REFINEMENT OF SMALL MOLECULE DOCKING/MAPPING ON BIOMOLECULES

Tamás Körťvélyesi 1,2, Gyula Dömötör 1, Róbert Rajkó 3 and László Stachó 4

1 Department of Physical Chemistry, University of Szeged, H-6701 Szeged, P.O.Box 105, Hungary. 2 Protein Chemistry Research Group of HAS, Szeged, Dóm sq. 8, Hungary. 3 Department of Unit Operations and Environmental Engineering, University of Szeged, H-6701 Szeged, P.O.Box 433, Hungary. 4 Bolyai Institute of Mathematics, University of Szeged, Hungary

Small molecule mapping of biomolecules (peptides, proteins) support the determination of binding site [1-4]. The target molecule is generally rigid, so the effect of the change in side-chains conformations on the docking results can not be estimated. The induced fitting can be find only with a docking/molecular dynamics (MD) combined protocol. DDRP (Dynamically Defined Reaction Path) [5] calculations are used for the determination of the reaction path of conformation transition in small molecule [6]. A protocol was developed – docking/mapping of small ligand molecule on rigid target and DDRP/molecular mechanics (MM) refinement of the target-ligand complex. Ligand can move on the target molecule which is flexible, finding the best position in the complex. The protocol was applied and tested for some examples: small peptide-small molecule ligand complexes. The algorithm try to find the best position on the free energy surface of the association.


This work was supported by the Hungarian National Research Foundation (OTKA) No. T032190.