On Fixed Points of Holomorphic Automorphisms (*).

L. L. STACHÓ (Hungary)

Summary. — Banach M-lattices are studied from the view point whether all the biholomorphic automorphisms of their unit balls admit fixed points when continuously extended to the closure of the unit ball. A characterization of compact topological F-spaces is found in terms of the fixed points of the elements of $\operatorname{Aut} \overline{B}(C(\Omega))$ which enables to establish some particular properties also of the topological automorphisms of compact F-spaces. Finally it is shown that if the M-lattice E admits a predual then each member of $\operatorname{Aut} \overline{B}(E)$ has fixed point if and only if E is isometrically isomorphic with some l^{∞} -space.

Let B(E) denote the open unit ball of a complex Banach space E and let Aut B(E) be the group of all Fréchet-holomorphic automorphisms of B(E). By a result of Kaup-Upmeier [6] every $F \in Aut B(E)$ is the restriction to B(E) of a holomorphic map of some neighborhood of $\overline{B}(E)$ into E. If, in particular, the space E is reflexive and separable, a theorem of Hayden-Sufferdee [4] establishes the existence of fixed points of $e^{i\theta}F$ for almost every $\theta \in \mathbf{R}$ for all continuous mappings of $\overline{B}(E)$ into itself which are holomorphic on B(E). However, the same article [4] remarks that by relaxing reflexivity of E such a fixed point theorem is no longer valid in general (e.g. in the case of $c_0(N)$, as it is shown there).

The following simple example indicates that even the weaker conjecture stating that each $F \in \operatorname{Aut} \overline{B}(E)$ (1) admits fixed point fails in most M-lattices (for def. see [9]): The mapping

(1)
$$F: f \to \left[\overline{\Delta} \in \zeta \mapsto \frac{f(\zeta) + \zeta/2}{1 + f(\zeta)/2} \right]$$

defined for the continuous functions $f: \overline{A} \to \overline{A}$ (A standing for the open unit disc of C) clearly belongs to Aut $\overline{B}(C(\overline{A}))$ but $Ff_0 = f_0$ would imply $f_0(\zeta)^2 = \zeta/\overline{\zeta}$, $\zeta \in \overline{A} \setminus \{0\}$ contradicting the continuity of f_0 at the point 0.

In this paper we shall investigate *M*-lattices with order unit, a category whose behaviour seems particularly interesting from the view point whether every (holomorphie) automorphism of the closed unit ball has fixed point.

Our main results concern a characterization of compact F-spaces (def. see [3]) in

^(*) Entrata in Redazione il 24 ottobre 1980.

⁽¹⁾ We shall denote by Aut $\overline{B}(E)$ the set of all continuous extensions to $\overline{B}(E)$ of the elements of Aut B(E).

terms of the automorphisms of the closed unit ball of their continuous function spaces and a theorem asserting that, up to isometries the l^{∞} -spaces are the only M-lattices with predual where any automorphism of the closed unit ball admits a fixed point.

1. – Fixed point free elements of $\bar{B}(C_b(\Omega))$. Remarks on Aut \bar{A} .

The construction of (1) suggests an approach promising positive results to the question: What is the necessary and sufficient topological condition on a regular topological space Ω to admit a member of Aut $\overline{B}(C(\Omega))$ without fixed points?

Proposition 1. – Suppose Ω is a topological space such that every $F \in \operatorname{Aut} \overline{B}(C_b(\Omega))$ has a fixed point. Then Ω is necessarily an F-space (2).

PROOF. – Let $t(\cdot)$ be any continuous function on Ω ; set $G \equiv \{x \in \Omega : t(x) \neq 0\}$ and fix any $\varphi \in C_b(G)$. We may assume without loss of generality that range $(t) \subset [0, \pi/2]$ (thus $G = \{x \in \Omega : t(x) > 0\}$). Define the functions $k : \Omega \to \partial \Delta$ and

$$u\colon \Omega o rac{1}{2}ar{ec{ec{ec{A}}} \quad ext{by} \quad k(y)\equiv e^{it(y)} \quad ext{ and } \quad u(x)\equiv -rac{2iarphi(x)\,e^{-it(x)/2}}{1+|arphi(x)|^2}\sinrac{t(x)}{2}$$

if $x \in G$, $u(x) \equiv 0$ for $x \in \Omega \setminus G$. Observe that the transformations

$$N(x) \equiv \left[\overline{A} \in \zeta \mapsto k(x) \frac{\zeta + u(x)}{1 + u(x)\zeta} \right]$$

are in Aut \overline{A} for all fixed $x \in \Omega$ since |k(x)| = 1 and $|u(x)| < \frac{1}{2} < 1$. Moreover the map $N: \Omega \to \operatorname{Aut} \overline{A}$ is continuous because so are k and u. Consider now the automorphism F of $\overline{B}(C_b(\Omega))$ defined by $F(f) \equiv [x \mapsto N(x)f(x)]$. By hypothesis, for some $f_0 \in \overline{B}(C_b(\Omega))$ we have $F(f_0) = f_0$. Thus

$$k(x)\frac{f_0(x) + u(x)}{1 + \overline{u(x)}f_0(x)} = f_0(x) \quad \forall x \in \Omega$$

and therefore

$$f_0^2 rac{2i ilde{arphi}e^{it/2}}{1+|arphi|^2} \sinrac{t}{2} + (1-e^{it})f_0 + rac{2iarphi e^{it/2}}{1+|arphi|^2} \sinrac{t}{2} = 0$$

⁽²⁾ I.e. given any cozero set G in Ω , each function $\varphi \in C_b(G)$ has a continuous extension to Ω (cf. [3; 14.25 Theorem (6)]). $C_b(\Omega)$ denotes the space of bounded continuous $\Omega \to \mathbf{C}$ functions.

on G. Dividing by

$$\frac{2ie^{it/2}}{1+|\varphi|^2}\sin\frac{t}{2}\left(=\frac{e^{it}-1}{1+|\varphi|^2}\neq 0\quad \text{ since } 0< t<\frac{\hat{\pi}}{2} \text{ on } G\right)$$

we obtain $\overline{\varphi(x)}f_0(x)^2 - (1 + |\varphi(x)|^2)f_0(x) + \varphi(x) = 0$ i.e. $f_0(x) \in \{\varphi(x), 1/\varphi(x)\} \ \forall x \in G$. But $||f_0|| < 1$ and hence necessarily $f_0|G = \varphi$. Thus f_0 is a continuous extension of φ . \square

In order to prove some converse of Proposition 1 and to generalize it, we go back to Aut $\overline{\Delta}$. Recall that any Möbius transformation M has a unique representation of the form

$$M = \left[\overline{A}
i \zeta \mapsto k_M rac{\zeta + u_M}{1 + \overline{u_M} \zeta}
ight] \qquad ext{with} \ |k_M| = 1 \ ext{and} \ |u_M| < 1 \ ,$$

and the mapping $M \mapsto (k_M, u_M)$ establishes a homeomorphism between Aut $\overline{\Delta}$ and $(\partial \Delta) \times \Delta$. We shall reserve the notation (k_M, u_M) for this mapping.

A simple computation yields

LEMMA 1. – Let $id_{\overline{A}} \neq M \in \operatorname{Aut} \overline{A}$ and $e^{it} = k_M$. Then M has:

a) a unique fixed point which lies in △ iff

$$|u_{\scriptscriptstyle M}| < \left| \sin \frac{t}{2} \right| \left(= \frac{k_{\scriptscriptstyle M} - 1}{2} \right)$$

- b) two distinct fixed points lying in $\partial \Delta$ iff $|u_M| > |\sin t/2|$;
- c) a unique fixed point lying is $\partial \Delta$ iff $|u_M| = |\sin t/2|$.

LEMMA 2. – There are exactly two different continuous mappings from $(\operatorname{Aut} \overline{\varDelta}) \setminus \{\operatorname{id}_{\overline{\varDelta}}\}$ into $\overline{\varDelta}$ which associate to any (non-identical) Möbius transformation one of its fixed points.

PROOF. – Recall that, in general, if 0 < r < 1 and $F \in \operatorname{Aut} \overline{B}(E)$ where E is any complex Banach space then the mapping rF has always a unique fixed point (cf. [2]). Thus we may define the function $Q \colon [0,1) \times \operatorname{Aut}_{\overline{A}} \to \overline{A}$ by $Q(r,M) \equiv [\text{the fixed point of } rM]$. If $r_j \to r (\in [0,1))$ and $M_j \to M$ then the net $Q(r_j,M_j) (= r_j M_j Q(r_j,M_j))$ tends obviously to some fixed point of rM, showing the continuity of Q. We shall prove that for every $\operatorname{id}_{\overline{A}} \neq M \in \operatorname{Aut} \overline{A}$, the sets

$$S_M \equiv \{\zeta \colon \exists \mathrm{net} \ [(s_i, N_i) \colon j \in J] \ (s_i, N_i) \to (1, M) \ \mathrm{and} \ Q(s_i, N_i) \to \zeta \}$$

contain exactly one point. In fact, on the one hand

$$S_M = igcap_{n=1}^\infty \overline{Q\left\{(s,N)\colon 1-rac{1}{n} < s < 1 \quad ext{ and } \quad |k_M-k_N|, \; |u_M-u_N| < rac{1}{n}
ight\}}$$

i.e. the intersection of a decreasing sequence of non-empty connected compact subsets of \overline{A} , thus $S_M \neq \emptyset$ is connected and compact. On the other hand, $S_M \subset \{\zeta \colon M\zeta = \zeta\}$ which implies cardinality $(S_M) < 2$. But then cardinality $(S_M) = 1 \ \forall M \in (\operatorname{Aut} \overline{A}) \setminus \{\operatorname{id}_{\overline{A}}\}$ means that the function $R \colon (\operatorname{Aut} \overline{A}) \setminus \{\operatorname{id}_{\overline{A}}\} \to \overline{A}$ is well-defined by $R(M) \equiv \lim_{r \to 1} Q(r, M)$ and is continuous. Since $\{R(M)\} = S_M \subset \{\zeta \colon M\zeta = \zeta\}$, the mapping R is a continuous section of the multifunction $\phi \colon M \mapsto \{\zeta \in \overline{A} \colon M\zeta = \zeta\}$.

If R' denotes another continuous section of ϕ (defined on $(\operatorname{Aut} \overline{\Delta}) \setminus \{\operatorname{id}_{\overline{\Delta}}\}$) then, by Lemma 1 a), c),

$$\{M\colon R(M)
eq R'(M)\}\subset D\equiv \left\{M\colon |u_{\scriptscriptstyle M}|>\left|rac{k_{\scriptscriptstyle M}-1}{2}
ight|
ight\}.$$

Since $\phi(M) = \{\zeta \in \overline{A} : \overline{u_M}\zeta^2 + (1 - k_M)\zeta - k_M u_M = 0\} \ \forall M \in D$, we have by continuity of the roots of polynomials depending on their coefficients, that the mapping $\phi|D$ is continuous from D into the space of the non-empty compact subsets of C endowed with the Hausdorff distance. Since cardinality $\phi(M) = 2 \ \forall M \in D$, it easily follows that $\{M \in D : R'(M) = R(M)\}$ is open-closed in D. But D is connected because it is homeomorphic to

$$\left\{(k,u)\in(\partial\varDelta)\times\varDelta\colon |u|>\left|\frac{k-1}{2}\right|\right\}=\left\{(e^{it},re^{i\delta})\colon t\in(-\pi,\pi),\; 1>r>\left|\sin\frac{t}{2}\right|,\;\delta\in\mathbf{R}\right\}$$

which is a continuous image of the connected set $\{(t,r): t \in (-\pi,\pi), 1 > r > > |\sin t/2\} \times R$. Thus if $R' \neq R$ then we necessarily have that

$$\{R'(M)\} = \phi(M) \setminus \{R(M)\} \quad \forall M \in D.$$

On the other hand, it directly follows that if we define R' by (2) on D and to coincide with R elsewhere, then R' is continuous. \square

LEMMA 3. – For any $M \in \operatorname{Aut} \overline{A}$ with $M \neq \operatorname{id}_{\overline{A}}$ there exists a Lie homomorphism $t \mapsto M^t$ of R into $\operatorname{Aut} \overline{A}$ such that $M^1 = M$ and, by setting $t_0 \equiv \inf\{t > 0 \colon M^t = \operatorname{id}_{\overline{A}}\}$ (convention: $\inf \emptyset \equiv +\infty$), we have

(3)
$$\{\zeta \colon M^t \zeta = \zeta\} = \{\zeta \colon M\zeta = \zeta\} \quad \forall t \in (0, t_0).$$

PROOF. – Fix M arbitrarily. According to Lemma 1, only the following cases are possible: a) M has a fixed point in Δ , b) M has two fixed point on $\partial \Delta$, c) the unique fixed point of M lies in $\partial \Delta$.

a) Since Aut \overline{A} acts transitively on A, we can choose $N \in \operatorname{Aut} \overline{A}$ which sends the fixed point of M into 0. Thus 0 is the fixed point of $K \equiv NMN^{-1}$. By the Schwarz Lemma, for some $\delta \in \mathbf{R}$, $K = [\zeta \mapsto e^{i\delta}\zeta]$. Set $K^t \equiv [\zeta \mapsto e^{i\delta t}\zeta]$ $(t \in \mathbf{R})$. Since $t \mapsto K^t$ is trivially a Lie homomorphism of \mathbf{R} into Aut \overline{A} , we may define M^t by $M^t \equiv N^{-1}K^tN$.

- b) The group Aut \overline{A} is doubly transitive on ∂A . Thus we can find $N \in \operatorname{Aut} \overline{A}$ such that one fixed point of M is sent by N into 1 and the other into -1. Now the fixed points of $K \equiv NMN^{-1}$ are -1 and 1. Observe that $k_K = 1$ and $u_K \in \mathbb{R}$ $\left(\operatorname{for} k_K \frac{1+u_K}{1+\overline{u_K}} = 1 \text{ and } k_K \frac{(-1)+u_K}{1-\overline{u_K}} = -1 \quad \operatorname{imply} \frac{1+u_K}{1-u_K} \left/ \frac{1+u_K}{1-u_K} \right) = 1 \right). \text{ Now set } \delta \equiv \operatorname{areath} (u_K) \text{ and } K^t \equiv \left[\zeta \mapsto \frac{\zeta+\operatorname{th}(t\delta)}{1+\zeta\operatorname{th}(t\delta)}\right]. \text{ A direct calculation shows } K^{t+s} = K^t K^s \ \forall t, s \in \mathbb{R}. \text{ Thus, also in this case, we may put } M^t \equiv N^{-1}K^t N \ (t \in \mathbb{R}).$
- c) Let ζ_0 denote the unique fixed point of M and fix $N' \in \operatorname{Aut} \overline{A}$ so that $N\zeta_0 = 1$. Further let N'' be the Cayley transformation $\zeta \mapsto (1/i) \big((\zeta + 1)/(\zeta 1) \big)$ mapping \overline{A} onto the closure of $H \equiv \big(\{ \infty, \zeta \in \mathbf{C} \colon \operatorname{Im} \zeta > 0 \} \big)$ and set $N \equiv N'' N'$. Now the mapping $K \equiv NMN^{-1}$ belongs to $\operatorname{Aut} H$ and satisfies $K(\infty) = \infty$. Therefore K is linear, moreover $\exists \alpha, \beta \in \mathbf{R}$ $K = [\zeta \mapsto \alpha \zeta + \beta]$. Since the only fixed point of M is ζ_0 , K must have no other fixed point than ∞ . But hence K is a translation (i.e. there exists $\beta \in \mathbf{R}$ such that $K = [\zeta \mapsto \zeta + \beta]$. Then by letting $K^t \equiv [\zeta \mapsto \zeta + \beta t]$ and $M^t \equiv N^{-1}K^tN$ $(t \in \mathbf{R})$ the proof is complete. \square

Lemma 4. – Let $R(\cdot)$ denote any one of the continuous sections of $M\mapsto\{\zeta\colon M\zeta=\zeta\}$ (on $(\operatorname{Aut}\overline{\varDelta})\setminus\{\operatorname{id}_{\overline{d}}\}$). Then a) $MR(M)=R(M),\ b)\ R(M^n)=R(M)$ whenever $M^n\neq\operatorname{id}_{\overline{\varDelta}}\ (n=0,\ \pm 1,\ \pm 2,\ldots),\ c)\ R(NMN^{-1})=NR(M)$ for all $N\in\operatorname{Aut}\overline{\varDelta}$.

PROOF. -a) Is trivial. b) Fix M and n and take a Lie homomorphism $t\mapsto M^t$ as in Lemma 3, set also $t_0=\inf\{t>0\colon M^t\neq \mathrm{id}_{\overline{d}}\}$. From a) and (3) we deduce $R(\{M^t\colon t\in (0,t_0)\})\subset \{\zeta\colon M\zeta=\zeta\}\in R(M)$. Hence the function $\varrho\equiv [(0,t_0)\in t\mapsto R(M^t)]$ is constant (recall, M has at most two fixed points). Thus if $M^n=\mathrm{id}_{\overline{d}}$, $R(M^n)=R(M^{\mathrm{mod}_{t_0}n})=\varrho\pmod{t_0}=\varrho\pmod{t_0}=R(M^{\mathrm{mod}_{t_0}n})=R(M)$ (3).

c) Let $t\mapsto N^t$ be any Lie homomorphism $\mathbf{R}\to \operatorname{Aut} \overline{A}$ with $N^1=N$. Observe that $N^{-t}R(N^tMN^{-t})\in\{\zeta\colon M\zeta=\zeta\}$ (since $N^tMN^{-t}\eta=\eta\Leftrightarrow M(N^{-t}\eta)=N^{-t}\eta$), $\forall t\in\mathbf{R}$. Therefore the function $t\mapsto N^{-t}R(N^tMN^{-t})$ is constant. In particular, $N^{-1}R(NMN^{-1})=N^0R(N^0MN^0)=R(M)$.

DEFINITION 1. – Let δ_n denote the metric on C^n defined by $\delta_n((\alpha_1, ..., \alpha_n), (\beta_1, ..., \beta_n)) \equiv \max\{|a_i - \beta_j|: j = 1, ..., n\}$. For any $N^* \equiv (N_0, ..., N_{n-2}) \in (\operatorname{Aut} \overline{A})^{n-1}$ and $\zeta^* \equiv (\zeta_0, ..., \zeta_{n-1}) \in \overline{A}^n$ set

 $(4) \qquad P_n(N^*,\zeta^*) \equiv \lceil \text{that } \eta \in \overline{A} \text{ for which } \delta_n(\zeta^*,(\eta,N_0\eta,...,N_{n-2}\eta)) \quad \text{ is minimal} \rceil.$

⁽³⁾ $\operatorname{mod}_{\alpha}\beta \equiv \inf([0, \infty) \geqslant \{\beta + n\alpha : n \in \mathbf{Z}e\}, \operatorname{mod}_{\alpha}\beta \equiv \beta \text{ for all } \alpha > 0, \beta \in \mathbf{R}.$

Lemma 5. – The definition of P_n makes sense (i.e. there is a unique $\eta \in \overline{A}$ with $\delta_n(\zeta^*, (\eta, N_0\eta, ..., N_{n-2}\eta)) < \delta_n(\zeta^*, (\eta', N_0\eta', ..., N_{n-2}\eta')) \ \forall \eta' \in \overline{A}$). Furthermore, if $M_0 \ldots M_{n-1} = \mathrm{id}_{\overline{A}}$ and $P_n((M_0^{-1}, M_1^{-1}M_0^{-1}, ..., M_{n-2}^{-1} \ldots M_0^{-1}), \zeta^*) = \eta$ then $P_n((M_1^{-1}, M_2^{-1}M_1^{-1}, ..., M_{n-1}^{-1}, ..., M_{n-1}^{-1}, ..., M_{n-1}^{-1}), (\zeta_1, \zeta_2, ..., \zeta_{n-1}, \zeta_0)) = M_0^{-1}\eta$ (here $\zeta^* \equiv (\zeta_1, ..., \zeta_{n-1})$).

PROOF. - A standard compactness argument shows the existence of at least one minimizing η in (4). Set $\varepsilon \equiv \delta_n(\zeta^*, \{(\eta, N_0\eta, ..., N_{n-2}\eta) : \eta \in \overline{A}\})$. Observe then that $\varepsilon = \min \big\{ \varepsilon' > 0 \colon (\zeta^* + \varepsilon' \overline{\varDelta}{}^n) \cap \{ (\eta, N_0 \eta, ..., N_{n-2} \eta) \colon \eta \in \overline{\varDelta} \} \neq \emptyset \big\}. \quad \text{Thus for the set}$ $Z \equiv \{(\eta, N_0 \eta, ..., N_{n-2} \eta) \colon \eta \in \overline{\varLambda}\} \text{ we have } Z \cap (\zeta^* + \varepsilon \varDelta^n) = \emptyset \text{ and } \{\eta \in \overline{\varLambda} \colon \delta_n(\zeta^*, (\eta, N_0 \eta, \zeta^*)) \in \overline{\varLambda}\}$ $(1, N_{n-2}\eta) = \varepsilon \} \subset Z \cap \partial (\zeta^* + \varepsilon \overline{\Delta}^n).$ Let Φ denote the map $\Phi : (\alpha_0, ..., \alpha_{n-1}) \mapsto (\alpha_0, ..., \alpha_n)$ $N_0^{-n}\alpha_1,\,\ldots,\,N_{n-2}^{-1}\alpha_{n-1}).\quad\text{Then}\quad\varPhi(Z)=\{(\zeta,\,\ldots,\,\zeta)\in \pmb{C}^n\colon \zeta\in\overline{\varDelta}\}\quad\text{and}\quad\varPhi(\zeta^*+\,\varepsilon\varDelta)\quad\text{is}\quad\text{all}\quad (\zeta^*+\varepsilon\varDelta)$ set of the form $\{(\alpha_0, ..., \alpha_{n-1}): |\alpha_0 - \beta_0| < \varepsilon_0, ..., |\alpha_{n-1} - \beta_{n-1}| < \varepsilon_{n-1}\}$ for some $\beta^* \in \mathbb{C}^n$ and $\varepsilon^* \in [0, \infty)^n$. So it suffices to prove that if $\Delta_0, \ldots, \Delta_{n-1}$ are open discs in C then the set $D \equiv \{(\lambda, ..., \lambda) \in C^n : \lambda \in \overline{A}\}$ intersects the boundary of $C \equiv A_0 \times A_0$... $\times A_{n-1}$ in at most one point whenever $D \cap C = \emptyset$. Proceed by contradiction: Assume $(\lambda_k, ..., \lambda_k) \in D \cap \partial C$ (k = 1, 2) and $D \cap C = \emptyset$ and set $\lambda \equiv \frac{1}{2}(\lambda_1 + \lambda_2)$, $\mu \equiv \frac{1}{2}(\lambda_1 - \lambda_2)$ and $F_j \equiv \overline{A_0} \times ... \times \overline{A_{j-1}} \times (\partial A_j) \times \overline{A_{j+1}} \times ... \times \overline{A_{h-1}}$ (j = 0, ..., n-1). Since C and D are convex, we have $(\lambda,...,\lambda)+[-1,1]$ $(\mu,...,\mu)$ $\subset \partial C=F_0\cup...\cup F_{n-1}$. Therefore for some index j, the intersection $F_j \cap [(\lambda, ..., \lambda) + [-1, 1] \cdot (\mu, ..., \mu)]$ contains an inner point of the segment $(\lambda, ..., \lambda) + [-1, 1] \cdot (\mu, ..., \mu)$. That is, for some j and for some $\lambda' \in C$ and $\mu' \in C \setminus \{0\}$ we have $(\lambda', ..., \lambda') + (-1, 1) \cdot (\mu', ..., \lambda')$..., μ') $\subset F_i$ But this would mean that $\lambda' + \tau \mu' \in \partial A_i$, $\forall \tau \in (-1,1)$ which is impossible. Thus (4) makes sense.

To prove the second statement, observe that, by definitions of P_n and δ_n we have $\delta_n((\zeta_0,\ldots,\zeta_{n-1}),(\eta,M_0^{-1}\eta,\ldots,M_{n-2}^{-1}\ldots M_0^{-1}\eta)) \leqslant \delta_n((\zeta_0,\ldots,\zeta_{n-1}),(\eta',M_0^{-1}\eta',\ldots,\ldots,M_{n-2}^{-1}\ldots M_0^{-1}\eta')) \ \forall \eta' \in \overline{A}$. Thus for any $\eta' \in \overline{A}$, $\delta_n((\zeta_1,\ldots,\zeta_{n-1},\zeta_0),(M_0^{-1}\eta,\ldots,M_{n-2}^{-1}\ldots M_0^{-1}\eta,\eta)) \leqslant \delta_n((\zeta_1,\ldots,\zeta_{n-1},\zeta_0),(M_0^{-1}\eta',\ldots,M_{n-2}^{-1}\ldots M_0\eta',\eta'))$ or which is the same, $\delta_n((\zeta_1,\ldots,\zeta_{n-1},\zeta_0),((M_0^{-1}),M_1^{-1}(M_0^{-1}\eta),\ldots,M_{n-2}^{-1}\ldots M_1^{-1}(M_0^{-1}\eta),M_{n-1}^{-1}\ldots M_1^{-1}(M_0^{-1}\eta))) \leqslant ([\operatorname{same} \ \operatorname{expression} \ \operatorname{with} \ \eta' \ \operatorname{in} \ \operatorname{place} \ \operatorname{of} \ \eta].$ Since $\overline{A} = \{M_0^{-1}\eta': \eta' \in \overline{A}\}$, this means that the function $\lambda \mapsto \delta_n((\zeta_1,\ldots,\zeta_{n-1},\zeta_0),(\lambda,M_1^{-1}\lambda,\ldots,M_{n-1}^{-1}\ldots M_1^{-1}\lambda))$ attains its minimum over \overline{A} at the point $M_0^{-1}\eta$. \square

LEMMA 6. – The mapping P_n : $(\operatorname{Aut} \overline{\Delta})^{n-1} \times \overline{\Delta}^n \to \overline{\Delta}$ is continuous.

PROOF. – Since P_n is a map of a locally compact space into a compact space, it suffices to see that its graph is closed. To do this, examine first the function: $(\operatorname{Aut} \overline{A})^{n-1} \times \overline{A}^n \to [0, \infty)$ defined by $(N^*, \zeta^*) \equiv \delta_n(\zeta^*, \{(\eta, N_0\eta, ..., N_{n-2}\eta) : \eta \in \overline{A}\})$. Clearly, $\varphi = \inf \{\varphi : \eta \in \overline{A}\}$ where $\varphi_n \equiv [(N^*, \zeta^*) \mapsto \delta_n(\zeta^*, (\eta, N_0\eta, ..., N_{n-2}\eta))]$. It follows from the triangle inequality that all φ_n (with $\eta \in \overline{A}$) satisfy the Lipschitz condition

$$|\varphi_{\eta}(N^*, \zeta^*) - \varphi_{\eta}(N'^*, \zeta'^*)| \leq \sum_{j=0}^{n-1} |\zeta_j - \zeta_j'| + \sum_{j=0}^{n-2} \sup \{|N_j \xi - N_j' \xi| : \zeta \in \overline{\Delta}\}$$

 $(\forall N^*, N'^* \in (\operatorname{Aut} \overline{\Delta})^{n-1}, \forall \zeta^*, \zeta'^* \in \overline{\Delta}^n)$. But then also their infimum satisfies the same Lipschitz condition. Thus φ is continuous. Now if $(N^{(i)*}, \zeta^{(i)*}) \to (N^*, \zeta^*)$ and $P_n(N^{(i)*}, \zeta^{(i)*}) \to \eta$ then

$$\begin{split} (N^{(i)*}, \zeta^{(i)*}) &= \delta_n \left(\zeta^{(i)*}, \, \left(P_n(N^{(i)*}, \, \zeta^{(i)*}), \, N_0^{(i)} P_n(N^{(i)*}, \, \zeta^{(i)*}), \, \dots, \, N_{n-2}^{(i)} P_n(N^{(i)*}, \, \zeta^{(i)*}) \right) \right) \\ & \downarrow \\ (N^*, \, \zeta^*) &= \inf \left\{ \delta_n \left(\zeta^*, \, (\eta', \, N_0 \eta', \, \dots, \, N_{n-2} \eta') \right) \colon \eta' \in \varDelta \right\} \\ &= \delta_n \left(\zeta^*, \, (\eta, \, N_0 \eta, \, \dots, \, N_{n-2} \eta) \right) \, . \end{split}$$

But this latter inequality is the definition of the relation $P_n(N^*, \zeta^*) = \eta$.

Theorem 1. – Let Ω denote any topological space. Then the following statements are equivalent

- a) All the automorphisms of $\overline{B}(C_b(\Omega))$ of the form $f \mapsto [x \mapsto M(x)f(x)]$ where M is any continuous $\Omega \to \operatorname{Aut} \overline{\Delta}$ mapping have fixed points.
- b) All the automorphisms of $\overline{B}(C_b(\Omega))$ of the form $f \mapsto [x \mapsto M(x)f(Tx)]$ where $M(\cdot)$ is a continuous $\Omega \to \operatorname{Aut} \overline{\Delta}$ mapping and T is a periodic automorphism (4) of Ω have a fixed point.
 - c) Ω is an F-space.

PROOF. -b) $\Rightarrow a$) is evident and a) $\Rightarrow c$) is established by the proof of Proposition 1. To prove c) $\Rightarrow b$), suppose that Ω is an F-space and let M and T be a continuous $\Omega \to \operatorname{Aut} \overline{\Delta}$ mapping and a topological automorphism of Ω , respectively. Define F by $F(f) \equiv [x \mapsto M(x) f(Tx)]$ (for all $f \in \overline{B}(C_b(\Omega))$). (Clearly $F \in \operatorname{Aut} \overline{B}(C_b(\Omega))$). Furthermore assume $T^n = \operatorname{id}_{\overline{\Delta}}$, and let R denote a continuous section defined on $(\operatorname{Aut} \overline{\Delta}) \to (\operatorname{id}_{\overline{\Delta}})$ of the multifunction $M \mapsto \{\zeta \colon M\zeta = \zeta\}$ (its existence is seen in Lemma 2). Consider the set $G \equiv \{x \in \Omega \colon M(x) M(Tx) \dots M(T^{n-1}x) \neq \operatorname{id}_{\overline{\Delta}}\}$ and define the function $g \colon G \to \overline{\Delta}$ by $g(x) \equiv R(M(x) \dots M(T^{n-1}x))$. Since G is the inverse image of the open subset $(\operatorname{Aut} \overline{\Delta}) \to (\operatorname{id}_{\overline{\Delta}})$ of the metrizable space $\operatorname{Aut}_{\overline{\Delta}}$ by the continuous mapping $x \mapsto M(x) \dots M(T^{n-1}x)$ the set G is a cozero subset of Ω (namely we have is particular $G = \{x \in \Omega \colon |k_{M(x) \dots M(T^{n-1}x)}| + |u_{M(x) \dots M(T^{n-2}x)}| \neq 0\}$). On the other hand, G is also T-invariant because in case of $M(x) \dots M(T^{n-1}x) = \operatorname{id}_{\overline{\Delta}}$ we have $M(Tx) \dots M(T^{n-1}x) \cdot M(x) = \operatorname{id}_{\overline{\Delta}}$ and here the last term can be written as $M(x) = M(T^nx) = M(T^{n-1}(Tx))$. About the function g we can state the following:

(5)
$$g(x) = M(x)g(Tx) \quad \forall x \in G.$$

⁽⁴⁾ The (topological) automorphisms of a topological space are its homeomorphisms onto itself.

Indeed, if $x \in G$, we have $g(Tx) = R(M(Tx) \dots M(T^{n-1}(Tx))) = R(M(Tx \dots M \cdot (T^{n-1}x)M(x))) = R(M(x)^{-1}[M(x) \dots M(T^{n-1}x)]M(x)) = \text{by Lemma 4 } c) = M(x)^{-1} \cdot R(M(x) \dots M(T^{n-1}x)) = M(x)^{-1}g(x).$

Now let h be a continuous extension of g from G to Ω . The existence of such a function h is established by [3; 14.25. Theorem (6)] since Ω is assumed to be an F-space. Since |g| < 1, we may assume without any loss of generality that also |h| = 1. Thus let $h \in \overline{B}(C_b(\Omega))$ with h|G = g. Define the function $f: \Omega \to \overline{A}$ (which will be our candidate to be a fixed point of F) by

$$f(x) \equiv P_n \Big((M(x)^{-1}, M(Tx)^{-1}M(x)^{-1}, \dots, M(T^{n-2}x)^{-1} \dots M(x)^{-1}, \\ (h(x), h(Tx), \dots, h(T^{n-1}x)) \Big).$$

We check now that for any $x \in \Omega$, f(x) = M(x)f(Tx).

First let $x \in G$. Then h(x) = g(x). But we have $g = M \cdot (g \circ T)$ which implies

$$g(Tx) = M(x)^{-1}g(x), g(T^2x) = M(Tx)^{-1}g(Tx) = M(Tx)^{-1}M(x)^{-1}g(x), ..., g(T^{n-1}x) = M(T^{n-2}x)^{-1}...M(x)^{-1}g(x)$$

Thus

(6)
$$f(x) = P_n((M(x)^{-1}, ..., M(T^{n-2}x)^{-1} ... M(x)^{-1}),$$
$$(g(x), M(x)^{-1}g(x), ..., M(T^{n-2}x)^{-1} ... M(x)^{-1}g(x))).$$

A direct application of Definition 1 to the right hand side of (6) yields that f(x) = g(x). It follows then from (5) that f(x) = g(x) = M(x)g(Tx) = applying (6) to $Tx \in G$ in place of x = M(x)f(Tx).

Then let $x \in \Omega \setminus G$. Now $M(x) \dots M(T^{n-1}x) = \mathrm{id}_{\overline{A}}$. Thus

$$\begin{split} f(Tx) &= P_n \big(\big(M(Tx)^{-1}, \ldots, M(T^{n-1}x)^{-1} \ldots M(Tx)^{-1} \big), \, \big(h(Tx), \ldots, h(T^nx) \big) \big) = \\ &= P_n \big(\big(M(Tx)^{-1}, \ldots, M(T^{n-1}x)^{-1} \ldots M(Tx)^{-1} \big), \, \big(h(Tx), \ldots, h(T^{n-1}x), \, h(x) \big) \big) \;. \end{split}$$

Therefore, by substituting $M_j \equiv M(T^j x)$, $\zeta_j \equiv h(T^j x)$ (j = 0, ..., n-1) and $\eta \equiv f(x)$ in Lemma 8, we can verify $f(Tx) = M(x)^{-1} f(x)$.

The continuity of f is an immediate consequence of Lemma 6.

2. – On Aut $\overline{B}(C(\Omega))$ in case of compact F-spaces Ω .

It is well-known [11] that for a compact topological space Ω , the automorphisms of $D \equiv \overline{B}(C(\Omega))$ are exactly those transformations $F \colon D \to C(\Omega)$ which can be represented in the form

(7)
$$F(f) = [\Omega \in x \mapsto M_{\mathbb{R}}(x)f(T_{\mathbb{R}}X)] \quad (f \in D)$$

where T_E and M_F are a homeomorphism of Ω onto itself and a continuous $\Omega \to \operatorname{Aut} \overline{\Delta}$ mapping, respectively. Both T_F^3 and M_F are uniquely determined by F. In the sequel we reserve the notations T_F , M_F to indicate the topological automorphism of Ω and the $\Omega \to \operatorname{Aut} \overline{\Delta}$ mapping, defined implicitly by (7) whenever $F \in \operatorname{Aut} \overline{B}(C(\Omega))$.

Since for any F-space Ω there exists a completely regular F-space $\bar{\Omega}$ such that $C_b(\Omega) \simeq C_b(\bar{\Omega})$ (i.e. $C_b(\Omega)$ is isometrically isomorphic with $C_b(\bar{\Omega})$; cf. [3; 3.9. Theorem]) and since the Stone-Čech compactification of any (completely regular) F-space is an F-space (cf. [3; 14.25. Theorem (1)]), it suffices to restrict our attention to compact F-spaces Ω (by Proposition 1) when looking for those space Ω that admit elements with fixed points for Aut $\bar{B}(C(\Omega))$. Fortunately, in this case the description provided by (7) yields a precise controll of Aut $\bar{B}(C(\Omega))$. However, the complete characterization of those compact space Ω for which any $F \in \operatorname{Aut} \bar{B}(C(\Omega))$ has some fixed point seems to be extremely difficult.

DEFINITION 2. – If T is a mapping of some set Ω into itself and $x \in \Omega$ then we shall call the number inf $\{n \in \mathbb{N}: T^n x = x\}$ the rank of T at the point x and we shall denote it by $r_x(x)$. T will be said pointwise periodic if $r_x(x) < \infty$ (i.e. $\{n \in \mathbb{N}: T^n x = x\} \neq \emptyset$) for all $x \in \Omega$.

LEMMA 7. – Let Ω be a Baire space and T a pointwise periodic automorphism of Ω . For $n=1,2,\ldots$ set $\Omega_n\equiv\{x\in\Omega\colon r:(x)< n\}$ and let $G\equiv\bigcup_{n=1}^\infty(\Omega_n\backslash\Omega_{n-1})^n$ where $\Omega_0\equiv\emptyset$ (° denoting the interior). Then G is an open dense T-invariant subset of Ω . Furthermore we have

$$\overline{\lim}_{y \to x} r_{\scriptscriptstyle T}(y) = \overline{\lim}_{{\scriptscriptstyle G} \ni y o x} r_{\scriptscriptstyle T}(y) \hspace{0.5cm} orall x \in \Omega \; .$$

PROOF. – If $(x_j\colon j\in J)$ is a net such that $x_j\to x$ (in Ω) and $T^mx_j=x_j, \ \forall j\in J$ then obviously $T^mx=x$. Thus the function $r_T\colon \Omega\to \mathbf{R}$ is lower semicontinuous. Therefore $\Omega_1,\ \Omega_2,\ldots$ are all closed. Since the pointwise periodicity of T is equivalent to $\bigcup_{n=1}^\infty \Omega_n=\Omega$, this means that the set $G'=\bigcup_{n=1}^\infty \Omega_n^0$ is dense in Ω . Consider now any open $U\subset\Omega$. By the density of G' in Ω , we can find n_0 with $\Omega_{n_0}^0\cap U\neq 0$. Since $r_T(x)< n_0,\ \forall x\in\Omega_{n_0}$, there exists $y_0\in\Omega_{n_0}^0\cap U$ such that $r_T(y_0)=\max\{r_T(x)\colon x\in\Omega_{n_0}^0\cap U\}$. But $\{x\in\Omega_{n_0}\cap U\colon r_T(x)=r_T(y_0)\}=U\cap\Omega_{n_0}^0\cap \{x\in\Omega\colon r_T(x)>r_T(y_0)-1\}$ is an open neighbourhood of the point y_0 . Therefore the set $G''\equiv\{y\in\Omega\colon\exists U$ neighbourhood of $y\ \forall x\in U\ r_T(x)=r_T(y)\}$ is dense in Ω . But $G''=\bigcup_{n=1}^\infty\{y\in\Omega\colon\exists U$ neighbourhood of $y\ \forall x\in U\ r_T(x)=n\}=\bigcup_{n=1}^\infty\{x\in\Omega\colon r_T(x)=n\}^0=\bigcup_{n=1}^\infty\{\Omega_n\setminus\Omega_{n-1})^0$. The T-invariance of G is immediate.

To prove the second statement, observe that by the lower semicontinuity of $r_x(\cdot)$ we have $\lim_{G \in \mathbb{Z} \to y} r_x(z) \geqslant r_x(y) \ \forall y \in \Omega$. Thus

$$\varlimsup_{G\ni y\to x} r_{\scriptscriptstyle T}(y) \leq \varlimsup_{y\to x} r_{\scriptscriptstyle T}(y) \leq \varlimsup_{y\to x} \ \varlimsup_{G\ni z\to y} r_{\scriptscriptstyle T}(z) = \lim_{G\ni z\to x} r_{\scriptscriptstyle T}(z) \;. \quad \ \, \square$$

LEMMA 8. – Let Ω be a compact space, T an automorphism of Ω , $f_1, f_2, \ldots \in C(\Omega)$ and let A denote the closed C^* -subalgebra of $C(\Omega)$ (with the usual complex-conjugate involution) generated by the functions 1_{Ω} and $f_n \circ T^m$ $(n \in \mathbb{N}, m \in \mathbb{Z})$. Then there are a compact metric space K, a surjective continuous map $\phi \colon \Omega \to K$ and a homeomorphism \widetilde{T} of K onto itself such that $A = C(K) \circ \phi$ (5) and $\phi \circ T = \widetilde{T} \circ \phi$.

PROOF. – The commutative Gel'fand-Neumark theorem establishes the existence of a compact Hausdorff space K and an isometric *-isomorphism ψ between C(K) and A. Fix such a space K and a mapping ψ . Since A is separable, C(K) is also separable and therefore K is metrizable (cf. [9]). Let us evaluate $\psi^* \delta_x$ for an arbitrary $x \in \Omega$ (ψ^* and δ_x denoting respectively the adjoint map of ψ and the Dirac- δ associated to the point x): $\psi^* \delta_x(\tilde{f}) = \langle \tilde{f}, \psi^* \delta_x \rangle = \langle \psi \tilde{f}, \delta_x \rangle \ \forall \tilde{f} \in C(K)$. Thus $\psi^* \delta_x$ is a non-vanishing multiplicative linear functional over C(K). Hence there is a unique $\tilde{x} \in K$ such that $\psi^* \delta_x = \delta_x$. Let $\phi \colon \Omega \to K$ be constant map of Ω whose value is the point $\tilde{x} \in K$ that satisfies $\psi^* \delta_x = \delta_x$. Now $(\psi \tilde{f})(x) = \langle \psi \tilde{f}, \delta_x \rangle = \langle \tilde{f}, \psi^* \delta_x \rangle = \langle \tilde{f}, \delta_{\phi(x)} \rangle = \tilde{f}(\phi(x)) \ \forall x \in \Omega$ i.e. $\psi \tilde{f} = \tilde{f} \circ \phi \ \forall \tilde{f} \in C(K)$. Thus $A = \psi C(K) = C(K) \circ \phi$. Furthermore we have $\|\tilde{f}\| = \|\psi \tilde{f}\| = \|\tilde{f} \circ \phi\| \ \forall \tilde{f} \in C(K)$, and this implies also that range $(\phi) = K$.

To complete the argument, consider the transformation $Q: C(K) \to C(K)$ defined by $Q\tilde{f} \equiv \psi^{-1}[(\psi\tilde{f})\circ T]$. Observe that Q is an order preserving surjective isometry of C(K). So there is a unique homeomorphism $\tilde{T}: K \to K$ with $Q(\tilde{f}) = \tilde{f}\circ \tilde{T} \ \forall \tilde{f} \in C(K)$ (see [9]). Defining \tilde{T} in this way, we have $\tilde{f}\circ \tilde{T}\circ \phi = (Q\tilde{f})\circ \phi = (\psi^{-1}[(\psi\tilde{f})\circ T])\circ \phi = [\psi^{-1}(\tilde{f}\circ \phi\circ T)]\circ \phi = \psi[\psi^{-1}(\tilde{f}\circ \phi\circ T)] = \tilde{f}\circ \phi\circ T \ \forall \tilde{f}\in C(K)$. Therefore $\tilde{T}\circ \phi = \phi\circ T$. \square

Corollary 1. - If
$$f_1 = f_2 = \dots = f(\in C(\Omega))$$
 then

$$\inf \left\{ n \in \pmb{N} \colon f(T^k x) = f(T^{\mathrm{mod}_n k} x) \quad \forall k \in \pmb{Z} \right\} = r_{\tilde{x}} \big(\phi(x) \big) \; .$$

PROOF. – Choose a function $\tilde{f} \in C(K)$ such that $f = \tilde{f} \circ \phi$ and set $r^*(x) \equiv \inf \{ n \in \mathbb{N} : \forall k \in \mathbb{Z}, f(T^k x) = f(T^{\text{mod}_n k} x) \}$ (for $x \in \Omega$), $\tilde{r}^*(\tilde{x}) \equiv \inf \{ n \in \mathbb{N} : \forall k \in \mathbb{Z}, \tilde{f}(\tilde{T}^k \tilde{x}) = \tilde{f}(\tilde{T}^{\text{mod}_n k} \tilde{x}) \}$ (for $\tilde{x} \in K$).

First we see that $r^*(x) = \tilde{r}^*(\phi(x)) \ \forall x \in \Omega$. Indeed, $r^*(x) < l$ means that for some 0 < n < l, $\forall k \in \mathbb{Z}$ $f(T^{\text{mod}_n k} x) = f(T^k x)$, i.e. $\exists \ 0 < n < l \ \forall k \in \mathbb{Z}$ $\tilde{f}(\tilde{T}^{\text{mod}_n k} \phi(x)) = \tilde{f}(\phi(T^{\text{mod}_n k} x)) = \tilde{f}(\phi(T^k x)) = \tilde{f}(\tilde{T}^k \phi(x))$, which can be interpreted as $\tilde{r}^*(\phi(x)) < l$, for any $l \in \mathbb{N}$.

⁽⁵⁾ I.e. $\forall f \in C(\Omega)$ $(f \in A \Leftrightarrow \exists f \in C(K))$ $f = f \circ \phi$.

We prove now that $\tilde{r}^* = r_x$. Since $A = C(K) \circ \phi$, for each pair $x, y \in \Omega$ with $\phi(x) \neq \phi(y)$ there exists $g \in A$ such that $g(x) \neq g(y)$. By definition of A and by the Stone-Weierstrass theorem, there exists $k \in \mathbb{Z}$ such that $f(T^k x) \neq f(T^k y)$. Thus $\phi(x) = \phi(y)$ iff $\forall k \in \mathbb{Z}$ $f(T^k x) = f(T^k y)$. Therefore if $\tilde{x} \in K$ and $x \in \phi^{-1}(\{x\})$ then $\tilde{T}^n \tilde{x} = \tilde{x}$ iff $\tilde{T}^n \phi(x) = \phi(x)$ iff $\phi(T^n x) = \phi(x)$ iff $\forall k \in \mathbb{Z}$ $f(T^{n+k}x) = f(T^k x)$ (these equivalences hold for any $n \in \mathbb{N}$). Thus for all $n \in \mathbb{N}$, the conditions $\tilde{T}^n \tilde{x} = \tilde{x}$ and $\forall k \in \mathbb{Z}$ $f(T^k x) = f(T^{mod_n k}x)$ are equivalent. This implies that $f(x) \in \mathbb{N}$: $\tilde{T}^n \tilde{x} = \tilde{x} = \tilde{x}$ inf $f(x) \in \mathbb{N}$: $f(\tilde{T}^{mod_n k}x) = f(\tilde{T}^k \tilde{x})$ $\forall k \in \mathbb{Z}$.

LEMMA 9. – Let Ω be a compact F-space, T a pointwise periodic automorphism of Ω . Then for all $f \in C(\Omega)$, there exists $n_0 \in N$ such that $f = f \circ T^{n_0}$.

PROOF. - Set again $f_1 \equiv f_2 \equiv ... \equiv f$ and let A, K, ϕ and \overline{I} be as in Lemma 8. Suppose the contrary of the statement of Lemma 9, i.e. that, in view of Corollary 1, $\sup \{r_{\tilde{\pi}}(\tilde{x}): \tilde{x} \in K\} = \infty$. Since clearly $r_{\tilde{\pi}}(\phi(x)) \leqslant r_{\tilde{\pi}}(x), \forall x \in \Omega$, the homeomorphism $\tilde{T}\colon K \longleftrightarrow K$ is also pointwise periodic. Hence we can apply Lemma 7 to K and \tilde{T} . This shows, in view of the lower semicontinuity of the function $r_{\tilde{\pi}}$, that there is a sequence $\tilde{x}_1, \tilde{x}_2, \ldots K$ with $r_{\tilde{x}}(\tilde{x}_n) \uparrow \infty$ $(n \to \infty)$ such that \tilde{x}_n is an inner point of $\{\widetilde{x}\in K\colon r_{\widetilde{x}}(\widetilde{x})=r_{\widetilde{x}}(\widetilde{x}_n)\} \text{ for all } n. \text{ For any } n\in N, \text{ let } V_n^0,\ldots,V_n^{r_{\widetilde{x}}(x_n)-1} \ \{\widetilde{x}\in K\colon r_{\widetilde{x}}(\widetilde{x})=r_{\widetilde{x}}(\widetilde{x})\}$ $=r_{x}(x_{n})\}$ be pairwise disjoint neighbourhoods of the points $\tilde{x}_{n}, \tilde{T}\tilde{x}_{n}, ..., \tilde{T}^{r_{x}(x_{n})-1}\tilde{x}_{n}$ respectively. (Remark: $\{\tilde{x} \in K : r_{\tilde{x}}(\tilde{x}) = r_{\tilde{x}}(\tilde{x}_n)\} = \{\tilde{x} \in K : r_{\tilde{x}}(\tilde{x}) = r_{\tilde{x}}(\tilde{T}^k \tilde{x}_n)\}, \forall k \in \mathbf{Z}.$) Set $U_n^k \equiv \bigcap_{i=1}^n (\tilde{T}^{k-1}V_n^i)$ (for $n \in \mathbb{N}, k \in \mathbb{Z}$). Now the family $\{U_n^k : n \in \mathbb{N}, 0 \leqslant k < r_{\tilde{I}}(\tilde{x}_n)\}$ is disjoint and $U_k^n = \tilde{T}^k U_n^0$ (for all n and $0 \leqslant k < r_{\tilde{\pi}}(\tilde{x}_n)$). Let us fix an irrational number δ and a sequence of integers l_1, l_2, \ldots with $l_n/r_{\tilde{\pi}}(\tilde{x}_n) \to \delta$ $(n \to \infty)$. Define $_{\infty} r_{\tilde{T}}(x_n) - 1$ the functions \widetilde{g} , \widetilde{h} on $\bigcup_{n=1}^{\infty}\bigcup_{k=0}^{\infty}U_{n}^{k}$ by $\widetilde{g}(\widetilde{x})\equiv\exp\left(2\pi ikl_{n}/r_{\widetilde{x}}(\widetilde{x}_{n})\right)$ and $\widetilde{h}(\widetilde{x})\equiv\exp\left(2\pi il_{n}/r_{\widetilde{x}}(\widetilde{x}_{n})\right)$ for all $\tilde{x} \in U_n^k$ $(n \in \mathbb{N}, 0 \leqslant k < r_{\tilde{x}}(\tilde{x}_n))$. Set $g_0 \equiv \tilde{g} \circ \phi$ and $h_0 \equiv \tilde{h} \circ \phi$ with domain $G \equiv r_0(r_0) = 1$ $\equiv \phi^{-1} \Big(\bigcup_{n=1}^{\infty} \bigcup_{k=0}^{r_n^-(x_n)-1} U_n^k \Big).$ Then we have $\widetilde{g}(\widetilde{T}\widetilde{x}) = \widetilde{h}(\widetilde{x}) \cdot \widetilde{g}(\widetilde{x}), \, \forall x. \,\,\, \text{Therefore} \,\, g_0 \circ T = h_0 \cdot g_0.$ Since the set G is the inverse image by a continuous mapping of an open sebset of a metric space, it is a cozero set. Thus we can find continuous extensions g, h of the functions g_0 , h_0 to the whole space Ω , respectively. Since $g_0(Tx) = h_0(x)g_0(x) \ \forall x \in G$, we have $g(Tx) = h(x)g(x) \ \forall x \in \overline{G}(!)$. In particular, if $x_n \in \phi^{-1}(\{\widetilde{x}_n\})$ (n = 1, 2, ...) and $x \in \Omega$ is a cluster point of the sequence $(x_1, x_2, ...)$ then $1 = \lim_{n \to \infty} g(x_n) = g(x) = 0$ $=g(T^{r_T(x)}x)=h(T^{r_T(x)-1}x)g(T^{r_T(x)-1}x)=\ldots=[h(T^{r_T(x)-1}x)\ldots h(x)]\cdot g(x).$ Similarly,

$$egin{aligned} g(T^{r_T(x)}x_n) &= [h(T^{r_T(x)-1}x_n) \ \dots \ h(x_n)] g(x_n) = h(T^{r_T(x)-1}x_n) \ \dots \ h(x_n) = \ &= \exp \left[2\pi i r : (x) \ l_n/r : (x_n)
ight] \quad orall n \in \mathbb{N} \,. \end{aligned}$$

But then $1 = g(x) = g(r_T(x)x) = \lim_{n \to \infty} g(T_T(x)x_n) = \exp\left[2\pi i r_T(x) \cdot \delta\right] \neq 1$, a contradiction. \square

What we have shown in Lemma 9 means that the automorphism $f \mapsto f \circ T$ of $C(\Omega)$ is pointwise periodic whenever the underlying automorphism T of the compact F-space Ω is pointwise periodic. However, the following simple Banach space principle holds:

LEMMA 10. – Let E be a Banach space, les T denote a linear pointwise periodic E-isometry. Then T is periodic.

PROOF. – Assume T is not periodic. Now $\forall n \in \mathbb{N}$ $Tf \in E$, $T^n f \neq f$. Therefore (and by linearity of T) we can define a sequence $f_1, f_2, \ldots \in E$ in the following manner. We choose f_1 so that $T^1 f_1 \neq f_1$. If f_1, \ldots, f_j are already defined then we set $\delta_j \equiv \dim \{T^n f_j \colon n \in \mathbb{N}\}$ and $\varepsilon_j \equiv \min \{\|T^n f_j - f_j\| \colon T^n f_j \neq f_j, n \in \mathbb{N}\}$ and then we choose f_{j+1} to satisfy the relations $T^{j+1} f_{j+1} \neq f_{j+1}$ and diam $\{T^n f_{j+1} \colon n \in \mathbb{N}\} < \varepsilon_j/3$. Thereafter consider the vector $f \equiv \sum_{j=1}^{\infty} f_j$. Let $n(\in \mathbb{N})$ be arbitrarily fixed and set $n_0 \equiv \min \{j \colon T^n f_j \neq f_j\}$. Then $T^n f_j - f_j = \sum_{j \geq n_0} (T^n f_j - f_j)$. Thus $\|T^n f_j - f_j\| > \|T^n f_{n_0} - f_{n_0}\| - \sum_{j \geq n_0} \|T^n f_j - f_j\| > \delta_{n_0} - \sum_{j \geq n_0} \delta_j$. But we have $\delta_j < \frac{1}{3} \varepsilon_{j-1} < \frac{1}{3} \delta_{j-1} \ \forall j \in \mathbb{N}$ whence $\sum_{j \geq n_0} \delta_j < \delta_{nr+1} \sum_{k=0}^{\infty} 3^{-k} = \frac{3}{2} \delta_{n_0+1} < \frac{1}{2} S_{n_0}$. Thus $\|T^n f_j - f\| > \varepsilon_{n_0}/2 > 0 \ \forall n \in \mathbb{N}$, i.e. T is not pointwise periodic. \Box

THEOREM 3. – Let Ω be a compact F-space and T a pointwise periodic automorphism of Ω . Then T is necessarily periodic.

PROOF. – Lemma 9 and Lemma 10 directly yield that we can find n such that $f \circ T^n = f$, $\forall f \in C(\Omega)$. Hence necessarily $T^n = \operatorname{id}_{\Omega}$ (since $T^n x \neq x$ would imply $f T^n \neq f$ whenever $f(x) = 0 \neq f(T^n x)$, and $C(\Omega)$ separates the points of Ω by its compactness). Hence we obtain the following refinement of Theorem 1:

Theorem 1'. – The following two conditions are equivalent for a compact space Ω :

a) Every $F\in {\rm Aut}\; \bar B\bigl(C(\Omega)\bigr)$ with pointwise periodic T_F has fixed point, b) Ω is an F-space.

3. - The case of M-lattices with predual.

Having established Theorem 1', it is natural to ask whether the F property of a compact space Ω ensures the existence of fixed points for every $F \in \operatorname{Aut} \overline{B}(C(\Omega))$. The question can be stated equivalently in the following way: Consider any commutative C^* -algebra with unit whose maximal ideal space is an F-space. Does any biholomorphic automorphism of the unit ball have a fixed point? In the latter setting, we can expect a negative answer. In fact, as we shall see, the

space $E \equiv L^{\infty}(0,1)$ admits an $F \in \operatorname{Aut} \overline{B}(E)$ of the form $F: f \mapsto [x \mapsto M(x)f(Tx)]$ with an ergodic transformation T of the interval (0,1) and a Borel measurable function $M: (0,1) \to \operatorname{Aut} \overline{A}$ without fixed point. (The maximal ideal space of $L^{\infty}(0,1)$ is hyperstonian (see [10]) hence obviously an F-space).

Throughout this Chapter, let M_1 , M_2 denote the transformations

$$[C \in \zeta \mapsto -\zeta]$$
 and $\left[C \ni \zeta \mapsto \frac{\zeta + \operatorname{th}(1)}{1 + \zeta \operatorname{th}(1)}\right]$,

respectively. (Note: $M_1|_{\overline{A}}$, $M_2|_{\overline{A}} \in \operatorname{Aut} \overline{A}$.) In view of Lemma 3, the fixed point preserving Lie group homomorphism $M_1^{(\cdot)}$: $\mathbf{R} \to \operatorname{Aut} \overline{A}$ defined by $M_2^1 = M_2$, is given by

$$M_2^t: \zeta \mapsto \frac{\zeta + \operatorname{th}(t)}{1 + \zeta \operatorname{th}(t)} \qquad (t \in \mathbf{R}).$$

Let λ be the normed Lebesgue measure on the unit circle $\partial \Delta$ of C (i.e. $\lambda \equiv 1/2\pi \ \mathrm{length}|_{\partial \Delta}$). Fix an irrational number $\delta \in (0,1)$ and denote by T the clockwise rotation of $\partial \Delta$ by the angle $2\pi\delta$, i.e. $T\colon x\mapsto \exp{(-2\pi i\delta)\cdot x}$. The space $L^{\infty}(\partial \Delta,\lambda)$ is considered, as usual as $\{\tilde{\psi}\colon \varphi \text{ is a bounded Borel } \partial \Delta \to C \text{ function}\}$ where $\tilde{\varphi} \equiv \{\psi(\colon \partial \Delta \to C)\colon \lambda\{x\in \partial \Delta\colon \psi(x)\neq \varphi(x)\}=0\}$. Finally, let $M\colon \partial \Delta\to \mathrm{Aut}\ \bar{C}$ be the function

$$\exp \left(2\pi i au
ight) \mapsto \left\{ egin{array}{ll} M_1 & ext{if} & 0 \! \leqslant \! au \! < \! \delta \ \\ M_2 & ext{if} & \delta \! \leqslant \! au \! < \! 1' \end{array}
ight.$$

and define $F : \overline{B}(L^{\infty}(\partial \Delta, \lambda)) \to L^{\infty}(\partial \Delta, \lambda)$ by $F(\tilde{\varphi}) \equiv [x \mapsto M(x)\varphi(Tx)]$ for all Borel measurable $\varphi : \partial \Delta \to \overline{\Delta}$. Clearly, $F \in \operatorname{Aut} \overline{B}(L^{\infty}(\partial \Delta, \lambda))$.

THEOREM 4. – The transformation F (defined above) has no fixed point. The proof is divided into eight steps

1) Let G be the subgroup of Aut \bar{C} generated by M_1 and M_2 . Since

(8)
$$M_2 M_1 = M_1 M_2^{-1} \quad (\text{and } M_1 M_2 = M_2^{-1} M_1),$$

we have $G = \{M_1^r M_2^t : s = 0, 1; t \in \mathbb{Z}\}$. This representation of G is unique in the sense that if $s, s' \in \{0, 1\}$ and $t, t' \in \mathbb{Z}$ with $M_1^s M_2^t = M_1^{s'} M_2^{t'}$ then s = s' and t = t' $\left(\operatorname{since id}_{\mathbf{C}} = M_1^{s-s'} M_2^{t'-t} = \left[\zeta \mapsto (-1)^{s-s'} \frac{\zeta + \operatorname{th}(t'-t)}{1 + \zeta \operatorname{th}(t'-t)}\right]\right)$.

2) In the following we shall argue by contradiction assuming that Theorem 4 does not hold. Denote by f_0 a fixed point of F and let φ_0 : $\partial \varDelta \to \overline{\varDelta}$ be a representant of f_0 (thus $f_0 = \tilde{\varphi}_0$). The symbol \forall_{λ} will indicate « λ -almost everywhere ». Now

 $\varphi_0(Tx) = M(x)^{-1}\varphi_0(x) \ \forall_{\lambda} x \in \partial \Delta \ \forall n \in \mathbb{Q}, \text{ and therefore}$

(9)
$$\varphi_0(T^n x) = M(T^{n-1}x)^{-1} \dots M(x)^{-1} \varphi_0(x) \quad \forall_1 x \in \partial A \ \forall n \in \mathbb{N}.$$

Thus range $(\varphi_0 \circ T^n) \subset G \cdot (\text{range } \varphi_0) \ \forall n \in \mathbb{N}$.

3) It is well-known that the transformation T is ergodic (cf. [5]). Hence it follows that if $S \subset \partial \Delta$ is such that T(S) differs just in a 0-set with respect to λ from S (i.e. $\lambda([S \cup T(S)] \setminus [S \cap T(S)]) = 0$) then either $\lambda(S) = 0$ or $\lambda(S) = 1$.

Thus if for a Borel set $\Gamma \subset C$ we have $N(\Gamma) = \Gamma \ \forall N \in G$, then $\phi_0^{-1}(\Gamma)$ is either a 0-set or the complementer in $\partial \Delta$ of some 0-set (wrt λ).

4) If $\zeta, \eta \in \overline{A} \setminus \{-1, 1\}$ and $\eta \notin G(\zeta)$ then there exist G-invariant neighbourhoods U, V of ζ and η , respectively, that are disjoint.

PROOF. – Observe that for any $t \in \mathbb{Z}$, $M_2^t \colon 1 \mapsto 1$, $(-1) \mapsto (-1)$, $[-1,1] \mapsto [-1,1]$ circle \mapsto circle. So from the conformity of Aut C it easily follows that, for every $t \in \overline{L}$, M_2^t maps the bounded domain $D \equiv \{\zeta \in C \colon |\zeta - i| < \sqrt{2}|\} \cup \{|\zeta \in C \colon |\zeta + i| < < \sqrt{2}\}$ onto itself. Thus $ND = D \ \forall N \in G \ (\text{cf. 1})$). Let d_D denote the Kobayashi distance on D (for its definition see [11]) and consider the orbit $G(\zeta)$. From (8) we deduce that $G(\zeta) = \{\pm M_2^t \zeta \colon t \in \mathbb{Z}\} \subset A \setminus \{-1,1\} \subset D$. Since $M_2^t \zeta = \frac{\zeta + \text{th}\ (t)}{1 + \zeta \text{ th}\ (t)} \to \pm 1$ according to $t \to \pm \infty$, the set $G(\zeta)$ has no cluster point in D. Hence $d_D(\eta, G(\zeta)) > 0$. Thus the choices $U \equiv \{\zeta' \in D \colon d_D(\zeta', G(\zeta)) < \frac{1}{2} d_D(\eta, G(\zeta))\}$ and $V \equiv \{\eta' \in D \colon d_D(\eta', G(\zeta)) > \frac{1}{2} d_D(\eta, G(\zeta))\}$ fulfill our requirements.

We show now that $\lambda(\varphi_0^{-1}(G(\zeta_0))) = 1$ for some $\zeta_0 \in \overline{A}$.

PROOF. – The last remark and 3) exclude that for every pair ζ , $\eta \in \overline{A} \setminus \{-1, 1\}$ and for all neighbourhoods U, V of $G(\zeta)$ and $G(\eta)$, respectively, we have $\lambda(\varphi_0^{-1}(U)) > 0$ and $\lambda(\varphi_0^{-1}(V)) > 0$ in the same time. If for any $\zeta \in \overline{A} \setminus \{-1, 1\}$, one can find a neighbourhood U of $G(\zeta)$ such that $\lambda(\varphi_0^{-1}(U)) = 0$ then the separability of \overline{A} implies that $\lambda(\varphi_0^{-1}(\overline{A} \setminus \{-1, 1\})) = 0$, whence $\lambda(\varphi_0^{-1}(\{-1, 1\})) = \lambda(\varphi_0^{-1}(\overline{A})) - \lambda(\varphi_0^{-1}(\overline{A} \setminus \{-1, 1\})) = 1$. Now we can choose e.g. $\zeta_0 = 1$. If for some $\zeta_1 \in \overline{A} \setminus \{-1, 1\}$, any neighbourhood U of $G(\zeta_1)$ satisfies $\lambda(\varphi_0^{-1}(U)) > 0$ then for any G-invariant neighbourhood of this ζ_1 we necessarily have by 3) that $\lambda(\varphi^{-1}(U)) = 1$. Therefore $1 = \lambda(\varphi_0^{-1}(\{\zeta \in E): d_D(\zeta, G(\zeta_1)) < 1/n\})) \to \lambda(\varphi_0^{-1}(G(\zeta_1)))$ $(n \to \infty)$. Thus, in this case, taking $\zeta_0 = \zeta_1$, the requirements are satisfied.

Henceforth we assume that

range
$$\varphi_0 = \{c_1, c_2, ...\} \subset G(c) \subset \overline{A}$$

(where $c, c_1, c_2, ...$ are given constants). Our previous observation ensures that this can be done without loss of generality.

5) Step 1) directly implies the existence of a unique pair of Borel functions $s_n: \partial \Delta \to \{0, 1\}$ and $t_n: \partial \Delta \to \mathbf{Z}$ for each $n \in \mathbb{N}$, such that

$$M_1^{s_n(x)}M_2^{t_n(x)} = M(T^{n-1}x)^{-1} \dots M(x)^{-1} \quad \forall x \in \partial \Delta.$$

Thus by (9) we have

. 0

$$(9') \hspace{1cm} \varphi_0(T^nx) = M_1^{s_n(x)} M_2^{t_n(x)} \varphi_0(x) \hspace{5mm} \forall_\lambda x \in \partial \varDelta \hspace{3mm} \forall n \in \mathbb{N} \, .$$

Introducing the functions $s \equiv 1_{\{\exp(2\pi i\tau): 0 \leqslant \tau < \delta\}}$ and $t \equiv 1_{\partial \Delta} - s$, we also have $M(x) = M_1^{s(x)} M_2^{t(x)}|_{\overline{\Delta}}$, $\forall x \in \partial \Delta$. Now (8) enables us to express s_n and t_n in terms of s and t. In particular, one sees by induction on n that $s_n(x) = \text{mod}_2[s(x) + ... + s(T^{n-1}x)]$. Thus

$$M_1^{s_n(x)} = [\zeta \mapsto (-1)^{s(x)+\ldots+s(T^{n-1}x)}\zeta] \quad \forall x \in \partial \Delta \ \forall n \in N.$$

6) We achieve a stronger control over the functions $(-1)^{s_n(\cdot)}$. Consider the function $\tilde{s}: \mathbf{R} \to \{0, 1\}$ defined by $\tilde{s}(\tau) \equiv s \left(\exp{(2\pi i \tau)} \right)$. Thus $\tilde{s}(\tau) = \sum_{m=-\infty}^{\infty} 1_{[0,\delta)}(\tau + m)$ $\forall \tau \in \mathbf{R}$. Introducing the functions $\tilde{s}_n(\tau) \equiv s \left(\exp{(2\pi i \tau)} \right) + s \left(T \exp{(2\pi i \tau)} \right) + \dots + s \left(T^{n-1} \exp{(2\pi i \tau)} \right)$, we have

$$\tilde{s}_{n}(\tau) = \tilde{s}(\tau) + \tilde{s}(\tau - \delta) + ... + \tilde{s}(\tau - (n-1)\delta) = \sum_{m=-\infty}^{\infty} \sum_{k=0}^{n-1} 1_{[0,\delta)}(\tau + m - k\delta) =$$

$$= \sum_{m=-\infty}^{\infty} \sum_{k=0}^{n-1} 1_{[k\delta,(k+1)\delta)}(\tau + m) = \sum_{m=-\infty}^{\infty} 1_{[0,n\delta)}(\tau + m).$$

Therefore, \tilde{s}_n is a periodic continuation (with period-length 1) of the function

$$\tau \mapsto \begin{cases} \text{Integral part of } (n\delta + 1) \text{ if } 0 \leqslant \tau < n\delta \text{-entier } (n\delta). \\ \text{Integral part of } (n\delta) & \text{if } n\delta \text{ entier } (n\delta) \le \tau < 1 \end{cases} \\ \text{Since } \int_{\delta d} (-1)^{s_n} d\lambda = \int_{0}^{1} (-1)^{s_n(\tau)} d\tau,$$

this means that if $n_m \to \infty$ is a sequence in N such that $\operatorname{dist}(n_m \delta, \{2k-1: k \in \mathbb{N}\}) \to 0$ $(m \to \infty)$ then $\int_{\partial \mathcal{L}} (-1)^{s_{n_n}} d\lambda \to -1$, i.e. the sequence of the functions $(-1)^{s_{n_m}} \cos n$ converges in measure to the identically -1 function on $\partial \mathcal{L}$. So, by the classical Riesz-Weyl Lemma, there is a subsequence $(n_{m_j}: j \in \mathbb{N})$ with $(-1^{s_{n_m}})^{(\tau)} \to -1$ $(j \to \infty)$ $\forall_{\lambda} x \in \partial \mathcal{L}$, or which is the same, $s_{n_m}(x) \to 1$ $(j \to \infty)$ $\forall_{\lambda} x \in \partial \mathcal{L}$.

Similarly, dist $(n'_m \delta, \{2k \colon k \in \mathbb{N}\}) \to 0 \quad (m \to \infty)$ implies the existence of a subsequence $(n'_{m'_j} j \in \mathbb{N})$ with $s_{n'_{m'_j}}(x) \to 0 \quad (j \to \infty) \quad \forall_{\lambda} x \in \partial \Delta$.

7) A sequence $n_m \to \infty$ for which dist $(n_m \cdot \delta, \{2k-1: k \in N\}) \to 0$ $(m \to \infty)$ certainly exists. (Proof: The set $\{\exp(\pi i n \delta): n \in N\}$ is dense in $\partial \Delta$ and the relation dist $(n_m \delta, \{2k-1: k \in N\}) \to 0$ is equivalent to $\exp[2\pi i (\delta/2) n_m] \to -1$.) Clearly, for any such a sequence $(n_m: m \in N)$ we have $\exp(2\pi i \delta_{n_m}) \to 1$ i.e. $T^{n_m} \to \mathrm{id}_{\partial \Delta}$ (if $m \to \infty$).

From now on, let $(n'_m : m \in N)$ denote a fixed sequence in N such that $n'_m \to \infty$, $T^{n'_m} \to \mathrm{id}_{\partial A}$ and $\forall_{\lambda} x \in \partial A$ $s_{e'_m}(x) \to 1$ $(m \to \infty)$.

Suppose then that $(n_m \colon m \in \mathbb{N})$ is a sequence with $n_m \to \infty$, $T^{n_n} \to \mathrm{id}_{\partial A}$ and $\forall_{\lambda} x \in \partial \Delta$, $s_{n_m}(x) \to 0$ $(m \to \infty)$. Since $\mathrm{range}(\varphi_0) \in G(c) = \{ \pm M_2^t \colon t \in \mathbb{Z} \}$ (cf. conclusion of 4)) and since G(c) has two cluster points outside of itself whenever $c \neq \pm 1$ (namely the points -1 and 1), $\mathrm{range}(\varphi_0)$ is a discrete subset of C. By the Lebesgue Shift Theorem, the fact $T^{n_m'} \to \mathrm{id}_{\partial \Delta}$ implies $\varphi_0(T^{n_m'}x) \to \varphi_0(x) \ \forall_{\lambda} x \in \partial \Delta$. Similarly, $\varphi_0(T^{n_m}x) \to \varphi_0(x), \ \forall_{\lambda} x \in \partial \Delta$. By the discreteness of $\mathrm{range}(\varphi_0)$, we have then

(10)
$$\forall_{\lambda} x \in \partial A \quad \exists m_0(x) \quad \forall m > m_0(x)$$

$$\varphi_0(x) = \varphi_0(T^{n'_m}x) = M_1^{s_{n'_m}(\tau)} M_2^{t_{n'_m}(\tau)} \varphi_0(x) = M_1 M_2^{t_{n'_m}(x)} \varphi_0(x)$$

and

$$\varphi_0(x) = \varphi_0(T^{n_m}x) = M_1^{r_{T_m}(x)} M_2^{t_{T_m}(x)} \varphi_0(x) = M_2^{t_{n_m}(x)} \varphi_0(x) \; .$$

Thus $\forall_{\lambda} x \in \partial \Delta \exists t', t'' \in \mathbf{Z} \ M_1 M_2^{t'} \varphi_0(x) = M_2^{t''} \varphi_0(x) = \varphi_0(x)$. For each $t'' \neq 0$ and $\zeta \in \mathbf{C}$, it follows from the relation $M_2^{t'} \zeta = \zeta$ that $\zeta = -1$ or $\zeta = 1$. Therefore (10) can be valid only if $\forall_{\lambda} x \in \partial \Delta \exists m_0(x) \ \forall m > m_0(x) \ t_{n_m}(x) = 0$. Thus

(10') If
$$n_m \to \infty$$
 is a sequence with $T^{n_m} \to \mathrm{id}_{\partial \varDelta}$ and $\forall_{\lambda} x \in \partial \varDelta \ s_{n_m}(x) \to 0$, then $t_{n_m}(x) \to 0 \ \forall_{\lambda} x \in \partial \varDelta$.

- 8) We shall arrive at a contradiction, by showing that (10') is impossible. In fact, we shall prove that
 - a) There exists a sequence $n_m \to \infty$ consisting of odd numbers such that $T^{n_m} \to \mathrm{id}_{\partial A}$ and $s_{n_m}(x) \to 0 \ \forall_{\lambda} x \in \partial A$.
 - b) $\operatorname{mod}_{2}[s_{n}(x) + t_{n}(x)] = \operatorname{mod}_{2} n \quad \forall x \in \partial \Delta \ \forall n \in \mathbb{N}.$

By b), for any sequence $(n_m : m \in \mathbb{N})$ as in a), we have that $t_{n_m}(x)$ is odd for all $m \in \mathbb{N}$ and $x \in \partial \Delta$. But hence $t_{n_m}(x) \to 0 \ \forall x \in \partial \Delta$. This contradiction proves the theorem.

Proof of a): The conclusion of 6) tells us that a) is equivalent to the existence of a sequence $n_m^* \to \infty$ of odd numbers such that dist $(n_m^* \cdot \delta, \{2k : k \in N\}) \to 0 \ (m \to \infty)$. But this latter property is equivalent to $\exp[2\pi i n_m^*(\delta/2)] \to 1$ which can be easily satisfied by some odd sequence $(n_m^* : m \in N)$, since the set $\{\exp[2\pi i(2l+1)(\delta/2)]: l \in N\}$ is dense in $\partial \Delta$ (for δ is irrational).

Proof of b): Proceed by induction on n. For n=1, $M_1^{s_1(x)}M_2^{t_1(x)}=M(x)^{-1}$ (= M_1^{-1} or M_2^{-1}). Thus either $s_1(x)=1$ and $t_1(x)=0$ or $s_1(x)=0$ and $t_1(x)=1$. Anyway, $s_1(x)+t_1(x)$ is odd, similarly to 1 (= n) for all $x \in \partial \Delta$.

To perform the inductive step, observe that

$$M_1^{s_{n+1}(x)}M_2^{t_{n+1}(x)} = M(T^nx)^{-1}M(T^{n-1}x)^{-1}\dots M(x)^{-1} = M(T^nx)^{-1}M_1^{s_n(x)}M_2^{t_n(x)}.$$

Now there are three cases:

- i) If $M(T^n x) = M_1$ then $M_1^{s_{n+1}(x)} M_2^{t_{n+1}(x)} M_1^{s_n(x)-1} M_2^{t_n(x)} = M_1^{\text{mod}_2[s_n(x)-1]} M_2^{t_n(x)}$, i.e. $\text{mod}_2[s_{n+1}(x) + t_{n+1}(x)] = \text{mod}_2[s_n(x) 1 + t_n(x)] = \text{by the induction hypotheses} = \text{mod}_2(n-1) = \text{mod}_2(n+1)$.
- ii) If $M(T^n x) = M$ and $s_n(x) = 0$ then $M_1^{s_{n+1}(x)} M_2^{t_{n+1}(x)} = M_2^{-1} M_2^{t_n(x)}$, i.e. $0 = s_{n+1}(x)$ and $t_{n+1}(x) = t_n(x) 1$. Thus $\text{mod}_2[s_{n+1}(x) + t_{n+1}(x)] = \text{mod}_2[s_n(x) + t_n(x) 1] = \text{mod}_2(n-1) = \text{mod}_2(n+1)$.
- iii) If $M(T^n x) = M_2$ and $s_n(x) = 1$ then $M_1^{s_{n+1}(x)} M_2^{t_{n+1}(x)} = M_2^{-1} M_1 M_2^{t_n(x)} =$ by $(8) = M_1 M_2^{t_n(x)+1}$, i.e.

$$\operatorname{mod}_{2}[s_{n+1}(x) + t_{n+1}(x)] = \operatorname{mod}_{2}[s_{n}(x) + t_{n}(x) + 1] = \operatorname{mod}_{2}(n+1).$$

The proof of Theorem 4 is complete. \square

The seemingly too particular statement of Theorem 4 enables us to reach a general conclusion:

A theorem of D. Maharam (cf. [7], [10]) asserts that for any σ -finite measure μ , there exists a sequence $\varrho_1, \varrho_2, ... > 0$ and a sequence of cardinalities $\alpha_1, \alpha_2, ...$ such that $L^1(\mu) \simeq L^1(\bigoplus_{n=1}^{\infty} \varrho_n \lambda^{\alpha_n})$ (for $\alpha > 0$, λ^{α} denotes the α -th power of the measure λ^{α} λ^{α} is [atom with weight 1]). This fact yields an application of Theorem 4 to decide the fixed point problem of Aut $\overline{B}(E)$ even for the most general L^{∞} -spaces E (and hence, by a theorem of M. Rieffel [8], for all M-lattices admitting a predual).

LEMMA 11. – Let X be a discrete topological space. Then for all $F \in \operatorname{Aut} \overline{B}(C_b(X))$ there exists a (unique) permutation T of X and a function $M: X \to \operatorname{Aut} \overline{A}$ such that $F = [f \mapsto [x \mapsto M(x)f(Tx)]]$.

PROOF. – Let ϕf denote the (unique) continuous extension to βX (the Stone-Čech compactification of X) of any $f \in C_b(X)$. Now the map $\hat{F} \equiv \phi F \phi^{-1}$ is a biholomorphic automorphism of $\bar{B}\big(C(\beta X)\big)$. Since the isolated points of βX are exactly the points of X and since any automorphism of a topological space sends the set of its isolated points onto itself, we have $T_{\widehat{F}}(X) = X$. Hence $(Ff)(x) = (\phi^{-1} \widehat{F} \phi f)(x) = (\widehat{F} \phi f)|_{X}(x) = (\widehat{F} \phi f)(x) = [\widehat{F} (\phi f)](x) = M_{\widehat{F}}(x)[(\phi f)(T_{\widehat{F}}x)] = \text{since } T_{\widehat{F}}x \in X = M_{\widehat{F}}(x) \cdot (T_{\widehat{F}}x) \ \forall x \in X$. \square

COROLLARY 2. – For a discrete space X, all the members of Aut $\bar{B}(C_b(X))$ have fixed point.

PROOF. – Let τ denote the topology of pointwise convergence on $C_b(X)$ (i.e. by definition, $f_j \stackrel{\tau}{\longrightarrow} f$ iff $\forall x \in X \ f_j(x) \to f(x)$, for every net $(f_j \colon j \in J)$ and function f in $C_b(X)$). Observe that $\overline{B}(C_b(X))$ endowed with the topology τ coincides (set theoretically) with the topological product space \overline{A} : which is compact by Tychonoff's Product Space Theorem. On the other hand, it readily follows from Lemma 11 that any $F \in \operatorname{Aut} \overline{B}(C_b(X))$ is also $\tau \to \tau$ continuous (the definition of F requires only its continuity for the norm topology). Hence the Schauder-Tychonoff Fixed Point Theorem establishes (cf. [1]) that each $F \in \operatorname{Aut} \overline{B}(C_b(X))$ has fixed point. \square

THEOREM 5. – Let E be an M-lattice (for definition see [8], [9]) having a predual *E. Then the following properties are equivalent:

- a) Any $F \in \operatorname{Aut} \overline{B}(E)$ has a fixed point.
- b) $E \simeq C_b(X)$ for some discrete topological space X.

PROOF. – By a theorem of M. RIEFFEL [8], the M-lattices with predual are exactly the L^{∞} -spaces. Thus we may assume without loss of generality that $*E = L^{1}(X,\mu)$ and $E = L^{\infty}(X,\mu)$ for some fixed measure space (X,μ) . If the measure μ is atomic then obviously b) holds and hence Corollary 2 implies a). Suppose μ is non-atomic. Then b) is false, thus it suffices to find an $F \in \operatorname{Aut} \overline{B}(L^{\infty}(X,\mu))$ free of fixed points. Fix a μ -measurable subset $X' \subset X$ such that the measure $\mu|_{X}$, be non-atomic and we have $0 < \mu(X') < \infty$. By Maharam's Isomorphism Theorem (cf. [7], [10]), there exists a μ -measurable subset $Y \subset X'$ and a cardinality a > 0 such that $\mu(Y) > 0$ and $L^{1}(Y,\mu|_{Y}) \simeq L^{1}(\mu(Y) \cdot \lambda)$. Therefore $L^{\infty}(X,\mu)$ is isometrically isomorphic with the direct sum of $L^{\infty}(\lambda^{\alpha})$ and some other L^{∞} space \hat{E} where the norm of a generic element (f,g) (f in $L^{\infty}(\lambda^{\alpha})$, g in \hat{E}) is defined by $\|(f,g)\| \equiv \max{\{\|f\|, \|g\|\}}$. Hence, to prove Theorem 5, it suffices to show that some $F \in \operatorname{Aut} \overline{B}(L^{\infty}(\lambda^{\alpha}))$ has no fixed point. Let

$$F_0\colon \overline{B}\big(L^{\infty}(\lambda^{\mathfrak{a}})\big)\to L^{\infty}(\lambda^{\mathfrak{a}}) \quad \text{ be the mapping defined by}$$

$$F_0\colon f\mapsto \big[(\partial\varDelta)^{\mathfrak{a}}\in (\xi_{\mathfrak{a}}\colon \alpha<\mathfrak{a})\mapsto M(\xi_0)\varphi_{\mathbf{f}}\big((T\xi_0),\ \xi_{\mathfrak{a}}\colon 0<\alpha<\mathfrak{a}\big)\big]^{\sim}$$

where $M: \partial \Delta \to \operatorname{Aut} C$ and $T: \partial \Delta \to \partial \Delta$ are the same as in Theorem 4 and φ_f denotes a (fixed) Borel measurable representant with range in $\overline{\Delta}$ of f, for any $f \in \overline{B}(L^{\infty}(\lambda^{\alpha}))$. Then it follows from Theorem 4 that F_0 has no fixed point and belongs to $\operatorname{Aut} \overline{B}(L^{\infty}(\lambda^{\alpha}))$. \square

REFERENCES

^[1] N. DUNFORD - J. T. SCHWARTZ, Linear operators, Interscience, New York, 1958.

^[2] C. J. EARLE - R. S. HAMILTON, A fixed point theorem for holomorphic mappings, Proc. Sympos. Pure Math., vol. 16, Amer. Math. Soc., Providence, R.I. (1970), pp. 61-65.

- [3] L. GILLMAN M. JERISON, Rings of Continuous Functions, Van Nostrand, Prin 1960.
- [4] T. L. HAYDEN T. J. SUFFRIDGE, Fixed points of holomorphic maps in Banach & Proc. Amer. Math. Soc., 60 (1976), pp. 95-105.
- [5] K. Jacobs, Neuere Methoden und Ergebnisse der Ergodentheorie, Ergebnisse d. Wiss., 29, Springer, Berlin, 1960.
- [6] W. Kaup H. Upmeier, Banach spaces with biholomorphically equivalent unit baisomorphic, Proc. Amer. Math. Soc., 58 (1976), pp. 129-133.
- [7] D. MAHARAM, On homogeneous measure algebras, Proc. Nat. Acad. Sci. USA, 28 (pp. 108-111.
- [8] M. A. RIEFFEL, A characterization of commutative group algebras and measure alg Trans. Amer. Math. Soc., 116 (1965), pp. 32-65.
- [9] H. SCHAEFFER, Banach lattices and positive operators, Grundl. d. Math. Wiss., Springer, Berlin, 1974.
- [10] Z. Semadeni, Banach Spaces of Continuous Functions, Monografie Matemat, Tom. 55, PWN-Polisch Scientific Publishers, Warszava, 1971.
- [11] E. VESENTINI T. FRANZONI, Holomorphic maps and invariant distances, North-He Publishing Company, Amsterdam, 1980.