On the manifold of tripotents in JB^*-triples

José M. Isidroa,*,1, László L. Stachób,2

a Facultad de Matemáticas, Universidad de Santiago, 15706 Santiago de Compostela, Spain
b Bolyai Institute, Aradi Vértanúk tere 1, 6720 Szeged, Hungary

Received 5 November 2003
Available online 19 November 2004
Submitted by B. Bongiorno

Abstract

The manifold of tripotents in an arbitrary JB^*-triple Z is considered, a natural affine connection is defined on it in terms of the Peirce projections of Z, and a precise description of its geodesics is given. Regarding this manifold as a fiber space by Neher’s equivalence, the base space is a symmetric Kähler manifold when Z is a classical Cartan factor, and necessary and sufficient conditions are established for connected components of the manifold to admit a Riemann structure.

© 2004 Elsevier Inc. All rights reserved.

Keywords: JB^*-triples; Cartan factors; Grassmann manifolds; Banach–Lie algebras and groups; Riemann manifolds

1. Introduction

In [9] Hirzebruch proved that the manifold of minimal projections in a finite-dimensional simple formally real Jordan algebra is a compact Riemann symmetric space of rank 1, and that any such space arises in this way. Later on, in [14] Nomura estab-
lished similar results for the manifold of minimal projections in a topologically simple real Jordan–Hilbert algebra. Recently, Jordan algebras and projections have been replaced by the more general notions of JB*-triples and tripotents, respectively. JB*-triples are precisely those complex Banach spaces whose open unit balls are homogeneous with respect to biholomorphic transformations.

In [1] an affine connection \(\nabla \) on \(\mathcal{M} \), the manifold of tripotents in a JB*-triple \(Z \), was defined in terms of the natural algebraic triple product structure of \(Z \). Unfortunately, the description of the geodesics of \(\nabla \) given in [1, Theorem 2.7] by means of one-parameter groups of automorphisms of \(Z \) fails to be true in general since the corresponding second order differential equation is of sophisticated character. Our first goal is to develop a technique, based on exponential integrals, to find explicit formulas for the geodesics of \(\nabla \).

It is known that \(\mathcal{M} \) is a fibre space with respect to Neher’s relation of equivalence of tripotents. As proved by Kaup in [11], the base space \(\mathbb{P} \) of that fibration is the manifold of all complemented principal inner ideals of \(Z \), which is a closed complex submanifold of the Grassmannian \(\mathcal{G} = \mathcal{G}(Z) \). The connected components of \(\mathbb{P} \), which are orbits of \(\Gamma \) (the structure group of \(Z \)), are symmetric complex Banach manifolds on which \(\Gamma \) acts as a group of isometries, see [11]. We show that \(\nabla \) induces on these orbits a \(\Gamma \)-invariant torsion-free affine connection (also denoted by \(\nabla \)) and compute its geodesics which turn out to be orbits of one-parameter subgroups of \(\Gamma \).

All tripotents in the same equivalence class (in Neher’s sense) have the same rank \(r \) (\(0 \leq r \leq \infty \)), that is constant over each connected component \(M \) of \(\mathbb{P} \). It is reasonable to ask which of these connected components admit a Riemann structure. For \(Z \) a classical Cartan factor, we solve that problem with the aid of the concepts of operator rank and operator corank, and prove that \(M \) admits a Riemann structure if and only if either the operator rank or the operator corank are finite, in which case we prove that \(\nabla \) is the Levi-Civita and the Kähler connection of \(M \). Some of these results were already known and due to E. Cartan in the \(\mathbb{C}^n \) setting.

2. JB*-triples and tripotents

For a complex Banach space \(Z \), denote by \(\mathcal{L}(Z) \) the Banach algebra of all bounded linear operators on \(Z \). A complex Banach space \(Z \) with a continuous mapping \((a,b,c) \mapsto \{abc\}\) from \(Z \times Z \times Z \) to \(Z \) is called a JB*-triple if the following conditions are satisfied for all \(a,b,c,d \in Z \), where the operator \(a \Box b \in \mathcal{L}(Z) \) is defined by \(z \mapsto \{abz\} \) and \([,]\) is the commutator product:

1. \(\{abc\} \) is symmetric complex linear in \(a,c \) and conjugate linear in \(b \).
2. \([a \Box b,c \Box d] = \{abc\} \Box d - c \Box [dab] \).
3. \(a \Box a \) is hermitian and has spectrum \(\geq 0 \).
4. \(\|\{aaa\}\| = \|a\|^3 \).

If a complex vector space \(Z \) admits a JB*-triple structure, then the norm and the triple product determine each other. An automorphism is a bijection \(\phi \in \mathcal{L}(Z) \) such that \(\phi\{zzz\} = \{(\phi z)(\phi z)(\phi z)\} \) for \(z \in Z \) which occurs if and only if \(\phi \) is a surjective linear isometry of \(Z \).
By $\text{Aut}^0(Z)$ we denote the connected component of the identity in the topological group $\text{Aut}(Z)$ of all automorphisms of Z (see [7]). Two elements x, y in Z are orthogonal if $x \boxtimes y = 0$ and $e \in Z$ is called a tripotent if $\{eee\} = e$. The set of tripotents, denoted by $\text{Tri}(Z)$, is endowed with the induced topology of Z. Clearly $e = 0$ is an isolated point in $\text{Tri}(Z)$. For $e \in \text{Tri}(Z)$, a conjugate-linear operator $Q(e) \in \mathcal{L}(Z)$, that commutes with $e \boxtimes e$, is defined by $Q(e)z = \{eze\}$ for $z \in Z$. If $e \in \text{Tri}(Z)$, then the set of eigenvalues of $e \boxtimes e \in \mathcal{L}(Z)$ is contained in $[0, 1/2, 1]$ and we have the topological direct sum decomposition, called the Peirce decomposition of Z,

$$Z = Z_1(e) \oplus Z_{1/2}(e) \oplus Z_0(e).$$

Here $Z_k(e)$ is the k-eigenspace of $e \boxtimes e$ and the Peirce projections $Z \rightarrow Z_k(e)$ with kernel $\bigoplus_{j \neq k} Z_j(e)$ are

$$P_1(e) = Q^2(e), \quad P_{1/2}(e) = 2(e \boxtimes e - Q^2(e)),$$

$$P_0(e) = 	ext{id} - 2e \boxtimes e + Q^2(e).$$

We shall use the Peirce rules $\{Z_l(e)Z_j(e)Z_k(e)\} \subset Z_{l-j+k}(e)$ where $Z_l(e) = \{0\}$ for $l \neq 0, 1/2, 1$. We note that $Z_1(e)$ is a complex unital JB*-algebra in the product $a \circ b := \{aeb\}$ and involution $a^# := \{eae\}$. We have $Z_1(e) = A(e) \oplus iA(e)$ where

$$A(e) := \{z \in Z_1(e): z^# = z\}.$$

It is also customary to write $D(a, b)$ instead of $a \boxtimes b$ and $D(a)$ instead of $D(a, a)$ for $a, b \in Z$. A tripotent e is said to be minimal or an atom in Z if $e \neq 0$ and $P_1(e)Z = Ce$, and we let $\text{Min}(Z)$ be the set of them. A JB*-triple Z may have no nonzero tripotents. If Z admits a (necessarily unique) predual space Z_\ast, then we say that Z is a JBW*-triple. The bidual Z^{**} of a JB*-triple is a JBW*-triple and the canonical embedding $Z \hookrightarrow Z^{**}$ is a triple homomorphism. We let $Z^{**} = Z_\ast \oplus N$ denote the decomposition of the bidual Z^{**} into its atomic and non-atomic ideals (see [4]). Here $Z_\ast = \bigoplus_{i \in I} F_i$ is the ℓ_∞-sum of the family of all minimal ω-closed ideals F_i in Z^{**}, each F_i is a Cartan factor and N contains no atoms. Every $e \in \text{Tri}(Z_\ast), e \neq 0$, has a decomposition of the form $e = \sum_{j \in J} e_j$ where the e_j are pairwise orthogonal tripotent that are minimal in Z^{**} and the series converges in the weak* topology of Z^{**}. The cardinality of J is uniquely determined, and the rank of e is defined to be that cardinality when finite and to be infinite otherwise. For $e \in N$ we set $\text{rank}(e) = 0$. Every JBW*-triple Z contains a (possibly empty) maximal family $(e_j)_{j \in J}$ of pairwise orthogonal minimal tripotents, and the (necessarily unique) cardinality of J is the rank of Z. For details on JB*-triples see [4,12].

3. The algebraic connection on the manifold of tripotents

Let Z be a JB*-triple and $\text{Tri}(Z)$ the set of all tripotents in Z endowed with the relative topology of Z. Fix any nonzero tripotent $e_0 \in \text{Tri}(Z)$, and denote by M the connected component of e_0 in $\text{Tri}(Z)$. Then all tripotents $e \in M$ have the same rank as e_0 and $\text{Aut}^0(Z)$ acts transitively on M which is a real analytic manifold whose tangent space at a point e is

$$T_eM = iA(e) \oplus Z_{1/2}(e).$$
For \(z = iv + u \in iA(e) \oplus Z_{1/2}(e) \) we set \(w := \frac{i}{2}v + 2u \) and \(K(e, z) := w \Box e - e \Box w \). Then [15, p. 25] a local chart of \(M \) at \(e \) in a suitable neighbourhood \(V \times U \) of \((0, 0) \) in \(iA(e) \times Z_{1/2}(e) \) is given by

\[
 z \mapsto f(z) := \left[\exp K(e, z) \right](e).
\]

We denote by \(P_e : Z \to iA(e) \oplus Z_{1/2}(e) \) the canonical projector from \(Z \) onto the tangent space \(iA(e) \oplus Z_{1/2}(e) \) to \(M \) at \(e \). By Peirce arithmetic, \(P_e \) is \(\text{Aut}^0(Z) \)-invariant as it satisfies

\[
 P_g(e)g(z) = gP_ee, \quad g \in \text{Aut}^0(Z), \ z \in Z.
\]

Let \(\mathfrak{D}(M) \) be the Lie algebra of all smooth vector fields on \(M \). We define the \textit{algebraic connection} \(\nabla \) on \(M \) by

\[
 (\nabla_X Y)_e := P_e(Y_e^X e), \quad e \in M, \ X, Y \in \mathfrak{D}(M).
\]

Then \(\nabla \) is a torsion-free \(\text{Aut}^0(Z) \)-invariant affine connection on \(M \). Recall a smooth curve \(\gamma : I \to M \), where \(I \) is a neighbourhood of \(0 \in \mathbb{R} \), is a \(\nabla \)-geodesic if and only if

\[
 P_{\gamma(t)}\left(\frac{d^2}{dt^2} \gamma(t) \right) = 0.
\]

Recall that \(\text{Aut}(Z) \) is a Banach–Lie group whose Lie algebra can naturally be identified with \(\text{aut}(Z) \) the family of all skew \(Z \)-hermitian operators. In particular, any continuous mapping \(F : \mathbb{R} \to \text{aut}(Z) \) gives rise to (uniquely determined) left and right primitive functions \(L^F : \mathbb{R} \to \text{Aut}(Z), \ R^F : \mathbb{R} \to \text{Aut}(Z) \) with the property \(L^F(0) = R^F(0) = \text{id} \) and

\[
 \frac{d}{dt} L^F(t) = \left[L^F(t) \right] F(t), \quad \frac{d}{dt} R^F(t) = F(t) \left[R^F(t) \right].
\]

In the sequel we shall only use the left primitive functions.

Lemma 1. Let \(Z \) be a \(JB^* \)-triple and let the manifold \(M \) be as above. Given \(e \in M \) and a smooth curve \(a : \mathbb{R} \to iA(e) \oplus Z_{1/2}(e) = T_eM \), the curve

\[
 \gamma(t) := g(t)e \quad \text{where} \quad g(t) := L^K(e, a(t))
\]

in \(M \) is a \(\nabla \)-geodesic if and only if \(a(t) = iv_0 + \exp(-3tv_0 \Box e)u_0 \) for some \(v_0 \in A(e) \) and \(u_0 \in Z_{1/2}(e) \).

Proof. We use the decomposition \(a(t) = iv(t) + u(t) \) with \(v(t) \in A(e) \) and \(u(t) \in Z_{1/2}(e) \). An immediate calculation yields

\[
 K(e, a(t))e = a(t),
\]

\[
 K(e, a(t))^2 e = K(e, a(t))a(t) = -\alpha(t) + i\beta(t) + 2\{uev\} - 2i\{euv\},
\]

where

\[
 \alpha(t) := \frac{1}{2}\{uev\} + \frac{1}{2}\{euv\} + 2\{euv\}, \quad \beta(t) := \frac{1}{2}\{uev\} + 2\{uev\} + \frac{1}{2}\{euv\}.
\]

Here

\[
 \{uev\} \in \left\{ Z_{1/2}(e)Z_1(e)Z_{1/2}(e) \right\} \subset Z_0(e)
\]
and therefore \(P_e\{ueu\} = 0 \). Also
\[
\{ueva\} \in \{Z_1Z_{1/2}Z_1\} = Z_{1-1/2+1} = 0.
\]
By Peirce rules, the summands in \(\beta(t) \) belong to \(Z_{1/2} \). Furthermore, since \(\{veu\} \in Z_{1-1+1/2} \) and hence \(\{e\{veu\}e\} \in Z_{1-1/2+1} = 0 \), the Jordan identity yields
\[
\{veu\} = \{e\{veu\}e\} = 2\{eue\} = 2\{uve\}.
\]
On the other hand, \(\{uev\}, \{euv\} \in \{A(e)A(e)A(e)\} = A(e) \). By the Jordan identity we have
\[
\{ueu\} = \{uu\{eee\}\} = 2\{uee\} = 2\{tie\} = 2\{uee\} = Q(e)\{uee\}.
\]
That is \(\{ueu\} = Q(e)\{ueu\} \in A(e) \) and \(\alpha(t) \in A(e) \). It follows
\[
P_eK(e, \alpha(t))e = a(t), \quad P_eK(e, \alpha(t))^2e = i\beta(t) = 3i\{v(t)ueu\}.
\]
As we know, the curve \(\gamma \) is \(\nabla \)-geodesic if and only if
\[
0 = P_\gamma\frac{d^2}{dt^2}\gamma(t) = P_\gamma\frac{d^2}{dt^2}g(t)e = g(t)P_eP_e^{-1}\frac{d}{dt}\left[\frac{d}{dt}g(t)\right]e
\]
\[
= g(t)P_e\frac{d}{dt}g(t)^{-1}\left[\left(\frac{d}{dt}g(t)\right)K(e, \alpha(t)) + g(t)\frac{d}{dt}K(e, \alpha(t))\right]e
\]
\[
= g(t)P_e\frac{d}{dt}g(t)^{-1}\left[\frac{d}{dt}g(t)K(e, \alpha(t))^2 + g(t)K(e, \alpha(t))^2\right]e
\]
\[
= g(t)\left[3i\{v(t)ueu\} + \frac{d}{dt}\alpha(t)\right].
\]
By passing to the components with respect to the decomposition \(T_eM = iA(e) \oplus Z_{1/2}(e) \), we conclude that \(\gamma \) is a \(\nabla \)-geodesic if and only if
\[
\frac{d}{dt}v(t) = 0, \quad \frac{d}{dt}u(t) = 3i(v(t)\square e)u(t),
\]
that is if and only if \(v(t) = v(0) =: v_0 \) and \(u(t) = \exp(3tv_0 \square e)u_0 \) with \(u_0 := u(0) \). \(\square \)

As a consequence we immediately get the following theorem.

Theorem 2. Given any point \(e \in M \) and a tangent vector \(z \in iA(e) \oplus Z_{1/2}(e) \), there is a unique \(\nabla \)-geodesic \(\gamma_{e,z}^\nabla : I \to M \) with \(\gamma_{e,z}^\nabla(0) = e \) and \(\gamma_{e,z}^\nabla'(0) = z \), and we have the explicit formula
\[
\gamma_{e,z}^\nabla(t) = L_K(e, i\gamma + \exp(3tv \square e)u)
\]
for the \(\nabla \)-geodesics in terms of left primitive functions of \(\mathbb{R} \to TM \) maps. In particular, the curve \(\gamma_{e,z}(t) := \exp(tK(e, z))e \) is a \(\nabla \)-geodesic if and only if \(\{veu\} = \{ueu\} = 0 \).
4. The base space of the manifold of tripotents in a JB*-triple

It is known \cite{11} that M is a fiber space, the typical fiber being a manifold whose tangent space at e is $iT(e)$. We shall now study the base manifold of this fibre space. To each tripo
totent $e \in \text{Tri}(Z)$ we associate $J_e = Q(e)Z$, the principal inner ideal generated by e, which is a complemented triple-ideal in Z. Let $\text{Str}(Z)$ and Γ denote, respectively, the structure group of Z and its identity connected component. Γ is a complex Banach–Lie group whose Banach–Lie algebra $\text{str}(Z)$ is the complexification of $\text{aut}(Z)$. In contrast with $G := \text{Aut}^*(Z)$, Γ does not preserve the set of tripotents. However, it preserves $\text{Reg}(Z) := \{a \in Z: a \in Q(a)Z\}$, the set of all von Neumann regular elements of Z, see \cite{11}. In fact we have $\text{Tri}(Z) \subset \text{Reg}(Z)$ and $\text{Reg}(Z)$ is the minimal Γ-invariant subset of Z that contains $\text{Tri}(Z)$, i.e., $\text{Reg}(Z) = \Gamma(\text{Tri}(Z))$ is the orbit of $\text{Tri}(Z)$ under Γ. The following result is known:

Lemma 3. For $e, f \in \text{Tri}(Z)$ the following conditions are equivalent:

(a) e and f generate the same principal inner ideal, i.e., $Q(e)Z = Q(f)Z$;
(b) $e \in Z_1(f)$ and $f \in Z_1(e)$;
(c) $D(e) = D(f)$;
(d) e and f have the same Peirce k-spaces ($k = 0, 1/2, 1$).

Proof. The implications (b) \Rightarrow (e) \Rightarrow (d) are due to Neher \cite[Theorem 2.3]{13}. From (a) it immediately follows $e \in Z_1(f)Z$ and $f \in Z_1(e)$. By \cite[Lemma 3.2(iv)]{11} any von Neumann regular element (in particular, any tripo
totent) satisfies $Q(e)Z = Q^2(e)Z$, hence (d) \Rightarrow (a). \hfill \Box

Of course, any element $a \in Z$ gives rise to a principal inner ideal in Z, namely the inner ideal $J_a = Q(a)Z$, but it may fail to be complemented in Z. In fact J_a is complemented if and only if $a \in \text{Reg}(Z)$, and in that case there is a tripo
totent $e := \rho(a) \in \text{Tri}(Z)$ whose inner ideal is the same as that of a \cite[Lemma 3.2]{11}. Yet, different tripotents e and f may give rise to the same inner ideal which occurs if and only if e and f are equivalent in the sense of Neher. Thus we can establish a bijection between the set \mathbb{P} of all complemented principal inner ideals in Z,

\[\mathbb{P} := \{ Q(e)Z: e \in \text{Tri}(Z) \}, \]

and the set $\text{Tri}(Z)/\sim$ of Neher's equivalence classes of tripotents, the bijection being $J_e \leftrightarrow e$ where e stands for the equivalence class of e and $J_e := Q(e)Z$.

By \cite{11}, \mathbb{P} is a subset of G, the Grassmann manifold of (the Banach space) Z. In fact, \mathbb{P} is a closed complex submanifold of G, and for every point $J_e \in \mathbb{P}$ the tangent space to \mathbb{P} at J_e can be identified with $Z_{1/2}(e)$ in the following manner: for $u \in Z_{1/2}(e)$, set $g_u := \exp D(u, e) \in \Gamma$. Then

\[g_u(J_e) = \text{graph } g_u = \{ g_u(x): x \in J_e \} \in \mathbb{P} \]

and

\[N_{J_e} := \{ g_u(J_e): u \in Z_{1/2}(e) \} \subset \mathbb{P} \]
is a neighbourhood of \(J_e \) in \(\mathbb{P} \). The canonical local chart of \(\mathbb{P} \) at \(J_e \) is the mapping

\[
u \mapsto g_u(J_e), \quad u \in Z_{1/2}(e).
\]

The following corollary is contained in [11] though it is not explicitly written down.

Corollary 4. The action of the complex Banach–Lie group \(\Gamma \) on \(\mathbb{P} \) admits local holomorphic cross sections, more precisely: to every \(J_e \in \mathbb{P} \) there is a neighbourhood \(N_{J_e} \) of \(J_e \) in \(\mathbb{P} \) and a holomorphic function \(\chi : N_{J_e} \to \Gamma \) such that \(\chi(J_e)(J_e) = J \) for all \(J \in N_{J_e} \).

Proof. Let \(N_{J_e} \) be the neighbourhood of \(J_e \) in \(\mathbb{P} \) given by (3), in which the canonical chart is defined by (4). According to the previous discussion, for each point \(J \) in \(N_{J_e} \) there is a unique vector, say \(u = u(J) \), in \(Z_{1/2}(e) \) such that \(g_u(J)(J_e) = J \). The mapping \(\chi : N_{J_e} \to \Gamma \) given by

\[
J \in N_{J_e} \mapsto u(J) \in Z_{1/2}(e) \mapsto g_u(J) \in \Gamma
\]

is holomorphic on \(N_{J_e} \) and by construction satisfies \(\chi(J_e) = g_u(J)(J_e) = J \). \(\square \)

Since \(\Gamma \) is a Lie-subgroup of \(\text{GL}(Z) \), the general linear group of (the Banach space) \(Z \), each element \(g \in \Gamma \) induces a holomorphic automorphism of the manifold \(\mathbb{P} \). In particular, if \(g \in \Gamma \) takes a point \(J \) to \(J' \), then the tangent spaces to \(\mathbb{P} \) at \(J \) and \(J' \) are isomorphic as Banach spaces. Via the holomorphic section \(\chi : N_{J_e} \to \Gamma \) we can unambiguously identify the tangent spaces to \(\mathbb{P} \) at all points \(J \) in \(N_{J_e} \) with the tangent space at \(J_e \) (that is, with \(Z_{1/2}(e) \)). Hence every vector field \(X : \mathbb{P} \to T\mathbb{P} \) can be locally represented in \(N_{J_e} \) as a vector-valued function \(X : N_{J_e} \to Z_{1/2}(e) \). Via the canonical inclusion \(Z_{1/2}(e) \to Z \), every vector field \(X : \mathbb{P} \to T\mathbb{P} \) will be locally represented in \(N_{J_e} \subset \mathbb{P} \) by a \(Z \)-valued function \(X : N_{J_e} \to Z \) such that the values that \(X \) takes at the points \(N_{J_e} \) belong to \(Z_{1/2}(e) \). Again it will be convenient to simplify the notation and we shall write \(X_e \) instead of \(X_{J_e} \), with which we implicitly identify the inner ideal \(J_e \) and the class \(e \) of tripotents \(e \) which generate it. This will lead to no confusion since all tripotents \(e \) in the class \(e \) have the same Peirce projectors and it makes sense to write \(Q(e) \), \(P_1(e) \), etc., no matter which representative \(e \) we have taken in \(e \).

All tripotents in the same equivalence class \(e \) have the same rank \(r \) (0 \(\leqslant r \leqslant \infty \)), which is constant over each connected component of \(\mathbb{P} \). If \(M \) is the component of \(e = J_e \) for some \(e \in \text{Tri}(Z) \), then \(M \) is a symmetric complex Banach manifold which is the manifold associated to the triple-dual of \(Z_{1/2}(e) \). In particular, \(M \) is of compact type, hence every complex-valued holomorphic function on \(M \) is constant [3]. The following extends to our setting some classical results due to E. Cartan in \(\mathbb{C}^n \) [8, Chapter IV].

We let \(\mathcal{D}(\mathbb{P}) \) denote the Lie algebra of smooth vector fields on \(\mathbb{P} \). Let \(Y'_e \) be the Fréchet derivative of \(Y \in \mathcal{D}(\mathbb{P}) \) at \(e \) (more precisely, at \(J_e \in \mathbb{P} \)). Thus \(Y'_e \) is a bounded linear operator \(Z_{1/2}(e) \to Z \) and it makes sense to take the projection \(P_{1/2}(e)(Y'_eX_e) \in Z_{1/2}(e) \).

Definition 5. Let \(M \) be a connected component of \(\mathbb{P} \). We define a connection \(\nabla \) on \(M \) by

\[
(\nabla_X Y)_e := P_{1/2}(e)(Y'_eX_e), \quad X, Y \in \mathcal{D}(M), \quad e \in M.
\]

(5)
It is a matter of routine to check that ∇ is an affine connection on M. For $g \in G$, and more generally for $g \in G$, we have (see [11, p. 573])
\begin{align*}
g Q (e) g^{-1} = Q (g (e)), \quad g P_k g^{-1} (e) = P_k (g (e)) \quad (k = 0, 1/2, 1), \quad (6)
\end{align*}
for all $e \in \text{Tri}(Z)$. With this, one can check that ∇ is Γ-invariant and torsion-free, that is
\begin{align*}
g (\nabla_X Y) = \nabla_{g (X)} g (Y), \quad g \in \Gamma, \quad X, Y \in \mathcal{D}(M),
\end{align*}
where $(gX)_e := g'_e (X_{g' e})$ for $X \in \mathcal{D}(M)$, and
\begin{align*}
T (X, Y) := \nabla_X Y - \nabla_Y X - [Y, Y] = 0, \quad X, Y \in \mathcal{D}(M).
\end{align*}

Fix a tripotent $e \in \text{Tri}(Z)$ and a vector $u \in Z_{1/2}(e)$. For $t \in \mathbb{R}$ set
\begin{align*}
g_t (u) := \exp 2t D (u, e) \in \Gamma.
\end{align*}
Thus $t \mapsto g_t (u)$ is a curve in the complex Lie group Γ. Since $\text{Tri}(Z)$ is contained in $\text{Reg}(Z)$ and the latter set is Γ-invariant, by evaluating at $e \in \text{Tri}(Z)$, we get a curve $t \mapsto \gamma (t) := g_t (u) e \in \text{Reg}(Z)$. Since every $a \in \text{Reg}(Z)$ has been identified with the point $J_a \in \mathbb{P}$ (where $J_a = Q (a) Z$ is the inner ideal generated by a), we can lift $\gamma (t)$ to a curve in \mathbb{P} by
\begin{align*}
t \mapsto \hat{\gamma} (t) := J_{\gamma (t)} = J_{g_t (u) e}, \quad t \in \mathbb{R}. \quad (7)
\end{align*}

Theorem 6. Let Z, \mathbb{P}, and M, respectively, be a JB*-triple, the base space of the manifold of tripotents in Z, and the connected component of $e \in \text{Tri}(Z)$. The geodesics of the connection ∇ in M that have origin in J_e are the curves $t \mapsto \hat{\gamma} (t)$ in (7).

Proof. The claim amounts to saying that $\hat{\gamma} (t)$ satisfies the second order ordinary differential equation
\begin{align*}
(\nabla_{\hat{\gamma} (t)} \dot{\hat{\gamma}} (t))_{\hat{\gamma} (t)} = 0, \quad t \in \mathbb{R}. \quad (8)
\end{align*}
In the canonical local chart at $\gamma (t) = g_t (u) e$, (8) becomes $(\nabla_{\hat{\gamma} (t)} \dot{\hat{\gamma}} (t))_{\gamma (t)} = 0$ for $t \in \mathbb{R}$. Now
\begin{align*}
\dot{\gamma} (t) &= (\exp 2t D (u, e)) D (u, e) (e) = g_t (u) D (u, e) (e) = g_t (u) e, \\
\ddot{\gamma} (t) &= (\exp 2t D (u, e)) D (u, e) (e) = g_t (u) D (u, e)^2 (e) = g_t (u) D (u, e) (u). \\
\end{align*}
From the Peirce decomposition of $D (u, e) (u)$ relative to e, calculated in [1, Lemma 2.6], and the assumption $u \in Z_{1/2}(e)$ we obtain $P_{1/2} (e) D (u, e) (u) = -2 [e u u]$. The main Jordan identity then yields $Q (e) [e u u] = [e u u]$, hence $P_{1/2} (e) D (u, e) (u) \in A (e)$ and so $P_{1/2} (e) \times D (u, e) (u) = 0$. Using the Γ-invariance of $P_{1/2} (e)$ and the property $P_{1/2} (e) D (u, e) (u) = 0$, we get
\begin{align*}
P_{1/2} (\gamma (t)) \dot{\gamma} (t) &= P_{1/2} (g_t (u) e) g_t (u) e = g_t (u) P_{1/2} (e) u \in g_t (u) P_{1/2} (e) Z_{1/2}(e) = 0, \\
P_{1/2} (\gamma (t)) \ddot{\gamma} (t) &= P_{1/2} (g_t (u) e) g_t (u) D (u, e) (u) = g_t (u) P_{1/2} (e) D (u, e) (u) = 0
\end{align*}
and by (5) we finally have $(\nabla_{\hat{\gamma} (t)} \dot{\hat{\gamma}} (t))_{\gamma (t)} = P_{1/2} (\dot{\gamma} (t)) \ddot{\gamma} (t) = 0$. \qed
5. Manifolds of finite rank tripotents

Consider a JB*-triple Z, the base manifold \mathbb{P} and the connected component M of J_e for a fixed tripotent $e \in \text{Tri}(Z)$. When is it possible to introduce a Riemann (or a Kähler) manifold structure in M? For that the tangent space $T_eM \sim Z_{1/2}(e)$ has to be linearly homeomorphic to a Hilbert space, which occurs if and only if $Z_{1/2}(e)$ has finite rank [10]. For $e \in \text{Min}(Z)$ we have rank $Z_{1/2}(e) \leq 2$ by [11, Lemma 4.5], hence $Z_{1/2}(e)$ can either be a Hilbert space, an ℓ_∞ sum of two Hilbert spaces, or a complex spin factor and in all these cases M has a well-known Riemann structure. However, M may have a Riemann structure even if $e \notin \text{Min}(Z)$.

In this section we answer this question when Z is a classical Cartan factor. Recall that classical Cartan factors come in four classes or types. Rectangular (or type I) Cartan factors are the spaces $Z := \mathcal{L}(H, K)$ where H and K are complex Hilbert spaces and $\dim H \leq \dim K$. Let H be equipped with a conjugation $\xi \mapsto \overline{\xi}$ and let $z \mapsto z'$ denote the associated transposition where $z'\xi := z^*\overline{\xi}$ for $\xi \in H$ and $z \in \mathcal{L}(H)$. Then the classical symmetric and the anti-symmetric Cartan factors (or factors of types II and III) are defined as the spaces $Z := \{z \in \mathcal{L}(H) : z' = \varepsilon z\}$ where $\varepsilon = 1$ and $\varepsilon = -1$, respectively. Spin factors (or type IV Cartan factors) can be regarded as complex norm closed selfadjoint subspaces $Z \subset \mathcal{L}(H)$ such that $\{z^2 : z \in Z\} \subset \mathbb{C}d$.

Definition 7 (cf. [5, p. 65]). For $a \in \mathcal{A} := \mathcal{L}(H, K)$ we define the operator rank and operator corank by $\text{rank}_{\text{op}}(a) := \dim a(H)$ and $\text{corank}_{\text{op}}(a) := \max\{\dim \ker(a), \dim a(H)^\perp\}$.

A look to [12, Example 5.7] will illustrate this concept. Notice that $\text{rank}_{\text{op}}(a^*) = \text{rank}_{\text{op}}(a)$ and $\text{corank}_{\text{op}}(a) = \text{corank}_{\text{op}}(a^*)$, furthermore $\text{rank}_{\text{op}}(a) + \text{corank}_{\text{op}}(a) = \max\{\dim H, \dim K\}$. The operator rank and corank are lower semicontinuous functions on \mathcal{A} with values in $\mathbb{N} \cup \{\infty\}$.

Proposition 8. Let Z be a JB*-triple and $e \in \text{Tri}(Z)$. Then the following conditions are equivalent:

1. The Peirce space $Z_{1/2}(e)$ is reflexive.
2. $Z_{1/2}(e)$ is linearly homeomorphic to a Hilbert space.
3. $\text{rank} Z_{1/2}(e) < \infty$.

Cartan factors of type IV satisfy the above conditions. For Cartan factors of types I–III, these conditions are equivalent to

4. $\text{rank}_{\text{op}}(e) < \infty$ or $\text{corank}_{\text{op}}(e) < \infty$.

Proof. The equivalences (1) \iff (2) follow from [10], [6, Theorem 6.2]) as is the assertion concerning spin factors. Let $p_1 := ee^*$ and $p_2 := e^*e$ denote the initial and final projections of the tripotent (partial isometry) e. Then

$$Z_{1/2}(e) = Z \cap [p_1 \mathcal{A}(1 - p_2) \oplus (1 - p_1) \mathcal{A} p_2].$$
If (4) holds, then \(p_1 \mathcal{A}(1 - p_2) \), which is linearly homeomorphic to \(\mathcal{L}(p_1 H, (1 - p_2)K) \), is linearly isomorphic to a Hilbert space because then \(\dim p_1(H) < \infty \) or \(\dim(1 - p_2)(K) < \infty \). Similarly \((1 - p_1)\mathcal{A}_2 \) is linearly isomorphic to a Hilbert space. Hence \(Z_{1/2}(e) \) is the direct sum of two Hilbert spaces, and so it is reflexive.

For the converse we make a type by type discussion.

Type I. In this case we have \(Z_{1/2}(e) = p_1 \mathcal{A}(1 - p_2) \oplus (1 - p_1)\mathcal{A}_2 \) where both direct summands are reflexive. Hence \(\text{rank}_{\text{op}}(e) < \infty \) or \(\text{corank}_{\text{op}}(e) < \infty \).

Types II and III. In these cases we have \(p_1 = \epsilon p_1' := p \) and

\[
Z_{1/2}(e) = \{ x + \epsilon x' : x = px(1 - p), \ x \in \mathcal{L}(H) \} \approx \{ x \in \mathcal{L}(H) : x = px(1 - p) \}
\]

is reflexive. Hence \(\dim p(H) < \infty \) or \(\dim(1 - p)(H) < \infty \). This completes the proof. \(\Box \)

From now on we assume that \(Z \) is a classical Cartan factor and that \(e \in \text{Tri}(Z) \) has finite rank \(r \), and return to study the connected component \(M \) of the point \(J_e \in \mathcal{P} \). Now also \(s := \text{rank} Z_{1/2}(e) \) is finite. If \(u \in Z_{1/2}(e) \) and \(u = \sum_k \alpha_k e_k \) is a spectral resolution of \(u \), then the sum

\[
\langle u, u \rangle := \sum_k \alpha_k \tilde{\alpha}_k,
\]

\[(9) \]
does not depend on the frame \((e_1, \ldots, e_s)\) we have chosen, and the algebraic inner product in \(Z_{1/2}(e) \) is defined by polarization in (9). Moreover, we have

\[
\|u\|^2 \leq \langle u, u \rangle \leq s\|u\|^2, \quad u \in Z_{1/2}(e),
\]

so that \(Z_{1/2}(e) \), the tangent space to \(M \) at \(J_e \), is linearly homeomorphic to a Hilbert space under the algebraic norm (see [2, p. 161]). The map \(\nu : TM \to \mathbb{R} \) which in the canonical chart \(N_{J_e} \times Z_{1/2}(e) \) of \(TM \) at the point \((J_e, T_e M) \) is given by

\[
\nu(x, u) := \langle u, u \rangle, \quad x \in N_{J_e}, u \in Z_{1/2}(e),
\]

is a norm on \(M \) and \((M, \nu)\) is a Hilbert manifold. We can define a Riemann metric on \(M \) by

\[
g_e(X, Y) := \langle X_e, Y_e \rangle, \quad X, Y \in \mathcal{D}(M), \quad e \in M.
\]

Remark that \(g \) is hermitian, i.e., we have \(g_e(iX, iY) = g_e(X, Y) \), and that it has been defined in algebraic terms. Moreover, \(\nabla \) is compatible with the Riemann structure, i.e.,

\[
X g(Y, W) = g(\nabla_X Y, W) + g(Y, \nabla_X W), \quad X, Y, W \in \mathcal{D}(M).
\]

Therefore \(\nabla \) is the only Levi-Civita connection on \(M \). On the other hand, \(\nabla \) satisfies

\[
\nabla_X(iY) = i\nabla_X Y, \quad X, Y \in \mathcal{D}(M),
\]

hence it is the only hermitian connection on \(M \). Thus the Levi-Civita and the hermitian connection are the same in this case, and so \(\nabla \) is the Kähler connection on \(M \).

Acknowledgment

The authors thank Prof. W. Kaup for useful discussions and criticisms during the preparation of this paper.
References