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ON THE NORM OF

SYMMETHRISED TWO-SIDED MUELTIPLICATIONS

Bosan MAGAINA AND ALEKSES TORN

The avthers provide precise lower bounds for the completely bounded. nore of %m

Toy
aprrator Tiuh B(HY = B{H} defined by 7 Tinla) = azh- bru . and the i jective

they compute the novm of this oparator
ﬁxaﬂézrmw:@& operators on H.

Purther,

norea Sw corresponding tense

Ei
i

e acking on the spate ¢f 4

1. INTRODUCTION .
Letk E. be a compléx m_:\@nw space and B{H) a:, alpebra aw sl bounded jinsar
»,3 operdtor

o b1 B{H) = BUH), @)= ez,

where-ay, b; € B{H), is culled ap elementary operator. As proved by Hasgerup in au
i, the completely bounded norim of stich an

uipublished rhdnuseript and by Smith {1
operator is equal to the Haagerup norm of §_ o @ mm Sometimes the usual norm of ¢ is
dqual i the n.o:w.m_.v ely bonnded notin {in Muwaavi% if we consider mx, operator @acting
o1, Say; the Calkin algebra, instead of B{H )}, ss¢ I5]}, but in goi neral there is :c known

simple expression for the norm of an elementary o@ﬁmhan on B{H). (See |9] for a survey
of this problend.) Besides the stinplest dase

s when & == 1.in (1), the bést understood case
is that of generalised derivations for w..wm&. Starapfi {14] found an explicit formula for

the:ngrm oh BUH )} (see also the survey article vc Fiatkow [2] for more referenives).
For a.sH ighily more géreral operator .

{23 . Fos: B(HY - BUH), ﬂi?w azhtbra

H

¥,
anihor was J.MEE,:;, by Bl

. ; 9 ) 3
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3
for all wh & B{H). Mathien |7] praved (3} wi 273 and Staché dnd Zala
improved this to ¢ = 2{v2~ 1) for gensral o and m Al Ay £ oem M,.m, @ and B are s

3

1t was gﬁmmﬁaga in 16, p. 497] that ¢ = 1 in general. I tums Q:_, that 1t would be

t to prove thi .ncm ecture when ¢ and b are 2 x 2 matrices with o dizgona
1] : .

vo&.m. . but we have not bekp able to overcomes the ﬁ..é..q.%:?amzzm %Ew:#mmm in this

special case. I principle the problem is solvable by the decision procedure of Twski
(15} for mmma:m:a; inivelving polynomials of sev Sw varisbles (we are grateful to our

& Marko PetkovSek ubm {o Professor h».mmﬁ Strzebonski from Wolfrdm Ressarch
for :,w .ﬁoﬁi:?; but practically the probiem $oems too hard for the eurrent corputer
implementations of this proceduit. S

colleng

Here we shall prove by » simple argument the estimate (3) with ¢ = 1 for th
completely bounded norm of 7, 5&?&.& the usual norm, It is known that sach uoﬁaé
clementary operator of length 2 {that is, K == 2 it (1)) Is antomatically cotnplétely positive
{see mm...* 4; 8; 161} in conbrast to {his the completely bonnrded norm-of stch an Operator
cin .w.m different from the usval norn even in the case of T, (Example 4.5},

“or the injective tensor norm [I-|]; a very stmple argument will show us that

e ® b+ b dil

with the best possible constant ¢ = 2(vZ ~ 1). By the minimality of ¢

& injective
a is implies the above mentioned result of [12].
sn a, b dré self-adjoint, and H réal or dimM = 9 if H is coniplex, the nori of T, 4
can mm n«.m:m:ﬁmm explicitely. This is a consequence of the main result here {Theorem 4.3)
swhich provides a sirisple forinula for she norin of the sypmmetrised dwo-sided smltiplication
opérator

(@) Syy  B(H) = B, ‘2 + bhrd,

;

where B} 1s the space of all conjuiate-linear bounided operators oi H. Thé opérator
S $tems inore acosssible and natural than 7,5 sinee i preserves the space of all self-
adjaint operators in B(H . )
We conclude this inbroduction by recalling some aolation dnd definitions. Any miap
+ B{H) — BlHY induces a family of maps
mz@; by

e,

=

%m«ﬁe.qu = Twmm =

% is $aid i be completely

for any matrix gl € M, mmm wﬁu i supy, mw:m is finite the g
bounded, and this sipremum defines the dompletel ded norm | - Of ¢
course, the norm in My {B{H)) is given via the ides ww‘mwam ?Ammmw ar B{FIPY) (We

1] or {108 for pors on coinpletely bounded mipphings)}

: w&aﬁmmmm = M. (B{H)). n 2 1,

Symmetrised twossided mulbiplications 95

algebiriic tensot ?s@ el B{H @ B{H ) is défined by

By the naturs] map

= M; ﬁmu&m

we 55 algebr Eqm:w &35?‘ mﬁw U ® »w b« v v i.. ::p. wm:u cw x:,v?:&zmm ¥ mvﬁic_.m

2, >z.mm‘m.m.w<_f5‘_w FOR THE nov% UETELY BOUNDED. zcw

Let A, denote the algebra of qoSv_ox 2x2 Eﬁzém

THEOREM 2.1. The Em@&:

holds for all a;b € B{H),

" Proor: Fist assume that dim H = N

B{H) with A, Let @ = [a;b},

e

= [hyalt. We shall use thi notation o oh = 0 & @ 4 w ®a It siffices fo prove thas
g.

1

the m.r:ﬁﬁcv norm of g & b satishes | wMultiplying o by a suitable
constanh £ and b by 1/ we may assume firs and then (normalising) th
= | = {5}, Noté wrk aA "t G AD = meﬁ..a ¢ fnveitible abrix A € My; morecver,

follows from {1, Lemma 8.0.3] that: .+ CE

N2

m.,ﬁm%wﬁ.mcmﬁ sincs for gach
atiy for colunms, by using the
tive walrices A

where the infimum is
unitary 2 % 2 matyix 2 mm?a that [|ged =
ffices: to take in (6] he Ew,m ¥ ﬁﬁww all pos
have to prove that

WBME &E,mz;:oﬁsg it & )
anly, and clearly we may also assume t that dep A== 1T vx,f

<

M& w ith d

ooy,
o

e

-
fl
i

f
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Then

B2 zmh:xm and A. Thrnge

e

gATEO Ab =

Thus (73 can be written as

(8]
P

| Aac™ — 2 Re(Bab*) + C1*|| - || Ao o+ 2 Re( B a) + CIh

%

We may assume that 4 2 € {the case ¢ > A is treated in the same way). Then, noting

that f[Tosll, = Faavabefly for all nnitary v, 4 € My, we may replice o and b by |

| and

w’h, respectively, where e = ujal is the poldar decomposition of a. In other words, W

may assuine that a i§ positive. S0, ¢ and bare of the form a = Mu w.“ and b= b :
where f € 10,1} and 8y; f5. 5, A1 € € Then 0k 5
. . . . A - 3 807 1807 &
Acit” ~ 2Re(Bab™) + Chb" = A - 2Re(BB) + C(IAF +18°)

and

An'a+ 2RelBb ) + C8"h = %-m

The fact that det A
gince € 2 0, we r.ﬁm that 4 4

e
2
L.

+ 2 Re(HB,) + + OB

== 1 imphes mww & giinple :o?ﬁi.mﬁbw_v that [B w ~ A = —1, henue,
B+ B 2 0. Sines A 2 € and AC =1+ 8]

b4

we also have 4 > 1 and it follows S.an

Tw

this proves
~wummm.v oy

£ > O and choose unit

K be two dimensional space tontaining € and 7, and let s be two 4 :mﬁ?xﬁm ap

incc the norm of each matrix elways dominates the msxithal absolute vilue of its eniries

Re(BE,) + G141 + ,,&miﬁf:? (BB,) + O+ 15))
> (44 C B~ 2Re(H5,)) (4 + CIAI? + 2 Re(BF )

(4+CIAP) - 4(Re(BB)) » (A+ € C,E r.ﬁ 3]
(A+ Qmm_ﬁwq\,&?__w Bl =(A~C } )P

A (1= 18F)" +4 F)tsalp

%

W

if

il

W

N

{8} and the theorem when dim H =2

e when dim H > 2 can be reduced to the case jush proved as follows. Let
12 £,n € H such that ¢ .

ax g gl Mw £

containing of and . m.aaﬁwmm,mcwm, let p & B{H} be the orthogonal projection onbo K,

and lo

Then mamwwm 2

NMQw ) be a partial ﬁuﬁﬁ vy with the Hnal space 7 and the wxs% spabe I,
—¢ antd lghpll 2 #0ll—c. H is easy to verify ihat §7),, ol

m_ NACP@H YA

Symmetrised

consicad multiplications - 3

space Ky, W foll

T ,.“,éc@ wé MX{% ,wfa

3. Aw M,Q.??i FOR THE INIBCTIVE TENSOR NORM cm.. c®@b+iBa

srodnet m,sm ol Banaeh spaces

is mei for e

F* denotoes the dual of Erand {/ wwww._m@v

...e.mz. isdciati m«:nxa nw wE Bk m {eontituous) fine
x (F*); by Blf,9) = (F © g3{w), {wll, 18 just the supremum norm of &,
% 5 b1 asonahle tensor cross nomm, the following:

Sine .. axw ifject 1
proposition immediately fmplies the main ».mwm@.om.mwwa

PROPOSITION 8.1. Leboh € B(HY and let 7, =0 ®b+b @ Then

Proor: Wi iy dssumi 5@ = 1 and regard a, 1. b &s Parictions on A
ﬁ (HY r and 7. a8 o funclion on rw %A in the usual w: iy, Multiplying o and b by
Z:Ew? scalars of modulus 1, we may assume that o (o) = 1 and bitg) = 1. for soine
‘g, by € AL Pk oy = miﬁ and b= en we ww.&,

m,..w? BESENN

o So suppose that joy | < V2 -

‘im-\,.

14 agdy] >

ane the proof is completid.

RiMARK 3.1, It i5 essy $0 see shat the $ {2 1 mw mu“,@oaﬁom 4.1 can not
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%
The followhng proposition

that in general T,

1 w%a ssition 3.1 dnd Remark 41

o

does not a 1w on operatons of ronk 1,

Paopusttion 3.2. JFbr each

iy
By

& BUHY & BUH) we have thar

"

ol = sup

oo e B el == Lrenikie) = 1.

Proor: Put wiz) = E.ﬁv and T #

£ ihe B T

= 1 rank{z} = L, Since eabh rank 1 operasor
for sofhe v, £ € H, we have

supt [ (e M 2l = 1, rank(w) = 1, g} = [In]] =

= lall = vl =gl =1

w2 Sup

‘here the last supiemum is taken ovet all functionals of the form f = v 8%, 4 = £ 9T
Sinee each element in the predual 7{H) of B{H) is 2 norm limit of convex combinaiions
of elements of the ,.ﬁ.u, 15 ®u and the unit Hall of T1 HY i wenk® dense in the unit b
of the dual of B{H), it follows that fw|; s equal to the injective

all
tiorin . i

4. THE NORM OF THE OPERATOR I =+ ¢*2b + b re Ox B}

Tet Wia} and w6{n) be the spatial numericsl ranie snd the nomerical radius, Tespes-

tively, of an operitor o € B(H).

LrnMa 4.1, Le
Then

H be afinite-dimensionsl Hilbert space and fet 0,5 € B(H).

v&

I ; -

(9 w(a'a+ Bh) = mipw m tate -+

 that

i1 Synishétrised.two .eww ot mﬂxﬁ; Bt 33

Conversely, lot ns assume that (@) ke aae b 3 fet p & B
i 3y () quenes

s orthogonal prajéction anto K. ww it s, = a2
{ o .} of unit vetlors in 1 such that

Siiice H i finite diménsional, the unit Ballof 2 is compac

&mﬁzas% of Ti 3353 3:? &z,_gz enct: again by {7} and los n = lim, 9, Then
that {Enny =17 “hence cn = Q,LR leli = 1) and
5o 7 € K. From N L m al ,,o Sxaém wmﬁ. L%?:u i * m ;f 1= Bt 2 Qs
dividing by 5., v

Letiing rn —+ oo Wé aomﬁa% shat {dy, n) > B, wm A & sainf wily, 554 :xq mﬁxﬁ the sequence
ty = i“\« n} inistead of &, = = L, we ibtain a unif vector v.€ K sich that mzm vy € 6.
Sinee the numerical tan ige I convex, mnowu.&? av 2 0 and {dv, ) < 0 it follows that
Wipdich So ther exisis & unil vee E fe m, such that {(bb — u"a} m\
This together with (a"a 4 BH)E = £ implies: = 1/2 and the proof is
soinpleted. . i

Mwmﬁ.mnuva .me« .W_m } mmwogm the space of all bourided conjugate-lingar gwm.?cm.w
o H and Sap 2 BLHY = mxm s the operator defitied by Sypiz) = @ eh + 8 za. Dein
by BUH ) sulbadjoint wnmwﬁmﬁm in BUH). o .

THEOREM &.2. Foralla.be B we b

Faoor: We may assume tha w,ﬁ =1 Fi Eﬁxﬁvs:. sinee 84y = S, :m.
for all ahmm rs 8 # 0, we may assume :mm EEW e+ .,ﬁkww,.@ ma o+ B mmm .

er,

wpose first-that H is fink ?m:ﬁéﬁ& w

& satislving M..m = [jelff = 172,
1 confugate-Hnear sometry ¥ by &

ihrear .m«,mﬁém% on £

15,0k € min
mm,mu?m:nw Rt

finite-dimensional,
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IF H s infinite- % w?&&uﬁ let {p,} beaneto

ihereasing (o the identity. Denote by o, the vesiriciion of pyo to the. gie of my, and

analogously for 5. For mé% n ek 4, be mm% that minlfte]as + (1/0kba
+ {18005, L Then we have

SN Mw byt Gn

Ea

“abs Bl m 2 sup la"pazped + U parpate|

(Bl pic) (pen ) (Pt} |

E Lo b (Mt. it h ﬁM =
3 N £y nm%
Passing to a subnet, if necessary, assume that %, .~ #,. Then
M 3, v m 1.7 . oA H jor W
lipy ?a @ 4 =815y Ga"e + —Fbl 2 omiin wg o+ ~bb,
n Nz Na i oy m ]
Hetice, _ _
[apll 2 > min ‘ '+ -.eé M :
Since the ravarse inequality is clear, the theorem is proved. 1]

PROPOSITION 4.3. Let Ry : B(H) — B(H) be {real) linear mapping defined

by Boa{n) = a'eb+ . Ther

12551

e

=

2y D
33 b
e

Proor: The proof is very similar to the previous one, sb we shall skip the details,
Chouvse a unit vector £ £ satislying the coidition {10} in Letnma 4.1 and a unitary operator
uch that @b€ = af. Then H, 4| 2 {(wzb+ .@n&ﬁvmtb w u{d by = ljofe + BB

» reverse inequality vote that

.mw, Ev m - e b »

" < flata + b3l b A,\mﬁmﬁ m
i . 0

PROPOSITION 4.4. Letu, b€ B(H} beself-adjoint. JFH is red] or dim H =2,
then

min ?mn s
534

LU H

» W H s re

dim ,,,ﬁ..w == 2. Choosé an orkhonormal basig mx

just Theorem 4.9 for regd sealars, 56.1
gt of H ore

t g

dos of b oare resd, and the twe {in

H be commplex

wit

ve ko which 2 is

Fes v

diagonal. Since b is self-adioing, the dagonal en

general complex conjugate) cmw fngonal enbries of b can be amade vsdl by re mvrw ng M

with Oy foy an approprinke scéalai 4 of Eo%amm 1. Thus, we may asswme that o and

ank orthogonil prdjections

By Lemma 4.1 thers e

Syrinmgteised two-sided multiplicat

Iy o

o the prool of
1. Ther

ieorent ¢

: m.a& g e {
@m oist mabrix w s &w ing - b pad ,lr
3 :K same ag in Theorpm 4.2 .waa will be Qz_er.m

,-..

CORDLLARY 4.5 Jlabe M are wlm.,.:w :v then

Prpok: By Propodition 4.4 we have-

={Tasl S S L
The main resuli in [18] states that, whenever a, b € B{H) ave self-adjoint, [{Thslsum,, |
> ol Il . The following estiniate ¥ sharper,

henee |75

COROLLARY 4.6. Leto,be B(H) be selfadjoint. Then

stip Em, Hpep)? + ~(pip)?
P 2 |

o ] ok

R2
ranidl vwﬁm

Proor: Thie frst inequality follows EE%@SE? from Proposit don 4.4 since

for eachi projection p € B(H). Ho nmo,.s the second ifdquality, w
1; Note that if 1 2 1 then [|t{pep)® + (1/0)(pbp)*}
@it when p s the projection to thi span of {€,ué}, whete € Is.a vector on
fts horm. A mw.,&w."ﬁmaﬁas@ i available if {172) 2 L. i

ToalBUH ) eal| 2 [ Trap ais | B{pH)eal|

¢ piay assume that

> :%mvw, and {|papl

,:. mﬁﬁ:

Schmidt

For 2 % 2 miirices we have a betier & ;

novm,

COROLLARY 4.7. Ifube Mg are selfiadjor

PROOF: Wi may ssdtme

ists o tnit = ﬂ, ‘Emw .m

we have
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; 3 ,
g .

Py

“ !

can not Be genevalized (0 seli-ad _owm«

Clearly, the inequalisy | T4 » MT :

matrives for i > 2. As an example, consic Em 3 5 3 diagonal matrices o k= did
and b = ding{0,0,1). {In this example we @_mc have shat T4, = 1=

the eflimate in Thinrem 2.1 cant hot be MWSMS&&..V

ixaMpie 4.8, IF A s complex and dim Jf > 2; then ,Ms%@ {ta?+ g.c& can be g 542
>
than [[Thglagmn,, |- Toses this, fitst observe the following.

I H is finite dimensional and a.h € mhm.w are such that
(Taplsgnell = wie® + 8 =1, :

shen there exists 1 unit veetor £ € H such that ?N + @._M.Hrm = £ and {af b5 € B

. & BH) with Jsl = |

{{azmb+bra)é, rwm = 1 ,Gmwsm the fact that equality holds in the Sc
)i

Indeed, clivose 1 =

il the two vecturs are lingarly dépenden, we deduce from

T
i
N,
G

W

that {a® + B¢ = £ and then |2 = fjig)® = JB and zbf = Zm ﬁ.m
for some 85&% numbers « and £ of ﬁ?Ew us 1. Theh from Tm
(1/Da -+ ..memm &= 1 it follows thet o = #. Since x .ma «.:E:: tion, we H
+ /oim m aé + ABE]} for each coiniplex number A. Bug this i
Re :m ) < He (MBE, a&}). which tmplies (g, b} & N
,Xo.,.a I

b£))
¢

zf -

oo
owed
H

0= ,
V2 i i
&= lwu 9 0 angd b 5 ;
N 1
9 0 0 5 00

B B g

Synungtry We may assime

{1 © Bymunetrised teo w;?ﬁ :m_w: licaiions 17

corner of o -+ ¥ is

and since mm, narin of 2% 2 matrix e the lower il (34 0/,
Y = 1. wm Mhelsona| =4 &wmu mw;.u.vm,m.?uf‘.w obier «.:,rcm e f&ﬁ have
ere £ ﬁ m&;m_
w. 3. However, in our case ,au;w)

we liave

{af b

sipenvalye 1 = @ .@.w

i..ﬁww. ¥

1??« 2} mr:

In view of © o and

ioliary 4.5 ¢ = |70 sl for all 2 % 2 fiatiicn

The following exarple shows mua% his is not the am%.

m.( Gt

oo gt pned b =

Bxampug 4.9, Puia=

109

et \ =5

1. Thet

) .ﬁ: T21

8o [[Tosll = 1. We shall show that [[7 im = /2. First we note that 7,,(¢) = axb 4 baa
= gre 4+ uzw. Furthermore, sa-in the proef of THeorem 2.1, dénote by A = | 4
g

Fhaitive faatiis with det A = 1. Let 4 = BE+72 B = m..mgl&, G o=+ A and
note thal det A = 1 is equivalent to thé cofidition AC — m% = 1. Then, as in the x...om.m
af mr arem 2.1, to compute |75, that is, the :mwwch norm of w = ®mi:®

consider the représentations of wof axa formg . ..

<

w = (ye— Pu) & (o8 + fuj -+ (—fe+ ) & (Be 4+ ).
Then by a short computation, .

e, = M:HH.M {4 ;m.,..gmxx Nmm \_

Fiirthermors, R

where £~

d the norm of the lasi

Thersfure
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COBOUNDARY QUATIONS OF
EVENTUALLY EXPANDING TRZ zmﬁcmz» TONS

Y cmzmzmo. %E )

Lot 7 be ari eventually gxpatisive §:wi:mmxcx on :x. :m: interval sabisfying the
Markov condition: Then T'is an ergodic :.Emrwm: ;ﬁ o8 MA B, #) where X = [0, 1);
B is the. m&m..a-p?&:ﬁ gt the unit intérval. int absclutely
continuous measure. Lt G bea fnite ,ﬁmcmmcsw E m% nzim griva or the whole circle

“group snd ¢ X -+ Ghea measurable fiindticn with: finite: diccontinuity points. We
invéstigate ergodicity of skew product’ seansformations w.a on «A x G by showing the
solvability. of the cobbunddry equation ¢ i.?».av é?& E 1. Iis Srw on with
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1. INTRODUCTION

Let {X, B, ) bid pro obability s space and F be o measure preserving sransfo

on X. A transformiation 7" on X is called ergodic ; the constant function is the only
;Bmﬁ&: function and it'is called weakly ‘mi%iig Hm the constant function is the only
- 93?5»?85 with respect to 1. A 23,\;3 Emmmw: ww Sm&m?ﬁaﬁ:g 7 is called exact

Gl 3 T8 is the trivial o=algebra Smam:nm of empty mmw Ei whole sét fiodulo measure
; n=,
zei0- ek So exdet sransformation dre as. far from being invertible as podsible. Rec

if 4 transformation is exact then that {ransformis atic is ﬁaiw mixing {{11}).

A ?mamfg differentiable transformation 7710, 1) ~10, 1) is sald to be eventually
ve if some iterate of 77 has its der -ative bounded away from 1 in modulus; that
,,j 3 1 everywhere for some n. Lt {A;} be 4 countable (or finite) partition o
il Eﬁmné_vwa 1} by subintervals. mzcuc% m&w an m.,‘@ﬁ:m_: .vx@m?mcm map 7 on
al [0, 1) satisfies ,

. Tl s, has a. CP-extension to g@ acwEé of mv

i .m;rﬁ A; 15 strictly monatone,
4 T(a = [0.1) and in a? A.?é th

- pariition is infinite
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