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Abstract. We refine earlier results concerning the structure of strongly continu-

ous one-parameter semigroups (C0-SGR) of holomorphic Carathéodory isome-

tries of the unit ball in infinite dimensional reflexive TROs (ternary rings of op-

erators) We achieve finite algebraic formulas for them in terms of joint boundary

fied points and Möbius charts.

1. Introduction, results

Throughout this work let H1,H2 denote complex Hilbert spaces and

(1.1) E :=L(H1,H2)=
{
bded lin. H1←H2 operators

}
, dim(H2)<∞.

We shall write ⟨x|y⟩ (being linear in x and antilinear in y) for the scalar
product in any case without danger of confusion. The chief object of our in-
terest will be the open unit ballB of E with its (unique) holomorphic invari-
ant metric dB such that dB(0, x) = artanh ∥x∥ called the Carathéodory dis-
tance of B along with a C0-semigroup (strongly continuous one-parameter
semigroup, abbreviated as C0-SGR in the sequel)

[Φt : t ∈ R] ⊂ Iso(dB) :=
{
holomorphic dB-isometries

}
.

Our title indicates a wider context: TROs i.e. ternary rings of operators
are isometric copies of closed subspaces of C∗-algebras being invariant un-
der the operation (x, y, z) 7→ xy∗z. Even with reflexivity, they provide
a natural mathematical setting for several theories in quantum physics.
Reflexive TROs are finite L∞-direct sums (cf. [7]) of spaces of the type
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(1.1) and, according to a recent refinement [16] of considerations concern-
ing the facial structure of JB*-triples (Banach spaces with holomorphically
symmetric unit balls) due to Peralta and Apazoglou [1,2], the holomorphic
Carathéodory isometries of a reflexive JB*-triple reduce to the direct sum
of their factor restrictions. In particular, we can confine ourselves to the
case (1.1) when describing the algebraic structure of a C0-SGR of holo-
morphic Carathéodory isometries of the unit ball in a reflexive TRO. We
finished our previous work [16] with the following related result:

Theorem A. Assume 0 ∈ dom(Φ′) = {X∈B : t 7→Φt(X) is differentiable
}

and E ∈ ∂B is a common fixed point of the continuous extensions of the
maps Φt to ther close unit ball. Then for all X ∈ B we have

Φt(X) = E +W t(X−E)
[∫ t

0 S
t−hb∗W h(X−E) dh+ St

]−1

for some b ∈ E and [W t : t ∈ R+] ⊂ L(H1), [S
t : t ∈ R+] ⊂ L(H2) are

suitable C0-SGRs with generators of the form U ′ − Eb∗ and V ′ + b∗E, re-
spectively where U ′ is a possibly unbounded maximal skew-symmetric linear
operator in H1 being the generator of a C0-SGR of linear isometries while
V ′ ∈ L(H1) is a (finite dimensional) skew-selfadjoint operator.

Theorem A summarizes an alternative of the results of Vesentini [18] and
Khatskevich-Reich-Shoikhet [10] improving them with adjusted continuity
arguments by means of fixed points for the underlying projective linear
representations. However there remains an inconvenience in Theorem A
from the view point of applications: the construction of the linear C0-SGR
[U t : t ∈ R+]. At first sight this problem may seem rather harmless: we
should determine a C0-SGR of bounded linear operators being a rank-one
perturbation of a C0-SGR of Hilbert space isometries. All the standard
procedures lead to infinite series or limits with convergence which is hard
to control in practice. In an earlier work [15] we established finite algebraic
formulas for the case of dim(H2) = 1 (with E ≃ H1)) by exploiting the
fact that all the boundary points of a Hilbert ball are tripotents of the
associated Jordan triple structure. In this paper we are going to extend
the technique of [15]. The difficulty we have to face relies upon the fact
that, in case of (1.1), the associated Jordan triple product is

(1.2)
{
XY ∗Z} = 1

2
XY ∗Z +

1

2
ZY ∗X

giving rise to tripotents with E = {EE∗E} = EE∗E thus being partial
isometries and hence no generic points of the boundary of the unit ball
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(unlike if dim(H2) = 1). As the basis of our main result we establish the
following observation.

Proposition 1.3. There is a Möbius shift

MA(X) := [1−AA∗]−1/2(X +A)(1 +A∗X)−1[1−A∗A]1/2

with a suitable point A ∈ B along with a partial isometry E ∈ E such that
the orbit t 7→ M−A ◦ Φt ◦MA(0) is differentiable and E is a common fixed
point of the maps M−A ◦ Φt ◦MA (t ∈ R+) with the continuous extensions
Φt of Φt to the closed unit ball.

Recall [18] that C0-SGRs of holomorphic Carathéodory isometries of
the unit ball admit a holomorphic extension to the closed unit ball (even
in the much wider setting of JB*-triples [9]) and these extension admit
common fixed points in the case (1.1). The term Möbius transformation
refers to surjective biholomorphic Carathéodory isometry of the unit ball
(in a JB*-triple in general). In particular, in our setting (1.1), every Möbius
transformation Θ ∈ Iso(dB) has the form

(1.4) Θ(X)=MC

(
UXV ∗) with linear isometries U∈L(H1), V∈L(H2).

Notice that the operator V above is necessarily unitary since dim(H2) <∞.
In (1.4) we have C = Θ(0) unambiguously, while the isometries U, V are
determined only up to a common scalar of absolute value 1. We say that two
C0-SGRs [Φt : t∈R+], [Ψ

t : t∈R+] are Möbius equivalent if Ψt = Θ ◦Θ−1

(t ∈ R+) for some Möbius transformation. Recall also [18] that in case
of the existence of a common fixed point for the maps Φt (t ∈ R+) inside
the open unit ball B, the C0-SGR [Φt : t ∈ R+] is Möbius equivalent to a
C0-SGR of linear isometries. Our main results reads now as follows.

Theorem 1.5. Let Ψ = [Ψt : t ∈ R+] ⊂ Iso(dB) be a C0-SGR not being
Möbius equivalent to a C0-SGR of linear isometries. Then there is a Möbius
equivalent C0-SGR Φ = [Φt : t ∈ R+] ⊂ Iso(dB) to Ψ of the form described
in Theorem A involving terms such that E( ̸= 0) is a partial isometry with
ran(E) ⊂ dom(U ′), and the C0-SGR [W t : t ∈ R+] ⊂ L(H1) has the form

W tX = W t
0PX +W t

1QX +

∫ t

0
W t−h

1

[
Q(U ′ − Eb∗)P

]
W h

0 PX dh

where P := EE∗ denotes the orthogonal projection onto ran(E), Q := 1−P ,
W t

0 = exp
(
tP [U ′ − Eb∗]P

)
, [W t

1 : t ∈ R+] ⊂ L
(
H1 ⊖ ran(E)

)
is the (well-

defined) C0-SGR of isometries with generator QU ′|[H1 ⊖ ran(E)].
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The advantage of the above refinement relies upon the fact that ran(E)
is only finite dimensional, thus the algebraic irregularities will be settled by
two finite dimensional linear C0-groups (namely

[
exp

(
t[V ′−E∗b]

)
: t ∈ R]

generated by [W t
0 : t ∈ R+] and

[
exp

(
tP [U ′−E∗b]P

)
: t ∈ R] generated by

[St : t ∈ R+]). The complementary infinite dimensional parts are controlled
by the C0-SGR [W t

1 : t ∈ R+] of linear isometries. We can use the Stone
type spectral integral formula of its Deddens type C0-group dilation to
achieve the following generalization of [15, Cor.2.10]:

Corollary 1.6. Any C0-SGR [Ψt : t ∈ R+] ⊂ Iso(dB) an be regarded
as the restriction Ψt = Ψ̂t of some C0-group [Ψ̂t : t ∈ R] of surjective
Carathéodory isometries of the unit ball of a TRO Ê = L(Ĥ1,H2) with
some covering Hilbert space Ĥ1 ⊃ H1.

2. Preliminaries: projective representation, Kaup type vector fields

For the sake a possibly most self-contained presentation, we recall some
further results from [16] based on works by Vesentini, Kaup, Khatskevich-
Reich-Shoikhet and Peralta [18,9,10,APPER,12] with minor extensions con-
cerning the structure of a generic C0-SGR Φ = [Φt : t ∈ R+] ⊂ Iso(dB).
In particular we know already that all the dB-isometries Φt admit a holo-
morphic extension to the ball of radius ∥Φt(0)∥−1 centered at the origin,
and these extensions have a common fixed point within the closed unit ball.
Analogously to the features of linear C0-SGRs in Hille-Yosida theory, the
(infinitesimal) generator Φ′ : X 7→ d

dt

∣∣
t=0+

Φt(X) is defined on the inter-
section of a dense affine submanifold with the unit ball, it determines Φ
unambiguously and it domain consists of the starting points of the differen-
tiable orbits t 7→ Φt(X). It is convenient to study Φ under the hypothesis
(which may be assumed up to Möbius equivalence)

(2.1) 0 ∈ dom(Φ′) i.e. t 7→ a(t) := Φt(0) is differentiable

by means of the projective representation

P
[
A B
C D

]
: X 7→ (AX +B)(CX +D)−1

for A ∈ L(H1), B ∈ L(H1,H2) = E, C ∈ L(H2,H1) = E∗, D ∈ L(H2)
satisfying the identity P(AB) = P(A)P(B). Namely can write

(2.2) Φt = P(At), At =

[
At Bt

Ct Dt

]
, [At]∗JAt = J =

[
IdH1 0
0 −IdH2

]
4
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for some C0-SGR [At : t ∈ R+] ⊂ L(H1⊕H2). This fact was used by Vesen-
tini [18] already (going back to Hirzebruch’s ideas [5] in finite dimensions)
without sufficient existence proof for the infinite dimensional case, which is
settled with adjusted continuity arguments in [16, Prop.7.5]. Möbius shifts
have particular interest in the case (2.1). With the standard notation

Ma :=

[
(1−aa∗)−1/2 0

0 (1−a∗a)−1/2

] [
1 a
a∗ 1

]
(a ∈ B)

we have

(2.3) At =Ma(t)Ut, a(t) := Φt(0), Ut :=
[
Ut 0
0 Vt

]
where U∗

t Ut = U0 = IdH1 and V ∗
t Vt = VtV

∗
t = V0 = IdH2 . It is worth

to mention a remarkable fact concerning the factorization (2.3) contained
implicitly in [18]: as a consequence of the identities M∗

aJMa = J and
diag(U, V )Ma = MUaV diag(U, V ) with isometries U, V , the operators of
the form Madiag(U, V ) with U∗U = IdH1 , V

∗V = V V ∗ = IdH2 form a
multiplication semigroup. Under (2.1), the orbit t 7→ Ut is strongly differ-
entiable and for the infinitesimal generator we have

(2.4) A′ =

[
U ′ b
b∗ V ′

]
with b :=

d

dt

∣∣∣
t=0+

a(t), U ′ :=
d

dt

∣∣∣
t=0+

Ut, V ′ :=
d

dt

∣∣∣
t=0+

Vt,

where dom(U ′) =
{
x ∈ H1 : t 7→ Utx is differentiable

}
, dom(V ′) = H2.

We know [16] that U ′ is the infinitesimal generator of a C0-SGR of H1-
isometries and

(2.5) J :=
{
X ∈ E : ran(X) ⊂ dom(U ′)

}
is a is a dense Jordan subtriple with respect to the triple product (1.2).
Therefore, since the Möbius shift Ma(t) = PMa(t) well-defined and holo-
morphic on the ball ∥a(t)∥−1B, the nonlinear infinitesimal generator has
then the form

(2.6) Φ′(X)=b−Xb∗X+U ′X−XV ′, dom(Φ′) = B ∩ J.

In particular, J contains the common fixed points of the continuous ex-
tensions Φt in the closed unit ball. The finite dimensional operator V ′ is
necessarily skew-symmetric (i.e. i[selfadjoint]).

As for a historical remark: in the setting of (locally) uniformly con-
tinuous groups of holomorphic automorphisms of the unit ball of a JB*-
triple (Banach space with holomorphically symmetric unit ball) W. Kaup
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[9] established the formula Φ′(X) = b − {Xb∗X} + iAX (X ∈ B) with
Banach-hermitian operators A. His arguments were based on Lie theoret-
ical considerations with a specific topology found by H. Upmeier on the
group of holomorphic automorphisms. We shall call such vector fields with
possibly unbounded generators of C0-SGR of isometries in place of iA Kaup
type vector fields. It seems that the physically interesting case of C0-SGRs
cannot be treated with Kaups tools: If 2.1) does not hold, the generator Φ′

cannot be of Kaup type. In [15] we gave a formula free of Möbius equiva-
lence for the case of dim(H2) = 1 of Hilbert balls in terms of a joint fixed
point. One can find Möbius free formulas in the setting of generic TRO
factors in [10], however, they seem to be hard to transform into closed alge-
braic formulas (like those in our main results) unless we understood better
the use of common fixed points. In particular there seems to be no proof
in the literature for the plausible fact that unbounded Kaup type vector
fields in JB*-triples are generators of C0-SGRs of holomorphic Caratéodory
isometries of the unit ball. In the presence of a linear representation (like
P in our case below or for spin factors) we can proceed as follows.

Lemma 2.7. Let Ω(X) := b−{Xb∗X}+AX (X ∈D) be a Kaup type
vector field in E such that A = d

dt

∣∣
t=0+

Ut is the infinitesimal generator of

a C0-SGR [Ut : t∈R+] of linear E-isometries with domain D. Then there
exists a (unique) C0-SGR [Φt : t ∈ R+] ⊂ Iso(dB) such that Φ′ = Ω|B.

Proof. Let B :=
[
0 b
b∗ 0

]
and let [U t : t ∈ R+] be a C0-SGR with PU t = Ut

(t ∈ R+). Define U := d
dt

∣∣
t=0+
U t. Actually we can write U =

[
U 0
0 V

]
with

suitable skew-symmetric linear operators U : dom(U) → H1, V ∈ L(H2).
It is well-known ([9, Section 2] for Jordan pairs) that we have

exp(tB) =Ma(t), PMa(t) = Ma(t) (t ∈ R)

for some C0-group [Ma(t) : t ∈ R] of Möbius shifts. According to the
Bounded Perturbation Theorem [3], there is a C0-SGR [F t : t ∈ R+] of
linear operators with generator F ′ = d

dt

∣∣
t=0+
U t = B + U . Recall [3, p.230

Ex. 3.11] that pointwise we have

F t = lim
n→∞

[
exp

(
t

n
B
)
U t/n

]n
= lim

n→∞

[
Ma(t/n)U t/n

]n
(t ∈ R+).

As mentioned, the operator matrices of the form McV with c ∈ B and
V = u⊕ v with isometries u, v form a multiplication semigroup. Therefore
F t = lim

n→∞
Ft,n pointwise (i.e. strongly) where Ft,n := Mt,cnVt,n with
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suitable ct,n ∈ B and Vt,n such that PVt,n is a linear E-isometry. Thus the
maps Φt,n := PFt,n are holomorphic dB-isometries. Recall also [18] that
the represented object PF by an operator matrix F is a holomorphic dB-
isometry if and only if F∗JF = J = diag(IdH1 , IdH2). It is easy to see that
this relation is preserved under stong convergence.

(
Proof: If Fnx→ Fx for

all x and F∗
nJFn = J then we have ⟨J x|y⟩ = ⟨JFnx|Fny⟩ → ⟨JFx|Fy⟩

implying ⟨J x|y⟩ = ⟨F∗JFx|y⟩ for all x, y
)
. Therefore the maps Φt := PF t

are holomorphic dB-isometries which completes the proof.

3. Proof of Proposition 1.3

Lemma 3.1. Assume Φ has a Kaup type generator (2.6) and let F be a

common fixed point of the continuous extensions Φ
t
being an inner point of

the (necessarily finite dimensional) face F of B with respect to its relative
topology. Then the middle point E of F is a tripotent belonging to the
subtriple J in (2.6).

Proof. We know [1,2] that

F = E +
[
B ∩ E⊥Jordan

]
= {E +A : E ⊥Jordan A, ∥A∥ < 1}

where the middle point E of F is a tripotent E = {EE∗E} = EE∗E ̸= 0
for the triple product (1.2). Recall that, by definition, E ⊥Jordan A if and
only if {EA∗X} = {AE∗X} = 0 for all X ∈ E. In case of the triple product
(1.2) this relation means simply that ran(E) ⊥ ran(A) and ker(E) ⊥ ker(A)
with orthogonality in H1 and H2, respectively. It is also well-known that
E⊥Jordan is a finite, say N -dimensional subtriple of E with N ≤ dim(H2)
and

F = E +A where A =
m∑
k=1

λkEk, 0<λ1< · · · <λm<1, m ≤ N

with some Jordan-orthogonal family of tripotents E1, . . . , Em in E⊥Jordan.
Thus, by setting E0 := E and λ0 := 1, the Jordan spectral decomposition
of F is simply F =

∑m
k=0 λkEk because the values λk are pairwise differ-

ent. Therefore the Jordan subtriple JF generated by F (i.e. the minimal
subspace containing F and being closed under the triple product) has the
form ⊕m

k=0CEk. In particular, E = E0 ∈ JF . However, as being a joint
fixed point, we have F ∈ J and hence also JF ⊂ J because J is a (not
necessarily closed) subtriple.
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Corollary 3.2. (End of the proof for 1.3). If E = L(H1,H2) with r =
dim(H2) < ∞ and [Ψt : t ∈ R+] is a C0-SGR in Iso(dB) then there is a
C0-SGR [Φt : t ∈ R+] in Iso(dB) being Möbius equivalent to [Ψt : t ∈ R+]
such that its generator is of Kaup type and whose continuous extensions to
the closed unit ball admit a common fixed point which is a tripotent.

Proof. As mentioned in Section 2, any C0-SGR in Iso(E) whose 0-orbit is
differentiable has a Kaup type generator (whose domain is the intersection
of a not necessarily closed Jordan subtriple with the unit ball) and the
continuous extensions of its members admit a common fixed point in the
closed unit ball. Recall also [2] that the boundary of the unit ball B is a
union of finite (at most r) dimensional faces. In accordance with Lemma

3.1, let F = E + A be a common fixed point of [Ψ
t
: t ∈ R+] where E is a

tripotent and A ⊥Jordan E with ∥A∥ < 1. Consider the Möbius equivalent
C0-SGR [Φt : t ∈ R+] with Φt := M−A ◦ Ψt ◦MA. In course the proof of
the lemma we established that A ∈ B ∩ JF = B ∩ ⊕m

k=1CEk, whence

±A ∈ B ∩ J = dom(Ψ′) =
{
X : t 7→ Ψt(X) is differentiable

}
.

In particular the orbits t 7→ Ψt(A) and t 7→ Φt(0) = M−A

(
Ψt(MA(0))

)
=

M−A

(
Ψt(A)

)
are differentiable. That is 0 ∈ dom(Φ′), which implies that

Φ′ is of Kaup type. Also we have

Φ
t(
M−A(F )

)
= M−A

(
Ψ

t
(F )

)
= M−A(F ) (t ∈ R+)

that is the point M−A(F ) is a common fixed point for [Φ
t
: t ∈ R+]. To

complete the proof, we have to establish that M−A(F ) = E. We prove this
relation by means of Kaup’s celebrated Möbius formula [9, Section 2]

MC(X) = C +B(C)1/2[1 + L(X,C)]−1X
(
C∈B, ∥X∥<∥C∥−1

)
in terms of the so-called linear resp. quadratic representation operators
L(X,Y ) : Z 7→ {XY ∗Z} resp. Q(X,Y ) : Z 7→ {XZ∗Y } and the Bergman
operator B(C) := Id − 2L(C,C) + Q(C,C)2. Since E ⊥Jordan A, we have
L(E,A) = L(A,E) = Q(A)E = 0 implying also B(A)1/2E = E. Hence

M−A(F ) = M−A(E +A) = −A+B(A)1/2[1− L(E +A,A)]−1(E +A) =

= −A+B(A)1/2[1− L(A,A)]−1(E +A) =

= −A+B(A)1/2[1− L(A,A)]−1E +B(A)1/2[1− L(A,A)]−1A =

= −A+B(A)1/2E +B(A)1/2[1− L(A,A)]−1A =

= −A+ E +B(A)1/2[1− L(A,A)]−1A =

= M−A(A) + E = 0 + E = E.
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4. Proofs for main results

According to Corollary 3.2, there is a C0-SGR Φ = [Φt : t ∈ R+] being
Möbius equivalent tp Ψ which satisfies the hypothesis of Theorem A with a
common fixed point E ∈ Fix(Φ) such that 0 ̸= E = {EE∗E} = EE∗E. We
have to see only that the C0-SGR [W t : t ∈ R+] ⊂ L(H1) with infinitesimal
generator

W ′ = U ′ − Eb∗

can be written in the form stated in Theorem 1.5. Throughout this section
we use the notations and assumptions of Theorem 1.5, furthermore we let

H1,1 := ran(E) = ran(P ), H1,2 := H1 ⊖H1,1, D := dom(U ′).

Lemma 4.1. The projections P,Q map D into itself, dom(W ′) = D and

(4.2) PW ′Q = 0 with domW ′Q = QDdense ⊂ H1,2.

Proof. We have D = dom(U ′) = dom(W ′) since W ′ = U ′ − Eb∗ is a
bounded perturbation of U ′. Since E ∈ Fix(Φ) is a common fixed point of
the holomorphic extensions of the maps Φt to balls containing the closed
unit ball, as mentioned in Section 2, we have

(4.3) 0 =
d

dt

∣∣∣
t=0+

E =
d

dt

∣∣∣
t=0+

ϕt(E) = b− Eb∗E + U ′E − EV ′

with E ∈ J = Cdom(Φ′). By (2.5) it follows ran(X) ⊂ dom(U ′) that is
H1,1 = ran(P ) ⊂ D. In particular the projection P maps D into itself.
Since D is a linear submanifold in H1, for any vector y ∈ D we have
y = Py + Qy with Py ∈ D and Qy = y−Py ∈D. That is also QD ⊂ D
and H1 is the orthogonal sum of its linear submanifolds H1,1 = PD and
QD = D∩QH1 = D∩H1,2. Finally we deduce (4.5) from (4, 3) as follows.
Since E is a partial isometry, QE = (1− EE∗E) = E − EE∗E = 0. Thus
we have

0 = Q(b− Eb∗E + U ′E − EV ′) = Q(b+ U ′E)

Since the possibly unbounded operator U ′ is skew-symmetric, by passing
to adjoints and then multiplying with E from the left, we get

0 = E(b∗ + E∗[U ′]∗)Q = E(b∗ − E∗U ′)Q =

= (Eb∗ − EE∗U ′)Q = (EE∗Eb∗ − EE∗U ′)Q =

= EE∗(Eb∗ − U ′)Q = P (Eb∗ − U ′)Q.
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4.4. Proof of Theorem 1.5.
In terms of H1,1⊕H1,2 matrices, we can write W ′ in the triangular form

W ′y =

[
P (U ′−Eb∗)P 0
Q(U ′−Eb∗)P QU ′Q

] [
Py
Qy

] (
y∈D

)
since QE = 0 and hence Q(U ′−Eb∗)Q = QU ′Q by the previous lemma. Ob-
serve that the skew-symmetric operator U ′

1 := QU ′Q is a bounded perturba-
tion of U ′−Eb∗ which is the infinitesimal generator of the C0-SGR of linear
H1-operators. Hence U ′

1 itself is also the generator of some C0-SGR of lin-
ear H1,2-operators being isometries due to the skew-symmetry of U ′. Hence
the restriction W ′

1 := U ′
1∥D1 to the range section D1 := QD = D ∩H1,2

of Q is the generator of a (unique) C0-SGR [W t
1 : t ∈ R+] of linear H1,2-

isometries. On the other hand, as being a finite dimensional operator,
W ′

0 := P (U ′−Eb∗)|H1,1 = P (U ′−Eb∗)|ran(P ) is the infinitesimal genera-
tor of the C0-group [W t

1 : t ∈ R], W t
1 = exp

(
tP (U ′−Eb∗)|H1,1

)
. Therefore,

according to the triangularization lemma [15, Lemma 3.8], we have

(4.5) W t =

[
W t

0 0∫ t
0 W

t−s
0 Q(U ′−Eb∗)PW s

1 ds W t
1

]
whence the statement of Theorem 1.5 is immediate.

4.6. Proof of Corollary 1.6.
According to the Deddens type dilation lemma [15, Lemma 5.1], for the

infinite dimensional corner in (4.5) we can write

W t
0 = Ŵ t

0

∣∣H1,2 (t ∈ R+)

by means of some C0-group [Ŵ t
0 : t ∈ R] of surjective linear isometries of

a suitable Hilbert space Ĥ1,2 containing H1,2 as a subspace. Introduce the

extension Ĥ1 := H1,1⊕Ĥ1,2 of the space H1 = H1,1⊕H1,2 and let Π denote

the canonical orthogonal projection Ĥ1,2 → H1,2. Consider the vector field

Ω̂(X̂) := b− Eb∗E + Ŵ ′
0X̂ − X̂W ′

1

(
X̂ ∈ Ê

)
where Ê := L(Ĥ1,H2), and Ŵ ′

0 resp. W ′
1 stand for the infinitesimal gen-

erators of [Ŵ t
0 : t ∈ R] reap, [W t

0 : t ∈ R]. Notice that Ŵ ′
0 is a self-adjoint

Ĥ1-operator. By definition, Ω̂ is of Kaup type. Moreover even its time-

reversed
T
Ω̂ : X̂ 7→ b−Eb∗E−Ŵ ′

0X̂+ X̂V ′ is of Kaup type since also −Ŵ ′
0

resp. −V ′ are infinitesimal generators of linear C0-SGR (even C0-groups).
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Lemma 2.7 guarantees that Ω̂ is the non-linear infinitesimal generator of
some C0-subgroup Φ̂t : t ∈ R] of holomorphic Carathéodory isometries of
the unit ball B̂ of Ê. Since Ω̂ is a holomorphic extension of Ω from E to
Ê, also the maps Φ̂t t ∈ R+) extend holomorphically the maps Φt with the
same time index from B to B̂ which completes the proof.

Remark 4.7. By Stene’s Theorem, there is an orthogonal Ĥ1-projection
valued measure Λ 7→ S(Λ) defined the family of all Borelian subsets of

R giving rise to the spectral resolution Ŵ t
0 =

∫
λ∈R exp(itλ)dS(λ) (t ∈ R).

Unfortunately, the the finite dimensional linear group [V t : t ∈ R] is not
necessarily of toroidal type, thus it admits only a direct exponential res-
olution in terms of Jordan block matrices. Nevertheless, analogous (but
clearly more sophisticated) explicit formulas like those in [15, Thm.2.1] are
available. A finer discussion like that in [15, Thm.2.6] seems to be an open
problem for the moment.
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