A counterexample concerning non-linear C0-semigroups of holomorphic Carathéodory isometries

L.L. STACHÓ

Abstract

We give an example for a C0-semigroup of non-linear 0-preserving holomorphic Carathéodory isometries of the unit ball.

AMS 2010 Subject Classification: 47D03, 32H15, 46G20 ,47B50
Key words: Banach space, holomorphic map; unit ball; Carathéodory distance; isometry; Cartan's linearization theorem; C0-semigroup.

Introduction

According to Cartan's classical Linearization Theorem, given a bounded circular domain D in the N-dimensional complex space \mathbb{C}^{N} any holomorphic mapping $F: D \rightarrow D$ with $F(0)=0$ and preserving the Carathéodory (or Kobayashi) distance associated with D is necessarily linear and surjective [2]. In 1994, E. Vesentini [3, p. 508],[4, Section 3] found various examples showing that the infinite dimensional version of this fact is not valid in general Banach space setting. However, despite the main topics of his several works including [3,4], the provided examples (even with holomorphic families) seem not being suitable in constructing a C0-semigroup [$F^{t}: t \geq 0$] of holomorphic 0-fixing Carathéodory isometries of a bounded circular domain in some Banach space. Our aim in this short note is a suitable construction with C0-semigroups.
Throughout this work let \mathbf{E} denote a complex Banach space and define

$$
\mathbf{X}:=C_{0}\left(\mathbb{R}_{+}, \mathbf{E}\right)=\left\{x: \mathbb{R}_{+} \rightarrow \mathbf{E} \mid t \mapsto x(t) \text { continuous, } \lim _{t \rightarrow \infty} x(t)=0\right\}, \quad\|x\|=\max _{t \geq 0}\|x(t)\|
$$

For the concepts of holomorphic maps between domains (open connected sets) contained in Banach spaces respectively the Carathéodory distance $d_{\mathbf{D}}$ on a bounded domain we refer to [2]. A domain $\mathbf{D} \subset \mathbf{E}$ is said to be circular if $\mathbf{D}=\zeta \mathbf{D}(=\{\zeta \mathbf{x}: \mathbf{x} \in \mathbf{D}\})$ for any $\zeta \in \mathbb{C}$ with $|\zeta|=1$. As usually, an indexed family $\left[F^{t}: t \geq 0\right]$ of maps $\mathbf{D} \rightarrow \mathbf{D}$ is a C0-semigroup if $F^{0}=\mathrm{Id}_{\mathbf{D}}=[\mathbf{x} \mapsto \mathbf{x}: \mathbf{x} \in \mathbf{D}], F^{s+t}(\mathbf{x})=F^{s}\left(F^{t}(\mathbf{x})\right)$ for all $s, t \geq 0$ and $\mathbf{x} \in \mathbf{D}$ furthermore if the functions $\left[t \mapsto F^{t}(\mathbf{x}): t \geq 0\right]$ are continuous for all fixed $\mathbf{x} \in \mathbf{D}$.

Lemma. Let $\left[\varphi^{t}: t \in \mathbb{R}_{+}\right]$be a C0-semigroup of $B(\mathbf{E})$-contractions. Then the maps $\Phi^{t}: B(\mathbf{X}) \rightarrow \mathbf{X}\left(t \in \mathbb{R}_{+}\right)$defined by

$$
\Phi^{t}(x): \mathbb{R}_{+} \ni \tau \mapsto\left[\varphi^{t-\tau}(x(0)) \text { if } 0 \leq \tau \leq t, \quad x(\tau-t) \text { if } \tau \geq t\right]
$$

form a C0-semigroup of $B(\mathbf{X})$-isometries.

Proof. Consider any function $x \in B(\mathbf{X})$ and any parameter $t \in \mathbb{R}_{+}$. The function $\Phi^{t}(x)$ ranges in $B(\mathbf{X})$ with $\lim _{\tau \rightarrow \infty} \Phi^{t}(x)(\tau)=\lim _{\tau \rightarrow \infty} x(\tau-t)=0$. The continuity of $\Phi^{t}(x)$ on the intervals $[0, t]$ resp. $[t, \infty]$ is immediate by its definition. Hence $\Phi^{t}(x) \in \mathbf{X}$ with well-defined $\max _{\tau \geq 0}\|x(\tau)\|<1$. Given another function $y \in B(\mathbf{X})$, we have

$$
\begin{aligned}
& \left\|\Phi^{t}(x)-\Phi^{t}(y)\right\|=\max \left\{\max _{0 \leq \tau \leq t}\left\|\varphi^{t-\tau}(x(\tau))-\varphi^{t-\tau}(y(\tau))\right\|, \max _{\sigma \geq t}\|x(\sigma-t)-y(\sigma-t)\|\right\} \leq \\
& \left.\leq \max \left\{\max _{0 \leq \tau \leq t} \| x(\tau)-y(\tau)\right)\left\|, \max _{\sigma \geq t}\right\| x(\sigma-t)-y(\sigma-t) \|\right\} \leq \\
& \left.=\max _{\tau \geq 0} \| x(\tau)-y(\tau)\right)\|=\| x-y \| .
\end{aligned}
$$

Since trivially

$$
\left.\left.\left\|\Phi^{t}(x)-\Phi^{t}(y)\right\| \geq \max _{\sigma \geq t}\|x(\sigma-t)-y(\sigma-t)\|\right\}=\max _{\tau \geq 0}\|x(\tau)-y(\tau)\|\right\}=\|x-y\|
$$

we conclude that each map Φ^{t} is a $B(\mathbf{X})$-isometry.
Next we check the semigroup property of $\left[\Phi^{t}: t \in \mathbb{R}_{+}\right]$. Let $s, t \geq$. Then we have

$$
\begin{aligned}
\Phi^{s} \circ \Phi^{t}(x) & : \tau \mapsto\left[\varphi^{s-\tau}\left(\Phi^{t}(x)(0)\right) \text { if } \tau \leq s, \quad \varphi^{t}(x)(\tau-s) \text { if } \tau \geq s\right] \\
\Phi^{s+t}(x) & : \tau \mapsto\left[\varphi^{(s+t)-\tau}(x(0)) \text { if } \tau \leq s+t, \quad x(\tau-(s+t)) \text { if } \tau \geq s+t\right] .
\end{aligned}
$$

Thus if $0 \leq \tau \leq s$ then

$$
\begin{aligned}
\Phi^{s} \circ \Phi^{t}(x)(\tau) & =\varphi^{s-\tau}\left(\Phi^{t}(x(0))\right)=\varphi^{s-\tau}\left(\varphi^{t}(x(0))\right)= \\
& =\varphi^{s-\tau} \circ \varphi^{t}(x(0))=\varphi^{(s+t)-\tau}(x(0))=\Phi^{s+t}(x)(\tau)
\end{aligned}
$$

If $s \leq \tau \leq s+t$ then

$$
\begin{aligned}
\Phi^{s} \circ \Phi^{t}(x)(\tau) & =\Phi^{t}(x)(\tau-s)={ }^{\tau-s \leq t}=\varphi^{t-(\tau-s)}(x(0))= \\
& =\varphi^{(s+t)-\tau}(x(0))=\Phi^{s+t}(x)(\tau)
\end{aligned}
$$

If $s+t \leq \tau$ then

$$
\Phi^{s} \circ \Phi^{t}(x)(\tau)=\Phi^{t}(x)(\tau-s)=^{\tau-s \geq t}=x((\tau-s)-t)=\Phi^{s+t}(x)(\tau)
$$

We complete the proof by checking strong continuity, that is that $\left\|\Phi^{t}(x)-\Phi^{s}(x)\right\| \rightarrow 0$ whenever $s \rightarrow t$ in \mathbb{R}_{+}. Recall that the moduli of continuity

$$
\Omega(z, \delta):=\max _{\left|t_{1}-t_{2}\right| \leq \delta}\left\|z\left(t_{1}\right)-z\left(t_{2}\right)\right\|, \quad \omega(e, \delta):=\max _{\left|t_{1}-t_{2}\right| \leq \delta}\left\|\varphi^{t_{1}}(e)-\varphi^{t_{2}}(e)\right\|
$$

of any function $z \in \mathbf{X}$ resp. any vector $e \in \mathbf{E}$ are well-defined and converge to 0 as $\delta \searrow 0$. Let $0 \leq t_{1} \leq t_{2}$. Then we have

$$
\Phi^{t_{1}}(x)-\Phi^{t_{2}}(x)= \begin{cases}\varphi^{t_{2}-\tau}(x(0))-\varphi^{t_{1}-\tau}(x(0)) & \text { if } \tau \leq t_{1}, \\ \varphi^{t_{2}-\tau}(x(0))-x\left(\tau-t_{1}\right) & \text { if } t_{1} \leq \tau \leq t_{2}, \\ x\left(\tau-t_{2}\right)-x\left(\tau-t_{1}\right) & \text { if } t_{2} \leq \tau\end{cases}
$$

Therefore

$$
\left\|\Phi^{t_{1}}(x)-\Phi^{t_{2}}(x)\right\| \leq \begin{cases}\omega\left(x(0), t_{2}-t_{1}\right) & \text { if } \tau \leq t_{1} \\ \left\|\varphi^{t_{2}-\tau}(x(0))-x(0)\right\|+\left\|x\left(\tau-t_{1}\right)-x(0)\right\| \leq & \\ \quad \leq \omega\left(x(0), t_{2}-t_{1}\right)+\Omega\left(x, t_{2}-t_{1}\right) & \text { if } t_{1} \leq \tau \leq t_{2} \\ \Omega\left(x, t_{2}-t_{1}\right) & \text { if } t_{2} \leq \tau\end{cases}
$$

Hence we see the uniform continuity of the function $t \mapsto \Phi^{t}(x)$ with modulus of continuity $\delta \mapsto \omega(x(0), \delta)+\Omega(x, \delta)$.

Remark. The conclusion of the above lemma holds even if \mathbf{E} is assumed to be a normed space and not necessarily a Banach space.

Corollary. If the maps φ^{t} are holomorphic then each Φ^{t} is a holomorphic $d_{B(\mathbf{X})}$-isometry because $d_{B(\mathbf{X})}(x, y)=\max _{\tau \geq 0} d_{\Delta}(x(\tau), y(\tau))$ and the maps φ^{t} are $d_{B(\mathbf{E})}$-contractions.

Remark. It is well-known [1] that, given a continuously differentiable function $f: \mathbb{R}_{+} \rightarrow$ \mathbf{E} where \mathbf{E} is a Banach space, we have

$$
\frac{d^{+}}{d t}\|f(t)\|:=\limsup _{h \searrow 0}[\|f(t+h)\|-\|f(t)\|] / h=\sup _{L \in \mathcal{S}(f(t))} \operatorname{Re}\left\langle L, f^{\prime}(t)\right\rangle
$$

in terms of the family of supporting bounded linear functionals

$$
\mathcal{S}(y):=\left\{L \in \mathbf{E}^{*}:\|L\|=1,\langle L, y\rangle=\|y\|\right\} \quad(y \in \mathbf{E})
$$

In particular f is non-increasing whenever $\operatorname{Re}\left\langle L, f^{\prime}(t)\right\rangle \leq 0$ for any $t \in \mathbb{R}_{+}$and for any functional $L \in \mathcal{S}(f(t))$.

Lemma. Let $V: U \rightarrow \mathbf{E}$ be a bounded continuously differentiable map (regarded as a vector field) on some open neighborhood U of the closed unit ball $\overline{B(\mathbf{E})}$ with $V(0)=0$ and let $\mu \geq \sup _{e_{1}, e_{2} \in B(\mathbf{E})}\left\|V\left(e_{1}\right)-V\left(e_{2}\right)\right\|$. Then the maximal flow of the vector field $W: B(\mathbf{E}) \ni e \mapsto V(e)-\mu e$ is a well-defined uniformly continuous one-parameter semigroup $\left[\varphi^{t}: t \in \mathbb{R}_{+}\right]$consisting of contractive (non-expansive) self maps of $B(\mathbf{E})$.

Proof. By definition, any flow of W is a family $\left[\varphi^{t}: t \in I\right]$ of self maps $\varphi^{t}: B(\mathbf{E}) \rightarrow B(\mathbf{E})$ where I is some (relatively) open subinterval of \mathbb{R}_{+}and, for any point $e \in B(\mathbf{E})$, the function $I \ni t \mapsto \varphi^{t}(e)$ is the solution of the initial value problem

$$
\begin{equation*}
\frac{d}{d t} z(t)=W(z(t)), \quad z(0)=e . \tag{*}
\end{equation*}
$$

By writing I_{e} for the maximal solution of $(*)$, it is well-known that $\sup I_{e}>0$ in any case, furthermore we have $\lim _{t \rightarrow \sup I_{e}}\|z(t)\|=1$ whenever sup $I_{e}<\infty$.
Let $e_{1}, e_{2} \in B(\mathbf{E})$ and consider the function $f(t):=\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)$ defined on the interval $I_{e_{1}} \cap I_{e_{2}}$. Observe that, given any functional $L \in \mathcal{S}\left(\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right)$, we have

$$
\begin{aligned}
& \operatorname{Re}\left\langle L, f^{\prime}(t)\right\rangle=\operatorname{Re}\left\langle L, W\left(\varphi^{t}\left(e_{1}\right)\right)-W\left(\varphi^{t}\left(e_{2}\right)\right)\right\rangle= \\
& =\operatorname{Re}\left\langle L, V\left(\varphi^{t}\left(e_{1}\right)\right)-V\left(\varphi^{t}\left(e_{2}\right)\right)\right\rangle-\mu \operatorname{Re}\left\langle L, \varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\rangle= \\
& =\operatorname{Re}\left\langle L, V\left(\varphi^{t}\left(e_{1}\right)\right)-V\left(\varphi^{t}\left(e_{2}\right)\right)\right\rangle-\mu\left\|\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\| \leq \\
& \leq \mu\left\|\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\|-\mu\left\|\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\|=0 .
\end{aligned}
$$

Hence we conclude that the function $t \mapsto f(t)$ is decreasing, in particular we have the contraction property $\left\|\varphi^{t}\left(e_{1}\right)-\varphi^{t}\left(e_{2}\right)\right\| \leq\left\|\varphi^{0}\left(e_{1}\right)-\varphi^{0}\left(e_{2}\right)\right\|=\left\|e_{1}-e_{2}\right\|$ for $t \in I_{e_{1}} \cap I_{e_{2}}$. By assumption $W(0)=V(0)=0$ implying $\varphi^{t}(0) \equiv 0$ with $I_{0}=[0, \infty)=\mathbb{R}_{+}$. Hence we see also that $\left\|\varphi^{t}(e)\right\|=\left\|\varphi^{t}(e)-\varphi^{t}(0)\right\| \leq\|e-0\|=\|e\|<1$ for all $e \in B(\mathbf{E})$ and $t \in I_{e}$. This is possible only if $\sup I_{e}=\infty$. Therefore the maximal flow of W is defined for all (time) parameters $t \in \mathbb{R}_{+}$and consists of $B(\mathbf{E})$-contractions φ^{t}.
It is well-known that flows parametrized on \mathbb{R}_{+}are strongly continuous semigroups automatically. The uniform continuity of in our case is a consequence of the fact that $\left\|\varphi^{t_{2}}(e)-\varphi^{t_{1}}(e)\right\| \leq \int_{t_{1}}^{t_{2}}\left\|\frac{d}{d t} \varphi^{t}(e)\right\| d t=\int_{t_{1}}^{t_{2}}\left\|W\left(\varphi^{t}(e)\right)\right\| d t \leq \int_{t_{1}}^{t_{2}} 4 \mu d t \quad\left(0 \leq t_{1} \leq t_{2}\right)$, which shows that $\omega(e, \delta) \leq 4 \mu \delta \quad\left(e \in B(\mathbf{E}), \delta \in \mathbb{R}_{+}\right)$.

Example. Let $\mathbf{E}:=\mathbb{C}$ with $B(\mathbf{E})=\Delta=\{\zeta \in \mathbb{C}:|\zeta|<1\}$ and let $V(z) \equiv z^{2}$. Since $\left|z_{1}^{2}-z_{2}^{2}\right|=\left|z_{1}-z_{2}\right| \cdot\left|z_{1}+z_{2}\right| \leq 2\left|z_{1}-z_{2}\right|$, we can apply the above Lemma with $W(z):=z^{2}-2 z$. For the flow $\left[\varphi^{t}: t \in \mathbb{R}_{+}\right]$of W we obtain the holomorphic maps

$$
\varphi^{t}(z)=\frac{2 z}{\left(1-e^{2 t}\right) z+2 e^{2 t}} \quad(z \in \Delta, t \geq 0)
$$

Indeed, the solution of the initial value problem

$$
\begin{equation*}
\frac{d}{d t} x(t)=x(t)^{2}-2 x(t), \quad x(0)=z \tag{**}
\end{equation*}
$$

is $x(t)=2 z /\left[\left(1-e^{2 t}\right) z+2 e^{2 t}\right]$ as one can check by direct computation. As for heuristics, we get a real valued solution with real calculus for $(* *)$ with initial values $-1<z<1$, and the obtained formula extends holomorphically to Δ.

Theorem. Given a complex Banach space \mathbf{E}, there is a C0-semigroup of non-linear holomorphic 0-preserving norm and Carathéodory isometries of the open unit ball of the function space $\mathbf{X}:=C_{0}\left(\mathbb{R}_{+}, \mathbf{E}\right)$.

Proof. We can apply the construction of the first Lemma with a semigroup [$\varphi^{t}: t \in \mathbb{R}_{+}$] obtained with the construction of the 2nd Lemma with any \mathbf{E}-polynomial vector field V.

Example. Let $\mathbf{E}:=\mathbb{C}$ and $\mathbf{X}:=C_{0}\left(\mathbb{R}_{+}, \mathbb{C}\right)$. Then the maps

$$
\Phi^{t}(x): \mathbb{R}_{+} \ni \tau \mapsto\left[\frac{2 x(0)}{\left(1-e^{2(t-\tau)}\right) x(0)+2 e^{2(t-\tau)}} \text { if } \tau \leq t, \quad x(\tau-t) \text { if } \tau \geq t\right]
$$

form a C0-semigroup of non-linear holomorphic 0-preserving norm and Carathéodory isometries of the unit ball $B(\mathbf{X})$.

Question. Is any holomorphic norm-isometry of the unit ball of a complex Banach space automatically a Carathéodory isometry as well?

References

[1] Federer, Herbert; Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York, Inc., New York 1969.
[2] Franzoni, Tullio - Vesentini, Edoardo; Holomorphic Maps and Invariant Distances, Vol. 40 in North Holland Math. Studies, Vol. 69 in Notas de Matemática, Elsevier North Holland, New York, 1980.
[3] Vesentini, Edoardo; Semigroups of holomorphic isometries, in: Complex potential theory (Montreal, PQ, 1993), 475548, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 439, Kluwer Acad. Publ., Dordrecht, 1994. p. 508.
[4] Vesentini, Edoardo; On the Banach-Stone Theorem, Advances in Mathematics 112, 135-146 (1995).

Acknowledgements.

This research was supported by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, project no. TKP2021-NVA-09.

L.L. STACHÓ

Bolyai Institute, University of Szeged, Aradi Vértanúk tere 1, 6730 Szeged, Hungary
E-mail: stacho@math.u-szeged.hu

