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Abstract: Given a triangular mesh, we obtain an orthogonality-free analogue of the classical local
Zlámal–Ženišek spline procedure with simple explicit affine-invariant formulas in terms of the
normalized barycentric coordinates of the mesh triangles. Our input involves first-order data at mesh
points, and instead of adjusting normal derivatives at the side middle points, we constructed the
elementary splines by adjusting the Fréchet derivatives at three given directions along the edges with
the result of bivariate polynomials of degree five. By replacing the real line R with a generic field K,
our results admit a natural interpretation with possible independent interest, and the proofs are short
enough for graduate courses.
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1. Introduction

With the rapid increase in computing capacity, spline interpolation over triangular
meshes became a popular issue in numerical mathematics: given the data of the coordi-
nates of points from some 2D surface, triangularization techniques and then C1-spline
constructions are widely used for approximating the underlying surface with high accuracy.
The related literature with large computational demands and a spectacular outcome is
enormous. Beautiful examples relatively close to our context are Hahman (2000) [1] and
Cao (2019) [2] and the references therein.

Our aim in this short note is somewhat in the opposite direction. We investigate
“minimalist” approaches: given a triangular mesh on the plane, find a method producing
a C1-spline with polynomials of low degree on the mesh triangles, which is “local” in the
sense that the coefficients for any mesh triangle can be calculated with an explicit formula
depending only on the location and the given data (as function values, differential require-
ments, etc.) associated with the vertices of two adjacent triangles. Our presented results
originate from computer algebraic studies of the classical method by Zlámal et al. (1971) [3]
based on the fact that the requirement of adjusting fifth-degree polynomials for function,
gradient, and Hessian values along with normal derivatives at edge middle points of a
single mesh triangle gives rise to a C1-spline. Originally, they only proved that the linear
system of 21 equations for calculating the 21 coefficients for the adjustment admits a unique
solution. Recently, Sergienko et al. (2014) [4] published the rather sophisticated related ex-
plicit formulas, which motivated us to develop an axiomatic approach to locally generated
polynomial spline methods Stachó (2019) [5] The recent work is a non-straightforward
application of the results there, although it is self-contained formally. We only used the
principal shape functions Φ and Θ below provided by Theorem 2.3 in Stachó (2019) [5] in
the simplest form without the need for any hint of their provenience.

We describe a family of local C1-spline procedures with really simple explicit affine-
invariant five-degree polynomials in terms of barycentric coordinates by adjusting first-
order data at the vertices. Though the result seems to be a variant of the procedure by
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Zlámal–Ženišek (ZZ), it cannot be deduced as a special case as it is free of the concept of
orthogonality. The proof, which may have independent interest, is basically different from
that of ZZ.

2. Main Results

Throughout this work, let:

Φ(t) := t3(10− 15t + 6t2), Θ(t) := t3(4− 3t).

Fix also any non-degenerate triangle T with vertices p1, p2, p3 on the plane R2 along with
three affine functions x 7→ fi + Ai(x− pi)

(
that is, fi ∈ R, Ai ∈ L(R2,R)

)
, and define:

F0(x) :=
3

∑
i=1

[
Φ
(
λi(x)

)
fi + Θ

(
λi(x)

)
Ai(x− pi)

]
(1)

where λ1, λ2, λ3 : R2 → R are the barycentric weights determined unambiguously by the
relations:

3

∑
i=1

λi(x) = 1, x =
3

∑
i=1

λi(x)pi (x ∈ R2).

Theorem 1. Let u1, u2, u3 ∈ R2 be arbitrary vectors such that uk 6‖ (pj − pk) whenever {i, j, k} =
{1, 2, 3}. Then, there exist constants ζ1, ζ2, ζ3 ∈ R that can be formulated explicitly in terms of
λ1, λ2, λ3 (see (18) later) such that the function:

F(x) := F0(x) +
3

∑
`=1

ζ`λ`(x)−1
3

∏
m=1

λm(x)2 (2)

along with its Fréchet derivatives F′(x)v := d
dτ

∣∣
τ=0F

(
x + τv

)
behave on the edges of T for any

triple (i, j, k) of different indices as follows:

F(pi) = fi, F′v(pi) = Aiv (v ∈ R2), (3)

F
(
tpi+(1−t)pj

)
= Φ(t) fi+[1−Φ(t)] f j+[(1−t)Θ(t)Ai−tΘ(1−t)Aj](pj−pi), (4)

F′
(
tpi+(1−t)pj

)
uk =

[
Θ(t)Ai + Θ(1−t)Aj

]
uk. (5)

As a consequence, given a triangular mesh, we can obtain modifications of the cel-
ebrated Zlámal–Ženišek (ZZ) spline procedure Zlámal et al. (1971) [3], Sergienko et al.
(2014) [4] regardless of second-order data, but with simple explicit scalar-product-free
formulas in terms of affine functions. Notice that, due to affine invariance, our results
cannot be deduced from ZZ, e.g., by setting the input second derivatives at the vertices
to zero.

Recall that by a triangular mesh, we mean a family T =
{

T1, . . . TN
}

of closed triangles
in R2 such that the intersection Tm ∩ Tn is either a common edge or a common vertex or
empty for different indices m, n. Given any triangle T ⊂ R2, Vert(T), resp. Edge(T), will
denote the set of its vertices, resp. edges, and we write Vert(T ) :=

⋃N
n=1 Vert(Tn), resp.

Edge(T ) :=
⋃N

n=1 Edge(Tn). By a dataset of first order for the mesh T , we mean a family:

F =
{
(p, fp, Ap) : p ∈ Vert(T )

}
with fp ∈ R, Ap ∈ L(R2,R). (6)

We call a C1-smooth function f : ∪T :=
⋃N

n=1 Tn → R a polynomial C1-spline for the data F
over T if the restrictions f |Tn are polynomials R2→R with Taylor expansion fp+Ap(x−p)
around the points p∈Vert(Tn) (i.e., f is continuously differentiable on Interior

(
∪ T

)
; fur-

thermore, there are polynomials P1, . . . , PN in two-variables with f ([ξ, η]) = Pn(ξ, η) when-
ever [ξ, η]∈Tn (n=1, . . . , N) satisfying f (p)= fp, ∂Pn/∂ξ

∣∣
[ξ,η]=p =Ap[1, 0], ∂Pn/∂η

∣∣
[ξ,η]=p =

Ap[0, 1] at the points p∈Vert(Tn)).
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For our later considerations, T = {T1, . . . , TN} will stand as a fixed triangular mesh.
Given any mesh triangle Tn, we write λn,p

(
p ∈ Vert(Tn)

)
for its barycentric weights (i.e.,

x = ∑p∈Vert(Tn)(x)p for any p ∈ R2), and En,p denotes the edge opposite the vertex p in Tn.

Theorem 2. Let (6) be a first-order dataset for T , and let
{

uE : E∈ Edge(T )
}
⊂ R2 be a family

of vectors with uE 6 ‖ E. Then, we can find constants:{
ζp,E : E∈Edge(T), p∈Vert(T)\E for some T∈T

}
⊂ R

such that the union F : ∪T → R of the polynomial functions Fn : Tn → R obtained by replacing
the terms λ` (`=1, 2, 3) in (1), (2) with λn,p (p∈Vert(Tn)) as:

Fn(x) := ∑
p∈Vert(Tn)

[
Φ
(
λn,p(x)

)
fp + Θ

(
λn,p(x)

)
Ap(x− p) + ζp,En,p λn,p(x)−1∏

q∈Vert(Tn)

λn,p(x)2
]

is a polynomial C1-spline for the data F over T such that:

F′
(
tp+(1−t)q

)
uE =

(
Θ(t)Ap+Θ(1−t)Aq

)
uE whenever E=[p, q]∈Vert(T ), 0< t<1.

Remark 1. In the course of the proof, with a straightforward adaptation of Theorem 1, we ob-
tain an explicit expression for ζp,E in terms of the barycentric weights of the triangle T :=[
Convex hull of {p} ∪ E

]
∈ T .

3. Preliminaries and Straightforward Observations

Our basic polynomials Φ, Θ have the Hermitian interpolation properties:

Φ(0) = Φ′(0) = Φ′(1) = 0, Φ(1) = 1, Φ′(t) = 30 t2(1− t)2; (7)

Θ(0) = Θ′(0) = Θ(1) = 0, Θ(1) = 1, Θ′(t) = 12 t2(1− t). (8)

Given any indices i, j, k with {i, j, k} = {1, 2, 3},

λi(pi) = 1, λi(x) = 0 for x ∈ [pj, pk] =
{
(1−t)pj+tpk : t∈ [0, 1]

}
; (9)

λ′i(z)v ≡ λi(z+pj)=λi(z+pk)=λi
(
z+(1−t)pj+tpk

)
independently of z, t. (10)

Remark 2. It is customary to express the weight λi in terms of the natural inner product〈
([ξ1, ξ2]

∣∣[η1, η2]
〉
= ∑2

`=1 ξ`η` of R2 as λi(x) =
〈

x− pj
∣∣〈mi|mi〉−1mi

〉
where mi = pi − ri is

the height vector of the triangle T with the closest point ri to pi on the line connecting pj with pk.
The formulas obtained by means of this inner product (as the explicit form of the ZZ basic functions
published recently Sergienko et al. (2014) [4]) are only invariant with respect to the isometries of
R2, while our approach is free of metric considerations and can be generalized to purely algebraic
settings by replacing R with an arbitrary field K. In the sequel, we write:

Gi :=
[
v 7→ λ′`(pi)v

]
(11)

for the (constant) Fréchet derivative of λi, regarded as a linear functional R → R, but avoiding
identifying it with the gradient vector 〈mi|mi〉−1mi.

Notice that, as it is formulated in terms of polynomials R2→R, the functions λ1, λ2, λ3
and F in Theorem 1 extend to to R2 by means of the same algebraic expressions; furthermore,
the identities (4) and (5) hold on the whole line

{
tpi + (1− t)pj : t ∈ R

}
. By (9), we have

λm(pn) = δmn in terms of the Kronecker symbol δmn =
[
1 if m = n, 0 else

]
; furthermore,

the monomials:
Cν1,ν2,ν3(x) = λ1(x)ν1 λ2(x)ν2 λ3(x)ν3

satisfy:
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Cν1,ν2,ν3(x) = 0 for x ∈ ∂T =
⋃

(edges of T) if min{ν1, ν2, ν3} ≥ 1,[
Cν1,ν2,ν3

]′
(x)v =

3

∑
`=1

ν`λ`(x)−1Cν1,ν2,ν3(x)G`v.

In particular, independently of the choice of the coefficients ζ`,

F(x) = F0(x) for x ∈ ∂T, (12)[ 3

∑
`=1

ζ`λ
−1
` ∏

m=1
λ2

m

]′
(x)v = ζkλi(x)2λj(x)2Gkv for x∈ [pi, pj] if {i, j, k}={1, 2, 3}. (13)

Proof of Theorem 1. Fix the indices i, j, k arbitrarily such that {i, j, k} = {1, 2, 3}. Consider
a generic point:

xt := tpi + (1− t)pj (14)

on the edge [pi, pj] of the triangle T. Since the weights λ` are affine functions,

λi
(
xt
)
= t, λj

(
xt
)
=1−t, λk

(
xt
)
=0 (0≤ t≤1). (15)

Since Φ(1− t) = 1−Φ(t), in view of (15), we obtain:

F0
(

xt
)
= ∑

`=i,j,k

[
Φ
(
λ`(xt

))
f` + Θ

(
λ`(xt

))
A`

(
xt − p`

)]
=

=
[
Φ(t) fi + (1−t)Θ(t)Ai(pj−pi)

]
+
[(

1−Φ(t)
)

f j + tΘ(1−t)Aj(pi−pj)
]
+

+
[
Φ(0) fk + Θ(0)Ak

(
tpi+(1−t)pj−pk

)]
.

That is, by (7) and (8),

F
(

xt
)
=t3(10− 15t + 6t2) fi + (1− t)3(1 + 3t + 6t2) f j+

+ t3(1−t)(4− 3t)Ai(pj−pi) + (1−t)3t(1 + 3t)Aj(pi− pj).
(16)

As for the Fréchet derivatives along the edge [pi, pj], in view of (12) and (13), we obtain:

F′
(

xt
)
v = F′0

(
tpi+(1−t)pj

)
v + ζkt2(1− t)2Gkv.

Notice that in general, we have:

F′0(x)v = ∑
`=i,j,k

[
Φ′
(
λ`(x)

)
[G`v] f` + Θ′

(
λ`(x)

)
[G`v]A`(x− p`) + Θ

(
λ`(x)

)
A`v

]
.

In particular, since at the generic point (14) on [pi, pj], we have xt−pi =(1−t)(pj−pi), resp.
xt−pj = t(pi−pj),

F′0(xt)v = F′0
(
tpi+(1−t)pj

)
v =

=
[
Φ′(t)[Giv] fi + Θ′(t)[Giv](1− t)Ai(pj − pi) + Θ(t)Aiv

]
+

+
[
Φ′(1− t)[Gjv] f j + Θ′(1− t)[Gjv]t Aj(pi − pj) + Θ(1− t)Ajv

]
+

+
[
Φ′(0)[Gkv] fk + Θ′(0)[Gkv]Ak(xt − pk) + Θ(0)Akv

]
.
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Thus, in view of (7) and (8), it follows that:

F′0(xt)v =
[
30 t2(1− t)2[Giv] fi + 12 t2(1− t)2[Giv]Ai(pj − pi) + t3(4− 3t)Aiv

]
+

+
[
30 t2(1− t)2[Gjv] f j + 12 t2(1− t)2[Gjv]Aj(pi − pj) + (1− t)3(1 + 3t)Ajv

]
.

Hence, in view of (13), we conclude that:

F′(xt)v= t2(1−t)2[ζk[Gkv]+Mi,jv
]
+ t3(4− 3t)Aiv + (1− t)3(1 + 3t)Ajv

where Mi,jv := 30
(
[Giv] fi+[Gjv] f j

)
+12

(
[Giv]Ai−[Gjv]Aj

)
(pj−pi).

(17)

At this point (3), (4) and (5) are immediate. Namely (3) follows from (16) and (17) by setting
t := 1. Equation (4) is an equivalent form of (17). To verify (5), consider (17) with v := uk.
Observe that Gkuk 6=0 since uk 6 ‖ (pj−pi). Thus, the coefficient:

ζk := −
Mi,juk

Gkuk
= − 1

Gkuk

[
30
(
[Giuk] fi+[Gjuk] f j

)
+12

(
[Giuk]Ai−[Gjuk]Aj

)
(pj−pi)

]
(18)

is well defined. Applying it, for the generic point (14) on the edge [pi, pj], we obtain:

F′(xt)uk = t3(4− 3t)Aiuk + (1− t)3(1 + 3t)Ajuk

independently of the location of the third vertex pk of the triangle T.

Corollary 1. By writing v = αuk + β(pi − pj), we have:

F′(xt)v = αF′(xt)uk + β
[
F′(xt)

]
(pi − pj) =

= α
[
Φ(t)Ai + [1−Φ(t)]Aj

]
uk + β

d
dt

F(xt).
(19)

Proof of Theorem 2. It suffices to verify the following two statements:

(i) Given p ∈ Vert(T ) and v ∈ R2, we have F(p) = fp and F′(p)v = Apv;
(ii) Given two adjacent mesh triangles Tm, Tn ∈ T , with common edge [p, q], for the points

xt = tp+(1−t)q on the line connecting p, q, we have F
(
xt
)
= Fm(xt) = Fn(xt) and

F′m(xt)v = F′n(xt)v for any v ∈ R2.

As for (i): Choose any mesh triangle Tn ∈ T with p ∈ Vert(Tn). By writing p1, p2, p3
with p1 = p for the vertices of Tn, an application of (3) in Theorem 1 with F := Fn shows
that Fn(p) = Fn(p1) = fp1 = fp and F′n(p)v = F′n(p1)v = A1v = Apv independent of
which mesh triangle Tn with vertex p is considered.

As for (ii): Let Tm, Tn ∈ T be two adjacent triangles with common edge [p, q]. Necessar-
ily, Vert(Tm) = {p, q, r} and Vert(Tn) = {p, q, r} with suitable mesh points r, r ∈ Vert(T ).
An application of (4) in Theorem 1 with p1 := p, p2 := q, p3 := r, and F := Fm shows that:

Fm(xt) = Φ(t) f1 + [1−Φ(t)] f2 +
[
Θ(t)A1 + Θ(1− t)A2

]
(pj − pi) =

= Φ(t) fp + [1−Φ(t)] fq +
[
Θ(t)Ap + Θ(1− t)Aq

]
(q− p).

The same conclusion holds when replacing (r, Fm) with (r, Fn). Thus, we have Fm(xt) =
Fn(xt) along the edge [p, q] (moreover, along the whole straight line connecting p and
q) independently of the location of the third vertices r resp. r. Since the functions Fn
(n = 1, . . . , N) are R2 → R polynomials, their union F :

⋃N
n=1 Tn → R with F(x) = Fn(x)

whenever x ∈ Tn is a well-defined continuous function.
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From a similar application of (5) in Theorem 1 and (19) finishing its proof applied with
F := Fm, p1 := p, p2 := q, p3 := r, u3 := u[p,q], v := αu3 + β(p2 − p1) = αu[p,q] + β(q− p),
and ζ3 := [obtained from (18)] we conclude that:

F′m(xt)v = α
[
Φ(t)Ap + [1−Φ(t)]Aq

]
u[p,q] + β

d
dt

Fm(xt).

We obtain the same when the index m is replaced with n, though the values ζ3 may
differ in (18) when calculating with p3 := r for m and p3 := r for n, respectively. We
know already that the functions Fm, Fn coincide along the common edge [p, q]. Therefore,
with the combined function F

(
F(x) = Fn(x) for x ∈ Tn; 1 ≤ n ≤ N

)
we indeed have

F′(xt)v = F′m(xt)v = F′n(xt)v = α
[
Φ(t)Ap + [1−Φ(t)]Aq

]
u[p,q] + β d

dt F(xt).

4. Version in the Pure Algebraic Setting

We consider the possibility of replacing the real line R with an arbitrary (possibly finite)
field K. Though ordering is no longer available, in particular, we cannot speak of edges
[p, q] =

{
tp+(1−t)q : 0≤ t≤1} or triangles T = {tp+sq+ (1−s−t)r : 0≤ s, t, s+t≤1

}
in

K any longer, the concept of lines Line(p, q] :=
{

tp + (1− t)q : t ∈ K
}

connecting distinct
points p, q ∈ K makes sense and is widely used in algebraic geometry. From classical
geometry, we can also save the concept of non-degenerate point triples {p1, p2, p3} ⊂ K2 by
requiring that the expression p1∧p2+p2∧p3+p3∧p1 (which corresponds to a non-zero
multiple of the area of the triangle with vertices pj in the case K = R) should not vanish.
The parallelity of two vectors u, v ∈ K2 can also be well defined with the property u∧v 6= 0.

On the other hand, it is also well known that the formal derivation d
dτ ∑n

k=0 αkτk :=
∑n

k=1 kαkτk−1 (α0, . . . , αn ∈ K) gives rise to a calculus with multivariate polynomials with
coefficients in K preserving the familiar identities as the linearity, Leibniz rule, and deriva-
tion formula of composite maps. Thus, since our computations in Algorithm 1 involve only
polynomial functions, we can conclude that the following theorem holds.

Theorem 3. Let [p1, . . . , pK] be a sequence of distinct points in K2, and let
[
[in,1, in,2, in,3] : n=

1, . . . , N
]

be a sequence of distinct triples of indices 1≤ in,1< in,2< in,3≤K such that the triples:

Tn := {pin,1 , pin,2 , pin,3} (n = 1, . . . , N)

of points are non-degenerate. Then, given any sequence
[

fn : n = 1, . . . K
]
, constants in K along

with a sequence
[
An : n = 1, . . . K

]
of linear forms K→K and any family

[
um,n : 1≤m<n≤K

]
of vectors in K2 such that um,n∧(pm − pn) 6= 0 (1 ≤ m < n ≤ K), the sequence [F1, . . . , FN ]
of polynomial functions K→K obtained with the calculations in Algorithm 1 has the following
properties:

(i) Fn(pk)= fk, F′n(pk)v=Akv (v∈K2) whenever pk∈Tn for some n;
(ii) Fm|Line(pi, pj) = Fn|Line(pi, pj) whenever i 6= j and {pi, pj} = Tm ∩ Tn;
(iii) F′n

(
tpi+(1−t)pj

)
v =

[
Θ(t)Ai + Θ(1−t)Aj

)
uk (t ∈ K whenever {pi, pj, pk} = Tn.



Mathematics 2022, 10, 776 7 of 8

Algorithm 1 . Triangular C1-spline with first order data

Require: K ∈ N = {1, 2, . . .} for the number of mesh points;
List vk = [vx

k , vy
k ] ∈ R2 (k = 1, . . . , K) of mesh points;

List fk ∈ R (k = 1, . . . , K) for function data at mesh points;
List Ak(ξ, η)=Ax

k ξ+Ay
k η, Ax

k , Ay
k∈R (k=1, . . . , K)

N ∈ N for the number of mesh triangles;
of linear forms for prescribed derivatives at mesh points;

List [in,1, in,2, in,3] ∈ N3 (n = 1, . . . , N) of indices with 1 ≤ in,1 < in,2 < in,3 ≤ N
such that Vert(Tn) =

{
vin,1 , vin,2 , vin,3

}
;

List um,n = [ux
m,n, uy

m,n] ∈ R2 (0 ≤ m, n ≤ N, m 6= n) of vectors
such that um,n = un,m 6 ‖ (vm−vn);

Ensure: List Fn(ξ, η) (n = 1, . . . , N) of polynomials with coefficients in R.
Calculation: Consecutively, for each index n = 1, 2, . . . , N, we compute the

polynomial Fn(ξ, η) by applying Theorem 1 and (18) as follows:

For ` = 1, 2, 3, let:
p` := vin,`

, f` := fin,`
, A`(ξ, η) := Ain,`

(ξ, η),
u1 := uin,2,in,3 , u2 := uin,3,in,1 , u3 := uin,1,in,2 ;

For technical reasons, for m = 1, 2, 3, we set also
pm+3 := pm, fm+3 := fm, Am+3(ξ, η) := Am(ξ, η), uell+3 := um;

After setting the actual values for using the formulas in the theorem, for ` = 1, 2, 3,
establish the barycentric weights and their derivatives as affine, resp. linear, forms,
in terms of the outer product [α, β]∧ [γ, δ] := det[α β

γ δ] = αδ−βγ (see [6] Berger(1987)):

D := p1∧p2 + p2∧p3 + p3∧p1,

λ`(ξ, η) :=
[
[ξ, η]∧(p`+1−p`+2) + p`+1∧p`+2

]
/D,

G`(ξ, η) :=
[
[ξ, η]∧(p`+1−p`+2)

]
/D;

For cyclic indexing, we set also:
λm+3(ξ, η) := λm(ξ, η), Gm+3(ξ, η) := Gm(ξ, η) (m = 1, 2, 3) .

Then, for k = 1, 2, 3, we compute the correction coefficients by means of (18):

ζk := − 1
Gkuk

2

∑
d=1

[
30[Gk+duk] fk+d − (−1)d12[Gk+duk] Ak+d(pk+2 − pk+1)

]
;

Finally, we let:

Fn(ξ, η) :=
3

∑
`=1

[
Φ
(
λ`(ξ, η)

)
f` + Θ

(
λ`(ξ, η)

)
A`

(
[ξ, η]− p`

)
+

+ ζ`λ`(ξ, η)λ`+1(ξ, η)2λ`+2ell(ξ, η)2
]
.

5. Conclusions

Our spline interpolation described above is a ZZ-type procedure providing well-
articulated explicit formulas of independent theoretical interest working even in abstract
algebraic settings. From practical view points, for classical plane splines, the method
is completely parallelizable, and it is clearly easy to optimize with respect to its free ζ-
parameters. Applications on 3D triangular complexes even with a non-trivial topology can
also be expected, though this seems to be no longer a straightforward task.
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