A short proof of the fact that biholomorphic automorphisms of the unit ball in certain L^p spaces are linear

L. L. STACHÓ

1. As a consequence of his investigations on the Carathéodory and Kobayashi distances on domains in locally convex vector spaces, E. Vesentini [1] proved that biholomorphic automorphisms of the unit ball* of $L^1(\Omega, \mu)$ are all linear, whenever the underlying measure space (Ω, μ) is not a unique atom. In this paper we shall provide a quite different approach to the problem which applies to $L^p(\Omega, \mu)$ as well, for every $p \in [1, \infty)$.

Theorem. Let (Ω, μ) be a measure space having two disjoint subsets Ω', Ω'' such that $0 < \mu(\Omega'), \mu(\Omega'') < \infty$. Then for any $p \in [1, \infty) \setminus \{2\}$, all biholomorphic automorphisms of the unit ball of $L^p(\Omega, \mu)$ are linear.

Our method is based on a result of W. Kaup and H. Upmeier [2] concerning $\text{Aut} B(E)$ for general Banach spaces E. Here we present a direct proof of the theorem, which may have interest because of its extreme brevity. However, we remark that one can also determine the general algebraic form of an element from $\text{Aut} B(L^1(\Omega, \mu))$ in a similar way.

2. First we prove a lemma. To this end, let E denote an arbitrarily fixed Banach space with norm $\|\cdot\|$, E^* the dual of E endowed with the norm $\|\cdot\|_*$.

Lemma. $\text{Aut} B(E)$ contains only linear mappings if and only if the relation

\[\langle q(x, x), \varphi \rangle = -\langle c, \varphi \rangle \quad \text{for all} \quad x \in E, \varphi \in E^* \quad \text{with} \quad \|x\| = \|\varphi\|_* = 1 = \langle x, \varphi \rangle \]

entails $c = 0$ whenever $c \in E$ and q is a bilinear form from $E \times E$ into E.

Received December 20, 1978.

*) In general, if $B(E)$ denotes the open unit ball of a Banach space E then the biholomorphic automorphisms of $B(E)$ are defined as those one-to-one mappings of $B(E)$ onto itself whose Fréchet derivative exists at every point $x \in B(E)$ as an invertible operator. We shall denote the group formed by the biholomorphic automorphisms of $B(E)$ by $\text{Aut} B(E)$.
Proof. According to [2, p. 131], there can be found a subspace \(V \) in \(E \) and a conjugate-linear mapping \(\varphi \mapsto g_\varphi \) from \(V \) into the space of the (continuous) \(E \)-bilinear forms such that \(\text{Aut}(D) \) is generated by the group \(G_0 \) of the surjective linear isometries of \(E \) onto itself any by the images under the exponential map of the vector fields \(\left(v + g_\varphi(z, z) \right) \frac{\partial}{\partial z} \) \((v \in V) \). Thus, for \(\text{Aut} B(E) = G_0 \) it is necessary and sufficient that there exist a \(c \in E \setminus \{0\} \) and a bilinear form \(q : E \times E \to E \) such that the vector field \((c + q(z, z)) \frac{\partial}{\partial z} \) be tangent to \(\partial B(E) \) (the boundary of \(B(E) \)), i.e.

\[
\text{Re} \langle c + q(z, z), \psi \rangle = 0 \quad \text{whenever} \quad \|z\| = \|\psi\|_* = 1 = \langle z, \psi \rangle.
\]

Suppose now that the vectors \(c, x \in E, \varphi \in E^* \) and the \(E \)-bilinear form \(q \) satisfy \(\|x\| = \|\varphi\|_* = 1 = \langle x, \varphi \rangle \) and (2). Then for all \(\lambda \in \mathbb{C} \) with \(|\lambda| = 1 \) we have \(\|\lambda x\| = \|\lambda \varphi\|_* = 1 = \langle \lambda x, \lambda \varphi \rangle \) whence \(0 = \text{Re} \langle c + q(\lambda x, \lambda x), \lambda \varphi \rangle = \text{Re} \left[\langle c, \varphi \rangle + \langle q(x, x), \varphi \rangle \right] \). Therefore \(\langle c, \varphi \rangle + \langle q(x, x), \varphi \rangle = 0 \) which completes the proof of the Lemma.

3. Now we shall proceed to the proof of the Theorem. Henceforth let \(p \in [1, \infty) \) be arbitrarily fixed and set \(E = L^p(\Omega, \mu) \). As usual we shall identify \(E^* \) with \(L^{p/(p-1)}(\Omega, \mu) \) and the pairing operation with \(\langle x, \varphi \rangle = \int \bar{x}(\xi) \cdot \varphi(\xi) \, d\mu(\xi) \) (for all \(x \in E \) and \(\varphi \in E^* \)), respectively.

For any \(x \in E \), let \(x \) denote the function \(\xi \mapsto x(\xi) \cdot |x(\xi)|^{p-2} \) (with the convention \(0 \cdot 0^{p-2} = 0 \)). Observe that here

\[
\langle x^{*} \rangle \in E^*, \quad \|x^{*}\|_* = \|x\|^{p-1}, \quad \langle x, x^{*} \rangle = \|x\|^p \quad \text{for all} \quad x \in E.
\]

Then assume that the function \(x \in E \) and the \(E \)-bilinear form \(q \) satisfy (1). Applying (3) we see that

\[
\langle q(x, x), x^{*} \rangle = -\|x\|^2 \langle c, x^{*} \rangle \quad \text{for all} \quad x \in E.
\]

In particular, if \(F \) and \(G \) are any two disjoint subsets of \(\Omega \) such that \(0 < \mu(F), \mu(G) < \infty \) then

\[
\int \Omega q(1_F + \lambda \cdot 1_G, 1_F + \lambda \cdot 1_G)(1_F + \lambda |\lambda|^{p-2} 1_G) \, d\mu =
\]

\[
= -\left(\mu(F) + |\lambda|^p \cdot \mu(G) \right) \int \Omega \bar{c}(1_F + \lambda \cdot |\lambda|^{p-2} 1_G) \, d\mu
\]

for all \(\lambda \in \mathbb{C} \). (For any \(\mu \)-measurable subset \(H \subset \Omega \) of finite \(\mu \)-measure, \(1_H \) denotes the characteristic function of \(H \), considered as an element in \(E \).)
Thus, by setting
\[\alpha_0 = \int_F \varrho (1_F, 1_F) \, d\mu, \quad \alpha_1 = \int_F \varrho (1_F, 1_G) + \varrho (1_G, 1_F) \, d\mu, \quad \alpha_2 = \int_F \varrho (1_G, 1_G) \, d\mu, \]
\[\beta_0 = \int_G \varrho (1_F, 1_F) \, d\mu, \quad \beta_1 = \int_G \varrho (1_F, 1_G) + \varrho (1_G, 1_F) \, d\mu, \quad \beta_2 = \int_G \varrho (1_G, 1_G) \, d\mu, \]
\[\mu_1 = \mu (F), \quad \mu_2 = \mu (G), \quad \gamma_1 = \int_F \tilde{c} \, d\mu, \quad \gamma_2 = \int_G \tilde{c} \, d\mu \]
we obtain
\[\sum_{k=0}^3 \alpha_k \lambda^k + \bar{x} |\lambda|^{-2} \cdot \sum_{k=0}^3 \beta_k \lambda^k = -(\mu_1 + |\lambda|^p \mu_2)^{2/p} (\gamma_1 + \lambda \cdot |\lambda|^{-2} \gamma_2) \]
for all \(\lambda \in \mathbb{C} \). Therefore for any \(\varrho > 0 \) and \(\delta \in \mathbb{C} \) with \(|\delta| = 1 \),
\[(\beta_0 \cdot \varrho^{p-1})^{\delta^{-1}} + (\alpha_0 + \beta_1 \cdot \varrho^p) + (\alpha_1 \cdot \varrho + \beta_2 \cdot \varrho^{p+1}) \delta + (\alpha_2 \cdot \varrho^2) \delta^2 = - (\mu_1 + \mu_2 \cdot \varrho^{p})^{2/p} (\gamma_1 + (\gamma_2 \cdot \varrho^{p-1}) \delta). \]
In particular, we have
\[\alpha_0 + \beta_1 \cdot \varrho^p = -(\mu_1 + \mu_2 \cdot \varrho^{p})^{2/p} \gamma_1 \]
for all \(\varrho > 0 \).

Hence \(-\mu_2^{2/p} \cdot \gamma_1 \lim_{\varrho \to \infty} [-(\mu_1 + \mu_2 \cdot \varrho^{p})^{2/p} \varrho^{-2} - \gamma_2] = \lim_{\varrho \to \infty} (\alpha_0 + \beta_1 \cdot \varrho^p \cdot \varrho^{-2} \gamma_1). \) This is possible only if \(p = 2 \) or \(\gamma_1 = 0 \). Thus if \(p \neq 2 \) then by definition of \(\gamma_1 \) we have
\[(4) \quad \int_F \tilde{c} \, d\mu = 0 \] whenever \(0 < \mu (G) < \infty \) for some \(G \subset \Omega \setminus F \).

But (4) immediately implies \(c = 0 \) because of our assumption on the measure space \((\Omega, \mu)\). Thus, by the Lemma, \(B (E) \) admits in case \(p \neq 2 \) only linear biholomorphic automorphisms. Q.E.D.

References

BOLYAI INSTITUTE
UNIVERSITY OF SZEGED
ARADI VERTANÜK TERE I
6720 SZEGED, HUNGARY

79-3582—Szegoedi Nyomda — F.v.: Dobó József igazgató