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1. Introduction

Throughout this work let H,H(1), . . . ,H(N) be arbitrarily fixed complex Hilbert spaces. Our chief aim will be to study the
structure of the strongly continuous one-parameter automorphism groups of the space B = B(H(1), . . . ,H(N)) of all bounded
N-linear functionals H(1) × · · · × H(N) → C that is the maps

U : R → A := {surjective linear isometries B → B}
with the group property U(t + h) = U(t)U(h) (t,h ∈ R) and being such that the functions t �→ U(t)Φ are continuous for
all fixed Φ ∈ B. The case N = 1 is covered by Stone’s classical theorem [8,12]: given a strongly continuous one-parameter
subgroup U : R → U (H) := {unitary operators H → H} � A, there exists a possibly unbounded self-adjoint linear operator
A on some dense linear submanifold of H such that U(t) = exp(it A) (t ∈ R). In the case N = 2, as a simple consequence
of the theory of unbounded C∗-algebra derivations [2], in L(H) � B(H,H) we have a precise abstract description of the
special one-parameter isometry groups of the form U(t)X = exp(it A)X exp(−it A) with a suitable possibly unbounded self-
adjoint operator A. Our problems with N = 2 and B(H(1),H(2)) � L(H(1),H(2)) are naturally associated with Jordan triple
derivations [7,10], and may have far reaching importance even for the description of all strongly continuous one-parameter
automorphism groups of general JB∗-triples (complex Banach spaces with symmetric unit ball). Namely, by the Hille–Yosida
theorem [3,12] the infinitesimal generator of a strongly continuous one-parameter group of automorphisms of a JB∗-triple is
a possibly unbounded Jordan triple derivation. As far as we know, the bounded JB∗-triple derivations are well-understood [1].
However, no results seem to be concerned with the unbounded case even for Cartan factors. From a Jordan theoretical view
point, L(H(1),H(2)) is a typical Cartan factor of type I where the connected component of the automorphism group contain-
ing the identity consists of mappings of the form X �→ U X V with suitable unitary operators U ∈ U (H(2)) and V ∈ U (H(1))

[6,11]. Hence the structure of all norm-continuous one-parameter groups W : R → Aut(L(H(1),H(2))) � A is immediate: in
this case W(t)X = [exp(it A2)]X[exp(it A1)] for a suitable couple of bounded self-adjoint operators A1 ∈ L(H(1)), B ∈ L(H(2)).
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It seems that even the strongly continuous one-parameter subgroups of Aut(L(H(1),H(2))) are not fully described in the
literature. One may expect that, for any number N of factors, the elements of the identity-component of A should be
mappings of the form

[U1 ⊗ · · · ⊗ U N ]Φ := [
(x1, . . . ,xN) �→ Φ(U1x1, . . . , U N xN)

]
(Φ ∈ B).

This seems also not yet been established in full generality, and Jordan theoretical arguments cannot be expected to be
suitable for the proof. Our main result, which is prompted by this conjecture, is the following seemingly plausible statement.

Theorem 1.1. Let U : R → A(H(1), . . . ,H(N)) be a strongly continuous one-parameter group such that

U(t) = U1,t ⊗ · · · ⊗ U N,t (t ∈ R)

with suitable unitary operators Uk,t ∈ U (H(k)). Then there are possibly unbounded self-adjoint operators Ak : dom(Ak) → H(k)

(k = 1, . . . , N) defined on dense linear submanifolds in the respective spaces such that

U(t) = [
exp(it A1)

]⊗ · · · ⊗ [
exp(it AN)

]
(t ∈ R).

Corollary 1.2. If W : R → Aut(L(H(1),H(2))) is a strongly continuous one-parameter group then W(t)X = exp(t A1)X exp(t A2) for
a suitable couple of possibly unbounded self-adjoint operators Ak : dom(Ak) → H(k) .

The main technical obstacle for the proof arises from the fact that an operator U1 ⊗ · · · ⊗ U N admits alternative repre-
sentations as [(κ1U1)] ⊗ · · · ⊗ [(κN U N )] with κ1, . . . , κN ∈ T := {κ ∈ C: |κ | = 1} and

∏N
k=1 κk = 1. Our considerations, which

rely heavily upon complex Hilbert space structure, can be divided into three main steps. First we establish that, under the
hypothesis of Theorem 1.1, there are multiplier functions κk : R → T with

∏N
k=1 κk(t) = 1 (t ∈ R) such that each component

t �→ κk(t)Uk,t is strongly continuous; that is, all the functions t �→ κk(t)Uk,t hk (hk ∈ H(k); k = 1, . . . , N) are continuous from
R into H(k) with norm topology. Assuming then without loss of generality the strong continuity of the components t �→ Uk,t ,
we show that the families {Uk,t : t ∈ R} are Abelian and then, by means of their Gelfand representations we can choose the
multipliers κk : R → T even in a manner such that we have Uk,t = κk(t)U t

k with some not necessarily strongly continuous
one-parameter groups t �→ U t

k . We finish the proof after a series of probabilistic arguments where we establish that this
representations can be improved to the form Uk,t = χk(t)Ũ t

k with strongly continuous one-parameter groups t �→ Ũ t
k and

continuous functions χk : R → T, respectively.

2. Preliminaries, adjusted strong continuity

Throughout the paper R and C are the standard notations for the sets of real and complex numbers, respectively
and T := {κ ∈ C: |κ | = 1} denotes the unit circle. Without danger of confusion, in each of the spaces H,H(1), . . . ,H(N) ,
we shall write 〈.|.〉 and ‖.‖ for the inner product and the norm, respectively. The products 〈.|.〉 are supposed to be
linear in their first and conjugate-linear in their second variables. With this convention, h∗ will denote the linear func-
tional x �→ 〈x | h〉. Conveniently, we shall use the customary tensor product notations [9, Section 1.3] in the space
B = B(H(1), . . . ,H(N)) of all bounded N-linear functionals H(1) × · · · × H(N) → C equipped with the usual operator norm
‖Φ‖ := sup‖x1‖=···=‖xN ‖=1 |Φ(x1, . . . ,xN )|. Given a family h1 ∈ H(1), . . . ,hN ∈ H(N) of vectors, we shall write h∗

1 ⊗ · · · ⊗ h∗
N

for the elementary functionals

h∗
1 ⊗ · · · ⊗ h∗

N : (x1, . . . ,xN) �→
N∏

k=1

h∗
k(xk) =

N∏
k=1

〈xk | hk〉.

Also we shall write A1 ⊗ · · · ⊗ AN for the composition operators

[A1 ⊗ · · · ⊗ AN ]Φ := [
(x1, . . . ,xN ) �→ Φ(A1x1, . . . , AN xN)

]
(Φ ∈ B)

if Ak ∈ L(H(k)) := {bounded linear operators H(k) → H(k)}. Notice that

[A1 ⊗ · · · ⊗ AN ]h∗
1 ⊗ · · · ⊗ h∗

N = [
A∗

1h1
]∗ ⊗ · · · ⊗ [

A∗
N hN

]∗
.

The factorization of non-trivial composition operators is unique up to constant coefficients: if A1, . . . , AN �= 0 we have
A1 ⊗ · · · ⊗ AN = B1 ⊗ · · · ⊗ BN if and only if Bk = βk Ak for constants with

∏N
k=1 βk = 1.1 In particular for unitary operators

Uk, Vk ∈ U (H(k)),

U1 ⊗ · · · ⊗ U N = V 1 ⊗ · · · ⊗ V N ⇐⇒ Vk = κkUk, κk ∈ T with
N∏

k=1

κk = 1.

1 Indeed, evaluated at y∗
1 ⊗ · · · ⊗ y∗

N , the relation A1 ⊗ · · · ⊗ AN = B1 ⊗ · · · ⊗ B N entails
∏N

k=1〈Akxk | yk〉 = ∏N
k=1〈Bkxk | yk〉 for any x1, . . .xN . Given

any index k, if x�,y� ∈ H(�) (� �= k) are so chosen that 〈B�x� | y�〉 = 1 then for any x,y ∈ H(k) we have 〈Bkx | y〉 = βk〈Akx | y〉 (x,y ∈ H(k)) with βk :=∏
�: ��=k〈A�x� | y�〉. The converse implication is trivial.
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Lemma 2.1. Assume ‖Φ − Ψ ‖ � ε where Φ := g∗
1 ⊗ · · · ⊗ g∗

N and Ψ := h∗
1 ⊗ · · · ⊗ h∗

N with unit vectors gk,hk ∈ H(k) . Then

dist(Tgk,Thk) := min
κ,μ∈T

‖κgk − μhk‖ � 2N−1ε (k = 1, . . . , N).

Proof. Fix any 1 � k � N . Define κk := ∏
�: � �=k κ� where for � �= k we set κ� := 〈g� | h�〉/|〈g� | h�〉| if g� �⊥ h� and κ� := 1 if

g� ⊥ h� . With this choice

κ1, . . . , κN ∈ T,

N∏
m=1

κm = 1 and 〈g� | κ�h�〉 = ∣∣〈g�

∣∣ h�〉
∣∣� 0 (� �= k).

Observe that for the vectors x� := g� + κ�h� with the values ρ� := 1 + |〈h� | g�〉| we have

〈x� | g�〉 = 〈x� | κ�h�〉 = ρ� ∈ [1,2], ‖x�‖ = 〈x� | x�〉1/2 = (2ρ�)
1/2 ∈ [√2,2] (� �= k).

Thus, since also Ψ = [κ1h1]∗ ⊗ · · · ⊗ [κN hN ]∗ , for any x ∈ H(k) we can write

[Φ − Ψ ](x1, . . . ,xk−1,x,xk+1, . . . ,xN) = 〈x | gk − κkhk〉
∏

�: ��=k

ρ�.

Therefore we have the norm estimate∣∣〈x | gk − κkhk〉
∣∣ ∏
�: ��=k

ρ� � ‖φ − Ψ ‖‖x‖
∏

�: ��=k

‖x�‖.

Since here ‖Φ − Ψ ‖ � ε, 1 � ρ� and ‖x�‖ � 2, it follows |〈x | gk − κkhk〉| � 2N−1ε‖x‖ for all vectors x ∈ H(k) . Hence
dist(Tgk,Thk) � ‖gk − κkhk‖ � 2N−1ε. �

In particular, with ε := 0 we see that g∗
1 ⊗ · · · ⊗ g∗

N = h∗
1 ⊗ · · · ⊗ h∗

N implies hk = κkgk for suitable κq, . . . , κN ∈ T with∏N
k=1 κk = 1 whenever the vectors gk,hk have norm 1. For later use, notice also that if g,h ∈ H are unit vectors in a Hilbert

space then

dist(Tg,Th) = dist(g,Th) = min|κ |=1

[
2 − 2 Re〈g | κh〉]1/2 = √

2
[
1 − ∣∣〈g | h〉∣∣]1/2

. (2.2)

Lemma 2.3. Suppose F : R → P(H) := {Tg: 〈g | g〉 = 1} is a continuous mapping with respect to the distance (2.2). Then F(t) = Tht
(t ∈ R) for some continuous function t �→ ht ∈ ∂ Ball(H) := {g: 〈g | g〉 = 1}.

Proof. Since the real line R is σ -compact, it suffices to establish the local version of the statement: for every s ∈ R there is
an open interval Is around s where the set-valued function F admits a continuous section say Is � t �→ h[s]

t ∈ f(t). [Proof. In
this case there is a strictly increasing double sequence (Tn)∞n=−∞ such that R = ⋃

n[Tn, Tn+1] and each interval [Tn, Tn+1]
is contained in some Isn . Since h[sn−1]

Tn
,h[sn]

Tn
∈ F(Tn), for each n ∈ {0,±1,±2, . . .}, there is a (unique) constant κn ∈ T such

that h[sn]
Tn

= κnh[sn−1]
Tn

. Then the function assembled as ht := μnh[sn]
t for Tn � t � Tn where μ0 := 1, μp := ∏p

k=1 κk and

μ−p :=∏0
k=−p+1 κk (p = 1,2, . . .) suits our requirements.]

To prove the local statement, we may assume s = 0 without loss of generality. The continuity of F entails the continuity
of function (t, u) �→ dist(F(t),F(u)). Hence we can choose I0 to be an open interval around 0 such that

√
2 > dist(F(t),F(u))

(t, u ∈ I0) that is∣∣〈v | w〉∣∣> 0 whenever v ∈ F(t), w ∈ F(u) and t, u ∈ I0.

Fix any vector f0 ∈ F(0). Since, by (2.2),

dist
(
F(t),F(0)

)= √
2
[

1 − max
v∈F(t)

Re〈f0 | v〉
]1/2

,

for every t ∈ I0 there is a unique unit vector ft such that

ft ∈ F(t) and 〈f0 | ft〉 = max
v∈F(t)

Re〈f0 | v〉 = 1 − 1

2
dist

(
F(0),F(t)

)2
> 0.

In particular, with suitable unit vectors ut ⊥ f0 and with suitable angle parameters 0 � ϕt < π/2 we can write

ft = cosϕtf0 + sinϕtut (t ∈ I0).

Given any convergent sequence tn → t in I0, the continuity of F means that |〈ftn | ft〉| = 1 − 2−1 dist(F(tn),F(t))2 → 1, that is∣∣ cosϕtn cosϕt + sinϕtn sinϕt〈utn | ut〉
∣∣→ 1.
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Since ϕtn ,ϕt ∈ [0,π/2], we have 1 � cos(ϕtn −ϕt) = cosϕtn cosϕt +sinϕtn sinϕt � | cosϕtn cosϕt +sinϕtn sinϕt〈utn | ut〉| → 1.
Thus necessarily ϕtn → ϕt . Hence, for any cluster point ζ of the sequence (〈utn | ut〉)∞n=1, it follows | cos2 ϕt + ζ sin2 ϕt | = 1
that is ζ = 1 unless ϕt = 0. In any case we must have

〈ftn | ft〉 = cosϕtn cosϕt + sinϕtn sinϕt〈utn | ut〉 → 1

which implies ‖ftn − ft‖ = [2 − 2 Re〈ftn | ft〉]1/2 → 0 for any sequence tn → t in I0. �
Proposition 2.4. Assume Ψ : R → B is a continuous function of the form Ψ (t) = h∗

1,t ⊗ · · · ⊗ h∗
N,t with suitable unit vectors

hk,t ∈ H(k) . Then there are functions κ1, . . . , κN : R → T such that
∏N

k=1 κk(t) ≡ 1 and the modified components t �→ κk(t)hk,t

are continuous (as mappings R → [H(k),norm topology]).

Proof. According to Lemma 2.1, the functions Fk : t �→ Thk,t are continuous from R into the metric space [P(H(k)),dist]
in the sense of (2.2). Thus, by Lemma 2.3, we can find functions μ1, . . . ,μN : R → T such that the functions t �→ fk,t :=
μk(t)hk,t ∈ Fk(t) (k = 1, . . . , N) are continuous. Then their product t �→ Ψ̃ (t) := f∗1,t ⊗ · · · ⊗ f∗N,t is also a continuous map

R → B. Observe that Ψ̃ (t) = μ(t)Ψ (t) (t ∈ R) with the scalar-valued function μ(t) := ∏N
k=1 μk(t). From the continuity

of both Ψ and Ψ̃ we infer the continuity of μ : R → T.2 Hence also the functions t �→ f̃k,t := μ(t)fk,t are continuous.
Since f̃k,t = ∏

�: � �=k μ�(t)hk,t and since Ψ (t) = μ(t)Ψ̃ (t) = f̃∗1,t ⊗ f∗2,t ⊗ · · · ⊗ f∗N,t , the choice κ1(t) := ∏N
j=2 μ j(t) along with

κk(t) := μk(t) for k > 1 suits our requirements. �
Conventions 2.5. To simplify notations for the proof of Theorem 1.1, henceforth let U : R → A = A(H(1), . . . ,H(N)) be a one-
parameter subgroup of operators of the form

U(t) = U∗
1,t ⊗ · · · ⊗ U∗

N,t, Uk,t ∈ U
(
H(k)

)
.

An application of Proposition 2.4 to functions of the form U(t)[h∗
1 ⊗· · ·⊗h∗

N ] = [U1,t h1]∗⊗· · ·⊗[U N,t hN ]∗ yields immediately
the following.

Corollary 2.6. Given any family hk ∈ H(k) (k = 1, . . . , N) of unit vectors, there are functions κk : R → T such that
∏N

k=1 κk = 1 and
the functions t �→ κk(t)Uk,t hk are continuous.

As usual, we say that a net (Vα)α∈A of bounded linear operators B → B is strongly convergent to V (notation: Vα
s−→ V )

if ‖(Vα − V )Φ‖ → 0 for all Φ ∈ B. Accordingly, a function V : R → L(B) is strongly continuous, if V(tα)
s−→ V(t) whenever

tα → t in R.

Proposition 2.7. For some functions κ1, . . . , κN : R → T, the operator-valued functions t �→ κk(t)Uk,t are strongly continuous.

Proof. Fix any family h1 ∈ H(1), . . . ,hN ∈ H(N) of unit vectors along with a family κ1, . . . , κN : R → T of scalar functions
with

∏N
j=1 κ j(t) = 1 such that the functions t �→ κk(t)Uk,t hk are continuous. This is guaranteed by Corollary 2.6. Consider

any index k ∈ {1, . . . , N} and let 0 �= x ∈ H(k) be any vector. It suffices to see that the function t �→ κk(t)Uk,t x is continuous.
Applying Corollary 2.6 with the vectors h1, . . . ,hk−1,x/‖x‖,hk+1, . . . ,hN , we see the existence of functions κ̃1, . . . , κ̃N :

R → T with
∏N

�=1 κ̃�(t) = 1 such that the functions t �→ κ̃k(t)Uk,t x, t �→ κ̃�(t)U�,t h� (� �= k) are continuous. Given any index
� �= k, it is a consequence of the continuity of both the functions t �→ κ̃�(t)U�,t h� and t �→ κ�(t)U�,t h� that the coefficient ra-
tio t �→ κ̃�(t)κ�(t) is also continuous (see footnote 2). Hence we deduce the continuity of t �→ [∏�: � �=k κ̃�(t)κ�(t)]̃κk(t)U∗

k,t x.

However, here we have [∏�: � �=k κ̃�(t)κ�(t)]̃κk(t) = [∏N
m=1 κ̃m(t)][∏�: � �=k κ�(t)] = κk(t). �

Corollary 2.8. In the setting of 2.7, the functions t �→ κk(t)U∗
k,t are also strongly continuous.

Proof. It is a well-known elementary fact [5] that the adjoints of the elements of a strongly convergent net of unitary
operators in a Hilbert space form a strongly convergent net. �
3. Separate commutativity

In view of 2.7 and 2.8, we may use symmetric strongly continuous factors in the one-parameter group U by passing from
Uk,t to κk(t)Uk,t if t � 0 and κk(−t)U∗

k,−t for t � 0 with suitable functions κ1, . . . , κN : R+ → T.

2 In general, if vα → v �= 0 and μα vα → μv are convergent nets in a locally convex Hausdorff vector space V , then necessarily μα → μ for the
scalar coefficients. Proof: there exists a continuous linear functional φ on V such that φ(v) = 1. Beyond some index α0 we have φ(vα) �= 0 and μα =
φ(μα vα)/φ(vα) → φ(μv)/φ(v) = μ.
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Conventions 3.1. In addition to 2.5, henceforth we assume without loss of generality that, for k = 1, . . . , N ,

(1) t �→ Uk,t is strongly continuous,
(2) Uk,0 = Id, Uk,−t = U∗

k,t (t ∈ R).

Proposition 3.2. The families {Uk,t : t ∈ R} (k = 1, . . . , N) are Abelian.

Proof. Consider any t > 0. We can see by induction on n = 1,2, . . . that

Uk,nt = κ
(n)

k [Uk,t]n (1 � k � N),

N∏
k=1

κ
(n)

k = 1 (3.3)

for some family {κ(n)

k : 1 � k � N, n = 1,2, . . .} ⊂ T of constants. Indeed, for n = 1 the choice κ
(1)

k := 1 suits trivially.
Assume (3.3). for some n � 1. We have then

U
(
(n + 1)t

)= [
U∗

1,(n+1)t ⊗ · · · ⊗ U∗
N,(n+1)t

]∗
,

U(t)U(nt) = [
U∗

1,t ⊗ · · · ⊗ U∗
N,t

]∗[(
κ

(n)
1

(
U∗

1,t

)n)⊗ · · · ⊗ (
κ

(n)
N

(
U∗

N,t

)n)]∗
= [(

κ
(n)
1

(
U∗

1,t

)n+1)⊗ · · · ⊗ (
κ

(n)
N

(
U∗

N,t

)n+1)]∗
.

Since factorizations of composition operators are unique up to constants, it follows

Uk,(n+1)t = σ
(n)

k κ
(n)

k Un+1
k,t (1 � k � N),

N∏
k=1

σ
(n)

k = 1

for some σ
(n)
1 , . . . , σ

(n)
N ∈ T. Thus (3.3) holds with n + 1 in place of n for κ

(n+1)

k := σ
(n)

k κ
(n)

k , which completes the induction
step. As a consequence of (3.3), the families

Uk,t := {Uk,nt : n = 0,±1,±2, . . .}
are Abelian because Uk,−nt = U−1

k,nt = U∗
k,nt (t � 0, 1 � k � N) and the powers of Uk,t commute. Since

Uk,1 ⊂ Uk,1/2! ⊂ Uk,1/3! ⊂ · · ·
each family {Uk,q: q ∈ Q} = ⋃∞

n=0 Uk,1/n! where Q := {rational numbers} is Abelian. Given any couple s, t ∈ R, choose se-
quences (pn), (qn) in Q converging to s and t , respectively. Then the commutator [Uk,s, Uk,t] (:= Uk,sUk,t − Uk,t Uk,s) is the
strong limit of the commutators [Uk,pn , Uk,qn ] = 0 because the product of two bounded strongly convergent sequences of
normed space operators converges strongly to the product of their limits. �
Theorem 3.4. Given a strongly continuous one-parameter group U : R → A of the form 2.5, there are functions κ1, . . . , κN : R → T

and there are (not necessarily strongly continuous) one-parameter groups t �→ U t
k ∈ U (H(k)) such that

Uk,t = κk(t)U t
k, κk(0) = 1 (t ∈ R, 1 � k � N).

Proof. By Proposition 3.2, the families Uk := {Uk,t : t ∈ R} are necessarily Abelian. Thus, given any index k, the complex
norm-span Ak of Uk is a commutative unital C∗-subalgebra in L(H(k)). In particular, for some compact topological space Ωk ,
Ak is isometrically isomorphic to the algebra C(Ωk) of all continuous functions Ωk → C equipped with the spectral norm,
and there is a surjective linear isometry Tk : C(Ωk) ↔ Ak along with a family of continuous functions uk,t : Ωk → T (t ∈ R)

such that

Tkuk,t = Uk,t (t ∈ R).

Similarly as in the proof of (3.3), the relations U(s)U(t) = U(s + t) (s, t ∈ R) imply that

Uk,sUk,t = λk(s, t)Uk,s+t (s, t ∈ R)

with suitable functions λ1, . . . , λN : R2 → T satisfying
∏N

k=1 λk(s, t) = 1. Fix any index k ∈ {1, . . . , N} along with an element
ω0 ∈ Ωk and define

κk(t) := uk,t(ω0), U t
k := κk(t)Uk,t (t ∈ R).

By Convention 3.1(2), Uk,0 = IdH(k) whence uk,0 ≡ 1 and κk(0) = 1. Since λk(s, t)uk,s+t = T−1
k [λk(s, t)Uk,s+t ] = T−1

k [Uk,sUk,t] =
uk,suk,t , we have

λk(s, t) = uk,s(ω0)uk,t(ω0)uk,s+t(ω0).
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It follows

U s
kU t

k = uk,s(ω0)uk,t(ω0)Uk,sUk,t = uk,s(ω0)uk,t(ω0)λk(s, t)Uk,s+t

= uk,s+t(ω0)Uk,s+t = U s+t
k (s, t ∈ R). �

Remark 3.5. In contrast with previous constructions, the product of the functions κ1, . . . , κN in Theorem 3.4 may differ
from 1 in general.

4. Local Gelfand–Neumark representations

Conventions 4.1. Throughout this section let k ∈ {1, . . . , N} be an arbitrarily fixed index and write H := H(k) for short. We
shall consider a one-parameter group t �→ U t ∈ U (H) of operators along with a function κ : R → T such that

(1) t �→ Ut := κ(t)U t is strongly continuous,
(2) κ(−t) = κ(t) (t ∈ R), κ(0) = 1.

For motivation recall the decomposition κk(t)U t
k = Uk,t of the strongly continuous factor t �→ Uk,t of U(·) in Theorem 3.4.

As further standard notations, define

A := {
the C∗-subalgebra of L(H) generated by

{
U t : t ∈ R

}}
,

T : C(Ω) ↔ A the Gelfand representation of A,

ut := T−1U t (t ∈ R).

Representation 4.2. Modifying slightly a familiar construction [5], for any unit vector x ∈ H, let

Hx := Span{Ax: A ∈ A}
be the closed (necessarily separable) subspace of H spanned by the range of the continuous function t �→ κ(t)U t x. Since A
is spanned by its self-adjoint elements and since the orthocomplement of any eigensubspace of a self-adjoint operator is
also an eigensubspace, we have a complete orthogonal decomposition

H =
⊕
j∈ J

Hx j (4.3)

with any maximal family {Hx j : j ∈ J } such that Hx j ⊥ Hx�
( j �= � ∈ J ) guaranteed by the Zorn Lemma. For later use we fix

a decomposition (4.3). Given any index j ∈ J , the mapping

φ j(ϕ) := 〈[Tϕ]x j
∣∣ x j

〉 (
ϕ ∈ C(Ω)

)
is a positive linear functional with φ j(1Ω) = 1. By the Riesz–Kakutani Representation Theorem, there is a unique probability
Radon measure μ j on Ω such that∫

ω∈Ω

ϕ(ω)μ j(dω) = φ j(ϕ)
(
ϕ ∈ C(Ω)

)
.

Since 〈
U t[Tϕ]x j

∣∣ [Tψ]x j
〉= 〈[Tψ]∗U t[Tϕ]x j

∣∣ x j
〉= ∫

ω∈Ω

ψ(ω)ut(ω)ϕ(ω)μ j(dω),

the representation T extends to an isometric isomorphism

T j : L2(Ω,μ j) ↔ Hx j

with the property〈
U tT j f

∣∣ T j g
〉= ∫

ω∈Ω

ut(ω) f (ω)g(ω)μ j(dω)
(
t ∈ R, f , g ∈ L2(Ω,μ j)

)
.

Notice that the restricted operator U t | Hx j ∈ U (Hx j ) is unitarily equivalent to the multiplication operator

M( j)
ut f := ut f

(
f ∈ L2(Ω,μ j)

)
.

Namely we have M( j)
t = T−1U t T j .
u j j
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Remark 4.4. According to the usual convention, the space L2(Ω,μ j) consists of equivalence classes of functions modulo
zero sets with respect to μ j . Actually such zero sets may be rather “large” in the sense that μ j(supp(μ�)) = 0 ( j �= �) in
general.

Example. Let H = �2(= {[ξn]∞n=1:
∑

n |ξn|2 < ∞}) and U t[ξn]∞n=1 := [eintξn]∞n=1. We can take J = Ω = {1,2, . . .}, x j = [δ jn]∞n=1.
In this case, each measure μ j is supported by the single point { j}, and μ j(Ω \ { j}) = 0.

Remark 4.5. Recall the following simple fact concerning the strong convergence of bounded sequences (or even nets) of
operators: Given an orthogonal decomposition H =⊕

j∈ J H j , a sequence A1, A2, . . . ∈ L(H) with supn ‖An‖ < ∞ converges strongly
to 0 if and only if it converges to 0 strongly componentwise that is if limn ‖Anx‖ = 0 ( j ∈ J , x ∈ H j).

In terms of the Representation 4.2, we can interpret Remark 4.5 as follows.

Lemma 4.6. Given a mapping t �→ wt from R into C(Ω) such that max |wt | � 1 (t ∈ R) the statements below are equivalent:

(i) the operator-valued function t �→ Wt := Twt is strongly continuous;
(ii) all the restrictions t �→ Wt |Hx j ( j ∈ J ) are strongly continuous;

(iii) all the multiplication operator-valued functions t �→ M( j)
w(t) ( j ∈ J ) with M( j)

w(t) := [ f �→ w(t) f ] ∈ L(L2(Ω,μ j)) are strongly
continuous.

Remark 4.7. The main step in our proof of Theorem 1.1 will be to show that, given any index j ∈ J , we have

κ(t)U t | Hx j = χ j(t)Ũ t
j (t ∈ R)

with a suitable continuous function χ j : R → T and a strongly continuous one-parameter subgroup t �→ Ũ t
j of U (Hx j ).

5. Probabilistic arguments

We are going to carry out the program of Remark 4.7.

Conventions 5.1. Throughout this section let Ω denote a compact topological space and let μ be a probability Radon mea-
sure on it (i.e. μ(Ω) = 1). Given any bounded μ-measurable function a : Ω → C, we shall write Ma for the multiplication
operator Ma : f �→ af on L2(Ω,μ). Furthermore let [ut : t ∈ R] be a one-parameter family of continuous functions Ω → T

in the sense that ut+h(ω) = ut(ω)uh(ω) for all t,h ∈ R and ω ∈ Ω . Finally we assume that κ : R → T is a function such that

κ(0) = 1, κ(−t) = κ(t) (t ∈ R)

and the mapping t �→ κ(t)Ma is strongly continuous that is

lim
h→0

∥∥[κ(t + h)Mut+h − κ(t)Mut
]

f
∥∥2 = lim

h→0

∫
ω∈Ω

∣∣[κ(t + h)ut+h(ω) f (ω) − κ(t)ut(ω)
]

f (ω)
∣∣2 μ(dω) = 0 (5.2)

for any t ∈ R and f ∈ L2(Ω,μ).

In terms of the Representation 4.2, given any index j ∈ J and, by taking μ := μ j , for the existence of a decomposition
required in Remark 4.5 we have to prove that κ(t)ut = χ(t )̃ut (t ∈ R) with some continuous function χ : Ω → T and
a suitable one-parameter group [̃ut : t ∈ R] of continuous functions Ω → T such that the operator-valued function t �→ Mũt

be strongly continuous.

Lemma 5.3. Given a sequence a1,a2, . . . : Ω → C of μ-measurable functions such that supn sup |an| < ∞, the multiplication opera-
tors Ma1 ,Ma2 , . . . ∈ L(L2(Ω,μ)) converge strongly to 0 if and only if the functions an converge stochastically to 0 with respect to the
measure μ; that is, if

lim
n

μ
{
ω ∈ Ω:

∣∣an(ω)
∣∣> ε

}= 0 (ε > 0). (5.4)

Proof. If an �→ 0 stochastically then lim infn μ{ω: |an(ω)| > ε} > 0. Since ‖Man 1Ω‖2 = ∫ |an|2 μ(d.) � ε2μ{ω: |an(ω)| > ε},
in this case we have lim infn ‖Man 1Ω‖2 > 0 that is Man 1Ω �→ 0 in L2(Ω,μ).

Assume (5.4) and let M := supn sup |an|. Let ε > 0 and a function f ∈ L2(Ω,μ) be given. By the Markov inequality,
μ{ω: | f (ω)| > y} �

∫ | f |2 μ(d.)/y (y > 0). Thus we can choose a value y > 1 such that
∫
ω∈S |M f (ω)|2 μ(dω) < ε/3

with the set S := {ω: | f (ω)| > y}. As a consequence of (5.4), there exists an index N such that, with the sets Ωn :=
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{ω: |an(ω)y|2 > ε/3} we have y2μ(Ωn) < ε/3 whenever n > N . Then, for any n > N ,
∫

S |an f |2 μ(d.) � ε/3 and also∫
Ωn

|an f |2 μ(d.) � ε/3. For the remaining points ω ∈ Ω \ (Ωn ∪ S) we have |an(ω)|2 � ε/(3y2) and | f (ω)|2 � y2. There-

fore ‖Man f ‖2 = ∫ |an f |2 μ(d.) � ε for the indices n > N . Thus (5.4) entails ‖Man f ‖ → 0 ( f ∈ L2(Ω,μ)). �
Proposition 5.5. We have

lim
h→0

∫
ω1,ω2∈Ω

∣∣uh(ω1) − uh(ω2)
∣∣2 μ(dω1)μ(dω2) = 0.

Proof. By assumption u0 = 1Ω is the unit element in [ut : t ∈ R]. Also κ(0) = 1. Thus, according to Lemma 5.3,

lim
h→0

μ
{
ω:

∣∣κ(h)uh(ω) − 1
∣∣> ε

}= 0 (ε > 0). (5.4′)

Notice that∣∣uh(ω1) − uh(ω2)
∣∣= ∣∣κ(h)

(
uh(ω1) − uh(ω2)

)∣∣� ∣∣κ(h)uh(ω1) − 1
∣∣+ ∣∣κ(h)uh(ω2) − 1

∣∣.
Hence, with the product measure μ ⊗ μ, from (5.4′) it follows

lim
h→0

μ ⊗ μ
{
(ω1,ω2) ∈ Ω2:

∣∣uh(ω1) − uh(ω2)
∣∣> ε

}= 0 (ε > 0). (5.4′′)

Since always |uh(ω1) − uh(ω2)| � diameter(T) = 2, given any ε > 0, with the abbreviation Sh,ε := {(ω1,ω2) ∈ Ω2:
|uh(ω1) − uh(ω2)| > ε} we have the estimate∫

ω1,ω2∈Ω

∣∣uh(ω1) − uh(ω2)
∣∣2 μ(dω1)μ(dω2) � ε2[1 − μ ⊗ μ(Sh,ε)

]+ 22μ ⊗ μ(Sh,ε).

Then (5.4′′) implies lim suph→0
∫
ω1,ω2∈Ω

|uh(ω1) − uh(ω2)|2 μ(dω1)μ(dω2) � ε2 for any ε > 0. �
Remark 5.6. By the aid of Euler’s identity 2i sin kx = (eix)k − (e−ix)k and the closed formula for sums of geometric sequences,
we get

n∑
k=1

sin2 kx = 2n + 1

4
− 1

4

sin(2n + 1)x

sin x
.

In the standard reference [4, p. 36] we find
∑n

k=1 sin2 kx = n
2 − cos(n+1)x sin nx

2 sin x . The form above is obtained hence by the aid

of the identity cos α+β
2 sin α−β

2 = 1
2 (sinα − sin β) with α := (2n + 1)x and β := x.

Notation 5.7. Henceforth we write

φn(x) := 1

n

n∑
k=1

sin2 kx.

Lemma 5.8. For any index n = 1,2, . . . , we have

φn(x) � 4

π2

(n + 1)(2n + 1)

6
x2 � 4n2

3π2
sin2 x for 0 � x � π

2n
,

φn(x) � 1

4
for

π

2n
� x � π

2
.

Proof. Recall that y � sin y � 2y/π for 0 � y � π/2. Hence

0 < x � π

2n
�⇒ 1

n

n∑
k=1

sin2 kx � 1

n

n∑
k=1

(
2

π
kx

)2

= 4

π2

(n + 1)(2n + 1)

6
x2 � 4n2

3π2
x2.

On the other hand,

π

2n
� x � π

2
�⇒ 4n sin x � 8n

π
x � 8n

π

π

2n
= 4

�⇒ 1

n

n∑
k=1

sin2 kx = 2n + 1

4n
− sin(2n + 1)x

4n sin x
� 2n + 1

4n
− 1

4
� 1

4
. �
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Definition 5.9. On T we introduce the arc length distance

d(κ1, κ2) := 2 arcsin
|κ1 − κ2|

2
(κ1, κ2 ∈ T).

Furthermore we define

�(δ) := sup
|t|�δ

∫
ω1,ω2∈Ω

∣∣ut(ω1) − ut(ω2)
∣∣2 μ(dω1)μ(dω2),

Ω
(2)
t,r := {

(ω1,ω2) ∈ Ω2: d
(
ut(ω1), ut(ω2)

)
< r

}
.

Remark 5.10.

(1) From Proposition 5.5 we know already that

�(δ) ↘ 0 (δ ↘ 0).

(2) It is a simple fact from elementary geometry that

d(κ1, κ2) � π

n
�⇒ d

(
κk

1, κk
2

)= kd(κ1, κ2) (k = 1, . . . ,n).

(3) Since ut+s = ut us (s, t ∈ R), for any pair of positive integers m,n and for any t ∈ R we have umnt = [unt]m and hence

Ω
(2)
t/(mn),π/(mn) ⊂ Ω

(2)
t/n,π/n.

(4) In terms of the principal branch of the complex logarithm

log∗
(
reiϕ) := log r + iϕ (r > 0, −π < ϕ < π),

in case of κ ∈ T with d(κ,1) < π/n we have log∗(κk,1) = k log∗(κ,1) = ±kd(κ,1) for k = 1, . . . ,n. Hence

(ω1,ω2) ∈ Ω
(2)
t/n,π/n �⇒ log∗

[
ukt/n(ω1)/ukt/n(ω2)

]= k

n
log∗

[
ut(ω1)/ut(ω2)

]
(k = −n, . . . ,n),

ukt/n(ω1)/ukt/n(ω2) = exp

(
k

n
log∗

[
ut(ω1)/ut(ω2)

])
(k ∈ Z).

Proposition 5.11. For any t ∈ R we have

μ ⊗ μ

( ∞⋂
n=1

Ω
(2)
t/n!,π/n!

)
� 1 − �

(|t|).
Proof. Let t ∈ R be arbitrarily fixed and write ε := �(|t|). According to Remark 5.10(3),

Ω
(2)
t,π ⊃ Ω

(2)
t/2,π/2 ⊃ Ω

(2)
t/3!,π/3! ⊃ · · ·

that is the sets Ω
(2)
t/n!,π/n! form a shrinking sequence. Thus it suffices to establish that μ⊗μ(Ω

(2)
t/n,π/n) � 1 − ε (n = 1,2, . . .).

Fix also n > 0 arbitrarily. Then∫
ω1,ω2∈Ω

∣∣ukt/n(ω1) − ukt/n(ω2)
∣∣2 μ(dω1)μ(dω2) � ε (k = 1, . . . ,n).

It follows

ε � 1

n

n∑
k=1

∫
ω1,ω2∈Ω

∣∣ukt/n(ω1) − ukt/n(ω2)
∣∣2 μ(dω1)μ(dω2)

= 1

n

n∑
k=1

∫
ω1,ω2∈Ω

4 sin2 1

2
d
(
ukt/n(ω1), ukt/n(ω2)

)
μ(dω1)μ(dω2)

= 4
∫

φn

(
1

2
d
(
ut/n(ω1), ut/n(ω2)

))
μ(dω1)μ(dω2).
ω1,ω2∈Ω
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.

By Lemma 5.8 we have φn( 1
2 d(ut/n(ω1), ut/n(ω2))) � 1/4 for all (ω1,ω2) ∈ Ω2 \ Ω

(2)
t/n,π/n . Therefore

ε

4
�

∫
(ω1,ω2)∈Ω2\Ω(2)

t/n,π/n

φn

(
d

(
1

2
ut/n(ω1), ut/n(ω2)

))
μ(dω1)μ(dω2)

� 1

4
μ ⊗ μ

(
Ω2 \ Ω

(2)
t/n,π/n

)= 1

4

[
1 − μ ⊗ μ

(
Ω

(2)
t/n,π/n

)]
whence the statement is immediate. �
Corollary 5.12. There is a μ ⊗ μ-measurable function α : Ω2 → R such that we have

uq(ω1)/uq(ω2) = exp
(
iqα(ω1,ω2)

) (
q ∈ Q := {rational numbers})

for μ ⊗ μ-almost every (ω1,ω2) ∈ Ω2 .

Proof. Let tm := 1/m and consider the pairwise disjoint μ ⊗ μ-measurable sets

Sm :=
∞⋂

n=1

Ω
(2)
tm/n!,π/n! (m = 1,2, . . .),

D� := S�

∖ �⋃
m=1

Sm (� = 1,2, . . .).

Since �(t) ↘ 0 for t ↘ 0, we have μ ⊗ μ(
⋃m

�=1 D�) � μ ⊗ μ(Sm) � 1 − �(tm) ↗ 1 (m → ∞). Thus the set Ω2 \⋃∞
N=1 DN

has μ⊗μ-measure zero. Let (ω1,ω2) ∈ D� and q ∈ Q be any rational number. For some pair of integers k and n with n > 0
we can write q = k/(�n!) = (k/n!)t� . Thus, according to Remark 5.10(4),

(ω1,ω2) ∈ D� �⇒ (ω1,ω2) ∈ Ω
(2)
t�/n!,π/n!

�⇒ uq(ω1)

uq(ω2)
= u(k/n!)t� (ω1)

u(k/n!)t� (ω2)
= exp

(
k

n! log∗
[
ut� (ω1)/ut� (ω2)

])= exp

(
q

t�
log∗

[
ut� (ω1)/ut� (ω2)

])
Therefore the real-valued function

α(ω1,ω2) := 1

it�
log∗

[
ut� (ω1)/ut� (ω2)

] (
(ω1,ω2) ∈ D�; � = 1,2, . . .

)
is well-defined μ ⊗ μ-almost everywhere and suits the requirements of 5.12. �
Theorem 5.13. In the setting of 5.1, there is a continuous function χ : R → T along with a μ-measurable function α̃ : Ω → R such
that

κ(t)ut(ω) = χ(t)exp
(
itα̃(ω)

)
for all t ∈ R and μ-almost every ω ∈ Ω .

Proof. With the function α : Ω2 → R constructed above,

μ ⊗ μ
{
(ω1,ω2): uq(ω1)/uq(ω2) = exp

(
iqα(ω1,ω2)

)
(q ∈ Q)

}= 1.

Thus, since μ is a probability measure, there is a point ω0 ∈ Ω (moreover ω0 can be chosen μ-almost everywhere in Ω)
such that

μ
{
ω ∈ Ω: uq(ω) = uq(ω0)exp

(
iqα(ω,ω0)

)
(q ∈ Q)

}= 1.

Fix ω0 with this property. Recall that there is a function κ : R → T such that the mapping t �→ κ(t)ut is continuous from R

into C(Ω) equipped with the topology of stochastic convergence. Then there is a (unique) function χ0 : Q → T such that

χ0(q)exp
(
iqα(ω,ω0)

)= κ(q)uq(ω) for all q ∈ Q and μ-almost every ω.

Define

α̃(ω) := α(ω,ω0) (ω ∈ Ω).

Observe that the mapping t �→ exp(itα̃(ω)) is continuous from R into the space S(Ω,μ) of all μ-measurable functions
Ω → C equipped with the topology of stochastic convergence (because tn → t implies the convergence
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exp(itnα̃(ω)) → exp(itα̃(ω)) μ-almost everywhere in ω ∈ Ω). It is well known that the product of bounded stochasti-
cally continuous maps is stochastically continuous. Hence t �→ ut exp(−iqα̃) as a mapping R → S(Ω,μ) is stochastically
continuous. However, the functions κ(t)ut exp(−iqα̃) (t ∈ R) are constant μ-almost everywhere. Therefore the function

q �→ χ0(q) = [
μ-almost everywhere value of κ(q)uq exp(−iqα̃)

]
ranging in T must admit a continuous extension χ from Q to R. �
Corollary 5.14. There is a point ω0 ∈ Ω such that for all q ∈ Q and for μ-almost every ω ∈ Ω we have uq(ω) = uq(ω0)×
exp(iqα(ω,ω0)) and the function q �→ κ(q)uq(ω0) admits a continuous extension from Q to R.

6. Proof of Theorem 1.1

Remark 6.1. According to Theorem 5.13 and in view of Remark 4.7, we can represent each operator-valued function t �→
Uk,t = κk(t)U t

k in Theorem 3.4 in the form

Uk,t =
⊕
j∈ Jk

χ
(k)
j (t)exp

(
it A(k)

j

)
(t ∈ R) (6.2)

with suitable families [χ(k)
j : j ∈ Jk] of continuous functions R → T, respectively not necessarily bounded self-adjoint oper-

ators

A(k)
j : D(k)

j → H(k)
j , D(k)

j dense linear submanifold ⊂ H(k)
j

for some orthogonal decompositions

H(k) =
⊕
j∈ Jk

H(k)
j (k = 1, . . . , N).

Thus, with the operators

M(k)
t :=

⊕
j∈ Jk

χ
(k)
j (t) Id

H(k)
j

, Ũ t
k :=

⊕
j∈ Jk

exp
(
it A(k)

j

)
we can represent our object the semigroup U(·) in Theorem 1.1 in the form

U(t) = BtCt where Bt := [
Ũ t

1

]∗ ⊗ · · · ⊗ [
Ũ t

N

]∗
, Ct := [

M(1)
t

]∗ ⊗ · · · ⊗ [
M(N)

t

]∗
.

According to Lemma 4.6, the Hilbert space operator-valued functions t �→ M(k)
t respectively t �→ Ũ t

k are strongly continuous.
Recalling the elementary fact [5] that the product of bounded strongly convergent nets of linear operators is strongly
convergent, we see that both the operator-valued functions t �→ Bt , t �→ Ct are also strongly continuous. Since the restrictions
of the operators M(k)

t are multiples of the identity on the subspaces H(k)
j ( j ∈ Jk), the family {U(t),Bt ,Ct : t ∈ R} is Abelian.

Consequently

Ct+h = U(t + h)B−t−h = U(t)U(h)B−tB−h = U(t)B−tU(h)B−h = Ct Ch

for all t,h ∈ R.

Lemma 6.3. Assume (as in the setting described in 6.1) that we have the orthogonal decompositions H(k) = ⊕
j∈ Jk

H(k)
j , and the

operators

Ct :=
[⊕

j∈ J1

χ
(1)
j (t) id

H(1)
j

]∗
⊗ · · · ⊗

[⊕
j∈ J N

χ
(N)
j (t) id

H(N)
j

]∗
(t ∈ R)

form a strongly continuous one-parameter group R → A(H(1), . . . ,H(N)) with some (not necessarily continuous) functions χ
(k)
j :

R → T ( j ∈ Jk; k = 1, . . . , N). Then, with suitable real constants a(k)
j ( j ∈ Jk; k = 1, . . . , N), we can write

Ct =
[⊕

j∈ J1

exp
(
ia(1)

j t
)

id
H(1)

j

]∗
⊗ · · · ⊗

[⊕
j∈ J N

exp
(
ia(N)

j t
)

id
H(N)

j

]∗
(t ∈ R).

Proof. Given any index 1 � k � N , for any j ∈ Jk choose a unit vector h(k)
j ∈ H(k)

j . Notice that

Ct([h(1)
j1

]∗ ⊗ · · · ⊗ [
h(N)

jN

]∗)=
N∏

χ
(k)
jk

(t)
[
h(1)

j1

]∗ ⊗ · · · ⊗ [
h(N)

jN

]∗
(6.4)
k=1
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for all t ∈ R, and j1 ∈ J1, . . . , jN ∈ J N . Since t �→ Ct is a strongly continuous one-parameter group R → A(H(1), . . . ,H(N)),
each coefficient function

ψ j1,..., jN (t) :=
N∏

k=1

χ
(k)
jk

(t)

in (6.4) must be a continuous homomorphism (R,+) → (T, ·). Therefore

ψ j1,..., jN (t) = exp(ic j1,..., jN t) (t ∈ R; j1 ∈ J1, . . . , jN ∈ J N)

with suitable constants c j1,..., jN ∈ R. Fix any tuple ( j∗1, . . . , j∗N) ∈ J1 × · · · × J N of indices. We can write

χ
(k)
jk

(t) =
ψ j∗1,..., j∗k−1, jk, j∗k+1,..., j∗N (t)

ψ j∗1,..., j∗N (t)
χ

(k)

j∗k
(t)

= χ
(k)

j∗k
(t)exp

(
i[c j∗1,..., j∗k−1, jk, j∗k+1,..., j∗N − c j∗1,..., j∗N ]t).

Thus the statement of the lemma is fulfilled with the choice

a(k)
jk

:= c j∗1,..., j∗k−1, jk, j∗k+1,..., j∗N − c j∗1,..., j∗N (k < N; j1 ∈ J1, . . . , jN−1 ∈ J N−1),

a(N)
jN

:= c j∗1,..., j∗k−1, jk, j∗k+1,..., j∗N ( jN ∈ J N). �
6.5. Finish of the proof of Theorem 1.1.

In the setting established in 6.1, it suffices to see that in (6.2) we can also write

Uk,t =
⊕
j∈ Jk

exp
(
it Â(k)

j

)
with suitable possibly unbounded self-adjoint operators Â(k)

j : D(k)
j → H(k)

j ( j ∈ Jk; k = 1, . . . , N). This is possible in view of
Lemma 6.3 with the choices

Â(k)
j := A(k)

j + a(k)
j id

H(k)
j

.
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