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1. Introduction 6

It is a well-known consequence of Cartan’s classical Uniqueness Theorem [4] that given 7

a bounded circular domain D in the N-dimensional complex space CN any holomorphic 8

mapping F : D → D with F(0) = 0 and preserving the Carathéodory (or Kobayashi) 9

distance associated with D is necessarily linear and surjective. In 1994 E. Vesentini 10

[10, p. 508],[11, Section 3] found various examples, even with holomorphic families, show- 11

ing that the infinite dimensional version of this fact is no longer valid in general Banach 12

space setting. However, his technique seems unsuitable in constructing a C0-semigroup 13

[Ft : t ≥ 0] of non-linear Carathéodory isometries Ft ∈ Hol(D, D) on a bounded circular 14

domain D contained in some complex Banach space E. Our aim in this short note is a 15

C0-semigroup construction (Lemma 1) in the setting of real normed spaces done with slight 16

modifications of methods used in the theory of functional differential equations [1] in the 17

fading memory space C0(R+, E). Our examples involve bounded convex circular domains 18

D but relies upon some auxiliary remarks with independent interest on holomorphic in- 19

variant distances associated to domains for the type D =
{

x ∈ X : range( f ) ⊂ D
}

in the 20

function space X = C0(Ω, E) with some bounded convex domain D and a locally compact 21

topological space Ω. Actually, our arguments require no deep knowledge of symmetric 22

spaces and invariant distances. 23

As for the background of motivation: The approach by von Neumann to classical Quan- 24

tum Mechanics proposed modeling the evolution of wave functions with one-parameter 25

C0-groups of unitary operators in complex Hilbert spaces. Toward the beginning of the 26

1970-s, exigences occure to extend the related framework beyond the setting of linear 27

operators and regard not necessarily reversible evolution. To this aim naural candidates 28

are one-parameter C0-semigroups of holomorphic self-mappings preserving some auto- 29

morphism invariant distance on a bounded Banach space domain. Physical symmetry 30

properties can be played by the circularity or more generally by the holomorphic symmetry 31

of the underlying domain. According to Kaup’s celebrated Riemann Mapping Theorem [7], 32

up to holomorphic equivalence, bounded symmetric domains are circular and convex. 33

At first sight our example Theorem 1 seems a negative result. However, the construc- 34

tion may reveal interesting geometric properties and links to delay equations for further 35

investistigation. 36
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2. Preliminaries 37

To establish terminology: by a one-parameter C0-semigroup on a topological space X 38

we mean an indexed family
[
Ft : t ∈ R+

]
of mappings Ft : X → X with the semigroup 39

properties F0 = IdX =
[
X 3 x 7→ x

]
, Ft ◦ Fs(x) = Ft(Fs(x)

)
= Ft+s(x) (s, t ∈ R+) and the 40

continuity of all orbits t 7→ Ft(x) for any x ∈ X. Given two metric spaces (Xj, dj) (j = 1, 2) 41

a mapping f : X1 → X2 is a d1 → d2 contraction if d2
(

f ( f ), f (y)
)
≤ d1(x, y) (x, y ∈ X1). 42

A subset D in a complex topological vector space E is said to be circular if it is connected, 43

contains the origin of E and D = eitD = {eitx : x ∈ D} (t ∈ R). 44

Throughout this work let E denote an arbitrarily fixed complex Banach space with
norm ‖ · ‖ and open unit ball B(E). As standard notation, we write C for the complex
plane regarded as a 1-dimensional space normed with the absolute value and unit disc ∆ =
B(C) = {ζ : |ζ| < 1} equipped with the Poincaré metric d∆(α, β) = arth

∣∣(β− α)/(1− α)
∣∣(

α, β ∈ ∆
)
. Given any domain (connected open set) D ⊂ E,

dD
(

p, q
)
= sup

{
d∆
(

f (p), f (q)
)

: f ∈ Hol(D, ∆)
)} (

p, q ∈ D
)

is the associated Carathéodory distance where Hol(D1, D2) stands for the family of all holo- 45

morphic maps between two Banach space domains D1 ⊂ E1 resp. D2 ⊂ E2. In the cases of 46

our interests, a function f : D2 → E2 with bounded range is holomorphic if and only if for 47

any point p ∈ D and any unit vector v ∈ E, it admits a uniformly convergent directional 48

Taylor expansion ζ 7→ f (p + ζv) =
∞
∑

n=0
ζnan

(
an ∈ E1,

∞
∑

n=0
‖an‖ρn < ∞

)
whenever the 49

closed ball p + ρB(E) is contained in D. A fundamental feature of Carathéodory metrics 50

[4] is that all holomorphic maps D2 → D2 are dD1 → dD2 contractions, furthermore if the 51

domain D ⊂ E is bounded then
(
D, dD

)
is a complete metric space giving rise to the same 52

topology as the distance by the norm on D. 53

For a locally compact Hausdorff space Ω, C0(Ω, E) will denote the Banach space of all 54

continuous functions f : Ω→E with compact support supp( f )=closure{ω∈Ω : f (ω) 6=0} 55

equipped with the norm ‖ f ‖ = max
ω∈Ω
‖ f ‖. In particular C0R+, E) consists of functions with 56

limit 0 at infinity. It is immediate that, given any domain D0 in some Banach space E0, a 57

mapping f : D0 → C0(Ω, E) with bounded range is holomorphic if and only if all pointwise 58

evaluations δω f : D0 3 z 7→ f (z)(ω) (ω ∈ Ω) are holomorphic. 59

Given a bounded convex domain D ⊂ E with 0 ∈ D, we also introduce the figure 60

C0(Ω, D) = { f ∈ C0(Ω, E) : range( f ) ⊂ D} which is easily seen a bounded convex 61

domain in C0(Ω, E). In course of the verification of Carathéodory isometry properties 62

of holomorphic self-maps of domains D of the type C0(Ω, D, we shall use the following 63

plausible but highly non-trivial relation. 64

Lemma 1. For the Carathéodory distance of the domain D = C0(Ω, D with 0 ∈ D ⊂ E we have

dD
(
x, y
)
= max

ω∈Ω
dD
(
x(ω), y(ω)

) (
x, y ∈ D

)
(1)

provided the underlying topological space Ω has countable base and the trailer space E is separable. 65

Remark 1. The special case of (1) with D = C0(R+, ∆) appears in [4] with a proof relying 66

upon Möbius transformations. Similar arguments can be applied in the case when D is 67

a (necessarily convex) holomorphically symmetric bounded circular domain even without 68

countability restrictions using Kaup’s JB*-triple calculus [7,8,5]. 69

In its full generality, Lemma 1 can be deduced from a far-reaching theorem [2] due 70

to Dineen-Timoney and Vigué (extending Lempert’s result [9] on the coincidence of the 71

Carathéodory- and Kobayashi pseudometrics in finite dimensions) for convex domains 72

in separable locally convex spaces. Since we do not know a reference, we give a detailed 73

proof in Section 4. 74
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3. Results 75

Throughout this section D denotes an arbitrarily fixed bounded conved domain in E 76

containing the origin. For short we write X = C0(R+, E) and D = C0(R+, E), respectively. 77

Lemma 2. Let
[
ϕt : t ∈ R+

]
be a C0-semigroup of (norm)-contractions D→ D. Then the maps

Φt : D → X (t ∈ R+) defined by

Φt(x) : R+ 3 τ 7→
[

ϕt−τ
(

x(0)
)

if 0 ≤ τ ≤ t, x(τ − t) if τ ≥ t
]

form a C0-semigroup of isometries D → D. 78

Proof. Consider any function x ∈ D. Since, by definition, the function t 7→ Φt(x(0)) is
continuous and ranges in D, we have Φt(x) ∈ D. Given another function y ∈ D,∥∥Φt(x)−Φt(y)

∥∥=max
{

max
0≤τ≤t

∥∥ϕt−τ
(
x(τ)

)
−ϕt−τ

(
y(τ)

)∥∥, max
σ≥t

∥∥x(σ− t)−y(σ− t)
∥∥} ≤

≤ max
{

max
0≤τ≤t

∥∥x(τ)− y(τ)
)∥∥, max

σ≥t

∥∥x(σ− t)− y(σ− t)
∥∥} ≤

= max
τ≥0

∥∥x(τ)− y(τ)
)∥∥ = ‖x− y‖.

Since trivially∥∥Φt(x)−Φt(y)
∥∥ ≥ max

σ≥t

∥∥x(σ− t)−y(σ− t)
∥∥} = max

τ≥0

∥∥x(τ)−y(τ)
∥∥} = ‖x− y‖,

we conclude that each map Φt is a D-isometry. 79

Next we check the semigroup property of [Φt : t ∈ R+]. Let s, t ≥. Then we have

Φs ◦Φt(x) : τ 7→
[

ϕs−τ
(
Φt(x)(0)

)
if τ ≤ s, ϕt(x)(τ − s) if τ ≥ s

]
,

Φs+t(x) : τ 7→
[

ϕ(s+t)−τ
(
x(0)

)
if τ ≤ s + t, x

(
τ − (s + t)

)
if τ ≥ s + t

]
.

Thus if 0 ≤ τ ≤ s then

Φs ◦Φt(x)(τ) = ϕs−τ
(

Φt(x(0))) = ϕs−τ
(

ϕt(x(0))) =

= ϕs−τ ◦ ϕt(x(0)) = ϕ(s+t)−τ
(
x(0)

)
= Φs+t(x)(τ).

If s ≤ τ ≤ s + t then

Φs ◦Φt(x)(τ) = Φt(x)(τ − s) =τ−s≤t= ϕt−(τ−s)(x(0)) =
= ϕ(s+t)−τ

(
x(0)

)
= Φs+t(x)(τ).

If s + t ≤ τ then

Φs ◦Φt(x)(τ) = Φt(x)(τ − s) =τ−s≥t= x
(
(τ − s)− t

)
= Φs+t(x)(τ).

We complete the proof by checking strong continuity, that is that ‖Φt(x)−Φs(x)‖ → 0
whenever s→ t in R+. Recall that the moduli of continuity

M(z, δ) := max
|t1−t2|≤δ

‖z(t1)− z(t2)‖, m(e, δ) := max
|t1−t2|≤δ

‖ϕt1(e)− ϕt2(e)‖
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associated to any function z ∈ X resp. any vector e ∈ E are well-defined and converge to 0
as δ↘ 0. Let 0 ≤ t1 ≤ t2. Since we have

Φt1(x)−Φt2(x) =


ϕt2−τ(x(0))− ϕt1−τ(x(0)) if τ ≤ t1,

ϕt2−τ(x(0))− x(τ − t1) if t1 ≤ τ ≤ t2,

x(τ − t2)− x(τ − t1) if t2 ≤ τ.

it follows

‖Φt1(x)−Φt2(x)‖ ≤


m
(

x(0), t2 − t1
)

if τ ≤ t1,∥∥ϕt2−τ
(
x(0)

)
− x(0)

∥∥+ ∥∥x(τ − t1)− x(0)
∥∥ ≤

≤ m
(

x(0), t2 − t1
)
+ M(x, t2 − t1) if t1 ≤ τ ≤ t2,

M(x, t2 − t1) if t2 ≤ τ.

Hence we see the uniform continuity of the function t 7→ Φt(x) with modulus of continuity 80

δ 7→ m
(

x(0), δ
)
+ M(x, δ). 81

Remark 2. The conclusion of the above lemma holds even if E is only assumed to be a real 82

Banach space. 83

Proposition 1. Under the hypothesis of Lemma 1, if the maps ϕt above are additionally holomorphic 84

and leave the origin of E fixed, furthermore the underlying Banach space E is separable or D is 85

a circular holomorphically symmetric domain then each term Φt is a holomorphic 0-preserving 86

dD → dD-isometry. 87

Proof. Since the domain D is bounded, the holomorphy of the maps Φt with holomorhic 88

terms ϕt is an immediate consequence of the fact that all the pointwise evaluations δωΨ : 89

D 3 x 7→ Ψ(x)(ω) (ω ∈ Ω) are holomorphic. Indeed we have δτΦt =
[
x 7→ x(τ − t)

]
or 90

δτΦt =
[
x 7→ ϕτ−t(x(0))] with holomorhic maps by assumption. 91

Since the maps ϕ ∈ Hol(D, D) are dD → dD contractions, by the aid of Lemma 1 we
can see that each term Φt is a dD-isometry as follows. Given any pair of functions x, y ∈ D
we have dD

(
ϕt(x(0)), ϕt(y(0)) ≤ dD

(
x(0), y(0)

)
(t ≥ 0). Hence

dD
(
Φt(x), Φt(y)

)
= max

τ≥0
dD
(
δτΦt(x)(τ), δτΦt(y)(τ)

)
=

= max
{

dD
(

ϕ[t−τ]+
(
x(0)

)
, ϕ[t−τ]+

(
y(0)

))
, dD

(
x([τ − t]+), y([τ − t]+)

)
: t ≥ 0

}
=

= dD
(

x(τ − t), y(τ − t)
)
, max

{
dD
(
x(0), y(0)

)
, dD

(
x(τ), y(τ)

)
: τ ≥ 0

}
=

= max
τ≥0

dD
(

x(τ), y(τ)
)
= dD(x, y)

which completes the proof. 92

Remark 3. It is well-known [1] that, given a continuously differentiable function f ∈ X , we
have

d+

dt
∥∥ f (t)

∥∥ := lim sup
h↘0

[
‖ f (t + h)‖ − ‖ f (t)‖

]
/h = sup

L∈S( f (t))
Re
〈

L, f ′(t)
〉

in terms of the family of supporting bounded linear functionals

S(y) :=
{

L ∈ E∗ : ‖L‖ = 1, 〈L, y〉 = ‖y‖
}

(y ∈ E).

In particular f is non-increasing whenever Re
〈

L, f ′(t)
〉
≤ 0 for any t ∈ R+ and for any 93

functional L ∈ S( f (t)). 94



Version April 24, 2024 submitted to Journal Not Specified 5 of 7

Lemma 3. Let V : U → E be a bounded continuously differentiable map (regarded as a vec- 95

tor field) on some open neighborhood U of the closed unit ball B(E) with V(0) = 0 and let 96

µ ≥ supe1,e2∈B(E)
∥∥V(e1) − V(e2)

∥∥. Then the maximal flow of the vector field W : B(E) 3 97

e 7→ V(e)− µe is a well-defined uniformly continuous one-parameter semigroup [ϕt : t ∈ R+] 98

consisting of contractive (non-expansive) self maps of B(E). 99

Proof. By definition, any flow of W is a family [ϕt : t ∈ I] of self maps ϕt : B(E) → B(E)
where I is some (relatively) open subinterval of R+ and, for any point e ∈ B(E), the function
I 3 t 7→ ϕt(e) is the solution of the initial value problem

d
dt

z(t) = W
(
z(t)

)
, z(0) = e. (2)

By writing Ie for the maximal solution of (2), it is well-known that sup Ie > 0 in any case, 100

furthermore we have limt→sup Ie ‖z(t)‖ = 1 whenever sup Ie < ∞. 101

Let e1, e2 ∈ B(E) and consider the function f (t) := ϕt(e1) − ϕt(e2) defined on the
interval Ie1 ∩ Ie2 . Observe that, given any functional L ∈ S

(
ϕt(e1)− ϕt(e2)

)
, we have

Re
〈

L, f ′(t)
〉
= Re

〈
L, W

(
ϕt(e1)

)
−W

(
ϕt(e2)

)〉
=

= Re
〈

L, V
(

ϕt(e1)
)
−V

(
ϕt(e2)

)〉
− µRe

〈
L, ϕt(e1)− ϕt(e2)

〉
=

= Re
〈

L, V
(

ϕt(e1)
)
−V

(
ϕt(e2)

)〉
− µ

∥∥ϕt(e1)− ϕt(e2)
∥∥ ≤

≤ µ
∥∥ϕt(e1)− ϕt(e2)

∥∥− µ
∥∥ϕt(e1)− ϕt(e2)

∥∥ = 0.

Hence we conclude that the function t 7→ f (t) is decreasing, in particular we have the 102

contraction property
∥∥ϕt(e1)− ϕt(e2)

∥∥ ≤ ∥∥ϕ0(e1)− ϕ0(e2)
∥∥ =

∥∥e1 − e2
∥∥ for t ∈ Ie1 ∩ Ie2 . 103

By assumption W(0) = V(0) = 0 implying ϕt(0) ≡ 0 with I0 = [0, ∞) = R+. Hence we 104

see also that
∥∥ϕt(e)

∥∥ =
∥∥ϕt(e)− ϕt(0)

∥∥ ≤ ∥∥e− 0
∥∥ =

∥∥e
∥∥ < 1 for all e ∈ B(E) and t ∈ Ie. 105

This is possible only if sup Ie = ∞. Therefore the maximal flow of W is defined for all (time) 106

parameters t ∈ R+ and consists of B(E)-contractions ϕt. 107

It is well-known that flows parametrized on R+ are strongly continuous semigroups 108

automatically. The uniform continuity of in our case is a consequence of the fact that 109∥∥ϕt2(e) − ϕt1(e)
∥∥ ≤ ∫ t2

t1

∥∥ d
dt ϕt(e)

∥∥dt =
∫ t2

t1

∥∥W
(

ϕt(e)
)∥∥dt ≤

∫ t2
t1

4µ dt (0 ≤ t1 ≤ t2), 110

which shows that ω(e, δ) ≤ 4µδ (e ∈ B(E), δ ∈ R+). 111

Example 1. Let E := C with B(E) = ∆ = {ζ ∈ C : |ζ| < 1} and let V(z) ≡ z2. Since
|z2

1 − z2
2| = |z1 − z2| · |z1 + z2| ≤ 2|z1 − z2|, we can apply the above Lemma with W(z) :=

z2 − 2z. For the flow [ϕt : t ∈ R+] of W we obtain the holomorphic maps

ϕt(z) =
2z(

1− e2t
)
z + 2e2t

(z ∈ ∆, t ≥ 0).

Indeed, the solution of the initial value problem

d
dt

x(t) = x(t)2 − 2x(t), x(0) = z (3)

is x(t) = 2z/
[(

1− e2t)z + 2e2t] as one can check by direct computation. As for heuristics, 112

we get a real valued solution with real calculus for (3) with initial values −1 < z < 1, and 113

the obtained formula extends holomorphically to ∆. 114

Theorem 2. Assume Given a complex Banach space E with symmetric or separable unit ball, there 115

is a C0-semigroup of non-linear holomorphic 0-preserving norm and Carathéodory isometries of the 116

open unit ball of the function space X := C0(R+, E). 117
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Proof. We can apply the construction of Proposition 1 with a semigroup [ϕt : t ∈ R+] 118

obtained with the construction of Lemma 3 with any E-polynomial polynomial vector field 119

V : E→ E. 120

Example 2. Let E := C and X := C0(R+,C). Then the maps

Φt(x) : R+ 3 τ 7→
[

2x(0)(
1− e2(t−τ)

)
x(0) + 2e2(t−τ)

if τ ≤ t, x(τ − t) if τ ≥ t

]

form a C0-semigroup of non-linear holomorphic 0-preserving norm and Carathéodory 121

isometries of the unit ball B(X). 122

Question 1. Is any holomorphic norm-isometry of the unit ball of a complex Banach space 123

automatically a Carathéodory isometry as well? 124

4. Appendix: proof of Lemma 1 125

Notice that our assumptions imply the separability of the space X . Thus we can apply
the main result in [2] to D with the conclusion that

dD
(

x, y
)
= max

{
d∆
(

f (x), f (y)
)

: f ∈ Hol(D, ∆)
}
=

= inf
{

d∆
(
ξ, η
)

: ∃ f ∈ Hol(∆,D) with f (ξ) = x, f (η) = y
}
=

= inf
{

arth(η) : η > 0 and ∃ f ∈ Hol(∆,D) with f (0) = x, f (η) = y
}

for any pair x, y ∈ D. In the case of the space X consisting of functions Ω → E, the
evaluations δω : x 7→ (ω) are linear mappings with δω(D) ⊂ D. Since all holomorphic
functions D → D are dD → dD contractions, hence we conclude that

dD
(

x, y
)
≥ sup

ω∈Ω
dD
(

x(ω), y(ω)
) (

x, y ∈ D
)
.

It is well-known [4] that the Carathéodory pseudodistance is a continuous metric on any 126

bounded Banach space domain, being locally equivalent to the natural distance defined by 127

the underlying norm. Therefore we can replace the term sup with max in the above formula 128

and to complete the proof it suffices to see that the following approximate version of the 129

inf-expression of dD(x, y). 130

Let ε > 0 and η > tanh
(
dD(x, y)

)
. Then given any pair of functions x, y ∈ D, there exists a

mapping ∆ 3 ζ 7→ zζ ∈ E such that for any location ω ∈ Ω, we have

‖z0(ω)− x(ω)‖, ‖zη(ω)− y(ω)‖ < ε,
[
ζ 7→ zζ(ω)

]
∈ Hol(∆, D).

Construction of a suitable function ζ 7→ zζ : Let Ω=Ω ∪ {∞} be the one point compactifica-
tion of Ω. For each location ω∈Ω, we can find a neighborhood Γω⊂Ω such that

dD
(

x(γ), x(ω)
)
, dD

(
y(γ), y‖(ω)

)
,
∥∥x(γ)− x(ω)

∥∥,
∥∥y(γ)− y(ω)

∥∥ < ε
(
γ ∈ Γω

)
.

Due to the compactness of Ω, there exists a finite partition of unity subordinated to the
covering

{
Γω : ω ∈ Ω

}
. That is we can choose a finite subset

{
ωn
}N

n=0 ⊂ Ω along with a

family
{

wn
}N

n=0 of continuous functions Ω→ R+ such that

N

∑
n=0

wn(ω) = 1 (ω ∈ Ω), supp(wn) ⊂ Γωn .

Consider the points pn = x(ωn), qn = y(ωn). Notice that

dD
(

pn, qn
)
≤ max

ω∈Ω
dD
(

pn, qn
)
= dD(x, y) < η (n = 0, . . . , N).
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Since dD(p, q) = inf
{

d∆(0, η′ : η′ ∈ (0, 1), ∃ f ∈ Hol(∆, D) f (0) = p, f (η′) = q
}

, we can
find functions f0, . . . , fN such that

fn ∈ Hol(∆, D), fn(0) = pn, fn
(
tanh(η + ε)

)
= qn.

In terms of f0, . . . , fN we can finish the construction by setting

zζ(ω) :=
N

∑
n=0

wn(ω) fn(ζ)
(
ζ ∈ ∆, ω ∈ Ω

)
.

For any fixed location ω ∈ Ω, the function ζ 7→ zζ(ω) is holomorphic as being a linear
combination of the holomorphic functions fn. For any fixed scalar ζ ∈ ∆, the function
ω 7→ zζ(ω) belongs to D as being a convex combination of the continuous functions[
Ω 3 ω 7→ fn(ω)

)
vanishing at ∞. Finally, since fn(0) = pn = x(ωn) and fn(η + ε) = qn =

y(ωn), for any location ω ∈ Ω we have the following estimates:

∥∥z0(ω)− x(ω)
∥∥ =

∥∥∥∥∥∑n
wn(ω)

[
fn(0)− x(ω)

]∥∥∥∥∥ =

∥∥∥∥∥∑n
wn(ω)

[
x(ωn)− x(ω)

]∥∥∥∥∥ ≤
≤ ∑

n:wn(ω)>0
wn(ω)

∥∥x(ωn)− x(ω)
∥∥ < ∑

n
wn(ε) = ε ;

∥∥zη+ε(ω)− y(ω)
∥∥ =

∥∥∥∥∥∑n
wn(ω)

[
fn(ζ + ε)− y(ω)

]∥∥∥∥∥ =

∥∥∥∥∥∑n
wn(ω)

[
y(ωn)− y(ω)

]∥∥∥∥∥ ≤
≤ ∑

n:wn(ω)>0
wn(ω)

∥∥y(ωn)− y(ω)
∥∥ < ∑

n
wn(ε) = ε.

which completes the proof. 131
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