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Article

A simple affine-invariant spline interpolation over triangular
meshes
László L. Stachó 1,†,‡

1 Bolyai Institute, University of Szeged, Aradi Vértanúk tere 1; stacho@math.u-szeged.hu

Abstract: Given a triangular mesh, we obtain an orthogonality free analogue of the classical local 1

Zlámal-Ženišek spline procedure with simple explicit affine-invariant formulas in terms of the 2

normalized barycentric coordinates of the mesh triangles. Our input involves first order data at 3

mesh points and, instead of adjusting normal derivatives at side middle points, we construct the 4

elementary splines by adjusting the Fréchet derivatives at three given directions along the edges with 5

the result of bivariate polynomials of degree 5. By replacing the real line R with a generic field K, 6

our results admit a natural interpretation with possible independent interest and the proofs are short 7

enough for graduate courses. 8

Keywords: polynomial C1-spline; triangular mesh; first order data; affine invariance over fields 9

1. Introduction 10

With the rapid increase in computing capacity, spline interpolation over triangular 11

meshes became a popular issue in numerical mathematics: given the data of coordinates 12

of points from some 2D surface, triangularization techniques and then C1-spline construc- 13

tions are widely used for approximating the underlying surface with high accuracy. The 14

related literature with large computational demands and spectacular outcome is enormous. 15

Beautiful examples relatively close to our context are [1]Hahman(2000), [2]Cao(2019) and 16

the references therein. 17

Our aim is somewhat the opposite direction. We investigate "minimalist" approaches: 18

given a triangular mesh on the plane, find a method producing a C1 spline with polynomials 19

of law degree on the mesh triangles which is "local" in the sense that the coefficients for any 20

mesh triangle can be calculated with an explicit formula depending only on the location 21

and the given data (as function values, differential requirements etc.) associated with the 22

vertices of two adjacent triangles. Our paper originates from computer algebraic studies of 23

the classical method by [3]Zlámal-Ženišek(1971) based upon the fact that the requirement 24

of adjusting fifth-degree polynomials for function, gradient and Hessian values along with 25

normal derivatives at edge middle points of a single mesh-triangle gives rise to a C1-spline. 26

Originally they have only proved that the linear system of 21 equations for calculating 27

the 21 coefficients for the adjustment admits a unique solution. Recently [4]Sergienko et 28

al.(2014) published the rather sophisticated related explicit formulas, which motivated 29

us to develop an axiomatic approach to locally generated polynomial spline methods 30

[5][Stachó(2019)]. Our recent work is a non-straightforward application of the results there, 31

though it is self-contained formally. We only use the principal shape functions Φ and Θ 32

below provided by Theorem 2.3 there in the simplest form with no need to any hint of their 33

provenience. 34

We are going to describe a family of local C1-spline procedures with really simple 35

explicit affine-invariant 5-degree polynomials in terms of barycentric weights by adjusting 36

first order data at vertices. Despite our results seem like a variant of the procedure by 37

Zlámal-Ženisek (ZZ for later use), they cannot be deduced as a special case because of being 38

free of the concept of orthogonality. The proofs, which may have independent interest, are 39

basically different from the arguments in (ZZ). 40
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2. Main results 41

Throughout this work let

Φ(t) := t3(10− 15t + 6t2), Θ(t) := t3(4− 3t).

Fix also any non-degenerate triangle T with vertices p1, p2, p3 on the plane R2 along with
three affine functions x 7→ fi + Ai(x− pi)

(
that is fi ∈ R, Ai ∈ L(R2,R)

)
and define

(1) F0(x) :=
3

∑
i=1

[
Φ
(
λi(x)

)
fi + Θ

(
λi(x)

)
Ai(x− pi)

]
where λ1, λ2, λ3 : R2 → R are the barycentric weights determined unambiguously by the
relations

3

∑
i=1

λi(x) = 1, x =
3

∑
i=1

λi(x)pi (x ∈ R2).

Theorem 1. Let u1, u2, u3 ∈ R2 be arbitrary vectors such that uk 6‖ (pj − pk) whenever {i, j, k} =
{1, 2, 3}. Then there exist constants ζ1, ζ2, ζ3 ∈ R which can be formulated explicitly in terms of
λ1, λ2, λ3 (see (18) later) such that the function

(2) F(x) := F0(x) +
3

∑
`=1

ζ`λ`(x)
−1

3

∏
m=1

λm(x)2

along with its Fréchet derivatives F′(x)v := d
dτ

∣∣
τ=0F

(
x + τv

)
behave on the edges of T for any 42

triple (i, j, k) of different indices as follows: 43

F(pi) = fi, F′v(pi) = Aiv (v ∈ R2),(3)

F
(
tpi + (1− t)pj

)
= Φ(t) fi + [1−Φ(t)] f j + [Θ(t)Ai −Θ(1− t)Aj](pj − pi),(4)

F′
(
tpi+(1−t)pj

)
uk =

[
Θ(t)Ai + Θ(1−t)Aj

]
uk.(5)

As a consequence, given a triangular mesh, we can obtain modifications of the cel- 44

ebrated (ZZ) spline procedure [3]Zlámal-Ženišek(1971), [4]Sergienko(2014) regardless to 45

second order data but with simple explicit scalar product free formulas in terms of affine 46

functions. Notice that, due to their invariant affine invariance, our results cannot be 47

deduced from (ZZ) e.g. by setting the input second derivatives at the vertices to 0. 48

Recall that by a triangular mesh we mean a family T =
{

T1, . . . TN
}

of closed triangles
in R2 such that the intersection Tm ∩ Tn is either a common edge or a common vertex or
empty for different indices m, n. Given any triangle T ⊂ R2, Vert(T) and Edge(T) will
denote the set of its vertices resp. edges, and we write Vert(T ) :=

⋃N
n=1 Vert(Tn) resp.

Edge(T ) :=
⋃N

n=1 Edge(Tn). By a data set of first order for the mesh T we mean a family

(6) F =
{
(p, fp, Ap) : p ∈ Vert(T )

}
with fp ∈ R, Ap ∈ L(R2,R).

We call a C1-smooth function f : ∪T :=
⋃N

n=1 Tn → R a polynomial C1-spline for the data F 49

over T if the restrictions f |Tn are polynomials R2→R with Taylor expansion fp+Ap(x−p) 50

around the points p∈Vert(Tn).1 51

For our later considerations, T = {T1, . . . , TN} will stand a fixed triangular mesh. 52

Given any mesh triangle Tn, we shall write λn,p
(
p ∈ Vert(Tn)

)
for its barycentric weights 53

1 I.e. f is continuously differentiable on Interior
(
∪ T

)
, furthermore there are polynomials P1, . . . , PN in

2-variables such that f ([ξ, η]) = Pn(ξ, η) whenever [ξ, η] ∈ Tn (n = 1, . . . , N) satisfying f (p) = fp,
∂Pn/∂ξ

∣∣
[ξ,η]=p = Ap[1, 0], ∂Pn/∂η

∣∣
[ξ,η]=p = Ap[0, 1] at the points p ∈ Vert(Tn).
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(i.e. x = ∑p∈Vert(Tn)(x)p for any p ∈ R2), and En,p will denote the edge opposite to the 54

vertex p in Tn. 55

Theorem 2. Let (6) be a first order data set for T and let
{

uE : E∈ Edge(T )
}
⊂ R2 a family of

vectors with uE 6 ‖E. Then we can find constants{
ζp,E : E∈Edge(T), p∈Vert(T)\E for some T∈T

}
⊂ R

such that the union F : ∪T → R of the polynomial functions Fn : Tn → R obtained by replacing
the terms λ` (`=1, 2, 3) in (1), (2) with λn,p (p∈Vert(Tn)) as

Fn(x) := ∑
p∈Vert(Tn)

[
Φ
(
λn,p(x)

)
fp + Θ

(
λn,p(x)

)
Ap(x− p) + ζp,En,p λn,p(x)−1∏

q∈Vert(Tn)

λn,q(x)2
]

is a polynomial C1-spline for the data F over T such that

F′
(
tp+(1−t)q

)
uE =

(
Φ(t)Ap+[1−Φ(t)]Aq

)
uE whenever E=[p, q]∈Vert(T ), 0< t<1.

Remark 1. In course of the proof, with a straightforward adaptation of Theorem 1, we 56

get an explicit expression for ζp,E in terms of the barycentric weights of the triangle T := 57[
Convex hull of {p} ∪ E

]
∈ T . 58

3. Preliminaries, straightforward observations 59

Our basic polynomials Φ, Θ have the Hermitian interpolation properties 60

Φ(0) = Φ′(0) = Φ′(1) = 0, Φ(1) = 1, Φ′(t) = 30 t2(1− t)2;(7)

Θ(0) = Θ′(0) = Θ(1) = 0, Θ(1) = 1, Θ′(t) = 12 t2(1− t).(8)

Given any indices i, j, k with {i, j, k} = {1, 2, 3}, 61

λi(pi) = 1, λi(x) = 0 for x ∈ [pj, pk] =
{
(1−t)pj+tpk : t∈ [0, 1]

}
;(9)

λ′i(z)v ≡ λi(z+pj)=λi(z+pk)=λi
(
z+(1−t)pj+tpk

)
independently of z, t.(10)

Remark 2. It is customary to express the weight λi in terms of the natural inner product〈
([ξ1, ξ2]

∣∣[η1, η2]
〉
= ∑2

`=1 ξ`η` of R2 as λi(x) =
〈
x− pj

∣∣〈mi|mi〉−1mi
〉

where mi = pi − ri
is the height vector of the triangle T with the closest point ri to pi on the line connecting
pj with pk. Formulas obtained by means of this inner product (like the explicit form of
the (ZZ) basic functions published recently [4]Sergienko(2014)) are only invariant with
respect to the isometries of R2 while our approach is free of metric considerations and can
be generalized to purely algebraic settings by replacing R with an arbitrary field K. In the
sequel we write

(11) Gi :=
[
v 7→ λ′`(pi)v

]
for the (constant) Fréchet derivative of λi regarded as a linear functional R → R but 62

avoiding to identify it with the gradient vector 〈mi|mi〉−1mi. 63

Notice that, as being formulated in terms of polynomials R2→ R, the functions
λ1, λ2, λ3 and F in Theorem 1 extend to to R2 by means of the same algebraic expressions,
furthermore the identities (4),(5) hold on the whole line

{
tpi + (1− t)pj : t ∈ R

}
By (9)

we have λm(pn) = δm,n in terms of the Kronecker symbol δm,n =
[
1 if m = n, 0 else

]
,

furthermore the monomials

Cν1,ν2,ν3(x) = λ1(x)ν1 λ2(x)ν2 λ3(x)ν3
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satisfy

Cν1,ν2,ν3(x) = 0 for x ∈ ∂T =
⋃

[Edges of T] if min{ν1, ν2, ν3} ≥ 1,[
Cν1,ν2,ν3

]′
(x)v =

3

∑
`=1

ν`λ`(x)
−1Cν1,ν2,ν3(x)G`v.

In particular, independently of the choice of the coefficients ζ`, 64

F(x) = F0(x) for x ∈ ∂T,(12) [ 3

∑
`=1

ζ`λ
−1
` ∏

m=1
λ2

m

]′
v
(x) = ζkλi(x)2λj(x)2Gkv for x∈ [pi, pj] if {i, j, k}={1, 2, 3}.(13)

Proof of Theorem 1 65

Fix the indices i, j, k arbitrarily such that {i, j, k} = {1, 2, 3}. Consider a generic point

(14) xt := tpi + (1− t)pj

on the edge [pi, pj] of the triangle T. Since the weights λ` are affine functions,

(15) λi
(
xt
)
= t, λj

(
xt
)
=1−t, λk

(
xt
)
=0 (0≤ t≤1).

Since Φ(1− t) = 1−Φ(t), in view of (15) we get

F0
(
xt
)
= ∑

`=i,j,k

[
Φ
(
λ`(xt

))
f` + Θ

(
λ`(xt

))
A`

(
xt − p`

)]
=

=
[
Φ(t) fi + (1−t)Θ(t)Ai(pj−pi)

]
+
[(

1−Φ(t)
)

f j + tΘ(1−t)Aj(pi−pj)
]
+

+
[
Φ(0) fk + Θ(0)Ak

(
tpi+(1−t)pj−pk

)]
.

That is, by (7) and (8),

(16)
F
(
tpi+(1−t)pj

)
= t3(10− 15t + 6t2) fi + (1− t)3(1 + 3t + 6t2) f j+

+ t3(1−t)(4− 3t)Ai(pj−pi) + (1−t)3t(1 + 3t)Aj(pi− pj).

As for the Fréchet derivatives along the edge [pi, pj], in view of (12) and (13) we get

F′
(
tpi+(1−t)pj

)
v = F′0

(
tpi+(1−t)pj

)
v + ζkt2(1− t)2Gkv.

Notice that in general we have

F′0(x)v = ∑
`=i,j,k

[
Φ′
(
λ`(x)

)
[G`v] f` + Θ′

(
λ`(x)

)
[G`v]A`(x− p`) + Θ

(
λ`(x)

)
A`v

]
.

In particular, since at the generic point (14) on [pi, pj], we have xt−pi =(1−t)(pj−pi), resp.
xt−pj = t(pi−pj),

F′0(xt)v = F′0
(
tpi+(1−t)pj

)
v =

=
[
Φ′(t)[Giv] fi + Θ′(t)[Giv](1− t)Ai(pj − pi) + Θ(t)Aiv

]
+

+
[
Φ′(1− t)[Gjv] f j + Θ′(1− t)[Gjv]t Aj(pi − pj) + Θ(1− t)Ajv

]
+

+
[
Φ′(0)[Gkv] fk + Θ′(0)[Gkv]Ak(xt − pk) + Θ(0)Akv

]
.
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Thus in view of (7) and (8) it follows

F′0(xt)v =
[
30 t2(1− t)2[Giv] fi + 12 t2(1− t)2[Giv]Ai(pj − pi) + t3(4− 3t)Aiv

]
+

+
[
30 t2(1− t)2[Gjv] f j + 12 t2(1− t)2[Gjv]Aj(pi − pj) + (1− t)3(1 + 3t)Ajv

]
.

Hence we conclude that

(17)
F′(xt)v= t2(1−t)2[ζk[Gkv]+Mi,jv

]
+ t3(4− 3t)Aiv + (1− t)3(1 + 3t)Ajv

where Mi,jv := 30
(
[Giv] fi+[Gjv] f j

)
+12

(
[Giv]Ai−[Gjv]Aj

)
(pj−pi).

Proof of (3) . This follows from (16) and (17) by setting t := 1. 66

Proof of (4). Equivalent form of (17). 67

Proof of (5). Consider (17) with v := uk. Observe that Gkuk 6=0 since uk 6 ‖ (pj−pi). Thus
the coefficient

(18) ζk := −
Mi,juk

Gkuk
= − 1

Gkuk

[
30
(
[Giuk] fi+[Gjuk] f j

)
+12

(
[Giuk]Ai−[Gjuk]Aj

)
(pj−pi)

]
is well-defined. Applying it, for the generic point (14) on the edge [pi, pj], we get

F′(xt)uk = t3(4− 3t)Aiuk + (1− t)3(1 + 3t)Ajuk

independently of the location of the third vertex pk of the triangle T. The proof is complete. 68

Corollary 1. By writing v = αuk + β(pi − pj), we have

(19)
F′(xt)v = αF′(xt)uk + β

[
F′(xt)

]
(pi − pj) =

= α
[
Φ(t)Ai + [1−Φ(t)]Aj

]
uk + β

d
dt

F(xt).

Proof of Theorem 2 69

It suffices to verify the following two statements: 70

(i) Given p ∈ Vert(T ) and v ∈ R2, we have F(p) = fp and F′(p)v = Apv. 71

(ii) Given two adjacent mesh triangles Tm, Tn ∈ T , with common edge [p, q],
for the points xt = tp+(1−t)q on the line connecting p, q we have
F
(
xt
)
= Fm(xt) = Fn(xt) and F′m(xt)v = F′n(xt)v for any v ∈ R2.

72

Proof of (i): Choose any mesh triangle Tn ∈ T with p ∈ Vert(Tn). By writing p1, p2, p3 73

with p1 = p for the vertices of Tn, an application of (3) in Theorem 1 with F := Fn shows 74

that Fn(p) = Fn(p1) = fp1
= fp and F′n(p)v = F′n(p1)v = A1v = Apv independently of 75

which mesh triangle Tn with vertex p is considered. 76

Proof of (ii): Let Tm, Tn ∈ T be two adjacent triangles with common edge [p, q].
Necessarily Vert(Tm) = {p, q, r} and Vert(Tn) = {p, q, r} with suitable mesh points r, r ∈
Vert(T ). An application of (4) in Theorem 1 with p1 := p, p2 := q, p3 := r and F := Fm
shows that

Fm(xt) = Φ(t) f1 + [1−Φ(t)] f2 +
[
Θ(t)A1 + Θ(1− t)A2

]
(pj − pi) =

= Φ(t) fp + [1−Φ(t)] fq +
[
Θ(t)Ap + Θ(1− t)Aq

]
(q− p).

The same conclusion holds when replacing (r, Fm) with (r, Fn). Thus we have Fm(xt) = 77

Fn(xt) along the edge [p, q] (moreover along the whole straight line connecting p and 78
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q) independently of the location of the third vertices r resp. r. Since the functions Fn 79

(n = 1, . . . , N) are R2 → R polynomials, their union F :
⋃N

n=1 Tn → R with F(x) = Fn(x) 80

whenever x ∈ Tn is a well-defined continuous function. 81

From a similar application of (5) in Theorem 1 and (19) finishing its proof applied with
F := Fm, p1 := p, p2 := q, p3 := r, u3 := u[p,q], v := αu3 + β(p2 − p1) = αu[p,q] + β(q− p)
and ζ3 := [obtained by (19)] we conclude that

F′m(xt)v = α
[
Φ(t)Ap + [1−Φ(t)]Aq

]
u[p,q] + β

d
dt

Fm(xt).

We get the same when the index m is replaced with n, though the values ζ3 may differ 82

in (19) when calculating with p3 := r for m and p3 := r for n, respectively. We know 83

already that the functions Fm, Fn coincide along the common edge [p, q]. Therefore, with 84

the joint function F =
⋃N

n=1 Fn|Tn we indeed have F′(xt)v = F′m(xt)v = Fn′(xt)v = 85

α
[
Φ(t)Ap + [1−Φ(t)]Aq

]
u[p,q] + β d

dt F(xt). Q. e. d. 86

4. Algorithm 87

INPUT: 88

K ∈ N = {1, 2, . . .} for the number of mesh points; 89

List vk = [vx
k , vy

k ] ∈ R2 (k = 1, . . . , K) of mesh points; 90

List fk ∈ R (k = 1, . . . , K) for function data at mesh points; 91

List Ak(ξ, η)=Ax
k ξ+Ay

k η, Ax
k , Ay

k∈R (k=1, . . . , K) 92

N ∈ N for the number of mesh triangles; 93

of linear forms for prescribed derivatives at mesh points; 94

List [in,1, in,2, in,3] ∈ N3 (n = 1, . . . , N) of indices with 1 ≤ in,1 < in,2 < in,3 ≤ N 95

such that Vert(Tn) =
{

vin,1 , vin,2 , vin,3

}
; 96

List um,n = [ux
m,n, uy

m,n] ∈ R2 (0 ≤ m, n ≤ N, m 6= n) of vectors 97

such that um,n = un,m 6 ‖ (vm−vn); 98

OUTPUT: 99

List Fn(ξ, η) (n = 1, . . . , N) of polynomials with coefficients in R. 100

CALCULATION: Consecutively, for each index n = 1, 2, . . . , N, we compute the
polynomial Fn(ξ, η) by applying Theorem 1 and (18) as follows:

101

For ` = 1, 2, 3 let 102

p` := vin,`
, f` := fin,`

, A`(ξ, η) := Ain,`
(ξ, η), 103

u1 := uin,2,in,3 , u2 := uin,3,in,1 , u3 := uin,1,in,2 ; 104

For technical reasons, for m = 1, 2, 3 we set also 105

pm+3 := pm, fm+3 := fm, Am+3(ξ, η) := Am(ξ, η), uell+3 := um; 106

After setting the actual values for using the formulas in Theorem, for ` = 1, 2, 3, 107

establish the barycentric weights and their derivatives as affine resp. linear forms 108

in terms of the outer product [α, β] ∧ [γ, δ] := det[α β
γ δ] = αδ−βγ (see [6]Berger(1987)):

D := p1∧p2 + p2∧p3 + p3∧p1,

λ`(ξ, η) :=
[
[ξ, η]∧(p`+1−p`+2) + p`+1∧p`+2

]
/D,

G`(ξ, η) :=
[
[ξ, η]∧(p`+1−p`+2)

]
/D;

For cyclic indices, we set also 109

λm+3(ξ, η) := λm(ξ, η), Gm+3(ξ, η) := Gm(ξ, η) (m = 1, 2, 3) . 110

Then, for k = 1, 2, 3, we compute the correction coefficients by means of (18): 111

ζk := − 1
Gkuk

2

∑
d=1

[
30[Gk+duk] fk+d − (−1)d12[Gk+duk] Ak+d(pk+2 − pk+1)

]
;
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Finally we let 112

Fn(ξ, η) :=
3

∑
`=1

[
Φ
(
λ`(ξ, η)

)
f` + Θ

(
λ`(ξ, η)

)
A`

(
[ξ, η]− p`

)
+

+ ζ`λ`(ξ, η)λ`+1(ξ, η)2λ`+2ell(ξ, η)2
]
.

5. Version in pure algebraic setting 113

We consider the possibility of replacing the real line R with an arbitrary (possibly finite) 114

field K. Though ordering is no longer available, in particular we cannot speak of edges 115

[p, q] =
{

tp+(1−t)q : 0≤ t≤ 1} or triangles T = {tp+sq+ (1−s−t)r : 0≤ s, t, s+t≤ 1
}

116

in K any longer, the concept of lines Line(p, q] :=
{

tp + (1− t)q : t ∈ K
}

connecting 117

distict points p, q ∈ K makes sense and is widely used in algebraic geometry. From classical 118

geometry we can also save the concept of non-degenerate point triples {p1, p2, p3} ⊂ K2 by 119

requiring that the expression p1∧p2+p2∧p3+p3∧p1 (which corresponds to a non-zero 120

multiple of the area of the triangle with vertices pj in the case K = R) should not vanish. 121

Parallellity of two vectors u, v ∈ K2 can also be well-defined with the property u∧v 6= 0. 122

On the other hand, it is also well-known that the formal derivation d
dτ ∑n

k=0 αkτk := 123

∑n
k=1 kαkτk−1 (α0, . . . , αn ∈ K gives rise to a calculus with multivariate polynomials with 124

coefficients in K preserving the familiar identities as linearity, Leibniz rule, derivation 125

formula of composite maps. Thus, since our computations in the section Algorithm involve 126

only polynomial functions, we can conclude that the following theorem holds. 127

Theorem 3. Let [p1, . . . , pK] be a sequence of distinct points in K2 and let
[
[in,1, in,2, in,3] : n=

1, . . . , N
]

be a sequence of distict triples of indices 1≤ in,1< in,2< in,3≤K such that the triples

Tn := {pin,1
, pin,2

, pin,3
} (n = 1, . . . , N)

of points are non-degenerate. Then given any sequence
[

fn : n = 1, . . . K
]

constants in K along 128

with a sequence
[
An : n = 1, . . . K

]
of linear forms K→K and any family

[
um,n : 1≤m<n≤K

]
129

of vectors in K2 such that um,n∧(pm − pn) 6= 0 (1 ≤ m < n ≤ K), the sequence [F1, . . . , FN ] 130

of polynomial functions K→K obtained with the calculations in the section Algorithm, has the 131

following properties: (i) Fn(pk)= fk, F′n(pk)v=Akv (v∈K2) whenever pk∈Tn for some n, 132

(ii) Fm|Line(pi, pj) = Fn|Line(pi, pj) whenever i 6= j and {pi, pj} = Tm ∩ Tn, 133

(iii) F′n
(
tpi+(1−t)pj

)
v =

[
Θ(t)Ai + Θ(1−t)Aj

)
uk (t ∈ K) whenever {pi, pj, pk} = Tn. 134

6. Conclusions 135

Our spline interpolation described above is a (ZZ) type procedure providing well- 136

articulated explicit formulas of independent theoretical interest working even in abstract 137

algebraic settings. From practical view points, for classical plane splines, the method is 138

completely parallelizable, affine invariant and easy to optimize with respect to its free 139

ζ-parameters. Applications on 3D triangular complexes even with non-trivial topology can 140

also be expected, though this seems to be not longer a straightforward task. 141
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3. M. Zlámal, A. and Ženišek; Mathematical aspects of the FEM, In Technical Physical and Mathe- 149
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