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Locally generated polynomial C1-splines
over triangular meshes

L.L. STACHÓ

Abstract. We classify all possible local linear procedures over triangular meshes

resulting in polynomial C1-spline functions with affinely uniform shape for the

basic functions at the edges, and fitting the 9 value- and gradient data at the ver-

tices of the mesh members. There is a unique procedure among them with shape

functions and basic polynomials of degree 5 and all other admissible procedures

are its perturbations with higher degree.

1. Introduction

By a triangular mesh we mean a finite family of closed non-degenerate
triangles on the plane R2 with pairwise non-intersecting interiors and admit-
ting only common vertices or edges. As usually, we regard R2 as the set of
all real couples [ξ, η] considered also as 1×2 (row) matrices. We shall use the
standard notations x[1] = x : [ξ, η] 7→ ξ, x[2] = y : [ξ, η] 7→ η and 〈u|v〉 :=∑2

j=1 x
[j](u)x[j](v) for the Cartesian coordinates and scalar product, re-

spectively. We write ‖u‖ = 〈u|u〉1/2 for the norm of u ∈ R2 and Co(S) for
the convex hull of S ⊂ R2 resp. det(u,v) = x[1](u)x[2](v) − x[1](v)x[2](u)
for 2×2-determinants. Given a triangular mesh T =

{
T1, . . . ,TM

}
, in the

sequel Vert(Tk) and Edge(Tk) will denote the sets of vertices resp. closed
edges of the mesh members, furhermore Dom(T ) :=

⋃M
k=1Tk, Edge(T ) :=⋃M

k=1 ∂Tk, Vert(T ) :=
⋃M
k=1 Vert(Tk) will stand for the domain covered by

T , the line figure covered by all edges and the collection of all vertices, re-
spectively. Recall that, given a gradient-data

F =
{(

p, fp, [f
′
x,p, f

′
y,p]
)

: p ∈ VertT )
}
⊂ Vert(T )× R× R2

on the set of the vertices in T , a function f : D → R is a C1-extension
of F on D := Dom(T ) if f has a continuous gradient p 7→ ∇f(p) =
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[
∂
∂xf(p), ∂∂yf(p)

]
on Interior(D) which admits a continuous extension to

D as well (denoted also by ∇f) such that

f(p) = fp, ∇f(p) =
[
f ′x,p, f

′
y,p

] (
p ∈ Vert(T )

)
. (1.1)

A C1-extension f : D→ R of F is said to be a C1-spline interpolation of F
with respect to the mesh T if the restrictions f |Tk are polynomials of the
coordinate functions x, y.

There exists a large variety of C1-splines for any admissible T and F
which can be obtained e.g. as global polynomial extensions with Hermite
type interpolation [5]. Obviously global polynomial fitting may primarily
be interesting only from a pure theretical view point due to too large poly-
nomial degree and hence high numerical instability. A better alternative
could be an imitation of tensor product splines (e.g. with Catmull-Rom
type hermition curves on edges developed for rectangular meshes [7,6]).
This consists the construction of C1-splines as linear combinations on the
rectangular mesh members from affine images of tensor products from only
two special polynomials Φ,Ψ : [0, 1] → [0, 1] (actually ϕ(t) = t2(3 − 2t),
ψ(t) = t2(1− t)). Some main features of tensor product spline procedures
which can naturally be generalized even to procedures

S : (T , F ) 7→fT ,F
(
T triang. mesh, F grad. data on Vert(T )

)
(1.2)

furnishing C1-spline interpolation functions from gradient data at the ver-
tices over triangular meshes can be formulated in Postulates A,B below.

Postulate A. (Linearity and being locally generated). There are polyno-
mial functions

ϕp,T, ψ
(1)
p,T, ψ

(2)
p,T : T→R

(
T non-deg. triangle}, p ∈ Vert(T)

)
depending only on the couple of the triangle T with a distingvished vertex
such that the restriction of S to any mesh triangle T ∈ T has the form

fT,F |T =
∑

p∈Vert(T)

[
fpϕp,T + f ′x,pψ

(1)
p,T + f ′y,pψ

(2)
p,T

]
. (1.3)

If Postulate A holds and Vert(T) = {a,b,p}, in terms of the canonical
frame vectors

e[0] := 0 = [0, 0], e[1] := [1, 0], e[2] := [0, 1]
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we necessarily have

ϕp,T(p)=1, ∇ϕp,T(p)=0, ψ
(j)
p,T(p)=0, ∇ψ(j)

p,T(p)=e[j];

ϕp,T(x)=ψ
(j)
p,T(x)=0, ∇ϕp,T(x)=∇ψ(j)

p,T(x)=0
(
x∈Co{a,b}

)
.

(1.4)

The first statement in (1.4) is immediate from (1.3), while the second one
is a consequence of the fact that given any point p̃ forming an adjacent
triangle T̃ := Co{a,b, p̃}, for the mesh T := {T, T̃} with gradient data
F (q) = (0,0) for q = a,b, p̃ we must have fT ,F ≡ 0 on T̃ and hence also

∇fT ,F ≡ 0 on the common edge Co{a,b} of the triangles T, T̃.
Locally generated linear spline procedures have the computational ad-

vantage that the resulting functions can be calculated on any mesh triangle
regardless to what happens at vertices outside. A practical disadvantage is
that in most cases only function values are available (mostly from scanned
data) and convenient gradient values must be guessed or found by optimiz-
ing procedres.

Postulate B. (Uniform shape on edges). (1.3) holds and there are
polynomial functions Φ,Ψ : [0, 1]→R such that

Φ(0)=Ψ(0)=Φ′(0)=Ψ′(0)=Ψ(1) = 0, Φ(1)=Ψ′(1)=1 (1.5)

and the graps of the basic functions ϕp,T on the edges of the triangle T

are affine images of the graph of Φ, and those of ψ
(j)
p,T (j = 1, 2) are affine

images of the graph of Ψ.
That is, under Postulate B, for the generic points yt := tp + (1 − t)a

on the edge Co{a,p}, resp. zt := tp + (1− t)b on Co{b,p} we have

ϕp,Co{a,b,p}
(
yt
)

= consta,pΦ(t), ψ
(j)
p,Co{a,b,p}

(
yt
)

= const
(j)
a,pΨ(t),

ϕp,Co{a,b,p}
(
zt
)

= constb,pΦ(t), ψ
(j)
p,Co{a,b,p}

(
zt
)

= const
(j)
b,pΨ(t)

(1.6)

while for the points xt := (1 − t)a + tb on the edge Co{a,b} we simply
have

ϕp,Co{a,b,p}(xt) = ψ
(j)
p,Co{a,b,p}(xt) = 0,

∇ϕp,Co{a,b,p}(xt) = ∇ψ(j)
p,Co{a,b,p}(xt) = 0.

(1.7)

In the sequel we call Φ,Ψ the shape functions of the spline procedure
(T , F ) 7→ fT ,F satisfying Postulate B. Notice that the requirements Φ(0) =
Φ′(0) = Ψ(0) = Ψ′(0) follow automatically from the order condition (1.4)
on the edge Co{a,b}.
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At first glance, shape uniformity may seem an artificial requirement.
However, for a procedure satisfying Postulate A, the geometrically natural
property of being invariant with respect to homothetic transformations
(maps R↔ R of the form x 7→ µxS+w with some orthogonal matrix S)
implies Postulate B trivially. In our context we understand invariance as
follows: given a surjective affine transformation G(x) = xA+w with some
invertible 2×2-matrix A of the plain, the spline procedure S : (T , F ) 7→ fT ,F
is G-invariant if it transfers spline functions constructed with the gradient
data of any smooth function h on Vert(T ) from Dom(T ) to the analogous
objects with h◦G−1 on Dom(G(T ))=G(Dom(T )), that is

fT ,F ◦G−1 = fG(T ),G](F )

with G]
(
x, χ, [µ1, µ2]

)
:=
(
G(x), χ, [µ1, µ2]A

−1). (1.8)

As we shall see (Lemma 4.1), if Postulate A holds, we can formulate G-
invariance in terms of the basic functions as follows:

ϕG(p),G(T)=ϕp,T◦G−1,[
ψ
(1)
G(p),G(T), ψ

(2)
G(p),G(T)

]
=
[
ψ
(1)
p,T◦G

−1, ψ
(2)
p,T◦G

−1]A. (1.9)

It is worth to notice (Corollary 4.4) that (1.9) cannot hold simultaneously
for all invertible matrices A and w ∈ R2. Thus there is no local linear spline
procedure which is invariant under all invertible affine transformations and
producing always C1-smooth functions (i.e. functions being continuously
differentiable also over the edges of mesh triangles) functions.

Our aim in this paper is a parametric classification of the procedures
satisfying Postulates A,B, resulting in C1-smooth functions. In particular
we enumerate all the homothetically invariant linear local polynomial C1-
spline interpolation procedues from gradient data over triangular meshes.
It is remarkable that there is a unique one among them with lawest de-
gree (degree 5) which turns out to be homothetically invariant. From the
view point of applications, the results provide the complete list of hermi-
tion C1-splines with shape uniformity over edges from which one can choose
the best fit one with respect to various aspects. It is worth to relate the
latter fact to a celebrated alternative local linear polynomial spline inter-
polation procedure on the basis of Zlámal-Ženǐsek 2-nd order triangular
spline equations [9]. This relies upon the fact that, given a triangular mesh
with gradient and Hessian data at the vertices and normal derivative val-
ues at edge middle points, there is a unique fitting spline with 5th degree
polynomials. The 21 polynomial coefficients over any mesh triangle can be
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obtained as the unique solution of a system of 21 straightforward linear
equations whose explicit formula was published recently [8]. Though not
stated in the sources, easily seen this kind of procedure has some homoth-
etical invariance properties. Hence it seems that our first order approach
with the shape conditions of Postulate B provides a geometrically moti-
vated alternative to several problems discussed in [8]. As mentioned earler
and remarked also e.g. in [1], first order approches with a few (actually 9
in [1]) free parameters may have practical advantages versus higher oreder
methods due to the fact that data sampling can rarely support e.g. Hessian
data (or even adequate guesses for them).

Our arguments are based on the use of baricentic coordinates associ-
ated with triangles instead of the usual Cartesian ones. Applying Remark
3.2 to the difference of the first order solution given in Theorem 2.3 a way
is opened to develop a new geometric approach to the system of Zlámal-
Ženǐsek equations and its alternative variants which may have further in-
dependent theoretical and educational interest.

2. Main results

Recall that given a non-degenerate triangle T ⊂ R2 with {a,b, c} =
Vert(T), the normalized baricentric coordinates of a point x are the terms
of the necessarily unique triple

[
λaT(x), λbT(x), λcT(x)

]
∈ R3 such that

x = λaT(x)a + λbT(x)b + λcT(x)c, λaT(x) + λbT(x) + λcT(x) = 1.

We reserve the symbols λpT as standard notation. It is well-known from
elementary analytic plain geomertry [2] that

λpT(x) = area(Co{a,b,x})/area(T)
(
x ∈ T

)
thus normalized baricentric coordinates can easily be calculated by means
of determinants or inner products with a (π/2)-rotation:

λpT(x)=
det(x−a,x−b)

det(p−a,p−b)

〈
(b−a)R

∣∣x−a〉〈
(b− a)R

∣∣p− a
〉 where R :=

[
0 1
−1 0

]
. (2.1)

For later use we also introduce the abbreviating notations

x
[j]
p :=x[j]−x[j](p), ξvp,a :=

〈v−a|p−a〉
‖p− a‖2

, ξ
v
p,a :=

〈v−a|(p−a)R〉
‖p− a‖2

. (2.2)
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As for geometric interpretation, ξvp,a resp. ξ
v
p,a are the affine coordinates of

the point v with respect to the orthogonal frame
[
a,p,a+(p−a)R

]
with

origin a so that v = a + ξvp,a(p−a) + ξ
v
p,a(p−a)R.

Theorem 2.3. There is a unique local linear polynomial C1-spline pro-
cedure acting on triagular meshes with the property of uniform shape on
vertices∗ and having shape functions with minimal computational complex-
ity. Its shape functions are

∗
Φ(t) = t3(10− 15t+ 6t2),

∗
Ψ(t) = t3(t− 1)(4− 3t).

The corresponding basic functions ( for a non-degenerate triangle T =
Co{a,b,p} with distinguished vertex p ) have the form

∗ϕp,T=
∗
Φ
(
λpT
)

+ 30 [λpT]2λaTλ
b
T

[
ξbp,aλ

b
T + ξap,bλ

a
T

]
,

∗ψ
(j)
p,T=

∗
Ψ
(
λpT
)

λpT − 1
x
[j]
p + 12[λpT]2λaTλ

b
T

[
ξbp,ax

[j]
p (b)λbT + ξap,bx

[j]
p (a)λaT

]
.

Theorem 2.4. A spline procedure acting on triangular meshes and sat-
isfying Postulates A,B produces C1-smooth splines if and only if its shape
functions are of the form

Φ(t) =
∗
Φ(t) + t3(1− t)3Φ1(t), Ψ(t) =

∗
Ψ(t) + t3(1− t)3Ψ1(t) (2.7)

and the basic functions (for a non-degenerate triangle T = Co{a,b,p}
with distinguished vertex p) can be written in terms of the modified shape
function

Θ(t) :=Ψ(t)/(t−1)

and the rotation matrix R in (2.1) as

ϕp,T = Φ
(
λpT
)

+ [λpT]2λaTλ
b
TP

p
a,b

(
λbT, λ

a
T

)
,

ψ
(j)
p,T = Θ

(
λpT
)
x
[j]
p + [λpT]2λaTλ

b
TQ

j,p
a,b

(
λbT, λ

a
T

) (2.5)

∗That is satisfying Postulates A,B with fT ,F ∈ C1
(
Dom(T )

)
.
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where

Pp
a,b(s, t) = s

{
ξap,b

Φ′(1− s)
(1− s)2s2

+ ξ
a
p,bk

0,p
b (s)

}
+

+ t
{
ξbp,a

Φ′(1− t)
(1− t)2t2

ξ
b
p,ak

0,p
a (t)

}
+ stR0,p

a,b(s, t),

Qj,pa,b(s, t) = s
{
ξap,bx

[j]
p (b)

Θ′(1−s)
s(1−s)2

+ ξ
a
p,bk

j,p
b (s)

}
+

+ t
{
ξbp,ax

[j]
p (a)

Θ′(1−t)
t(1−t)2

+ ξ
b
p,ak

j,p
a (t)

}
+ stRj,pa,b(s, t)

(2.6)

with the following free options in (2.5) resp. (2, 6):

(i) Φ1,Ψ1 : [0, 1]→ R are arbitrary polynomial functions,

(ii) (p,q) 7→ ki,pq (i = 0, 1, 2) are arbitrary maps assigning polynomial
functions R→ R to pairs of distinct points,

(iii) (p,q, r) 7→ Ri,pq,r (i = 0, 1, 2) are arbitrary maps assigning polynomial
functions R2 → R to triples of non-collinear points with the symmetry
Ri,pq,r(s, t) ≡ Ri,pr,q(t, s).

Remark 2.7. (i) Actually, Theorem 2.3 is simply a corollary of Theorem
2.4 by setting the options (i)−(iv) to 0. We emphasize it for its potential
practical and educational use.

(ii) The formally rational expressions in (2.5− 2.6) are polynomials.
Indeed, Φ′(1− t)/

[
t2(1− t)2

]
= 30− 3(1− 2t)Φ1(1− t) + t(1− t)Φ′1(1− t),

resp. Ψ(t)/(t − 1) = t3[(4 − 3t) − (1 − t)2Ψ1(t)], Θ′(1 − t)/[t(1 − t)2] =
12 + (2− 5t)Ψ1(1− t)− t(1− t)Ψ′1(1− t).

(iii) λpT, λ
a
T, λ

b
T are the affine functions determined by the properties

Line{a,b}=
(
λpT = 0

)
, Line{b,p}=

(
λaT = 0

)
, Line{a,p}=

(
λbT = 0

)
, λpT(p) =

λaT(a)=λbT(b)=1. For the parametrized edge points in (1.6) we have On

the other hand x[j](yt) = (1− t)x[j](a− p) = (1− t)x[j]p (a) resp. x[j](zt) =

(1 − t)x[j](b− p) = (1 − t)x
[j]
p (b). Hence, with the formulas (2.5), the

shape conditions (1.6) hold automatically with consta,p = constb,p = 1

and const
(j)
a,p = x[j](p− a) resp. const

(j)
b,p = x[j](p− b), furthermore also

(1.7) is fulfilled.

(iv) One can check with symbolic computer algebra that all the spline
procedures described in Theorem 2.4 produce C1-functions. It suffices to
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L.L. Stachó Locally generated C1-splines over triangular meshes

λpT(xt) = λaT(zt) = λbT(yt) ≡ 0,

λpT(yt) = λpT(zt) = λbT(xt) ≡ t,
λaT(xt) = λaT(yt) = λbT(zt) ≡ 1− t. • •

•

a b

p = y1 = z1

•xt
•yt •zt

establish only that, given any two adjacent non-degenerate triangles T :=
Co{p,a,b} resp. T̃ := Co{p,a, p̃} with common edge Co{p,a} and distin-

guished point p, the gradient vectors of the basic functions ϕp,T, ψ
(j)
p,T coin-

cide with those of ϕ
p,T̃

, ψ
(j)

p,T̃
at the points yt = (1− t)a+ tb. Indeed, hence

it follows that the unit spline functions fT ,F ip
(
p∈Vert(T ), i=0, 1, 2

)
corre-

sponding to the gradient data F 0
p :=

{
[p, 1,0], [q, 0,0] : q ∈ Vert(T )\{p}

}
resp. F jp :=

{
[p, 0, e[j]], [q, 0,0] : q ∈ Vert(T ) \ {p}

}
(j=1, 2) are continu-

ously differentiable.

Theorem 2.8. A C1-spline procedure S described in Theorem 2.4 in the
form (2.7−9) is isometry-invariant if and only if ki,pc (t) ≡ 0 for all i=0, 1, 2
and p 6=c ∈ R2 furthermore the higher terms Ri,pa,b in (2.9) transform as

R
0,G(p)
G(a),G(b) = R0,p

a,b resp.
[
R

1,G(p)
G(a),G(b), R

2,G(p)
G(a),G(b)

]
=
[
R1,p

a,b, R
2,p
a,b

]
A whenever

G : x 7→ w + xA is an isometry.

3. Proof of Theorem 2.4

Henceforth we consider an arbitrarily fixed procedure S : (T , F ) 7→fT ,F
which satisfies Postulates A,B and produces continuous but not necessarily

continuously differentiable functions. We reserve the notations ϕp,T, ψ
(j)
p,T

resp. Φ,Ψ for the basic functions resp. shape functions as established in
Section 1. In accordance with (1.5) we can write

Φ(t) = t2(3−2t)+t2(1−t)2Φ0(t), Ψ(t) = t2(t−1)+t2(1−t)2Ψ0(t) (3.1)

and Θ(t) = t2 + t2(t− 1)Ψ0(t) with suitable polynomials Φ0,Ψ0.
Next we are going to express the constraints (1.4), (1.6−7) on the basic

functions in terms of Φ,Ψ and baricentric coordinates. To this aim, we re-
call the following folklore fact from elementary algebraic geometry relating
the root curves with a product decomposition of multivariate polynomials
which is an easy consequence of Bézout’s Theorem [3,4].
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Remark 3.2(i) If L0,L1, . . . ,Lm are distinct straight lines such that
Lk =

(
`k = 0

)
with the affine functions (i.e. polynomials of first degree)

`k : R2 → R (k = 1, . . . ,m) then a polynomial R2 → R is divisable with∏m
k=0 `

νk
k if and only if, for any index k, it vanishes in order νk at the points

of Lk. In particular, given a non-degenerate triangle T := Co{a,b,p}, a
polynomial Q : R2 → R of two variables has the form

Q = [λpT]ν0 [λaT]ν1 [λbT]ν2

for some polynomial q : R2 → R if and only if it vanishes in order ν0 at
the points of Line{a,b}, order ν1 at Line{p,b} and order ν2 at Line{p,a},
respectively.†

(ii) If Q : R2 → R is a polynomial of two variables, we can write

Q(x, y) = Q(0, 0) + xq1(x) + yq2(y) + xyq3(x, y) where

q1(x) := [Q(x, 0)]−Q(0, 0)/x, q2(y) := [Q(0, y)−Q(0, 0)]/y,

q3(x, y) :=
[
Q(x, y)− [Q(0, 0) + xq1(x) + yq2(y)]

]
/(xy)

are well-defined polynomials in one resp. two variables. We shall call the
R2-polynomial Q0(x, y) := Q(0, 0) + xq1(x) + yq2(y) of first degree the
principal part of Q.

Lemma 3.4. The basic functions ϕp,T, ψ
(j)
p,T for T = Co{a,b,p} have

the form
ϕp,T = Φ(λpT) + [λpT]2λaTλ

b
T Pol(λbT, λ

a
T),

ψ
(j)
p,T = Θ(λpT)x

[j]
p + [λpT]2λaTλ

b
T Pol(λbT, λ

a
T)

in terms of the baricentric coordinates (2.1), the shape functions 3.1, Θ(t) :=
Ψ(t)/(t−1) and with suitable polynomials of two variables.

Proof. Fix any triangle T := Co{a,b,p}. As mentioned, necessarily
(3.iiipi) holds and Θ is a polynomial. Consider the functions

f := Φ(λpT), g(j) := Θ(λpT) · x[j]p .

Along the edge Co{a,p}, at the points yt := (1 − t)a + tp we have
λpT(yt) = t, λbT(yt) = 0, λaT(yt) = [1 − λaT(yt) − λbT(yt) = 1 − t. Observe
that the functions f, g(j) suit the shape uniformity conditions because

f(yt)=Φ(t), g(j)(yt)=Θ(t)
〈
e[j]
∣∣yt − p

〉
=Θ(t)(1− t)

〈
e[j]
∣∣a− p

〉
=

=
〈
e[j]
∣∣p− a

〉
Ψ(t)

†Q vanishes in order ν at the point [x0, y0] if ∂k+m

∂xk∂ym
Q(x0, y0) = 0 whenever k+m < ν.
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and since f, g(j) are polynomial multiples of [λpT]2. Also, since y1 = p,
f(p) = Φ(λpT(y1)) = Φ(1) = 1 and

∇f(p) = Φ′
(
λpT(y1)

)
∇λpT(y1) = 0 · ∇λpT(y1) = 0,

∇g(j)(p) = ∇x=y1

[
Θ
(
λpT(x)

)
x
[j]
p (x)

]
=

= x
[j]
p (p)∇x=y1Θ

(
λpT(x)

)
+ Θ

(
λpT(p)

)
∇x=y1x

[j](p) =

= 0 ·Θ′(1)∇λpT(y1) + Θ(1)e[j] = e[j].

Therefore the difference functions ϕpT−f and ψ
(j)
p,T−g(j) vanish on

the edge Co{a,p} of the triangle T. Similar arguments with the points

zt := (1− t)b + tp show that ϕp,T−g and ψ
(j)
p,T−g(j) vanish on Co{b,p}.

By (1.7) their gradients also vanish on the edge Co{a,b} =
(
λpT = 0

)
.

Hence (cf. Remark 3.2) they are polynomial multiples of [λpT]2λaTλ
b
T, say

ϕpT = f+[λpT]2λaTλ
b
TΠ

(0)
p,T and ψ

(j)
p,T = g(j) +[λpT]2λaTλ

b
TΠ

(j)
p,T, respectively.

Since λaT, λ
b
T are linearly independent affine functionals, the mapping Λp

a,b :

x 7→
[
λbT(x), λaT(x)

]
is an affine coordinatization on the plain R2. Thus we

can express each term Π
(i)
p,T as a polynomial of the coordinates Λp

a,b which
completes the proof.

Notation 3.5. For later convenience, without danger of confusion, we
introduce the unifying context-free notations

λpa,b := λpCo{a,b,p}, f0,pa,b := ϕp,Co{a,b,p}, f j,pa,b := ψ
(j)
p,Co{a,b,p} (j=1, 2).

Furthermore, in view of Lemma 3.4, we shall write

f i,pa,b = Φ[i](λpa,b)x
[i]
p + [λpa,b]2λba,pλ

a
b,pP

i,p
a,b(λba,p, λ

a
b,p) (i = 0, 1, 2) (3.6)

where

Φ[0] := Φ, Φ[1] := Φ[2] := Θ, x
[0]
p : x 7→ 1 with e[0] := ∇x[0]p = 0

and the terms P i,pa,b (i=0, 1, 2) are polynomials with coefficients depending
on the ordered tuple (i,p,a,b). Notice that necessarily

P i,pa,b(s, t) ≡ P i,pb,a(t, s) (3.7)

due to the trivial index symmetries λwu,v ≡ λwv,u and f i,pa,b ≡ f
i,p
b,a.

10
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Lemma 3.8. We have fT ,F ∈ C1
(
Dom(T )

)
for every triangular mesh with

arbitrary gradient data if and only if

b 7→ ∇f i,pa,b(y) ≡ constp,a,y for fixed p 6= a and y ∈ Co{p,a}. (NUM)

Proof. Given any non-degenerate triangle T = Co{a,b,p}, By con-
struction, for the points xt := (1 − t)a + tb, yt := (1 − t)a + tp and
zt := (1−t)b+tp on the edges of the triangle T we have f i,pa,b(xt) = 0 inde-

pendently of p, f i,pa,b(yt) = Φ[i](t) independently of b and f i,pa,b(zt) = Φ[i](t)
independently of a. Thus the shape conditions are automatic from (3.6).
Moreover, given any triangle T̃ with a common edge but disjoint interior

to T, the functions pairs ϕp,T, ϕp,T̃
resp. ψ

(j)
p,T, ψ

(j)

p,T̃
touch continuosly.

The analogous necessary and sufficent condition for a C1-smooth touching

is that the gradient pairs ∇ϕp,T,∇ϕp,T̃
resp. ∇ψ(j)

p,T,∇ψ
(j)

p,T̃
coincide on

the common edge:

(i) ∇f i,pa,b(x) = ∇f i,p̃a,b(x) if x ∈ Co{a,b}=T∩Co{a,b, p̃},

(ii) ∇f i,pa,b(y) = ∇f i,b̃a,p(y) if y ∈ Co{a,p}=T∩Co{a, b̃,p},

(iii) ∇f i,pa,b(z) = ∇f i,ãb,p(z) if z ∈ Co{b,p}=T∩Co{ã,b,p}.

(3.10)

Observe that (3.10(i)) holds automatically with the trivial value 0. Fur-
thermore conditions (3.10(i)) and (3.10(ii)) are equivalent (by changing the
roles of a and b). Finally we observe that, in (3.iiipxiii(i)), for fixed a,p
and y ∈ Co{a,p} we can choose the points b and b̃ on different half plain
components of R2\Line{a,p} arbitrarily. This implies that all the vectors

∇f i,ba,p(y), ∇f i,b̃a,p(y) with b, b̃ ∈ R2\Line{a,p}must be the same. Due to the

construction (1.3), the fact that all the pairs ϕp,T, ϕp,T̃
resp. ψ

(j)
p,T, ψ

(j)

p,T̃

of basic functions touch C1-smoothly in case of adjacent triangles T, T̃,
ensures that the splines fT ,F are all C1-smooth as well.

Notation 3.11. Given any ordered triple (u,v,w) of non-collinear points,
we shall write gw

u,v := ∇λwu,v for the constant gradient vectors of the bari-
centric coordinate functions. Notice that, by (2.1),

gw
u,v :=

(u− v)R〈
(u− v)R

∣∣w − u
〉 =

σwu,v(u− v)R

area(Co{u,v,w})
. (3.12)

where σwu,v = ±1 according as (u,v,w) are oriented anticlockwise or
clockwise. In particular, if T = Co{a,b,p} is a non-degenerate triangle,

11
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we have

gp
a,b + ga

b,p + gb
a,p = ∇

[
λpa,b + λab,p + λba,p

]
= ∇1 = 0,

gp
a,b ⊥ b− a, gb

a,p ⊥ a− p, ga
b,p ⊥ b− p.

Lemma 3.13. If T = Co{a,b,p} is a non-degenerate triangle, at the
points yt := (1− t)a + tp of the edge Co{a,p} we have

∇f i,pa,b(yt) =x[i]
(
(1−t)(a−p)

)
[Φ[i]]′(t)gp

a,b+

+ Φ[i](t)e[i] + t2(1−t)P i,pa,b(0, 1−t)gb
a,p.

(3.14)

Proof. With the abbreviations

`0 := λpa,b, `1 := λba,p, `2 := λab,p, P [i] := P i,pa,b, G[i] := `20`2P
[i](`1, `2)

we can write

∇f i,pa,b = ∇
[
x
[i]
p Φ[i](`0) + `1G

[i]
]

=

= x
[i]
p ∇
[
Φ[i](`0)

]
+ Φ[i](`0)∇x[i]p + `1∇G[i] +G[i]∇`1 =

= x
[i]
p Φ[i]′(`0)∇`0 + Φ[i](`0)e

[i] + `1∇G[i] +G[i]∇`1.

We complete the proof with the observations that

`0(yt)= t, `1(yt)=0, `2(yt)=1−t,

x
[i]
p (yt)=x[i]

(
(1−t)(a− p)

)
, ∇x[i]p ≡e[i].

Remark 3.15. To prove Theorem 2.4, we need a precise description for
the coefficients of the polynomials P i,pa,b in terms of the variables a,b,p such
that (3.9) should hold.

According to Lemma 3.8, the procedure S : (T , F ) 7→ fT ,F produces
C1-splines for every admissible data if and only if, for any t∈ [0, 1] and for
any fixed pair a,p of distinct points, the gradient expressions (3.14) are
independent of the variable b ranging in R2\Line{a,p}. This latter con-
dition can be formulated in terms of the b-independent affine coordinates
(2.2) as follows. By (3.12) we have

gb
a,p=

(a−p)R

〈(a−p)R|b−a〉
=‖p−a‖−2(1/ξ b

p,a)(p−a)R,

gp
a,b=

(a−b)R

〈(a−b)R|p−a〉
=
ξ
(a−b)R
p,a (p−a)+ξ

(a−b)R
p,a (p−a)R

‖p−a‖2ξbp,a
=

= ‖p−a‖−2
[
(p−a)+(ξbp,a/ξ

b
p,a)(p−a)R

]
.

12
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Thus we can rewrite (3.14) in the form

∇f i,pa,b(yt) =
[
b-independent terms

]
+

+
x[i]
(
(1−t)(a−p)

)
[Φ[i]]′(t)ξbp,a + t2(1− t)P i,pa,b(0, 1− t)

‖p−a‖2ξ b
p,a

(p−a)R.
(3.16)

Hence we conclude immediately the following.

Lemma 3.17. We have (3.9) if and only if for every pair p,a of distinct
points there exist polynomials Ki,p

a (i=0, 1, 2) of one variable such that

Ki,p
a (t) = x[i]

(
(1− t)(a−p)

)
[Φ[i]]′(t)

ξbp,a

ξ
b
p,a

+
t2(1− t)
ξ

b
p,a

P i,pa,b(0, 1− t) (3.18)

independently of the choice of b outside Line{a,p}.

We can regard (3.18) as a partial algebraic condition on the polynomials
P i,pa,b of two variables as

P i,pa,b(0, 1− t) = ξ
b
p,a

Ki,p
a (t)

t2(1−t)
−

− ξ b
p,a

x[i]
(
(1−t)(a−p)

)
[Φ[i]]′(t)

t2(1−t)
(0<t<1).

(3.19)

Since, for fixed a,p, the coordinates
(
ξ b
p,a, ξ

b
p,a

)
may assume arbitrary val-

ues (r, s) with s 6= 0, from (3.19) we obtain the polynomial divisability
relations t2(1 − t)

∣∣Ki,p
a (t) and t2(1 − t)

∣∣x[i]((1− t)(a−p)
)
[Φ[i]]′(t). Since

x[0]
(
(1 − t)(a− p)

)
≡ 1 and x[0]

(
(1 − t)(a− p)

)
≡ (1 − t)x[j](a− p) for

j = 1, 2, with the aid of (3.22′) we can state (3.19) in the form

P i,pa,b(0, 1−t) =

〈
b−a

∣∣p−a〉
‖p−a‖2

x
[i]
p (a) χ[i](t)+

〈
b−a

∣∣(p−a)R
〉

‖p−a‖2
κi,pa (t) (3.20)

with suitable polynomials χ[i] and κi,pa (i = 0, 1, 2; a 6= p ∈ R2) of one
variable. Actually

κi,pa (t) =
Ki,p

a (t)

t2(1− t)2
, χ[0](t) =

[Φ[0]]′(t)

t2(1− t)
=

Φ′(t)

t2(1− t)
,

x
[i]
p (a)χ[j](t)=

x[j]
(
(1−t)(a−p)

)
[Φ[j]]′(t)

t2(1− t)
= x

[j]
p (a)

[Ψ(t)/(t−1)]′

t2

13
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for j=1, 2 on the basis of (3.19) In terms of the Kronecker-δ, we can write
even

χ[i](t) = t−2(1− t)−δi,0 [Φ[i]]′(t) (i = 0, 1, 2).

Clearly, the polynomials Ki,p
c cannot be chosen arbitrarily. There is a

unique obstacle: we obtained Lemma 3.13 and hence (3.18) by an inspec-
tion of ∇f i,pa,b on one of the edges of a triangle T = Co{a,b,p} at the
distinguished point p (namely Co{a,p} with the parametrization yt :=
(1− t)a + tb) while also the analogous conclusion should also be taken si-
multaneously in to account with the second edge (namely Co{b,p} issued
from p. Applying a change a ↔ b and taking into account the symmetry
(3.7), we see that also

P i,pa,b(1−t, 0)=

〈
a−b

∣∣p−b〉
‖p−b‖2

x
[i]
p (b) χ[i](t)+

〈
a−b

∣∣(p−b)R
〉

‖p−b‖2
κi,pb (t). (3.21)

We obtain the complete description for the families of polynomials Ki,p
a,b

being admissible by Lemma 3.17 by the next obervation.

Lemma 3.22. For any pair p 6= c ∈ R2, in (3.20−21) we have χ[i](1) =
κi,pc (1) = 0.

Proof. Fix i,p ∈ R2 and ρ > 0 arbitrarily. Consider (3.20−21) for pairs
a,b with ‖a− p‖ = ‖b− p‖ = ρ written in the form

a := cσ, b := cτ where cτ := p + ρuτ , uτ := cos τe[1] + sin τe[2].

Due to (3.7), with the abbreviations α := χ[i](1) and β(τ) := κi,pcτ (1) we get

0 = P i,pcσ ,cτ (0, 0)− P i,pcτ ,cσ(0, 0) =

=
[(
〈uτ |uσ〉−1

)
x[i](cσ)α+〈uτ |uσR〉β(σ)

]
−

−
[(
〈uσ|uτ 〉−1

)
x[i](cτ )α+〈uσ|uτR〉β(τ)

]
=

= (〈uσ|uτ 〉−1)
[
x[i](cσ)− x[i](cτ )

]
α+ 〈uτ |uσR〉β(σ)− 〈uσ|uτR〉β(τ)

)
=

=
[

cos(σ − τ)− 1
][
x[i](cσ)− x[i](cτ )

]
α+ sin(τ − σ)

[
β(σ) + β(τ)

]
.

Since x[0] ≡ 1, in any case we have x
[i]
p (cσ)−x[i]p (cτ ) = ρ[x[i](uσ)−x[i](uτ )].

It follows

β(σ) + β(τ) = αρ
cos(τ − σ)− 1

sin(τ − σ)

[
x[i](uσ)− x[i](uτ )

]
,

∣∣β(σ) + β(τ)
∣∣ ≤ ρ|α|1− cos(τ − σ)

sin(|τ − σ|)
∥∥uσ − uτ

∥∥ ≤
≤ 2ρ|α|[1− cos(τ − σ)].

(3.23)

14
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Suppose indirectly β(τ) 6= 0 for some τ ∈ R. Let ε := |β(τ)| and choose
δ > 0 such that 2ρ|α|(1 − cos θ) < ε/4 whenever |θ| ≤ ε. Then we have
|β(τ)+β(τ±δ/2)| < ε/4 that is β(τ±δ/2) ∈

[
−ε/4, ε/4]−β(τ). Therefore

β(τ+δ/2)+β(τ−δ/2) ∈
[
−ε/2, ε/2

]
−2β(τ) ⊂

[
−ε/2, ε/2

]
+{−2ε, 2ε} =[

− 5ε/2,−3ε/2
]
∪
[
3ε/2, 5ε/2

]
i.e. |β(τ + δ/2) +β(τ − δ/2)| ∈

[
3ε/2, 5ε/2

]
However, we also have |β(τ + δ/2) + β(τ − δ/2)| < ε/4 which leads to the
contradiction |β(τ + δ/2) + β(τ − δ/2)| ∈

[
3ε/2, 5ε/2

]
∩
[
0, ε/4

]
= ∅. By

the arbitrariness of the radius ρ, the angle τ and the origin p, we conclude
that κi,pc (1) = 0 in any case.

For i = 1, 2 we get α = 0 i.e. χ[i](1) = 0 immediately by plugging
β(τ) = β(σ) = 0 with σ := τ + π/4 in the first equation of (3.23). (3.29).
(Remark: x[0](uσ) − x[0](uτ ) = 1 − 1 = 0, thus the argument does not
work for i = 0). In the case i = 0 we conclude α = 0 as follows. Consider
the difference of equations (3.20−21) for t = 1 with a := p + e[1] and
b := p + e[1] + e[2]. Since κi,pc = 0 (c = a,b is estabished already, we get
simply 0 = −(1/2)χ[0](1) which completes the proof.

Corollary 3.24. The relations (3.9) hold if and only if we have (3.18) with
the symmetry (3.7) where the polynomials Ki,p

c (t) respectively x[i]
(
(1−

t)(a− p)
)
[Φ[i]]′(t) are all divisable by t2(1− t)2.

Proof. The relation κi,pc (1)=0 implies that there is a polynomial κ̃i,pc such
that κi,pc (t) = (1−t)κ̃i,pc (t) and Ki,p

c (t) = t2(1−t)κi,pc = t2(1−t)2κ̃i,pc (t) with
some polynomial. Similarly, from χ[i](1) = 0 we conclude that χ[i](t) =
(1−t)χ̃[i](t) and (1−t)x[i](a)[Φ[i]]′(t) = ((1−t)t2χ[i](t) = t2(1−t)2χ̃[i](t) with
some polynomial χ̃[i].

Corollary 3.25. We can write Ki,p
c (t) = t2(1 − t)2ki,pc (t) (p 6= c ∈ R2)

and the admissible shape functions Φ,Ψ have the form

(i) Φ(t) = t3(10− 15t+ 6t2) + t3(1− t)3Φ1(t),

(ii) Ψ(t) = t3(t− 1)(4− 3t) + t3(1− t)3Ψ1(t)
(3.26)

with suitable polynomials ki,pc ,Φ2,Ψ2.

Proof. The stated form of Ki,p
c is clear from 3.24). By definition Φ[0](t) =

Φ(t) and x[0]
(
(1 − t)(a− p)

)
≡ 1. Furthermore Φ[j](t) = Ψ(t)/(t − 1) and

x[j]
(
(1−t)(a−p)

)
=(1−t)x[j]p (a) for j=1, 2. Thus, taking (3.1) into acount,

the relation that t2(1−t)2 is a divisor of x[0]
(
(1−t)(a−p)

)
[Φ[0]]′(t)=Φ′(t)=

6t(1−t)+2t(1−t)(1−2t)Φ0(t)+t
2(1−t)2Φ′0(t) means simply that t(1−t)

∣∣6+2(1−

15
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2t)Φ0(t) i.e. 6 + 2(1− 2t)Φ0(t)|t=0,1 = 0 implying Φ0(0) = −3, Φ0(1) = 3.
Therefore Φ0(t) = −3 + 6t + t(1 − t)Φ1(t) with a polynomial Φ1 and the
generic form of Φ is

(
3.1(i)

)
. Also according to (3.1) in the cases j = 1, 2

we can write Ψ(t) = −t2(1− t) + t2(1− t)2Ψ0(t) with some polynomial Ψ0.
Thus the relation that t2(1−t)2 is a divisor of x[j]

(
(1−t)(a− p)

)
[Φ[0]]′(t) ≡

(1−t)x[j]p (a)
[
Ψ(t)/(1−t)

]′
means that t2(1−t)

∣∣[Ψ(t)/(1−t)
]′ ≡ −2t+t(2−

3t)Ψ0(t)+ t2(1− t)2Ψ′0(t) is equivalent to saying t(1− t)
∣∣−2+(2−3t)Ψ0(t)

i.e. −2 + (2 − 3t)Ψ0(t)|t=0,1 = 0 implying Ψ0(0) = 1 and Ψ0(1) = −2.
Therefore Ψ0(t) = 1−3t+ t2(1− t)Ψ1(t) with some polynomial Ψ1 and the
generic form of Ψ is

(
3.26(i)

)
.

3.27. Finish of the proof of Theorem 2.4

In view of (3.21−21) and Remark 3.2(ii) we can write

P i,pa,b(s, t) = P i,pa,b(0, 0) + s
[(
P i,pa,b(s, 0)− P i,pa,b(0, 0)

)
/s
]
+

+ t
[(
P i,pa,b(0, t)− P i,pa,b(0, 0)

)
/t
]

+ stPol(s, t) =

= s
[(
P i,pb,a(0, s)/s

]
+ t
[(
P i,pa,b(0, t)/t

]
+ stPol(s, t) =

= s

[
ξ

a
p,b

Ki,p
b (1−s)
s2(1− s)2

− ξ a
p,b

x[i](b)
[
Φ[i]
]′
(1−s)

s(1−s)2

]
+

+ t

[
ξ

b
p,a

Ki,p
a (1−t)
t2(1− t)2

− ξ b
p,a

x[i](a)
[
Φ[i]
]′
(1−t)

t(1−t)2

]
+ stRp

a,b(s, t)

with suitable polynomials Ki,p
c ,Φ[i], Rp

a,b of one- resp. two variables such

that t2(1−t)2
∣∣Ki,p

c (t) and t2(1−t)
∣∣x[i]p (a)[Φ[i]]′(t). It is straightforward to

check that the functions f i,pa,b are polynomials in these cases and P i,pa,b(s, t) =

P i,pb,a(t, s) if and only if Rp
a,b(s, t) = Rp

b,a(t, s). It remains to show that the
expressions

∇f i,pa,b(yt) with yt := (1− t)a + tp,

f i,pa,b = Φ[i](λpa,b) + [λpa,b]2λba,pλ
a
b,pP

i,p
a,b(λba,b, λ

a
b,p)

are independent of the term b whenever

Ki,p
c (t) = t2(1− t)2ki,pc (t),

Φ[0](t) = Φ(t), Φ[1](t) = Φ[2](t) ≡
[
Ψ(t)/(t− 1)

]′
with arbitrary polynomials ki,pc and the polynomials Φ,Ψ have the form
(3.26) with arbitrarily fixed polynomials Φ1,Ψ1 of one variable.
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Repeating the calculations of Lemma 3.13, we see that (3.16) holds
independently of the choice of ki,pc ,Φ1,Ψ1, R

i,p
a,b. Notice that we have con-

structed the polynomials P i,pa,b(0, 1 − t) = P i,pb,a(1 − t, 0) in terms of Ki,p
a

in a manner such that (3.18) should be fulfilled. Thus the expression[
ξ

b
p,a

]−1[
x[i]
(
(1−t)(a−p)

)
[Φ[i]]′(t)ξbp,a + t2(1− t)P i,pa,b(0, 1− t)

] (
=Ki,p

a (t)
)

is independent of b automatically which completes the proof in view of
Lemma 3.17.

4. Invariance

Lemma 4.1. Let G : x 7→ xA + w be an invertible affine map R2 ↔ R2. A
spline procedure S : (T , F ) 7→ fT ,F satisfying Postulate A is G-invariant if
and only if (1.9) holds for any non-degenerate triangle T with distinguished
vertex p.

Proof. The G-invariance of S means that, given any triangular mesh T ,
the unit functions fT ,Fi,p

(
i = 0,1,2; p ∈ Vert(T )

)
corresponding to the

gradient data Fi,p :=
{

(p, 1,0) if i=0, (p, 0, e[i]) for i= 1, 2
}
∪
{

(q, 0,0) :
p 6=q∈Vert(T )

}
are transformed by G as

fT ,Fi,p ◦G−1 = fG(T ),G](Fi,p) (i = 0, 1, 2)

where G](Fi,p)=

=
{(

r, [fT ,Fi,p◦G−1](r),∇[fT ,Fi,p◦G−1](r)
)

: r∈G(Vert(T ))
}

=

=
{(

G(q), fT ,Fi,p(q), [∇fT ,Fi,p(q)][AT]−1
)

: q ∈ Vert(T )
} (4.2)

with the gradient data of the transformed function on the transformed
vertices. Consider any triangle T = Co{a,b,p} ∈ T . Notice that the basic
functions over T are given as restrictions of the unit functions. In particular

fT ,F0,p |T = ϕp,T and fT ,Fj,p |T = ψ
(j)
p,T (j = 1, 2). On the other hand, by

Postulate A, for any gradient data G on Vert
(
G(T )

)
of the transformed

mesh, such that
(
G(p), ω, [α, β]

)
,
(
G(a), 0,0

)
,
(
G(b), 0,0

)
∈ G, we have

fG(T ),G = ωϕG(p),G(T) + αψ
(1)
G(p),G(T) + βψ

(2)
G(p),G(T). We can apply this

observation to (4.2) with G := G](Fi,p) (i = 0, 1, 2) to conclude that

ϕp,T ◦G−1 = ϕG(p),G(T),

ψ
(j)
p,T ◦G

−1 = αjψ
(1)
G(p),G(T) + βjψ

(2)
G(p),G(T)

where [αj , βj ] = [∇φ(j)p,T(p)][AT]−1 = e[j][AT]−1 (j = 1, 2).

(4.3)

17
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Hence the matrix form in (1.9) is immediate: (4.3) implies that [AT]−1 =[
α1 β1
α2 β2

]
and [ψ

(1)
p,T ◦G−1, ψ

(2)
p,T ◦G−1] = [ψ

(1)
G(p),G(T), ψ

(2)
G(p),G(T)]A

−1.

Corollary 4.4. There is no affine invariant C1-spline procedure. satisfying
Postulate A.

Proof. Proceed by contradiction. Assume the procedure S : (T , F ) 7→fT ,F

with basic functions ϕp,T, ψ
(j)
p,T is affine invariant. Then, in particular,

(1.9) holds for all transformations G : x 7→ xA + w with det(A) 6= 0 and
w ∈ R2. Consider the triangles

Tb := Gb(T) where Gb : x 7→ xAb with Ab :=
[

1 0
x(b) y(b)

]
.

Then, according to (1.9), for the points b with y(b) 6= 0 we have[
ψ
(1)
0,T ◦G

−1
b , ψ

(2)
0,T ◦G

−1
b

]
Ab =

[
ψ
(1)
Gb(0),Gb(T), ψ

(2)
Gb(0),Gb(T)

]
. (4.5)

Since G−1b : y 7→ yA−1b , in (4.5) we can write ∇[ψ
(j)
0,T ◦ G

−1
b ](y) =[

∇ψ(j)
0,T(yA−1b )

]
[AT

b ]−1. Therefore, for any y∈Tb and b∈R2 with y(b) 6=0,

∇ψ(1)
0,Tb

(y)=
[
∇ψ(1)

0,T(yA−1b )
]
[AT

b ]−1+x(b)
[
∇ψ(2)

0,T(yA−1b )
]
[AT

b ]−1,

∇ψ(2)
0,Tb

(y)=y(b)
[
∇ψ(2)

0,T(yA−1b )
]
[AT

b ]−1.

Observe that the segment Co{0, e[1]} is a common edge of all the triangles

Tb. Hence, in view of Remark 3.15, the gradients ∇ψ(j)
0,Tb

(yt) with yt :=

te[1] must be independent of b for any fixed t ∈ [0, 1]. Since ytA
−1
b = yt

(t ∈ R, y(b) 6= 0), our indirect assumption leads to the conclusions that

0 = ∇ψ(2)
0,Tb

(yt) = ∇ψ(2)
0,T(yt) and

[
∇ψ(2)

0,Tb
(yt)

]
AT

b = ∇ψ(2)
0,T(yt) for all

t∈ [0, 1] and b ∈ R2 with y(b) 6=0. This latter identity means in particular

that x(b) ∂
∂xψ

(2)
0,Tb

(yt) + y(b) ∂∂yψ
(2)
0,Tb

(yt) = ∂
∂yψ

(2)
0,T(yt) which is possible

with b-independent ∇ψ(2)
0,Tb

(yt) only if ∂
∂xψ

(2)
0,Tb

(yt) = ∂
∂yψ

(2)
0,Tb

(yt) = 0

(t∈ [0, 1]). However, hence we get 0 = ∇ψ(2)
0,Tb

(y0) which contradicts the

defining relations (1.4) with ∇ψ(2)
0,Tb

(0) = [0, 1].

Lemma 4.6. (Reflection lemma). Let T be a non-degenarate triangle of
the form T := Co{0, ρe[1],b} and assume S is a spline procedure satisfying

18
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Postulate A. Then, for the fixed points ut := te[1] of the reflection K =
K−1 : x 7→ [x(x,−y(x] = xU, U =

[
1 0
0 −1

]
through the x-axis we have〈

∇ϕ0,T(ut)
∣∣e[2]〉=0,

〈
∇ψ(1)

0,T(ut)
∣∣e[2]〉=0, ψ

(2)
0,T(ut)=0 (t∈ [0, ρ]).

Proof. The triangles T and K(T) are adjacent, the segment Co{0, ρe[1]}
is their common edge. According to Remark 3.15, the pairs ϕ0,T, ϕ0,K(T)

resp. ψ
(j)
0,T, ψ

(j)
0,K(T) of basic functions must be coupled C1-smoothly along

it: ϕ0,T(ut) = ϕ0,K(T)(ut), ∇ϕ0,T(ut) = ∇ϕ0,K(T)(ut) resp. ψ
(j)
0,T(ut) =

ψ
(j)
0,K(T)(ut), ∇ψ

(j)
0,T(ut) = ∇ψ(j)

0,K(T)(ut) for all t ∈ [0, ρ]. On the other

hand, the transformation rules (1.9) require ϕ0,K(T) = ϕ0,T ◦ K−1 resp.[
ψ
(1)
0,K(T), ψ

(2)
0,K(T)

]
=
[
ψ
(1)
0,T◦K−1, ψ

(2)
0,T◦K−1

]
U i.e. ϕ0,K(T)(y) = ϕ0,T(yU)

and ψ
(j)
0,K(T)(y) = (−1)j−1ψ

(j)
0,T(y) for all y ∈ K(T) = TU. By passing to

gradients, since K = K−1 and U = U−1 = UT, we get ∇ϕ0,K(T)(y) =

∇[ϕ0,T(yU)]U and ∇ψ(j)
0,K(T)(y) = (−1)j−1[∇ψ(j)

0,T(y) for the points

y ∈ K(T). In particular on the common edge of T with K(T) we
must have ∇ϕ0,T(ut)∇ϕ0,K(T)(ut) = ∇[ϕ0,T((ut))]U i.e. ∂

∂x[k]
ϕ0,T(ut) =

(−1)k−1 ∂
∂x[k]

ϕ0,T(ut) implying 0 = ∂
∂yϕ0,T(ut) =

〈
∇ϕ0,T(ut)

∣∣e[2]〉. Simi-

larly we conclude that ψ
(j)
0,T(ut) = ψ

(j)
0,K(T)(ut) = (−1)j−1ψ

(j)
0,T(ut) implying

ψ
(2)
0,K(T)(ut) = 0 and ∇ψ(j)

0,T(ut) = ∇ψ(j)
0,K(T)(ut) = (−1)j−1[∇ψ(j)

0,T(ut)]U

implying in particular ∂
∂yψ

(1)
0,T(ut)=0.

Proposition 4.7. Homothetically invariant C1-spline procedures satisfy-
ing Postulate A are shape uniform on edges (i.e. they satisfy Postulate B
automatically).

Proof. Let T := Co{0, e[1], e[2]} and define

Φ(t) := ϕ0,T(ut), Ψ(t) := φ
(1)
0,T(ut) where ut := (1−t)e[1]. (4.8)

Cosider any other non-degenerate triangle T̃ := Co{p,a,b}. Due to the
arbitrariness of the choice of T̃, it suffices to see only that, for j=1, 2 and
t∈ [0, 1],

ϕ
0,T̃

(yt)=Φ(t), ψ
(j)

0,T̃
(yt)=Const

(j)

T̃
Ψ(t) with yt :=(1−t)a+tp. (4.9)

It is a crucial fact that we can find a homothetic transformation

G : x 7→ xA + p such that G(e[1]) = a, G(T) ∩ T̃ = Co{a,p}. (4.10)
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Actually A =
[ x(a−p) y(a−p)
−σy(a−p) σx(a−p)

]
where σ = 1 if the points a,b,p are

oriented clockwise and σ = −1 else. According to (1.9), ϕG(0),G(T) =

ϕ0,T ◦ G−1. Since Co{p,a} is a common edge of T and T̃, in view of
Remark 3.15 we have

ϕ
p,T̃

(yt) = ϕp,G(T)(yt) = ϕ0,T

(
G−1(yt)

)
= ϕ0,T

(
ut
)

= Φ(t) (4.9)

which proves the first part of (3.12). To prove ψ
(j)

bf0,T̃
(yt) = Const

(j)

T̃
Ψ(t),

consider also the symmetry

H : x 7→ [y(x), x(x)] = xS, vt := utS = te[2] where S :=
[
0 1
1 0

]
(4.10)

of the triangle T. By (1.9) we have
[
ψ
(1)
0,T, ψ

(2)
0,T

]
=
[
ψ
(1)
0,T ◦H, ψ

(2)
0,T ◦H

]
S

whence[
ψ
(1)
0,T(ut), ψ

(2)
0,T(ut)

]
=
[
ψ
(1)
0,T(vt), ψ

(2)
0,T(vt)

][0 1

1 0

]
=
[
ψ
(2)
0,T(vt), ψ

(1)
0,T(vt)

]
.

Thus ψ
(2)
0,T(vt) = Ψ(t) while ψ

1)
0,T(vt) = ψ

(2)
0,T(ut). On the other hand, by

Lemma 4.ivpvii, ψ
(2)
0,T(ut) = 0. Finally we apply Remark 3.15 and (1.9)

to the points yt of the common edge Co{a,p} between the triangles G(T)
and T̃. Hence we conclude that[

ψ
(1)

p,T̃
(yt), ψ

(2)

p,T̃
(yt)

]
=
[
ψ
(1)
G(0),G(T)(yt), ψ

(2)
G(0),G(T)(yt)

]
=

=
[
ψ
(1)
0,T(ut),

[
ψ
(2)
0,T(ut)

]
A=

[
Ψ(t), 0

]
A=Ψ(t)

[
x(a−p, y(a−p

]
.

(4.11)

Thus ψ
(j)

p,T̃
(yt) = x[j](a− p)Ψ(t) (j=1, 2) which completes the proof.

4.12. Proof of Therem 2.8

It is clear that the coordinate values ξvp,a = 〈v−a|p−a〉/‖p−a‖2 are

homothetic invariant i.e. ξ
G(v)
G(p),G(a) = ξvp,a whenever the transformation

G : R2 ↔ R2 is of the form G(x) = w + ρ(x− q)S with a constant ρ > 0
and an orthogonal 2 × 2-matrix S. The baricentric coordinates λpT are
even affine invariant as it is well-known from classical Projective Geometry.
Hence it suffices to see that the invariance relations

ϕG(p),G(T) = ϕ◦G−1,
[
ψ
(1)
G(p),G(T), ψ

(2)
G(p),G(T)

]
=
[
ψ(1)◦G−1, ψ(1)◦G−1

]
S

20
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imply that ki,pa ≡ 0 (i = 0, 1, 2) whenever T = Co{a,b,p} is a non-
degenerate triangle and G : R2 ↔ R2 is the orthogonal reflection through
Line{a,p} i.e.

G(a) = a, G(p) = p, ξ
G(x)
p,a = ξxp,a, ξ

G(x)
p,a = −ξxp,a (x ∈ R2),

so that G(x) = a+(x−a)S where S = ‖p−a‖−2
[ p−a
(p−a)R

]T[0 1
1 0

][ p−a
(p−a)R

]
.

Let us first investigate the relation ϕG(p),G(T) = ϕp,T ◦G−1. By pluging

t = t(x) := λaG(T)(x) = λ
G(a)
G(T)(x) = λaT

(
G−1(x)

)
,

s = s(x) := λ
G(b)
G(T)(x) = λbT

(
G−1(x)

)
in the expressions of ϕG(p),G(T) resp. ϕp,T ◦G−1 formed with (2.5), since

λpT = 1− λaT − λbT and G(a) = a resp. G(p) = p, we get

0 = ϕG(p),G(T)(x)− ϕp,T ◦G−1(x) = ϕp,G(T)(x)− ϕp,T ◦G−1(x) =

=
[
Φ(1−s−t)+(1−s−t)2stPp

a,G(b)(s, t)
]
−

−
[
Φ(1−s−t)+(1−s−t)2stPp

a,b(s, t)
]
,

0 = Pp
a,G(b)(s, t)− P

p
a,b(s, t) =

[
s
{
ξap,G(b)

Φ′(1−s)
s(1−s)2

+ξ
a
p,G(b)k

0,p
G(b)(s)

}
+

+ t
{
ξ
G(b)
p,a

Φ′(1−t)
t(1−t)2

+ξ
G(b)
p,a k0,pa (t)

}
+stR0,p

a,G(b)(s, t)

]
−

−
[
s
{
ξap,b

Φ′(1−s)
s(1−s)2

+ξ
a
p,bk

0,p
b (s)

}
+

+ t
{
ξbp,a

Φ′(1−t)
t(1−t)2

+ξ
b
p,ak

0,p
a (t)

}
+stR0,p

a,b(s, t)

]
Comparing the coefficients of the monomials smtn, in view of (2.9) we see
that

(i) 0=
[
ξ
G(b)
p,a

Φ′(1− t)
t(1− t)2

+ ξ
G(b)
p,a k0,pa (t)

]
−
[
ξbp,a

Φ′(1− t)
t(1− t)2

+ ξ
b
p,ak

0,p
a (t)

]
,

(ii) 0=
[
ξap,G(b)

Φ′(1− s)
s(1−s)2

+ξ
a
p,G(b)k

0,p
G(b)(s)

]
−
[
ξap,b

Φ′(1− s)
s(1−s)2

+ξ
a
p,bk

0,p
a (s)

]
,

(iii) 0=R0,p
a,G(b)(s, t)−R

0,p
a,b(s, t).

Since ξ
G(b)
p,a = ξbp,a and ξ

G(b)
p,a = −ξbp,a, from (i) we conclude that k0,pa (t) = 0.

On the other hand, (iii) implies the isometry invariance of the non-principal
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parts because the lines Line{p,a)} can be chosen arbitrarily and hence the
corresponding reflections generate the whole group of self-isometries of R2.

The treatment of the relations[
ψ
(1)
G(p),G(T), ψ

(2)
G(p),G(T)

]
=
[
ψ(1) ◦G−1, ψ(1) ◦G−1

]
S

is analogous by using the vectorial forms ψq,W :=
[
ψ
(1)
q,W, ψ

(2)
q,W

]
for tri-

angles W with distinguished vertex q. With this formalism the above
invariance relation can be written as ψG(p),G(T)(x) =

[
ψp,T

(
G−1(x)

)]
S

where G = G−1, G(p) = p, G(a) = a and

ψG(p),G(T)(x) = Θ(1−s−t)(x−p) + (1−s−t)2stQp
a,G(b)(s, t),[

ψp,T

(
G−1(x)

)]
S = Θ(1−s−t)

(
G(x)−p

)
S + (1−s−t)2stQp

a,b(s, t)S

with the vector valued polynomials

Qp
a,w(s, t) :=

[
Q1,p

a,w(s, t), Q2,p
a,w(s, t)

]
=

= s
{
ξap,w

Θ′(1−s)
s(1−s)2

(w−p) + ξ
a
p,wk

p
w(s)

}
+

+ t
{
ξwp,a

Θ′(1−t)
t(1−t)2

(a−p) + ξ
w
p,ak

p
a(t)

}
+ stRp

a,w(s, t)

for w := b,G(b) where Rp
a,w :=

[
R1,p

a,w,R
2,p
a,w

]
and kp

u :=
[
k1,p
w ,k2,p

w

]
.

Clearly (G(x)−p)S=(G(x)−G(p))S=
(
(a + (x−a)S)−(a + (p−a)S)

)
S=

(x−p)S2 = x−p. Hence the comparison of the coefficients of the mono-
mials smtn yields

(i′) 0 =
[
ξ
G(b)
p,a

Θ′(1− t)
t(1− t)2

(
G(b)−p

)
+ξ

G(b)
p,a kp

a(t)
]
−

−
[
ξbp,a

Θ′(1− t)
t(1− t)2

(b−p)+ξ
b
p,ak

p
a(t)

]
S,

(ii′) 0 =
[
ξap,G(b)

Θ′(1−s)
s(1−s)2

(a−p)+ξ
a
p,G(b)k

p
G(b)(s)

]
−

−
[
ξap,b

Θ′(1−s)
s(1−s)2

(a−p)+ξ
a
p,bk

p
a(s)

]
S,

(iii′) 0 = R
p

a,G(b)
(s, t)−Rp

a,b(s, t)S.

Considering again (i′), since G(b)−p = G(b)−G(p) = (b−p)S and since

ξ
G(b)
p,a = ξbp,a resp. ξ

G(b)
p,a = −ξbp,a, we conclude kp

a(t) = 0.
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