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Abstract. The paper is a survey of the results of our forthcoming articles [10,11]. We

introduce Jordan manifolds as Banach manifolds whose tangent spaces are endowed

with Jordan triple products depending smoothly on the underlying points. As a chief

natural application of this concept, we describe in detail the natural complex geometry

bounded symmetric domains with their Harish-Chandra realizations as unit balls of

JB*-triples and we extend the results to Jordan manifolds where the chart transition

maps are generalized local Möbius transformations. We show examples of Jordan

manifolds with various features giving rise to problems for further studies.
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1. Introduction

The theory of infinite dimensional Banach manifolds is faced with the
problem that it is, in general, no longer locally Euclidean and so a good
substitute for the Hilbertian structure has to be found. In a first step
[14], the Hilbert space structure on the tangent bundle was replaced by
Hilbert C*-modules, a concept of great importance in Noncommutative
Geometry. The real source of geometrical concepts within this realm,
however, is with the theory of JB*-triples, a class of spaces strictly larger
then the class of Hilbert C*-modules. In this paper, we outline the re-
sults of our forthcoming [10,11], where we look at manifolds whose tan-
gent spaces are equipped with algebraic Jordan structures providing a
category which covers among others all Banach Finsler spaces with in-
finitesimal JB*-norms in a natural manner. More precisely, we introduce
the concept of a Jordan manifold as a real or complex Banach manifold
equipped with smoothly varying Jordan*-triple products on the tangent
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spaces. A Riemannian manifoldM with scalar products 〈.|.〉p on the tan-
gent spaces TpM can be regarded as a Jordan manifold by means of the
associated Jordan*-triple products {uvw}p := 1

2 〈u|v〉pw + 1
2 〈w|v〉pu.

Jordan manifolds form a category with morphisms being smooth map-
pings whose derivatives are homomorphisms for the pointwise triple prod-
ucts. Consequently, we call a Jordan manifold homogeneous if its auto-
morphism group is transitive, and symmetric if every point admits an
automorphism whose derivative is minus-identity. Extending results from
[13], the unique automorphism invariant connection on the unit ball of
a Hilbert-C* module can be treated in the setting of JB*-triples in a
more elegant way by means of local charts and triple products around
the points achieved with adjoint actions of generalized Möbius trans-
formations applied to the trivial identity coordinate around the origin.
Actually, in Kaup’s Hermitian symmetric spaces (a category including
JB*-triples) [3,4] one can define a natural coordinate and triple product
at every point in a purely geometric manner and the resulting coordi-
nate transition maps prove to be generalized Moebius transformations
giving rise to the description [10] of the automorphism invariant con-
nection (in the sense of [6]) along with its associated curvature tensor.
For the moment it seems to be an open question if the automorphisms
of a symmetric real Jordan manifold form a Banach-Lie group with a
construction analogous to Upmeier’s topology [12] for Kaup’s Hermitian
symmetric spaces. We close the paper with examples from [11] of vari-
ous Jordan manifolds exhibiting features for further research. For more
details and proofs of the following results, the reader is referred to [10,11]

2. Preliminaries: bounded symmetric domains and JB*-triples

Throughout this work let Z denote an arbitrarily fixed complex Ba-
nach space with norm ‖ · ‖. We shall write Ball(Z) for its open unit ball
Ball(Z) := {z ∈ Z : ‖z‖ < 1}. By a Jordan triple product on Z we
mean a continuous 3-variable operation (x, y, z) 7→ {xyz} being symmet-
ric bilinear in the outer variables x, z and conjugate-linear in the inner
variable y satisfying the Jordan identity

(J)
{
ab{xyz}

}
=

{
{abx}yz

}
−

{
x{bay}z

}
+

{
xy{abz}

}
for all a, b, x, y, z ∈ E. We say that the Jordan triple (Z, {. . .}) is a JB*-
triple if the generalized C*-axiom∥∥{zzz}∥∥ = ‖z‖3 , z ∈ Z

holds and all the operations

D(a) : z 7→ {aaz} , a ∈ Z
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are Z-Hermitian with non-negative spectrum, that is∥∥ exp
(
ζD(a)

)
‖ ≤ 1 for every ζ ∈ C with Re ζ ≤ 0 .

2.1 Remark. (1) The Jordan identity is equivalent with the fact that all
the operators iD(a) (a ∈ E) are derivations of the triple product, that is
we have the identities

iD(a){xyz} = {[iD(a)x]yz} − {x[iD(a)y]z}+ {xy[iD(a)z]}.

(2) C*-algebras are Jordan triples with the triple product

{xyz} :=
1
2
xy∗x+

1
2
zy∗x ,

moreover complex C*-algebras are JB*-triples with their natural norm.

(3) Complex Hilbert C*-modules are also Jordan triples with

{xyz} :=
1
2
〈x|y〉z +

1
2
〈z|y〉x.

(4) If the unit ball D := Ball(Z) is symmetric (that is for each point
a ∈ D, there is a biholomorphic automorphism Sa : D↔ D with Fréchet
derivative S′a(a) = −IdZ at a) then E can be equipped with a unique
JB*-triple product.

(5) Any bounded symmetric domain D in a complex Banach space E can
be mapped biholomorphically onto some bounded balanced convex sym-
metric domain (a so-called Harish-Chandra realization), that is onto the
unit ball of some equivalent JB*-norm. Namely, by writing Sp and ‖.‖a
for the symmetry at p ∈ D, given any point o ∈ D, the is a biholomorphic
transformation Φo mapping D onto the unit ball Bo of the infinitesimal
Caratéodory norm of D at o along with a (unique) operation {xyz}o of
three variables on E making (E, ‖.‖o) a JB*-triple such that

φ′o
(
x
)
(a− {xax}o) =

d

dτ

∣∣∣
τ=0+

1
2
So+τa ◦ So

(
φ−1
o (x)

)
(x ∈ Bo).

Henceforth let (Z, {. . .}) denote any given JB*-triple and let

D(a, b) : z 7→ {a, b, z}, D(d) := D(a, a),
Q(a, b) : z 7→ {a, z, b}, Q(a) := Q(a, a),
B(a, b) := 1− 2D(a, b) +Q(a)Q(b), B(a) := B(a, a)

be the usual skew-derivations, quadratic representations and Bergman
operators, respectively. Recall that the transformation

T : c 7→
[
exp

([
c−Q(z)c

] ∂
∂z

)]
0
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that is T (x) =
[
the value z1 for the initial value problem d

dtzt = c −
Q(zt)c, z0 = 0

]
is a well-defined real bianalytic mapping

T : Z←→ Ball(Z) .

Given any point a ∈ Ball(Z), it is well-known [8, p. 27, 5] that the
mapping

ga := exp
([
T−1(a)−Q(z)T−1(a)

]
∂/∂z

)
is a holomorphic automorphism of Ball(Z) and we have

(2.2) ga(z) = a+B(a)1/2[1 +D(z, a)]−1z, ‖a‖, ‖z‖ < 1.

2.3 Definition. In the sequel we shall call the mappings ga◦L composed
with linear unitary operators of Z the Möbius transformations associated
with the triple product {. . .}. It is well-known [4] the group Aut Ball(Z) of
all holomorphic automorphisms of the unit ball of a complex JB*-triple
coincides with the set of all Möbius transformations of the underlying
triple product.

2.4 Remark. In [4] one can find ga(z) = a + B(a)1/2[1 − D(x, a)]−1z
which is obviously incorrect in the sign of the term D(z, a) as on can
see on the 1-dimensional example of the classical Möbius transformation
ga(z) = (z + a)/(1 + az) (with a, z ∈ Ball(C)).

Next we are going to consider Ball(Z) as a complex manifold equipped
with the charts

{
g−1
a : a ∈ Ball(Z)

}
. In this manner we get a natural

generalization of the complex Poincaré model on the unit disc Ball(C)
for the real 2-dimensional hyperbolic geometry.

Due to the possible lack of non-trivial smooth functions vanishing
outside a ball, for a Banach manifold M , it is no longer convenient to
apply the usual definition of a connection as a mapping ∇ : TM×TM →
TM as being a derivation for the first and linear in the second variable,
both with respect to multiplication with smooth functions.

2.5 Definition [6]. Let M be a manifold, modeled over the Banach
space E, and denote the space of bounded bilinear mappings E×E → E
by L2(E,E). Then M is said to possess a connection if there is an atlas
U for M so that for each (U,Φ) ∈ U (where U is some open subset of M
and Φ is a homeomorphism of U onto some open subset of E) there is a
smooth mapping ΓΦ : Φ(U)→ L2(E,E), called the Christoffel symbol of
the connection on U , which under a change of coordinates ψ : Φ(U)→ E
transforms according to

Γψ◦Φ(ψ′u, ψ′v) = Ψ′′(u, v) + ψ′ΓΦ(u, v)
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for smooth vector fields u, v on Φ(U) ⊂ E. The covariant derivative of
a vector field Y in the direction of the vector field X is, locally, defined
to be the principal part of

∇XY = dX(Y )− Γ(X,Y ),

that is, if X,Y are smooth vector fields on M with u := Φ#X and
v := Φ#Y (that is u : Φ(U) 3 Φ(p) 7→ Φ′(p)X(p)

)
) then

Φ#∇XY = ∇uv + ΓΦ(u, v) =

=
[
Φ(U) 3 q 7→ d

dt

∣∣∣
t=0

v
(
q + tu(q)

)
+ ΓΦ

(
u(q), v(q)

)]
.

If a Banach Lie group G acts smoothly on M then, for each g ∈ G a
connection g∗∇ is defined by letting

g∗∇XY = ∇g∗Xg∗Y, g∗X(gm) = dmgX(m).

The Christoffel symbols then transform as in the definition above,

ΓΦ◦g(g(m))
(
g′(m)X(m), g′(m)Y (m)

)
=

= g′′(m)
(
X(m), Y (m)

)
+ g′(m)

[
ΓΦ(m)

(
X(m), Y (m)

)]
at the points m ∈ M and we say ∇ to be invariant under the action of
G whenever g∗∇ = ∇ for all g ∈ G. We have

2.6 Theorem. On U := Ball(Z), there exists exactly one Möbius invari-
ant connection whose Christoffel symbol at a is, in terms of the invariant
triple product structure,

{uvw}a := g′a(0)
{
[g′a(0)−1u][g′a(0)−1v][g′a(0)−1w]

}
=

= B(a)1/2
{
[B(a)−1/2u][B(a)−1/2v]B(a)−1/2w

}
,

given by
ΓId(a)(x, y) = 2{x[g′a(0)a]y}a.

Next we proceed to the geodesic equation of the connection ∇. Recall
that a smooth curve γ : I → Ball(Z) on an open real interval I around
0 is a ∇-geodesic if its derivative satisfies the equation ∇γ̇(t)γ̇(t) = 0.
According to Theorem 2.6, this means

γ̈(t) + 2B
(
γ(t)

)1/2
D

(
B

(
γ(t)

)−1/2
γ̇(t), γ(t)

)
B

(
γ(t)

)−1/2
γ̇(t) = 0.

In the following, for any fixed vector 0 6= v ∈ Z, we denote by Fv the
real JB*-subtriple generated by v, that is

Fv = SpanIR

{
D(v)nv : n = 0, 1, . . .

}
.
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Since (Z, {. . .}) is JB*-triple, the spectrum of the operator D(v)|Fv is
non-negative, and we write

Ωv :=
[
SpD(v)1/2|Fv

]
\ {0}.

It is well known that there is a real JB*-isomorphism Hv : Re C0(Ωv)→
Fv such that Hv(IdΩv ) = v and Hv(ϕψχ) = {Hv(ϕ),Hv(ψ),Hv(χ)} for
all functions ϕ,ψ, χ ∈ Re C0(Ωv).

2.8 Theorem. The (unique) maximal ∇-geodesic γa,w with the properties
γa,w(0) = a and γ̇(0) = w has the form

R 3 t 7→ ga

(
Hg′a(0)−1w artanh

(
t IdΩg′a(0)−1w

))
.

This statement is obtained by first looking for particular solutions with
the property γ(0) = 0.

2.7 Lemma. The ∇-geodesic curves passing through the origin have the
form

γ0,v(t) = Hv artanh
(
t IdΩv

)
, t ∈ R, v ∈ Z

in terms of the Gelfand-Naimark representations Hv.

The proof of the lemma follows eventually from the fact that the
geodesic equation with initial conditions γ(0) = 0, γ′(0) = v has a solu-
tion that remains within Fv.

The proof of Theorem 2.8 itself follows from Lemma 2.7 as a con-
sequence of the well-known fact that due the Möbius invariance of the
connection ∇ h ◦ γ is ∇-geodesic whenever γ is ∇-geodesic and h ∈
Aut Ball(Z).

The expression for the geodesic in the above can be conveniently rewrit-
ten in terms of the power series for artanh. In fact, we have

γ0,v(t) =
∞∑
n=0

t2n+1

2n+ 1
D(v, v)2nv = artanhtv.

In the same vein,

γa,w(t) = a+B(a)1/2
[
1 +D(artanhtB(a)1/2v, a)

]−1artanhtB(a)1/2v.

3. Local Möbius transformations in real Jordan-Banach triples
and Jordan-Möbius manifolds

Throughout this section E denotes a real Jordan-Banach triple with
the norm ‖.‖ and triple product {. . .}, respectively. Thus we only assume
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that E is a real Banach space and {. . .} is a continuous real trilinear
mapping E3 → E satisfying the Jordan identity (J). We can take over
the notations D(a, b), Q(a, b), B(a, b) in the real setting without formal
changes. In particular, all the operators D(a, b)−D(b, a) : z 7→ {abz} −
{baz} belong to Der(E, {. . .}) the set of the derivations of the triple
product. Though not explicitly stated, a straightforward inspection of [4,
Corollary 2.20] establishes the existence of a constant ε > 0 such that
the transformations

Hv := expVv with the vector fields Vv :=
[
v − {zvz}

]
∂/∂z

are well-defined on the ball εBall(E) whenever ‖v‖ < ε, moreover they
have the fractional linear Möbius form

Hv(z) = gHv(0)(z) where

(3.1) ga(z) := a+λ(a)[1+D(z, a)]−1z where λ(a) := H ′
v(0) ∈ L(E).

Notice that in the case of JB*-triples we can write λ(a) = B(a)1/2 in
termd of the Bergman operator. Besides the vector fields Vv of polynomial
degree 2, let us introduce also the linear vector fields

L` :=
[
`z

]
∂/∂z, ` ∈ Der(E, {. . .}).

For their Poisson commutators
[
f(z)∂/∂z, g(z)∂/∂z

]
:=

(
f ′(z)g(z) −

g′(z)f(z)
)
∂/∂z, it is straightforward to check that we have

[L`, Vv] = V`v, [L`, Lm] = L[`,m], [Vu, Vv] = LD(v,u)−D(u,v).

Therefore the real linear space{
Vv + L` : v ∈ Z, ` ∈ Der(E, {. . .})

}
equipped with the norm ‖Vv + L`‖ := sup{‖v − {zvz}+ `z‖ : ‖z‖ ≤ 1}
is a Banach-Lie algebra with the Poisson commutator. Thus, according
to the Campbell-Hausdorff formula, for some sufficiently small constant
δ > 0 we have[

exp(Vu + L`) exp(Vv + Lm)
]
z =

[
exp(Vw(u,v,`,m) + L∆(u,v,`,m)

]
z

with two suitable real-analytic mappings

w :
[
δBall(E)

]2 × [
δBall

(
Der(E, {. . .})

)]2 −→ E,

∆ :
[
δBall(E)

]2 × [
δBall

(
Der(E, {. . .})

)]2 −→ Der(E, {. . .})

whenever ‖z‖, ‖u‖, ‖v‖, ‖`‖, ‖m‖ < δ.

3.2 Definition. By a Möbius transformation of (E, {. . .}) we mean a
bianalytic mapping Φ : U → E defined in a neighborhood U of the
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origin in E such that for some ` ∈ Der(E, {. . .}) we have Φ(z) =
ga(exp `z), z ∈ U with the customary notation in ga(z) := a+ λ(a)[1−
D(z, a)]−1 established in (3.1).

The next two auxiliary results 3.3-4 with straightforward proofs es-
tablish in particular that composition preserve Möbius transformations.

3.3 Proposition. There exists δ′ > 0 such that

‖v‖, ‖`‖ < δ′ and [exp(Vv + L`)]0 = 0 =⇒ v = 0.

3.4 Corollary. There exists 0 < δ′′(< δ′) such that given any v ∈ Z
and ` ∈ Der(E, {. . .}) with ‖v‖, ‖`‖ < δ′′, for some m ∈ Der(E, {. . .}) we
have [

exp(Vv + L`)
]
z = ga(v,`)

(
[expm]z

)
, ‖z‖ < δ′′

where a(v, `) :=
[
exp(Vv + L`)

]
0. In particular, for sufficiently small

vectors p, q ∈ E,
gp ◦ gq = ggp(q) ◦ [expmp,q]

with a real-analytic mapping (p, q) 7→ mp,q ∈ DerZ, {. . .}).

3.5 Definition. By a Jordan-Möbius manifold modeled with (E, {. . .})
we mean a real-analytic manifold M equipped with an inverse atlas X =
{Xp : p ∈ M} (that is a system of homeomorphisms between open
subsets of M and E such that {X−1

p : p ∈ M} is an atlas on M in the
usual sense) with the properties that for each couple of points p, q ∈M
with q ∈ dom(Xp) we have

(3.6) Xp(0) = p, X−1
p ◦Xq is a Möbius transformation.

In the sequel we shall write Up := dom(Xp) and we assume that each of
these sets is an open connected neighborhood of the origin in E.

We say that M with inverse atlas X = {Xp : p ∈M} satisfying (3.6)
is a uniform Jordan-Möbius manifold if there exists a common constant
ε > 0 such that

dom(Xp◦ g)⊃εBall(E) whenever g∈{Möbius transf.} and ‖g(0)‖<ε.

In particular the region
⋃
L∈Aut(E,{...}) εLBall(E) is contained in Up =

dom(Xp) for any p ∈M in a uniform Jordan-Möbius manifold M .

3.7 Example. If E := Z is a JB*-triple then its unit ball M := Ball(Z)
is a uniform Jordan manifold with the charts Xp := gp|M , p ∈ M . In
this case we may choose ε = 1.

3.8 Example. Let (E, {. . .}) be any Jordan-Banach triple. Then we can
find a constant % > 0 such that the sections of the mapping [%Ball(E)]2 3
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(p, z) 7→ gp(z) are real-bianalytic for any fixed p and z, respectively. Then
the ball M := %Ball(E) with the topology from E and with the charts
Xp(z) := gp(z) defined for z ∈ Up := {u ∈ E : ‖u‖, ‖gp(u)‖ < %} is a
Jordan manifold which is not uniform in general.

3.8a Example. (Special case of 3.8 with Lorenz space). On the space
E := Mat(1, 2, IR) with the matrix S :=

(
1 0
0 −1

)
, define the tripe product

{xyz}S := 1
2 〈x|y〉Sz + 1

2 〈z|y〉Sx = 1
2xy

∗Sz + 1
2zy

∗Sx by means of the
indefinite scalar product 〈x|y〉S := xSy∗ ∈ IR (x, y ∈ E). Then the local
Möbius transformations have the form

Ma(x)= (1− aSa∗)−1/2(x+ a)(1 + Sa∗x)−1(1− Sa∗a)1/2 =
= (1− aSa∗)−1/2(1 + xSa∗)−1(x+ a)(1− Sa∗a)1/2 .

3.9 Example [2,9]. Let (Z, {. . .}) be any complex JB*-triple such that
the family Tri(Z, {. . .}) :=

{
e ∈ Z : {eee} = e 6= 0

}
of its non-trivial

tripotents is not void. Two tripotents e, f ∈ Tri(Z, {. . .}) are said to be
equivalent (e ∼ f in notation) if D(e, e) = D(f, f). Actually ∼ is an
equivalence relation on Tri(Z, {. . .}). Let M be a connected component
of Tri(Z, {. . .}) with respect to the topology inherited from Z. Then the
Peirce spaces Z1/2(e) := {u ∈ Z : D(e, e)u = u/2} (e ∈ M) are all iso-
morphic, and the set IM :=

{
e : e ∈M

}
(e := {f ∈M : f ∼ e}) of its

equivalence classes can be regarded as a complex hermitian symmetric
manifold modeled on Z1/2(e0) with any e0 ∈M and being such that the
automorphisms exp t[D(e, u) − D(u, e)]

(
t ∈ IR, u ∈ Z1/2(e)

)
of Z act-

ing on IM form a continuous one-parameter subgroup of the Banach-Lie
group Aut(IM) of all biholomorphic automorphisms of IM (with Upmeier’s
topology [12]). Given any e ∈M , there is a neighborhood U of its equiva-
lence class e in IM along with a holomorphic chart map Φ : U→ Z1/2(e)
such that each map Φ# exp[D(e, u)−D(u, e)]

(
u ∈ Z1/2(e)

)
is a Möbius

transformation with the triple product

{u1u2u3} :=
∂3

∂ζ1∂ζ2∂ζ3

∣∣∣∣
ζ1=ζ2=ζ3=0

Φ#
([
Pζ1u1 ,

[
Pζ2u2 , Pζ3u3

]]
e

)
in terms of the vector fields Pu(f) :=

[
t 7→exp t[D(e, u)−D(u, e)]f

]
∈TeIM.

In the sequel let
(
M, {Yp : p ∈M}

)
be a Jordan-Möbius manifold mod-

eled on (E, {. . .}). Henceforth, to simplify formulas, instead of the charts
Yp : Wp ↔ Up mapping open subsets of M onto open 0-neighborhoods of
E, conveniently we shall use the inverse charts that is homeomorphisms
Xp = Y −1

p : E ⊃ Up → M (p ∈ M). By definition Xp(0) = p and the
transition maps X−1

p ◦ Xq are Möbius transformations for couples of
points lying sufficiently close together.
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3.10 Theorem. Let M be a Jordan-Möbius manifold modeled on (E, {. . .})
with a system of inverse charts {Xp : p ∈M} having the properties (3.6).
Then there exists a (necessarily unique) connection ∇ on M such that
its Christoffel symbol Γ with the charts Φp := X−1

p satisfies

ΓΦp
(0) = 0 , p ∈M.

Namely, if p ∈ M is any point and the constant δ > 0 is so chosen that
δBall(E) ⊂ dom(Xp) then for any couple of vectors x, y ∈ E and any
point a ∈ δBall(E) we have

ΓΦp
(a)(x, y) = g′′a(0)(g′−a(0)x, g′−a(0)y) =

= 2λ(a)
{
[λ(a)−1x]a[λ(a)−1y]

}
.

In particular ΓΦp(a)(x, y) = 2B(a)1/2{[B(a)−1/2x]a[B(a)−1/2y]} in the
case of (E, {. . .}) being a complex JB*-triple.

The proof of the theorem is based on the technical results 3.3-4 and
the below statements 3.11-12 which establish immediately that the cal-
culations for the proof of Theorem 2.6 can be carried out locally even in
the setting of general real Jordan-Möbius manifolds.

3.11 Lemma. Assume U, V are domains in a Banach space W and let
T : U ↔ V be a smooth diffeomorphism between them. Then given any
couple X,Y : U → W of smooth vector fields on U , for their transforms
X̃ := T#X respectively Ỹ := T#Y on V we have

Ỹ ′X̃(v) = T ′′
(
T−1(v)

)
X

(
T−1(v)

)
Y

(
T−1(v)

)
+

+ T ′
(
T−1(v)

)
Y ′(T−1(v)

)
X

(
T−1(v)

)
, v∈V.

3.12 Proposition, Let p ∈ M be an arbitrarily given point, let X,Y
be two smooth vector fields on M and define R := ∇XY. Then, for
any vector w ∈ Up, the image R := [X−1

p ]#R of the vector field R by
means of the local coordinate Xp can be expressed in terms of the image
vector fields X := [X−1

p ]#X and Y := [X−1
p ]#Y and the chart transitions

Hw := X−1
Xp(w) ◦Xp as

R(w) = H ′
w(w)−1H ′′

w(w)X(w)Y (w) + Y ′(w)X(w) .

In Theorem 3.10 we could not include a statement about symmetry in-
variant connections because, unlike the unit ball of a complex JB*-triple,
Jordan-Möbius manifolds need not be necessarily symmetric. We close
this section by showing that the assumption of uniformness implies this
property.
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3.13 Theorem. Connected uniform Jordan-Möbius manifolds are sym-
metric and they admit a unique symmetry invariant connection.

Proof. Let M be a connected uniform Jordan-Möbius manifold modeled
with (E, {. . .}) along with a constant ε > 0 and a system X = {Xp : p ∈
M} as in Definition 3.5. By Corollary 3.3, there exists δ ∈ (0, ε) such
that ga

(
δBall(E)

)
⊂ εBall(E) for any vector a ∈ δBall(E). Observe

that, given any couple of points p, q ∈ M , we can find a finite sequence
v1, . . . , vN ∈ δBall(E) such that the recursively defined sequence

p0 := p, pn+1 := Xpn
(vn)

ends in q = pN . Let us fix any point p ∈ M . We can see by induction
that there exists a sequence q0 = p, q1, . . . , qN ∈ M of points along with
(linear) automorphisms L0 = IdE, L1, . . . , LN ∈ Aut(E, {. . .}) such that
for the modified charts

Yn := Xqn
◦ Ln, n = 1, . . . n = 0, . . . , N

we have
qn+1 = Yn(−vn), Y −1

n+1 ◦ Yn = X−1
qn
◦Xqn+1 .

In view of 3.3-4, if we have another sequence ṽ1, . . . , ṽÑ and consider the
corresponding points p̃1, . . . , p̃Ñ respectively q̃1, . . . , q̃Ñ with the above
construction then the coincidence pN = p̃

Ñ
of the endpoints implies the

coincidence qN = q̃
Ñ

as well. It is not hard to check that the thus well-
defined transformation Sp : pN 7→ qN is a symmetry through the point p
such that the maps X−1

r ◦ S ◦Xp (r ∈ M) are Möbius transformations.
Finally we notice that Sp ◦ Sq is a Möbius transformation if its domain
contains the origin of E.

4. Jordan manifolds

4.1 Definition. A connected manifold M is a Jordan manifold if each of
its tangent spaces TpM (p ∈M) is endowed with a triple product {. . .}p
and the mapping (p, u, v, w) 7→ {uvw}p is continuously differentiable.

In the sequel we shall write (M,A,P) for the triple formed by the
carrier space, atlas and system of triple products, respectively.

A morphism F : M → M̃ between two Jordan manifolds is a smooth
mapping such that its derivatives give rise to triple product homomor-
phisms on the tangent spaces. Hence isomorphisms and automorphisms
can be defined in a straightforward manner. For the group of automor-
phisms we shall use the notation

Aut(M) :=
{
S : M ↔M with S, S−1 Jordan morphisms

}
.
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Given two Jordan manifolds (M,A,P) and (N,B,Q) along with the do-
mains U ⊂M and V ⊂ N , respectively, a continuously differentiable map
S : U ↔ V is said to be a local Jordan automorphism if S is a Jordan
isomorphism between U and V as Jordan submanifolds. We write

Autloc(M) :=
{
local Jordan automorphism in M

}
.

Notice that S1 ◦ S2 ∈ Autloc(M) whenever S1, S2 ∈ Autloc(M) with
ran(S1) ∩ dom(S2) 6= ∅.

Henceforth (M,A,P) will stand for an arbitrarily fixed Jordan manifold.

4.2 Example. Riemann spaces can be regarded as Jordan manifolds:
If 〈.|.〉p is the inner product on TpM then we take

{uvw}p :=
1
2
〈u|v〉pw +

1
2
〈w|v〉pu .

4.3 Example. The triple products in P need not be isomorphic to each
other as we can see on the following 1-dimensional real Jordan manifold:

M := C with {uvw}p := Re(p)uvw.

On the other hand, with convergent subsequences of grids [7] in tangent
spaces we can see the following.

4.3 Theorem. If the members of P are finite dimensional JB*-triple
products then they are isomorphic.

4.4 Conjecture. The assumption dim(M) <∞ in 4.3 can be dropped.

4.5 Definition. A Jordan manifold M is homogeneous if Aut(M) is
transitive on it that is for any pair p, q ∈ M there exists S ∈ Aut(M)
with S(p) = q. Analogously M is locally homogeneous if Autloc(M) is
transitive on it.

4.6 Example. The interval (1,∞) as real Jordan-Möbius manifold with
the inverse charts Xp(x) := (x + p)/(1 + xp) and the triple products
{. . .}p := [X−1

p ]#(xyz) i.e. { uvw}p = (1 + p)(1− p2)−2uvw (1 < p ∈ IR)
is locally homogeneous but not homogeneous.

4.7 Example. The unit ball of a complex JB*-triple is a symmetric and
hence necessarily homogeneous Jordan-Möbius manifold with the inverse
charts ga and triple products {. . .}a in Theorem 2.6.

4.8 Question. Are homogeneous complex Jordan manifolds all symmet-
ric?
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4.9 Proposition. There is a real-symmetric homogeneous Jordan man-
ifold which is not of Jordan-Möbius type.

Proof. The natural Jordan manifold structure of the following example
studied by Corach-Porta-Recht (1993) [1] from Lie algebraic view points
is suitable. Let A be a C*-algebra with unit 1 and consider the usual

triple product {xyz} := 1
2xyz + 1

2zyx on E := {a ∈ A : a = a∗}. Let

M := {a ∈ A : a > 0} = {g∗g : g invertible}.

Observe that linear the transformations

Lg : M ↔M, x 7→ g∗xg

act transitively on M and the inversion

S : p 7→ p−1

is a real symmetry of M . Hence the maps

Sg∗g := Lg ◦ S ◦ Lg−1 : p 7→ g∗gp−1g∗g

form a family providing real symmetries at any point of M and the triple
products {uvu}g∗g : = Lg{(L−1

g u)(L−1
g u)(L−1

g u)} =
= u(g∗g)−1v(g∗g)−1u well-def.

are well-defined

(though the the points of M can be represented in several ways of the
form g∗g). Moreover all these maps Lg, Sp (p ∈M) are P-automorphisms.
Therefore the vector fields

Xv :=
d

dτ

∣∣
τ=0+

Sexp(τv/2) ◦ S1

are complete in M . Notice that they satisfy the identities exp(Xv)p =
exp(v/2)p exp(v/2). On the other hand, we can deduce the following
statement establishing the proposition:

In the chart Y :
[
exp(v − {xvx}) ∂∂x

]
0 7→ [expXv]1 the transforma-

tions exp(Xw) (w ∈ E) are not in general of {. . .}-Möbius type.
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