[i]]′(t)

are all divisable by t2(1− t)2.

Proof. The relation κ
i,p
c (1) = 0 implies that there is a polynomial κ̃

i,p
c such that

κ
i,p
c (t) = (1−t)κ̃i,p

c (t) and Ki,p
c (t) = t2(1−t)κi,p

c = t2(1−t)2κ̃
i,p
c (t) with some

polynomial. Similarly, from χ[i](1) = 0 we conclude that χ[i](t) = (1−t)χ̃[i](t) and
(1−t)x[i](a)[Φ[i]]′(t) = ((1−t)t2χ[i](t) = t2(1−t)2χ̃[i](t) with some polynomial χ̃[i].

Corollary 3.25. We can write Ki,p
c (t) = t2(1− t)2ki,p

c (t) (p 6= c ∈ R2) and the ad-
missible shape functions Φ,Ψ have the form

(i) Φ(t) = t3(10−15t +6t2)+ t3(1− t)3
Φ1(t),

(ii) Ψ(t) = t3(t−1)(4−3t)+ t3(1− t)3
Ψ1(t)

(3.26)

with suitable polynomials ki,p
c ,Φ2,Ψ2.

Proof. The stated form of Ki,p
c is clear from (3.24). By definition Φ[0](t) = Φ(t) and

x[0]
(
(1− t)(a−p)

)
≡ 1. Furthermore, for j = 1,2 we have Φ[ j](t) = Ψ(t)/(t− 1)

and x[ j]
(
(1−t)(a−p)

)
=(1−t)x[ j]p (a). Thus, taking (3.1) into acount, the relation

that t2(1−t)2 is a divisor of the polynomial x[0]
(
(1−t)(a−p)

)
[Φ[0]]′(t)=Φ′(t)=

6t(1−t) + 2t(1−t)(1−2t)Φ0(t) + t2(1−t)2Φ′0(t) means simply that t(1−t) is
a divisor of

∣∣6+ 2(1−2t)Φ0(t). Thus we have 6+ 2(1− 2t)Φ0(t)|t=0,1 = 0 im-
plying that Φ0(0) = −3, Φ0(1) = 3. Therefore Φ0(t) = −3+ 6t + t(1− t)Φ1(t)
with some polynomial Φ1 and the generic form of Φ is

(
3.1(i)

)
. Also according

to (3.1), in the cases j = 1,2 we can write Ψ(t) = −t2(1− t)+ t2(1− t)2Ψ0(t)
with some polynomial Ψ0. Thus the relation that t2(1− t)2 is a divisor of the
polynomial x[ j]

(
(1− t)(a−p)

)
[Φ[0]]′(t) ≡ (1− t)x[ j]p (a)

[
Ψ(t)/(1− t)

]′ means
that t2(1− t)

∣∣[Ψ(t)/(1− t)
]′ ≡−2t+ t(2−3t)Ψ0(t)+ t2(1− t)2Ψ′0(t) is equivalent

to saying t(1− t)
∣∣− 2+ (2− 3t)Ψ0(t) i.e. −2+ (2− 3t)Ψ0(t)|t=0,1 = 0 implying

Ψ0(0) = 1 and Ψ0(1) = −2. Therefore Ψ0(t) = 1− 3t + t2(1− t)Ψ1(t) with some
polynomial Ψ1 and the generic form of Ψ is

(
3.26(i)

)
.

3.27. Finish of the proof of Theorem 2.4
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In view of (3.21−21) and Remark 3.2(ii) we can write

Pi,p
a,b(s, t) = Pi,p

a,b(0,0)+ s
[(

Pi,p
a,b(s,0)−Pi,p

a,b(0,0)
)
/s
]
+

+ t
[(

Pi,p
a,b(0, t)−Pi,p

a,b(0,0)
)
/t
]
+ stPol(s, t) =

= s
[(

Pi,p
b,a(0,s)/s

]
+ t
[(

Pi,p
a,b(0, t)/t

]
+ stPol(s, t) =

= s

[
ξ

a
p,b

Ki,p
b (1−s)

s2(1− s)2 −ξ
a

p,b
x[i](b)

[
Φ[i]
]′
(1−s)

s(1−s)2

]
+

+ t

[
ξ

b
p,a

Ki,p
a (1−t)

t2(1− t)2 −ξ
b

p,a
x[i](a)

[
Φ[i]
]′
(1−t)

t(1−t)2

]
+ stRp

a,b(s, t)

with suitable polynomials Ki,p
c ,Φ[i],Rp

a,b of one- resp. two variables such that t2(1−
t)2
∣∣Ki,p

c (t) and t2(1−t)
∣∣x[i]p (a)[Φ[i]]′(t). It is straightforward to check that the func-

tions f i,p
a,b are polynomials in these cases and Pi,p

a,b(s, t) = Pi,p
b,a(t,s) if and only if

Rp
a,b(s, t) = Rp

b,a(t,s). It remains to show that the expressions

∇ f i,p
a,b(yt) with yt := (1− t)a+ tp,

f i,p
a,b = Φ

[i](λp
a,b)+ [λp

a,b]
2
λ

b
a,pλ

a
b,pPi,p

a,b(λ
b
a,b,λ

a
b,p)

are independent of the term b whenever

Ki,p
c (t) = t2(1− t)2ki,p

c (t),

Φ
[0](t) = Φ(t), Φ

[1](t) = Φ
[2](t)≡

[
Ψ(t)/(t−1)

]′
with arbitrary polynomials ki,p

c and the polynomials Φ,Ψ have the form (3.26) with
arbitrarily fixed polynomials Φ1,Ψ1 of one variable.

Repeating the calculations of Lemma 3.13, we see that (3.16) holds independently
of the choice of ki,p

c ,Φ1,Ψ1,R
i,p
a,b. Notice that we have constructed the polynomials

Pi,p
a,b(0,1− t) = Pi,p

b,a(1− t,0) in terms of Ki,p
a in a manner such that (3.18) should be

fulfilled. Thus the expression[
ξ

b
p,a
]−1
[
x[i]
(
(1−t)(a−p)

)
[Φ[i]]′(t)ξb

p,a + t2(1− t)Pi,p
a,b(0,1− t)

](
=Ki,p

a (t)
)

is independent of b automatically. This completes the proof in view of Lemma 3.17.
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