REMARKS ON SUPERLINEAR OPERATORS

By

A. BOGMÉR, I. JOÓ and L. L. STACHÓ

Bolyai Institute of the József Attila University, Szeged and
II. Department for Analysis of the L. Eötvös University, Budapest
(Received December 30, 1982)

In [1] E. M. NIKIDSIN introduced the notions of superlinear and positive superlinear operators concerning his investigation on Fourier series with respect to general orthonormal systems. According to [1], a mapping $T : E \rightarrow S(0, 1)$ where E is any Banach space is by definition superlinear if for every $e \in E$ there exists a linear mapping $L_e : E \rightarrow S(0, 1)$ such that $L_e e = Te$ and $|L_e f| \leq |Tf|$ for each $f \in E$. Furthermore, if $E = \mathcal{L}^p(X, \mu)$ for some $p \geq 1$ and for every $e \in E$, L_e can be chosen to be a positive linear mapping then T is called a positive superlinear operator ($\mathcal{L}^p - S$).

The aim of this paper is to examine these concepts in a vector lattice theoretical setting.

DEFINITION 1. Let E, F be a vector space and a vector lattice, respectively. A mapping $T : E \rightarrow F$ is superlinear if for every $e \in E$ there exists $L_e \in \mathcal{L}(E, F)$ such that $L_e e = Te$ and $|L_e| = |T|$. (Throughout this work, we deal with real vector spaces. The symbol $|T|$ means the operator $f \mapsto |Tf|$.)

PROPOSITION 1. Suppose the space F is order complete (for def. see [3]). Then $T : E \rightarrow F$ is superlinear if and only if $|T|$ is a vector norm on E i.e. if, $|T(e_1 + e_2)| = |Te_1| + |Te_2|$ and $|T\lambda e_1| = |\lambda||Te_1|$ $\forall e_1, e_2 \in E, \lambda \in \mathbb{R}$.

PROOF. Let $T : E \rightarrow F$ be superlinear. Then we can write $|T| = \sup_{e \in E} |L_e|$. But L is clearly a vector norm whenever $L : E \rightarrow F$ is linear.

Conversely, assume T is a vector norm on E and F is order complete. Given $e \in E$, define L_e^0 on the subspace \mathbb{R}_e by $L_e^0 e = \lambda Te$ ($\lambda \in \mathbb{R}$). We have $L_e^0 = |T|$ on \mathbb{R}_e. Thus by the generalized Hahn-Banach theorem [2], L_e^0 admits a linear extension L_e such that $L_e \leq |T|$. To complete the proof, we show $-L_e \leq |T|$. Indeed, $-L_e f = L_e (-f) = |T (-f)| = |Tf|$ $\forall f \in E$.

DEFINITION 2. Let E, F be vector lattices. A mapping $T : E \rightarrow F$ is positive superlinear if for every $e \in E$ there exists $L_e \in \mathcal{L}_+(E, F)$ (i.e. $L_e p \geq 0$ whenever $p \in E_+$ (i.e. $p \geq 0$ in E) such that $L_e e = Te$ and $|L_e| \leq |T|$.
Theorem 1. Let E, F be vector lattices, $T:E\to F$ a superlinear operator. Assume that the ordering of F is complete. Then equivalent are

(a) T is positive superlinear.
(b) $e_\varepsilon\leq e_\delta$ implies $Te_\varepsilon\leq|Te_\delta|$ and $-Te_\delta\leq|Te_\varepsilon|$ for all $e_\varepsilon, e_\delta\in E$.
(c) By setting $P\equiv|T|$ and $Q\equiv\inf\{P(e+p), e\in E\}$, we have

$$Qe=\sqrt{(T(e)/|e|)}(T-e)$$

for all $e\in E$.

Proof. (a)\Rightarrow(b): Suppose T is superlinear and $e_\varepsilon\leq e_\delta$ in E. Then choosing L_{e_δ}, L_{e_ε} in accordance with Definition 2, we obtain

$$Te_\varepsilon=L_{e_\delta}e_\varepsilon\leq L_{e_\varepsilon}e_\delta=|L_{e_\delta}e_\varepsilon|=|Te_\delta|$$

and

$$-Te_\delta=-L_{e_\delta}e_\delta=L_{e_\delta}(-e_\delta)\leq L_{e_\varepsilon}e_\delta=|L_{e_\delta}e_\varepsilon|=|Te_\varepsilon|.$$
Corollary 1. If E is a topological vector lattice and \mathcal{Q} is a compact topological space then each continuous positive superlinear map $E \to C(\mathcal{Q})$ is linear.

Proof. The functionals $\delta_x \equiv \{ \mathcal{Q}(x) \in f(x) \} \ (x \in \mathcal{Q})$ form a separating family in $C(\mathcal{Q})$ and satisfy $\delta_x[f] = \| f(x) \| = \| \delta_x \|_\mathcal{Q}$.

Corollary 2. If E is a topological vector lattice and μ is an arbitrary measure then each continuous positive superlinear map $E \to L^\infty(\mu)$ is linear.

Proof. By Kakutani’s representation theorem on M-lattices [3], each L^∞-space is isometrically order isomorphic to some $C(\mathcal{Q})$ space for suitable compact topological space.

Corollary 3. If E is a topological vector lattice and $1 \leq p \leq \infty$ then every continuous positive superlinear map $E \to L^p$ is linear.

Proof. Every continuous superlinear operator $T : E \to L^p$ can be viewed as a continuous positive superlinear $E \to L^\ast$ mapping.

The following question arises from the above corollaries: Is there any non-linear continuous positive superlinear operator $L^\ast(0, 1) \to L^\ast(0, 1)$ if $1 < \infty$? The answer is always affirmative in this case.

Example. Let $1 \leq p \leq \infty$ and $1 < q < \infty$. The mapping $T : L^p(0, 1) \to L^q(0, 1)$ defined by

$$
Tf \equiv \begin{cases}
\int_0^{1/2} f^2(t) \, dt & \text{if } t \int_0^{1/2} f \, dt \\
(1 - t) \int_{1/2}^1 f \, dt & \text{else}
\end{cases}
$$

is positive and continuous but non-linear.

Proof. The non-linear character of T is obvious.

Continuity: Suppose $f_n \to f$ in $L^p(0, 1) (n \to \infty)$.

Now

$$
\int_0^{1/2} f_n \to \int_0^{1/2} f \quad \text{and} \quad \int_{1/2}^1 f_n \to \int_{1/2}^1 f, \ (n \to \infty).
$$

Hence $Tf_n(t) \to Tf(t)$ whenever

$$
\left| t \int_0^{1/2} f \right| \neq \left| (1 - t) \int_{1/2}^1 f \right| \quad \text{or} \quad \left| t \int_0^{1/2} f \right| = \left| (1 - t) \int_{1/2}^1 f \right| = 0.
$$

i. e. almost everywhere. Since the sequence $\{Tf_n\}_{n=1}^\infty$ consists of functions majorized by the constant $\sup_n \int_0^1 |f_n|$, it follows

$$
\| Tf_n - Tf \|_{L^q} \to 0, \ (n \to \infty).
$$

Positive superlinearity: Given $\epsilon \in L^\infty(0, 1)$, it is immediate that the linear mapping $L_\epsilon : L^\infty(0, 1) \to L^\infty(0, 1)$ defined by

$$
L_\epsilon f \equiv \begin{cases}
\left. \int_0^{1/2} f \, dt \right| & \text{if } t \int_0^{1/2} e \, dt \\
(1 - t) \int_{1/2}^1 f \, dt & \text{else}
\end{cases}
$$

is positive and fulfills the requirements of Definition 2.

References

