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Summary. — Banach M-lattices are studied from the view point whether” all the biholomorphic
automorphisms of their unit balls admit fized points when continuously extended to the closure
of the umit ball. A characterization of compact topological F-spaces is found in terms of the
fimed points of the elements of Aut B(O(L2)) which enables to establish some particular pro-
perties also of the iopological automorphisms of compact F-spases. Finolly it is shown thal
if the M-lattice B admits a predual then each member of Aut B(E) has fized point if and
only if E is isometrically isomorphic with some I”-space.

Let B(E) denote the open unit ball of a complex Banach space E and let
Aut B(E) be the group of all Fréchet-holomorphic automorphisms of B(H). By a
result of KAUP-UPMEIER [6] every F e Aut B(E) is the restriction to B(E) of a
holomorphie mayp of some neighborhood of B(E) into E. If, in particular, the space F
is reflexive and separable, a theorem of HAYDEN-SUFFRIDGE [4] establishes the ex-
istence of fixed points of ¢F for almost every 6 € R for all continuous mappings
of B(E) into itself which are holomorphic on B(E). However, the same article [4]
remarks that by relaxing reflexivity of E such a fixed point theorem is no longer
valid in general (e.g. in the case of c(N), as it is shown there).

The following simple example indicates that even the weaker conjecture stating
that each F e Aut B(H) () admits fixed point fails in most M-lattices (for def.
see [9]): The mapping

e [ra O+
@) i *[" eleyr f(C)/2]

defined for the continuous funetions f: A — A (A standing for the open unit dise
of 0) clearly belongs to Aut B(C(4)) but Ffy= f, would imply fo(0)*= ¢/, L € A\{0}
contradicting the continuity of f, at the point 0.

In this paper we shall investigate M-lattices with order unit, a category whose
behaviour seems particularly interesting from the view point whether every (holo-
morphic) automorphism of the closed unit ball has fixed point.

Our main results concern a characterization of compact F-spaces (def. see [3]) in

(*) Entrata in Redazione il 24 ottobre 1980.
(*) We shall denote by Aut B(H) the set of all continuous extensions to B(E) of the
elements of Aut B(L).
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208 L. L. SrAcHO: On fized points of holomorphic automorphisms

terms of the automorphisms of the closed unit ball of their continuous function
spaces and & theorem asserting that, up to isometries the I”-gpaces are the only
M-lattices with predual where any automorphism of the closed unit ball admits a
fixed point.

1. — Fixed point free elements of B(0,(Q2)). Remarks on Aut .

The construction of (1) suggests an approach promising positive results to the
question: What is the necessary and sufficient topological condition on a regular
topological space £ to admit a member of Aut E(C(Q)) without fixed points?

PROPOSITION 1.~ Suppose £ is a topological space such that every F eAutF(Cb(Q))
has a fixed point. Then £ is necessarily an F-space (2).

Proor. — Let #(-) be any continuous function on Q; set G = {w e Q: y(») == 0}
and fix any g e 0,(@). We may assume without loss of generality that range (i) c
c [0, =/2] (thus & = {w e Q: t(») > 0}). Define the functions k: 2 — 94 and

2ip(z)e—#@)N2  {(x)

u: 2 — ZA by kiy)=e¥® and ux)= 1 @) sin 3

if xe@, u®)=0 for xe 2\ G. Observe that the transformations

N(z) = [A et o (m) 2D ]

1+ w(@)C
are in Aut A for all fixed 2 e Q since [k()| = 1 and |u(x)| < } < 1. Moreover the
map N:Q - Aut A is continuous because so are k and w. Consider now the auto-

morphism # of B_(O,,(.Q)) defined by F(f) =[x — N(»)f(x)]. By hypothesis, for some
foe B(04(2)) we have F(f,) = f,. Thus

) M — fo(w) Vw I= Q
1+ u(#) fo()
and therefore

Zigetz «in t
e

i@t

T —°

fo SlIl + ( 3“) fo

(?) L.e. given any cozero set G in £, each funetion ¢ e (,(@) has a continuous extension
to £ (cf.[3; 14.25 Theorem (6)]). O,(£) denotes the space of bounded continuous 2 - C
functions.
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on @. Dividing by

Ziet sin - (~ o1 #0 sinee 0< t<hon G)
T+ el 2\ 1+ o 2

we obtain @(@)fo(#)2 — (L + |p@)]2) fol®) + p@) = 0 i.e. fo(@) e {p(x), 1/p(=)} Vz e G.
But |[fo] <1 and hence necessarily f,|¢=¢. Thus{,is a continuous extension of . [

In order to prove some converse of Proposition 1 and to generalize it, we go back
to Aut A. Recall that any Mobius transformation M has a unique representation
of the form

M= ZaCr—»chf—_:%] with [by] =1 and Juy| <1,

Unr

and the mapping M > (ky, 4y) establishes a homeomorphism between Aut A and
(24)x 4. We shall reserve the notation (ky, uy) for this mapping.
A simple computation yields

LemMA 1. - Let id5s« M € Aut 4 and ¢*= k. Then M has:

@) a unique fixed point which lies in A iff

=)

b) two distinct fixed points lying in 94 iff |uy| > |sin¢/2];

sin i
2

Juge] <

¢) a unique fixed point lying is 04 iff |u,| = |sin¢/2].

LemmA 2. — There are exactly two different continuous mappings from
(Aut 4 \f{id3} into A which associate to any (non-identical) Mébius transformation
one of its fixed points.

ProOF. — Recall that, in general, if 0 <r <1 and F € Aut B(E) where E is any
complex Banach space then the mapping +F has always a unique fixed point (cf. [21)-
Thus we may define the function @: [0, 1) X Aut; — A by Q(r, M) = [the fixed point
of rM]. If r;—r(€[0,1)) and M;— M then the net Q(r;,, M,) (= r, M,Q(r;, M;))
tends obviously to some fixed point of »M, showing the continuity of Q. We shall
prove that for every id7 M € Aut A, the sets

Sy = {C: dnet [(s;, N;): je J] (8iy Ny) > (1, M) and Q(s;, Ny) — 1}

contain exactly one point. In fact, on the one hand

~ 1
Su= Q{(S, N): 1—-<s<1 and |ky— kyl, [uM—uN[<%}
n=1



210 L. L. STACHO: On fized poinis of holomorphic automorphisms

i.e. the intersection of a decreasing sequence of non-empty connected compact sub-
sets of , thus Sy, 7 @ is connected and compact. On the other hand, 8 c {{: M{={(}
which implies cardinality (8y) < 2._ But then gardinality (S8y) =1V M e(Aut A IN{id5}
means that the function R: (Aut A\{id;} — 4 is well-defined by E(M) = lim Q(r, M)
and is continuous. Since {R(M)} = SycC {{: M{ = [}, the mapping B is a continuous
section of the multifunction ¢: M v {{ € A: M{ = (}.

If R’ denotes another continuous section of ¢ (defined on (Aut A)\fid;}) then,

by Lemma 1 a}, ¢}, .
y—1
5 .

Since ¢(M) = {L € A: Uyl -+ (1 — ku) L — kagttar = 0} VM & D, we have by continuity
of the roots of polynomials depending on their coefficients, that the mapping ¢|D
is continuous from D into the space of the non-empty compact subsets of C endowed
with the Hausdorff distance. Since cardinality ¢(M) = 2 VM € D, it easily follows
that {M e D: R'(M) = R(M)} is open-closed in D. But D is connected because
it is homeomorphiec to

{M: R(M)+ R (M)} c D= {M: {thas| >

{(k, Wy e (4)x A [ul >l’ig~1|} ={(eﬂ, ro0): te (—m, m)y 1> 17 >

sing—l, é eR}

which is a eontinuous image of the connected set {(¢,7):te€(—m, @), 1>7r>
> |sint/2}x R. Thus if R's= R then we necessarily have that

@) (R(M)} = g(U)N{R(M)} VMeD.

On the other hand, it directly follows that if we define K’ by (2) on D and to coincide
with R elsewhere, then R’ is continuous. [l

LEMMA 3. — For any M € Aut 4 with M 5% id; there exists a Lie homomorphism
¢t 1> M of R into Aut A such that M= M and, by setting ¢, = inf {{ > 0: M*=id;}
(convention: inf @ = -}- oo), we have

(3) {E: ML =0 ={C: ML =10} Vie(0,1,).

ProoOF. — Fix M arbitrarily. According to Lemma 1, only the following cases
are possible: a) M has a fixed point in 4, b) M has two fixed point on 04, ¢) the
unique fixed point of M lies in o4.

a) Since Aut A acts transitively on A, we can choose N € Aut A which sends
the fixed point of M into 0. Thus 0 is the fixed point of K = NMN-*. By the
Schwarz Lemma, for some deR, K = [+ ¢°(]. Set Kt=[{>¢"(] (1€ R). Since
$+> Kt is trivially a Lie homomorphism of R into Aut 4, we may define M* by
Mt=N-1K*'N.
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b) The group Aut A is doubly transitive on 84. Thus we can find N € Aut A
such that one fixed point of M is sent by N into 1 and the other into — 1. Now the
fixed points of K= NMN"' are —1 and 1. Observe that k=1 and uzc R

(forkxlli ?f: 1 and kK(——l)——f—:%z —1 i111131571_l~u’z/(1 + uK): 1) . Now

Uy 1—wu, 1 —ug/ \1 — g

th (6
set 0= areath (u,) and K'= [C = %___M

Ktts—= K*Ks Vi, s e R. Thus, also in this case, we may put M= N-1IK'N (tc R).

]. A direet calculation shows

¢) Let {, denote the unique fixed point of M and fix N'e Aut A so that
N¢,=1. Further let N” be the Cayley transformation ¢ (1/5)(( < 1)/(& — 1))
mapping 4 onto the closure of IT = ({oc, { € C: Im { > 0}) and set N = N"N'. Now
the mapping K = NM N belongs to Autll and satisfies K(co) = co. Therefore K
is linear, moreover da, fe R K = [{+> «f 4 f]. Since the only fixed point of M
is {y, K must have no other fixed point than co. But hence K is a translation (i.e. there
exists € R such that K = [{+>{ + B]). Then by letting Kt=[{ ¢ 4 ft] and
Mt= N-1K:N (tc R) the proof is complete. L[]

LemmA 4. ~ Let E(:) denote any one of the continuous sections of M > {(:
M¢=2¢} (on (Aub A)\{id;}). Then a) MR(M) = R(M), b) R(M*) = R(M) when-
ever Mrs£id; (n =0, &1, £2,...), ¢) R(NMN-') = NR(M) for all N € Aut 4.

Proor. — a) Is trivial. b) Fix M and » and take a Lie homomorphism ¢ M*
as in Lemma 3, set also f,=inf { > 0: M*s~id;}. From a) and (3) we deduce
R({M*: £t (0,%)}) c {¢: M = (} e R(M). Hence the funetion o = [(0,%,) €t > R(M?)]
is constant (recall, M has at most two fixed points). Thus if M= id;, R(M") =
= R(M™%") = g (mod, n) = g(mod, 1) = R(M™%') = R(M*) = R(M) (*).

‘¢) Let t > Nt be any Lie homomorphism R —> Aut 4 with N*= N. Observe
that N-tR(N*MN~¥) e {: M{ = {} (since N* MN~'n = <> M(N-‘5) = N~'), Vie R.
Therefore the function ¢ > N'E(N'M N-*) is constant. In particular, N-1R(NMN-1) =
= N°R(N°MN® = R(M). [

DEFINITION 1. - Let 0, denote the metric on Cr defined by 8.((c, ..., o),
(Buy -y Bn)) = max {Ja,— B;|: j = 1, ..., n}. For any N*= (N, ..., N,_,) € (Aut 4)»*

and Z* = ({oy ..oy ) €47 seb

(4)  P.(N* *) =[that ned for which 6,.(¢% (1, No7, ...; Nu_pp))  is minimal].

(%) mod, B =inf ([0, co) > {f + na: n€Ze), mod, f==p for all >0, feR.
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LeywmA 5. — The definition of P, makes sense (i.e. there is a unique 1 e 4 with
8a(8%, 0y oty ey Nusm)) < 8a(L*, (i, Non'y ooy Noyy)) Vy'e A). Furthermore, if
M,.. M, = 1(1— and P, (M7, MM, ... M;jz M), %) =7 then P, ((M7Y

M?M?? M;—ll .M, (STR IR n—1? Co)) = ‘M_l (here &*=(Lyy oons n—l))'
PROOF. — A standard compactness argument shows the existence of at least one
minimizing 5 in (4). Set & = 6.(C%, {(, Non, ..., Nu_sn): € 4}). Observe then that
e =min {&'> 0: (£*+ 'A% O {(n, Non, ».., ,,_217) ned}s 0} Thus for the set
Z={n,Nony..,No_om): neA} we have Z N ({* ed®) = 0 and {ne d: 8,(C*, (1, Ny,
o Nu_am)) = s} CZNAG*+ edr). Let @ denote themap D: (xy, ..., ctus) > (o,
Ny"otyy ooy N 2ot ). Then D(Z) = {({,...,{)eCr: LA} and D(C*+ z4) is a
set of the form {(o, ..., @ay): |otg— Bo] < €0y ery |otns— fni] < &ny} for some
p*e C* and ¢*€[0, oo)*. So it suffices to prove that if Ay, ...y A,y are open dises
in C then the set D= {(4,..., 1) € C»: A€ A} intersects the boundary of 0 =4,x%
XAy in at most one pomt whenever DN (= . Proceed by contradiction:
Assume Ay ey ) €DNIC (k=1,2) and DN C =0 and set A=1(A+ 4),
2 (A— Ay) a,ndF A X.. ><A,_1><(8A VXA X oo X Ay (§ = 0,...,m—1). Since
C’ and D are convex, we ha,ve (Ay ey Y+ T[—1,1] () e.,pp) C 00 = FyU ...UF,_,.
Therefore for some index j, the interseetion F,O0[(Ay oy )+ [— 1, 11 (1 ey )]
containg an inner point of the segment (4,...,2) 4 [— 1, 1]- (g, ..., ). That is, for
some j and for some i'eC and u'e C\{0} we have (1,..., A') + (—1,1)- (4, ...,
woy ') CF; But this would mean that 1’4 zu'e 34,, Vv e (— 1,1) which is impos-
sible. Thus (4) makes sense. :

To prove the second statement, observe that, by definitions of P, and J, we
have  8u((Zoy -vey Cacay (1) M3 )y eeey M2, o M) <Ou((Goy ooy Cass)y (s D30 o,
M;i2 . M7'y)) Vy'e A. Thus for a,ny 7' €Ay 8u((Cay evy Cuay Co)y (M, ... M;_‘z

o 1y M) <0a((Cy vovy Lty Co)y (M Yy oy My Myrp'y )) or Which is the same,
an((cl, oo Cncay Goly (U50), ML ), ey B2, . M), B, BT 7)) <
<[same expression with %' in place of n]. Since 4 = {M;'y': 5 eA}, this means
that the function A+ 6, (&) .- Casy Go)y (4 MT'A, ..., M2, ... MT12)) attains its

minimum over A at the point M7'y. [
LeMmA 6. — The mapping P,: (Aut A)»* x A» —> A is continuous.

PrROOF. — Since P, is a map of a locally compact space into a compact space,
it suffices to see that its graph is closed. To do this, examine first the function:
(Aut A)=1x A% = [0, oo) defined by (N*, £%) = 8,(L%, {(n, Nom, ..y Nu_om): n € A)).
Clearly, ¢ = inf {p-: € A} where g,= [(N*, {*) > 3,(C*, (M Notpy w.ey N._em))] It
follows from the triangle inequality that all ¢, (with % € 4) satisfy the Lipschitz
condition

n—1 »—2 _
gy (%, T%) — @ (N, I | < 3 (65— il + 3 sup {|N,;€ — N;&|: C e A}
i=0 i=0
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(VV*, N'*e (Aut A)»1, VC*, {'*e A+). But then also their infimum satisfies the same
Lipschitz condition. Thus ¢ is continuous. Now if (N 9% — (N* ¢*) and
P (N9, [9%) -y then

(N(i)*, %y = 6n(&-(i)*’ (Pn(N(i)*’ C(i)*)7 Ngi)Pn(N(i)*, C(i)*), e N;ilzpn(lv(i)*’ C(z)*)))

l |

(N, £*) = inf {(%(C*, (7],y Non'y ..., Nn_zn’)): 7€ A} = 5n(c*7 (n, Non, --‘-7 Nn-—z"])) .

But this latter inequality is the definition of the relation P,(N*,(*)=+y. U

TeEEOREM 1. — Let 2 denote any topological space. Then the following statements
are equivalent

a) All the automorphisms of B(C,(£2)) of the form f > [ > M(x)f(x)] where M
is any continuous £ — Aut A mapping have fixed points.

b) All the automorphisms of B(0,(£2)) of the form f > [# > M (2)f(Tx)] where
M(-) is a continuous £2 — Aut A mapping and T is a periodic automorphism (4)
of £ have a fixed point.

¢) Q is an F-space.

PROOF. — b) = a) is evident and ) => ¢) is established by the proof of Proposi-
tion 1. To prove ¢) = b), suppose that Q is an F-space and let M and T be a con-
tinuous £2 - Aut A mapping and a topological automorphism of £, respectively.
Define ¥ by F(f) = [o — M(a) {(T=)] (for all f € B(C,(2))). (Clearly 7 Aut B(C,(2))).
Furthermore assume 7= id, and let R denote acontinuous section defined on (Aut Ay
\{id;} of the multifunetion M > {{: M{ = {} (its existence is seen in Lemma 2).

Consider the set G = {w € Q: M(w) M(T%) ... M(T"'x) 5= id;} and define the func-
tion g: G -4 by g(x) = R(M(x) ... M(T~'w)). Since @ is the inverse image of the
open subset (Aut A \{id5} of the metrizable space Aut, by the continuous mapping
2+ M(x) ... M(T* ) the set @ is a cozero subset of Q (namely we have is particular
G = {weQ: |kyw. wrml + Wuew). uinsml 7 0}). On the other hand, G is also
T-invariant because in case of M(x)... M(T"'x) = id; we have M(Tx)... M(T* )"
- M(z) = id; and here the last term can be written as M(z) = M(I"w) = M (T"—I(Tw)).
About the funetion g we can state the following:

(5) gx) = Mx)g(Tx) VYre@.

(%) The (topological) antomorphisms of a topological space are its homeomorphisms onto
itself.
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Indeed, if ze€ @, we have ¢g(Tx) = R(M(Tx) M(Tﬂ—l(Tw))) = R(M(Tx M-
(T a) M(x)) = B(M(x)[M(®) ... M(T*'2)]M(x)) = by Lemma 4 ¢) = M(z)-1-
‘R(M(x) ... M(T*'w)) = M(z)"g().

Now let # be a continuous extension of ¢ from @ to Q. The existence of such a
function & is established by [3; 14.25. Theorem (6)] since £ is assumed to be an
F-space. Since |g| <1, we may assume without any loss of generality that also
[o| = 1. Thus let ke B(C,(2)) with h|G = g. Define the function f: 2 — A (which
will be our candidate to be a fixed point of #) by

f(@) = P.(( M), M(T2) M(x) ™, ..., M(T*2z)" ... M(z)™,
(1(@), W(T), ..., (T*12))) .

We check now that for any € Q, f(») = M(z)f(Tx).
First let x € @. Then h(x) = g(x). But we have g = M-(goT) which implies

9(Tx) = M(x)g(x), g(T*2) = M(Tx)g(Tw) = M(To)t M(z)g(x), ..., g(T* @) =
= M(T"25)-... M(x)2g(x)
Thus
6) @) = P.((M(2)?, ..., M(T2a) ... M(z)™),
(9(2), M(@)1g(@), ..., M(T* o) ... M(@)g(@))) .
A direct application of Definition 1 to the right hand side of (6) yields that
f(@) = g(z). It follows then from (5) that f(x) = g(z) = M(%)g(Tx) = applying (6)
to Tx(e G) in place of © = M(x)f(Tx).
Then let » e ON\G. Now M(z)... M(T"'x) =id;. Thus
f(Tab) = P,,((M(Tas)*l, vy M(Totg)=2 . M(T2)"Y), (M(T), ..., h(T”ao))) =
= P,,((M(Tw)—l, coey M(T™2)~1 ... M(T2)™Y), (W(T), ..., W(T*'z), h(m))) .
Therefore, by substituting M, = M(T'x), {;,= MTiz) (j =0, ...,n— 1) and n=f(x)

in Lemma 8, we can verify f(I'z) = M(z)-'f(x).
- The continuity of f is an immediate consequence of Lemma 6. [

2. - On Aut B(0(2)) in case of compact F-spaces Q.

It is well-known [11] that for a compact topological space £2, the automorphisms
of D= B(0(R2)) are exactly those transformations F: D - 0(f2) which can be
represented in the form

(M) F(f) =[2en—> M ®){(T,X)] (feD)
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where T, and M, are a homeomorphism of 2 onto itself and a continuous 2 — Aut 4
mapping, respectively. Both 77 and M, are uniquely determined by F. In the
sequel we reserve the notations 7',, M, to indicate the topological automorphism
of Q and the Q — Aut 4 mapping, defined implicitly by (7) whenever F e Aut B(C(£)).

Since for any F-space {2 there exists a completely regular F-space 0 such that
0(2) = 0,(2) (i.e. 0,(2) is isometrically isomorphic with C,(9); cf. [3; 3.9. Theo-
rem]) and since the Stone-Cech compactification of any (completely regular) F-space
is an F-gpace (cf. [3; 14.25. Theorem (1)]), it suffices to restrict our attention to
compact F-spaces £ (by Proposition 1) when looking for those space £ that admit
elements with fixed points for Aut B (C(2)). Fortunately, in this case the description
provided by (7) yields a precise eontroll of Aut B(O’(Q)). However, the complete
characterization of those compact space £ for which any F e Aut E( 0(£)) has some
fixed point seems to be extremely difficult.

DEFINITION 2. — If T is a mapping of some set £ into itself and » e 2 then we
shall call the number inf {n € N: Tz = x} the rank of T at the point » and we
shall denote it by r,(x). 7' will be said pointwise periodic if 7,() < oo (ie. {n e
€ N: T*g = z} = 0) for all z€ Q. ‘

LEMMA 7. — Let 2 be a Baire space and T a pointwise periodic automorphism

oo

of Q. Forn=1,2,...set 2, = {we Q: r:(z) < n} and leb ¢ = U (2\L2._,)° where

=1
£,=0 (° denoting the interior). Then @ is an open dense 7-invariant subset of Q.
Furthermore we have

Iimr,(y) = lim ry(y) Veef.
Yy Gay—>a

PRrOOF. — If (x;:j€J) is a net such that x;— 2 (in Q) and Trw,=x;, Vjed
then obviously Tz = x. Thus the function r,: 2 — R is lower semicontinuous.
Therefore 2., £2,, ... are all closed. Since the pointwise periodicity of T is equivalent

to U Q,= 2, this means that the set ¢'= [ 20 is dense in 2. Consider now any
=1 n=1

open Uc Q. By the density of G’ in £, we can find n, with Q5 N U # 0. Since
rr(®) < my, Yo € 2, , there exists y,€ 25 N U such that ry(y,) = max {r (w): v € 2N U}
But {xeQ, N U: ry(@) = royy)} = UN Q5N {we Q: ry(w) > ry(y,) — 1} is an open
neighbourhood of the point y,. Therefore the set ¢ = {y € 2: AU neighbourhood

of y YeeU ry(@)=r,(y)} is dense in 2. But "= U {y € 2: AU neighbourhood
o o n=1
of y Vee U r2)=n}= Upe:re) =anp= U Q) 2..)
n=1 n=1
The T-invariance of G is immediate.
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To prove the second statement, observe that by the lower semicontinuity of
7,(:) we have lim r,(2)>7,(y) Yy € 2. Thus

Ger—>y

lim 7,(y) < lim r,(y) < im  Tim 7,(2) = lim r,(e) . O

Gay—a y->x > Gar—>y o>

Liemma 8. — Let (2 be a compact space, T an automorphism of £, f,, fay ...€ C(2)
and let A denote the closed C*-subalgebra of C(Q) (with the usual complex-conjugate
involution) generated by the functions 1, and f,oT™ (ne N, meZ). Then there
are a compact metric space K, a surjective contmuous map ¢: 2 K and a
homeomorphism 7' of K onto itself such that 4 — C(K)o¢ (°) and ¢oT = Tog.

PrOOF. ~ The commutative Gel’fand-Neumark theorem establishes the existence
of a compact Hausdorff space K and an isometric *-isomorphism ¢ between C(K)
and 4. Fix such a space K and a mapping p. Since A is separable, O(K) is also
separable and therefore K is metrizable (cf. [9]). Let us evaluate p* §, for an arbi-
trary w e 2 (yp* and 6, denoting respectwely the adjoint map of ¢ and the Dirac-6
associated to the pomt z): P (]‘) = {f, P*> = (yf, d,> Vf e O(K). Thus p*¥d, is a
non-vanishing multiplica,mve linear functional over C(K). Hence there is a unique
Ze K such that 9*d,= d,. Let ¢: 2 — K be constant map of £ whose value is
the point # € K that sabisfios p*d,=0,. Now (y/)(@) = (¥f, 8,> = <f, #3> = (f,
Og(ayy = f(gb( )) Voe Q ie. yf =fog Vf € O(K). Thus A = p0(K) = O(K)og. Fur-
thermore we have |f| = ||vf]| =|fod| ¥/ e C(K), and this implies also tha,t range (¢) =K

To complete the argument, consider the transformation Q: C(K) - O(K) deﬁned
by Qf = p[(wf)oT]. Observe that @ is an order preserving surjective 1sometry of
O(K). So there is a unique homeomorphism 7': K -~ K with Q) = foT ¥fe C(K)
(see [9]) Defining 7' in this way, we have foTo¢ (Qf)op = (v '(/)f)oT])0¢ =

= [¢Y(fooT) V]eg = y)[ip“l(fogboT )] = fodoT ¥fe O(K). Therefore To¢ goT. [

COROLLARY 1. — If f, = f= ... = f(e 0(Q)) then
inf {n € N: f{(T2) = {(T™"5)  Vke Z} = ry(p(a)) .

PROOF. — Choose a funection f € O(K) such that f = fog and set r*(z) = inf {neN:
VheZ, f(T"n) = f(IT™%5)} (for & Q), #*(F) = int {neN: ke Z, f(T%) = f(Tmodz))
(for & € K).

First we see that r*(z) = P(¢(x)) Yo e Q. Indeed, r*(x) <! means that for
some 0 <n<l, VkeZ f(T™""s) = (T*»), i.e. 10 < n < 1 Yk e Z f(T™p(a)) =
= f(H(T™ ")) = F((T x)) = ( T’ $()), which can be interpreted as 7*(g(»))<I,
for any e N.

C) Le. VfeO@) (fed<IfcOE) f=fog).
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We prove now that # =r,. Since 4 = ((K)o¢p, for each pair »,y e Q with
¢(®) == P(y) there exists g € A such that g(z) #~ g(y). By definition of 4 and by the
Stone-Weierstrass theorem, there exists keZ such that f(T%z)=~ f(T*y). Thus
$(@) = Ply) iff Vke Z f(T*x) = f(T*y). Therefore if Fc K and we¢({x}) then
Tng = & iff Tr(@) = $() iff §(Tra) = $(o) iff Ve Z f(T™+*w) = f(T*x) (these equi-
valences hold for any » € N). Thus for all n € N, the conditions 7% = # and VkeZ
{(T*@) = f(IT™*"* %) are equivalent. This implies that inf {n e N: T»% = &} = inf {n e
e N: f(Tmodtg) = f(T*%) VkeZ). O

LeMMA 9. — Let 2 be a compact F-space, I' a pointwise periodic automorphism
of 2. Then for all fe C(£2), there exists n,e N such that f = foT™,

PROOF. — Seb again f,=f,=..=f and let 4, K, ¢ and 7' be as in Lemmsa 8.
Suppose the contrary of the statement of Lemma 9, i.e. that, in view of Corollary 1,
sup {r;(#): £€ K} = oo. Since clearly r;(¢(»))<r,(«), Vze 2, the homeomorphism
T: K« K is also pointwise periodic. Hence we can apply Lemma 7 to K and 7.
This shows, in view of the lower semicontinuity of the function r;, that there is a
sequence &, &,,... K with 7;(&.)tco (n — oo) such that #, is an inner point. of
{# € K: ry(®) = ry(&)} for all n. For any neN, let Vy, ..., Vi)' (Fe Ky (%) =
== v,(#.)} be pairwise disjoint neighbourhoods of the pomts &, T%,, ..., T2 (am)= iz
respectively. (Remark: {¥e€ K: ry(¥) = r;(Z,)} = {Fe K: r;(&) = ry( T’“ )} Ve e Z)

7(Tn)—1

Set Ur= ﬂ (T*'V%) (for ne N, ke Z). Now the family {U*: neN, 0<k < 3% )}

is dlSJOlnt and Up = e U2 (for all #» and 0<k < ri(ﬁn)). Let us fix an irrational

number J and a sequence of integers I, l,, ... with Lr:(Z) —0d (n — oo). Define
oo T5{En)—1

the funetions §, hon lJ U U® by §(#)=exp (27ikl [ro(#)) and A(%) = exp (2mil, [ro(Z))
for all #e U* (ne?\?,lﬁzl?;< 73(&)). Set gy=Fog and hy=ho¢ with domain G =
= ¢~1( OLOJTT(T)J ;7’;) Then we have §(T'%) = h(%)-§(#), V&. Therefore goo T = hy g,
Since t%zl se]%z& is the inverse image by a continuous mapping of an open sebset of a

metric space, it is a cozero set. Thus we can find continuous extensions g, h of the
functions g,, h, to the whole space £, respectively. Since g,(Tw) = ho(2)go(2) Vo € G,
we have g(Tx) = h(z)g(z) Vo € G(!). In particular, if z,€ ¢ Y{&}) (n=1,2,..) and
#(e ) is a cluster point of the sequence (#;, #,,...) then 1 = }}1_130 g(z,) = g(x) =
= ¢(T"g) = IO~ 1g) g(T™ P 1) = ... = [T 1) ... W(w)]-g(»). Similarly,

g(TrT(w)wn) — {h(Tr:z'(m)-—lwn) h(mn)]g(wn) — h(Trz-(ac)—lxn) h(w,ﬂ) —
= exp [2mir:(x)l.fr:(z,)] VYrnelN.

But then 1 = g(z) = ¢(""@g) = Lim g(7""®)w,) = exp [2nir,(x) 0] 1, a contradic-
tion. [
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What we have shown in Lemma 9 means that the automorphism f i foT' of
C(£) is pointwise periodic whenever the underlying automorphism T of the compact
F-space £2 is pointwise periodic. However, the following simple Banach space
principle holds:

LemmA 10. - Let B be a Banach space, les 7' denote 3 linear pointwise periodic
E-isometry. Then 7' is periodic.

PROOF. — Assume 7 is not periodic. Now VYne N Tfe B, T*f f. Therefore
(and by linearity of T') we can define a sequence f1y f2y ... € B in the following man-
ner. We choose f, so that T'f, s f,. If fiy -+ f; are already defined then we set
0;=dim {T"f;: w € N} and &; = min {2 f,— fil: Tof,5% 15, neN} and then we choose
{111 to satisfy the relations T9+1f, 5 f, 1 and diam {T"f,,.: n € N} < &/3. Thereafter

consider the vector f= Y f,. Let n(c N) be arbitrarily fixed and set #,= min {j:

T"f;#f;}. Then T"f~f9== 2 AT fy—1;). Thus |T*f—f|> | T*f, ~f, ] — 3 [T f,—

iz, iz,

—fil>6,~ 2 8;. But we have 8,< s, < 36,1 Vje N whence > 6,<8,.,, >3t
F>n, i>mn, k=0
= §0,41<}8,,. Thus [T»f— §| >e4,/2>0 YneN, ie. T is not pointwise pe-

riodic. [J-

THEOREM 3. — Let 2 be a compact F-space and T a pointwise periodic auto-
morphism of L. Then T is necessarily periodic.

PROOF. — Lemma 9 and Lemma 10 directly yield that we can find » such that
foT™= f, Vf € C(£2). Hence necessarily 7'» = id,, (since Tz 5= 2 would imply fTns f
whenever f(z) = 0 s f(T"x), and 0(£2) separates the points of 2 by its compactness).

Hence we obtain the following refinement of Theorem 1:

THEOREM 1'. — The following two conditions are equivalent for a compact space Q:

a) Every F e Aut B(O(.Q)) with pointwise periodic 7', has fixed point, b) 2 is
an F-space.

3. — The case of M-lattices with predual.

Having established Theorem 1/, it is natural to ask whether the F property of
a compacet space {2 ensures the existence of fixed points for every F e Aut fi‘( 0(2)).
The question can be stated equivalently in the following way: Consider any
commutative (*-algebra with unit whose maximal ideal Space is an F-gpace. Does
any biholomorphic automorphism of the unit ball have a fixed point? In the
latter setting, We: can expect a negative answer. In fact, as we shall see, the
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space B = L~(0,1) admits an F e Aut B(E) of the form F:f> [z > M(x)f(Tx)]
with an ergodic transformation T of the interval (0, 1) and a Borel measurable fune-
tion M: (0,1) — Aut A without fixed point. (The maximal ideal space of L(0, 1)
is hyperstonian (see [10]) hence obviously an F—space).
Throughout this Chapter, let M,, M, denote the transformations
[Celr>—] and [Ca@w%],

respectively. (Note: M,|;, M,|-€ Aut 4.) In view of Lemma 3, the fixed point
preserving Lie group homomorphism M(I" :R— Aut A defined by Mi= M,, is
given by

£+ th()

M =T F )

(te R).

Let 1 be the normed Lebesgue measure on the unit circle 94 of C (i.e.
A=1/2m length|,,). Fix an irrational number de&(0,1) and denote by 7 the
clockwise rotation of 94 by the angle 274, i.e. T: 2> exp (— 2mid)-@. The space
L>(24, 1) is considered, as usual as {§: ¢ is a bounded Borel 94 —C function}
where ¢ = {y(: 04 — C): A{we 94: 1/)( ) # @(®)} = 0}. Finally, let M: 04 —Aut C
be the function

M, i O<T<$

exp (2mit) >
M, i d<r<?’

and define F: E(L“’(@A, 2)) = L=(04, 2) by F(¢) = [# > M(x)p(Tx)] for all Borel
measurable g: 94 — A. Clearly, F € Aut B(L>(24, 2)).

THEOREM 4. — The transformation I' (defined above) has no fixed point.

The proof is divided into eight steps

1) Let & be the subgroup of Aut C generated by M, and M,. Since

(8) M, M= M, M;*  (and M, M,= M;*M,),
we have G = {M;M}: s=0,1;tcZ}. This representation of @ is unique in the
sense that if s,8'c{0,1} and ¢,¢'e Z with MiMi= M; M{ then s =s' and t=#

(smce ide = M™M= [C e 1)8_8,%})'

2} In the following we shall argue by contradiction assuming that Theorem 4
does not hold. Denote by f, a fixed point of F and let ¢,: 94 — A be a representant
of f, (thus fo= @). The symbol V, will indicate « i-almost everywhere» Now
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@o(Tw) = M(x)py(x) Vo€ 04 Vn € Q, and therefore

(9) @o(Trz) = M(Tr12) ... M(x)‘p») VY,v2€94 VnelN.

Thus range (@,07™) c G (range ¢,) Yne N.

3) It is well-known that the transformation T is ergodic (cf. [5]) Hence it
follows that if 8 c 84 is such that T(8) differs just in a 0-set with respect to A from &
(i.e. I8 U TSNS N T(8)]) = o) then either A(S) = 0 or A(S) = 1.

Thus if for a Borel set I'c C we have N(I') = I" YN € @, then ¢;(I") is either a
0-set or the complementer in 24 of some 0-set (wrt A).

4) If {, ned\{— 1,1} and 5 ¢ G({) then there exist G-invariant neighbour-
hoods U, V of { and #, respectively, that are disjoint.

PROOF. — Observe that for any teZ, Mi: 11, (— 1) > (—1),[— 1, 1]+ [—1,1]
circle > circle. So from the conformity of Aut C it easily follows that, for every
te L, M! maps the bounded domain D={{eC: |{ —i|<V2JU{leC: | +i|<
< v/2} onto itself. Thus ND =D VYN e @ (cf. 1)). Let d, denote the Kobayashi
distance on D (for its definition see [11]) and consider the orbit G(Z). From (8) we
deduce that G({) = {4+ Mi(: te Z}c N{—1,1}cD. Since M;{ = 1£—}_—L;%1h_(2—) -1
| according to ¢ —- oo, the set G({) has no cluster point in D. Hence d,(n, (Z)) > 0.
Thus the choices U= {{'e D: d,(¢', F(Q)) < }d,(n, F())} and V= {n'e D: dy(y,
G() > 1d,(n, G(C)} fulfill our requirements.

We show now that A(gs*(G())) = 1 for some {,e J.

PROOF. — The last remark and 3) exclude that for every pair £, ne AN{—1,1}
and for all neighbourhoods U, V of G({) and G(n), respectively, we have A(g;(U)) > 0
and A(p;(V)) > 0 in the same time. If for any ¢ e AN\ {— 1,1}, one can find a neigh-
bourhood U of G(Z) such that A(g;’(U)) = 0 then the separability of A implies
~ that A(gy (AN~ 1,1})) = 0, whence A{g;*({—1,1})) = A(g; () — A (AN~ 1,
1})) = 1. Now we can choose e.g. {,= 1. If for some {,e A\{— 1,1}, any neigh-
bourhood U of G({,) satisfies A(g;*(U)) > 0 then for any G-invariant neighbourhood
of this {, we necessarily have by 3) that A(¢g~*(U)) = 1. Therefore 1 = Z((p}l({é‘ e
€ D: d,(Z, 6(5) < 1/n})) — Ap;(G(Z0)) (n — o). Thus, in this case, taking {o={,,
the requirements are satisfied.

Henceforth we assume that
range g, = {¢1, ¢, ...} C Gle)c A

(where ¢, ¢;, C,, ... are given constants). Our previous observation ensures that this
can be done without loss of generality.
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5) Step 1) directly implies the existence of a unique pair of Borel functions
8, 04 — {0,1} and t,: 04 — Z for each n e N, such that

MDY@ = M(T" o)~ . M@)™t Vaeedd.

Thus by (9) we have

9" @o(T"w) = M= M@ g (x) V,wedd YnelN.

Introducing the functions 8= 1, 2nir):0cr<ey DA t= 10— s, we also have
M(w) = MO M), Vo e 94. Now (8) enables us to express s, and #, in terms of s

_and t. In particular, one sees by induction on n that s,(x) = mod, [s(z) 4 ... +

- s(T+12)]. Thus

M3 = [£ > (— 1)@+ 4] Ypedd YneN.

6) We achieve a stronger control over the funections (— )s"(') Consider the

function §: R — {0, 1} defined by 5(z) = s (exp (2miz)). Thus §(7) = z 1y0.5(7 -+ m)

Vz e R, Introducing the funetions 3.(r)=s (exp (2nit)) + s(T exp— (2mit)) + ... -+
- s(T*1 exp (2mi7)), We have

5u(0) = 5(0) F S(rm O) ot B D) = 5 S g7+ 18— 18) =

m=—00 k=0
oo -1

= 2 Z 1[k6 w+10)(T + M) 2 1io.n)(T + M)

m=-—c0 k=0 m=— oo

Therefore, §, is a periodic continuation (with period-length 1) of the funection

Tntegral part of (nd - 1) if 0 < v << nd-enti 8). 1
> egra b (no+ _)1 ) " fer () Since f(—l)Sndl =f(—1)sn(f) drt,
Integral partof (nd) if#d entier (nd) < v <1 o )

this means that if n,— co is a sequence in N such that dist(nmé, {2k—1:ke
€ N}) = 0 (m — oo) then f (— 1)**» dA—> — 1, i.e. the sequence of the functions (— 1)™»
o4

converges in measure to the identically — 1 function on 24. So, by the classical
Riesz-Weyl Lemma, there is a subsequence (n,,: j € N) with (— 15D > — 1 (§ — 00)
V,# € 24, or which is the same, s, (#) 1 (j = oo) Y,z e od.

Slmllarly, dist ('n o, {2k: & EN}) —>0 (m — o) implies the existence of a sub-
sequence (nmj j € N) with snm,(w) —0 (j = o0) V,xed.

7) A sequence #,—> oo for which dist (#,-d, {2k — 1: keN}) -0 (m — oo)
certainly exists. (Proof: The set {exp (wind): n € N} is dense in 94 and the relation
dist (0,0, {2k — 1: k€ N}) — 0 is equivalent to exp [27i(/2)n,] —— 1.) Clearly, for
any such a sequence (n,,: m € N) we have exp (2mid, ) — 1 ie. IT" —idyy (if m — oo).
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Trom now on, let (n,,: m € N) denote a fixed sequence in N such that n,, — oo,
Ttm — id,, and V,z €24 s (@) -1 (m — oo).

Suppose then that (n,:m e N) is a sequence with n,—> oo, T" —id,, and
YV, € a4, s, (#) =0 (m — oo). Since range(p,)c G(¢) = {£M}: t € Z} (cf. conclusion
of 4)) and since G(c¢) has two cluster points outside of itself whenever ¢~ J-1
(namely the points — 1 and 1), range(p,) is a discrete subset of C. By the Lebesgue
Shift Theorem, the fact Trw — id,, implies ¢0(T"5nw) - @o(2) V2 € 84. Similarly,
(T %) — @o(@), V@€ 04. By the discreteness of range(g,), we have then

(10) Vieeod dmy(x) Ym > my(x)
Po(@) = @o(Trnm) = M MEnD (@) = M, My g (o)
and

Po(®) = @o(T™2) = M= M@ (2) = Mg (@) .

Thus Y,z € 04 3t',¢'e Z M, M\ ¢, (x) = Msq ) = @y(x). For each "0 and
¢ e C, it follows from the relation M. = that { = —1 or { = 1. Therefore (10)
can be valid only if V,z € 04 Imy(x) Ym > my(w) ¢, (#) = 0. Thus

(109 If n, — co is a sequence with 7™ —id,, and

V,ze0d s, (x) -0, then ¢, () -0 Y,weod.

8) We shall arrive at a contradiction, by showing that (10') is impossible.
In fact, we shall prove that

a) There exists a sequence #, — oo consisting of odd numbers such that
I —id,, and s, () =0 Y,z 4.

b) mod, [s,(x) + t,(x)] = mod,n Yxeod Vne N.

By b), for any sequence (n,: m € N) as in a), we have that ¢, (#) is odd for all
meN and ze 4. But hence %, (x) -0 Voe dd. This contradiction proves the
theorem.

Proof of a): The conclusion of 6) tells us that @) is equivalent to the existence
of a sequence #,* — oo of odd numbers such that dist (n;, -6, {2k: k € N}) =0 (m —oo).
But this latter property is equivalent to exp [2zin. (6/2)] — 1 which can be easily
satisfied by some odd sequence (’"':;3 m e N), since the set {exp [2mi(21 4 1)(d/2)]:
le N} is dense in 24 (for ¢ is irrational).

Proof of b): Proceed by induction on n. For n =1, M3® M4@ = M ()™ (= M;"
or M;'). Thus either s(z) =1 and t,() =0 or s,(#) = 0 and #(») =1. Anyway,
sy(@) - ¢,() is odd, similarly to 1 (= n) for all e 94.
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To perform the inductive step, observe that
M Ylen@ — Y (T0) ™ M(T™ )™ M(2)™ = M(T )™ M@ M5® .

Now there are three cases:

i) If M(T"») = M, then Msl"“(“’) Mtznn(w) Msl"(”)_l Mtzn(w): Mrlnodz[Sn(w)—ll Mtzn(m),
i.e. mody [$5,4() + £ap1(#)] = mod, [s.(@) — 1 - #,(#)] = by the induction hypothe-
ses = mod, (r — 1) == mod, (» -+ 1).

ii) If M(T») = M and s,() = 0 then M+ Yo — Y-t Y@ je. 0=
= 8, 41(®) and t,,,(®) = to(®) — 1. Thus mod,[s,,1(%) 4 tuya(@)] = mod, [$,(2) + tu(2) —
— 1] = mod, (n — 1) == mod, (» J- 1).

iii) If M(T*x) = M, and s,(#) =1 then M3+©® Youl) = Y-+ 1 M%® = by
(8) = M, Mu@*1 e,

mOd; [8.41(%) + tnya(®)] = mod; [$4(#) + fa(w) + 1] = mod, (v - 1) .

The proof of Theorem 4 is complete. L[l

The seemingly too particular statement of Theorem 4 enables us to reach a
general coneclusion:

A theorem of D. MAHARAM (cf. [7], [10]) asserts that for any ¢-finite measure g,
there exists a sequence g, gs, ... > 0 and a sequence of cardinalities a;, a,, ... such

that L'(u) ~ Ll( &) gn}f‘"‘) (for a > 0, A* denotes the a-th power of the measure;:}»;

w=1

A® = [atom with weight 1]). This fact yields an application of Theorem 4 to decide
the fixed point problem of Aut B(E) even for the most general L”-spaces B (and
hence, by a theorem of M. RIEFFEL [8], for all M-lattices admitting a predual).

LeMMA 11. — Let X be a discrete topological space. Then for all ¥ € Aut B(O’b(X ))
there exists a (unique) permutation 7 of X and a funetion M: X — Aub A such
that F = [f > [® > M(x)f(T)]].

Proor. — Let ¢f denote the (unique) continuous extension to X (the Stone-
Cech compactification of X) of any f e C,(X). Now the map F = ¢F¢ is a biholo-
morphic automorphism of E’(O(ﬁX)). Since the isolated points of X are exactly
the points of X and since any automorphism of a topologieal space sends the set
of its isolated points onto itself, we have T'y(X) = X. Hence (Ff)(z) = (¢~* Fof) o) =
= (Fgf) (@) = (Fg)@) = [F$N)1(@) = My@)[($f)(T3)] = since Tpoe X = My®)-
(Tow) VweX. [ :

COROLLARY 2. — For a discrete space X, all the members of Aut B(Gb(X)) have
fixed point.

15 — Adnnali di Malematica



224 L. L. STACHO: On fized points of holomorphic automorphisms

Proor. - Let v denote the topology of pointwigse convergence on ((X) (i.e. by
definition, ;-5 f iff Vee X fi(®) = f(x), for every net (f;:jed) and function f in
0y(X)). Observe that B(C,(X )) endowed with the topology = coincides (set theo-
retically) with the topological product space A: which is compact by Tychonoft’s
Product Space Theorem. On the other hand, it readily follows from Lemma 11 that
any F e Aut B(C,(X)) is also v 7 continuous (the definition of F requires only
its continuity for the norm topology). Hence the Schauder-Tychonoff Fixed Point
Theorem establishes (cf. [1]) that each F e Aub B(0,(X)) has fixed point. [

THEOREM 5. — Let E be an M-lattice (for definition see [8], [9]) having a pre-
dual *E. Then the following properties are equivalent:

@) Any F e Aut B(H) has a fixed point.
by B~ O0,(X) for some discrete topological space X.

PROOF. — By a theorem of M. RIEFFEL [8], the M-lattices with predual are
exactly the L*-spaces. Thus we may assume without loss of generality that *& =—
= IMX, u) and E = L=(X, p) for some fixed measure space (X, u). If the me-
asure u is atomic then obviously b) holds and hence Corollary 2 implies a). Sup-
pose u is non-atomie. Then b) is false, thus it suffices to find an I € Aut B(L*(X, u))
free of fixed points. Fix g p-measurable subset X'c X such that the measure Hlgs
be non-atomic and we have 0 < #(X') << co. By Maharam’s Isomorphism Theo-
rem (ef. [7], [10]), there exists a p-measurable subset ¥ ¢ X’ and a cardinality a > 0
such that u(Y)>0 and LYY, ul,) ~ LY (u(X)-2). Therefore L (X, 1) is isometri-
cally isomorphic with the direct sum of L>(2%) and some other I= space F where
the norm of a generic element (f,9) (f in Z=(2%), g in E) is defined by |(f,9)] =
= max {|f|, [g]}. Hence, to. prove Theorem 5, it suffices to show that some
F € Aut B(L*(2%) has no fixed point. Let

Fy: B(L*(2%) - L°(")  be the mapping defined by
Fo: f > [(04) € (£, & < ) > M(&) (T, £,: 0 <a< a)]”
where M: 94 — Aut C and T: 34 > 34 are the same as in Theorem 4 and ¢,
denotes a (fixed) Borel measurable representant with range in A of f, for any fe

€ E(L‘”()L“)). Then it follows from Theorem 4 that I, has no fixed point and belongs
to Aut B(L*(A%). O
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