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Abstract. We consider the space E = E(Ω, ‖.‖) as the commutative C*-

algebra C0(Ω) equipped with a norm ‖.‖ having the monotonicity property

‖f‖ ≥ ‖g‖ if |f | ≥ |g|. We show there exists a finest partition Π of the

underlying space Ω along with a function m: Ω → R+ with the following

properties: supS∈Π #S < ∞, 0 < inf m ≤ sup m < ∞ and each E-Hermitian

operator A can be written in the matrix form Af(ω) =
∑
η∈S a

(S)
ωη f(η),

ω ∈ S ∈ ΠE with some system [a(S) : S ∈ Π] of matrices a(S) = [a
(S)
ωη ]ω,η∈S

indexed with the elements of Ω and we have {f |S : ‖f‖ ≤ 1} = {ϕ ∈ C(S) :∑
ω∈S |ϕ(ω)|2 ≤ 1} for any partition member S ∈ Π. Hence, generalizing the

Banach–Stone theorem, we obtain matrix descriptions for surjective isometries

E(Ω, ‖.‖) → E(Ω̃, ‖.‖∼). We apply this result to show that unlike in the

classical case of spectral norms, the linear isometric equivalence of the spaces

E(Ω, ‖.‖) and E(Ω̃, ‖.‖∼) does not imply the existence of a positive surjective

linear isometry in general, disproving a conjecture on Sunada type theorems

for generalized Reinhardt domains.

1. Introduction

Given two locally compact topological Hausdorff spaces Ω and Ω̃, the classical

Banach–Stone theorem asserts that any surjective isometry U : C0(Ω̃) → C0(Ω) with
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194 L.L. STACHÓ

respect to the spectral norms ‖f‖∞ = max |f | has the form Uf(ω) = u(ω)f(Tω),

f ∈ C0(Ω), ω ∈ Ω with some bijection T : Ω ↔ Ω̃ and a function u: Ω → C with

|u| = 1. Our aim in this paper is to achieve an analogous description if we replace

spectral norms with arbitrary Banach lattice norms with respect to the natural

pointwise ordering of the functions. We conclude the following main results.

Theorem 1.1. Given a complex lattice norm ‖.‖ on C0(Ω), there is a (unique)

finest partition Π of the space Ω into pairwise disjoint finite subsets such that the

restrictions of any ‖.‖-Hermitian operator A: C0(Ω) → C0(Ω) have the form

(1.2) Af |S = a
A(S)f |S, f ∈ C0(Ω), S ∈ Π

with a (unique) family of linear maps a
A(S): C(S) → C(S). Given any partition

member S ∈ Π, there exists a (unique) inner product 〈.|.〉S on the finite-dimensional

function space C(S) such that

(1.3) {f |S : ‖f‖ ≤ 1} = {ϕ ∈ C(S) : 〈ϕ|ϕ〉S ≤ 1}, S ∈ Π.

Theorem 1.4. Let U : C0(Ω̃) → C0(Ω) be a surjective linear isometry with respect

to two complex Banach lattice norms ‖.‖∼ and ‖.‖. Write Π, [〈.|.〉S : S ∈ Π]

and Π̃, [〈.|.〉∼
Z : Z ∈ Π̃] for the respective partitions and families of inner products

associated with these norms by Theorem 1.1. Then there exists a bijection T : Π ↔ Π̃

along with a family [u(S) : S ∈ Π] of surjective linear 〈.|.〉∼
T (S) → 〈.|.〉S unitary

operators u(S): C(T (S)) → C(S) such that the sets S and T (S) have always the

same cardinalities and

(1.5) Uf̃ |S = u(S)f̃ |T (S), f̃ ∈ C0(Ω̃), S ∈ Π.

In the course of the proofs we achieve a more detailed description of the

partition Π and the inner products 〈.|.〉S in terms of some geometrical data of the

unit ball of the norm ‖.‖. In several steps we follow a remarkably similar pattern

to some arguments appearing also in [1], [2], [5], [6], [8] and [11]. A heuristical

reason for this fact is that Theorems 1.1 and 1.4 can be formulated in terms of the

atomic part of the dual lattice. However, we have to establish that dual Hermitian

operators preserve both atomic and continuous parts which requires new arguments

in Section 3. It seems also (see Remark 4.5) that even earlier results on generalized

orthogonal systems [5], [8], [11] in atomic lattices cannot reduce our treatment

essentially.

Though the issue may have interest for all researchers in Banach space geo-

metry, this paper was originally motivated by problems in infinite-dimensional
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A Banach–Stone type theorem for lattice norms in C0-spaces 195

complex analysis concerning generalized Reinhardt domains. A classical Reinhardt

domain is an open connected subset D in the space C
n of all complex n-tuples,

being invariant under all coordinate multiplications Mλ1,...,λn : (z1, . . . , zn) 7→

(λ1z1, . . . , λnzn) with |λ1|, . . . , |λn| = 1. The Reinhardt domain D ⊂ C
n is said to

be complete if Mλ1,...,λnD ⊂ D whenever |λ1|, . . . , |λn| ≤ 1. Regarding C
n as the

complex ordered space of the functions z: {1, . . . , n} → C, these properties can be

stated as

(1.6) f ∈ D and |g| = |f | ⇒ g ∈ D; (1.7) f ∈ D and |g| ≤ |f | ⇒ g ∈ D.

Observe that we can define Reinhardt domains (resp. complete Reinhardt domains)

in any complex topological vector lattice by requiring D to be an open connected

set satisfying (1.6) (resp. (1.7)) in terms of the order absolute value. In particular a

bounded convex complete Reinhardt domain in a normed complex vector lattice is

the unit ball of some equivalent lattice norm (a norm with |f | ≤ |g| ⇒ ‖f‖ ≤ ‖g‖).

In 1974 Sunada [13], [14] investigated the structure of bounded classical Re-

inhardt domains from the viewpoint of holomorphic equivalence. He established

that holomorphically equivalent bounded Reinhardt domains containing the origin

in C
n admit linear equivalences which preserve the positive cone R

n
+. In the light

of later developments, holomorphic equivalence is nothing more than linear equi-

valence in the category of bounded convex Reinhardt domains in Banach lattices.

Indeed, since 1976 we know [9], [3], [15] that holomorphically equivalent bounded

circular domains in Banach spaces are linearly isomorphic. Sunada’s Lie algeb-

raic methods were peculiar to finite dimensions. Motivated by this fact, several

concepts of infinite-dimensional Reinhardt domains appeared soon. The results

ranged in contexts of various sequence spaces, separable Banach spaces with un-

conditional basis and atomic Banach lattices [5], [8], [11], [16], [2], [1] with the

common features that they entailed positive linear equivalence from holomorphic

equivalence as a consequence of a direct decomposability of the underlying space

to so-called Hilbert components. In 2003, inspired by an interesting work of Vigué

[17] on the possible lack of symmetry of continuous products of discs with diffe-

rent radius, in [12] we introduced the concept of continuous Reinhardt domains

(CRD for short). By definition, CRDs are Reinhardt domains in the sense (1.6)

with the natural ordering in a space of the type C0(Ω) or which is the same, in

a commutative C*-algebra. It seems, so far only symmetric complete CRDs were

intensively investigated. In [12] we achieved a rather precise description for them

by showing they are some topological mixture of finite-dimensional Euclidean balls,

essentially more involved than direct sums of topological products of balls. Namely

a symmetric complete CRD in C0(Ω) with locally compact Ω is the unit ball of a

norm ‖f‖ = supS∈Π

∑
ω∈Sm(ω)|f(ω)|2 with some partition Π of Ω and a weight
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196 L.L. STACHÓ

function m: Ω → R+ such that supS∈Π #S < ∞ and 0 < infm, supm < ∞. Later

on [7] matrix representations were found for the linear isomorphisms between two

symmetric CRDs. To prove these results, we intensively used the Jordan theory

of the bidual embedding of symmetric domains. However, the main points of both

Sunada’s and Vigué’s papers concern the non-symmetric case which we settle in

Theorems 1.1 and 1.4 with completely different tools. We finish the paper by sho-

wing that the matrix form for linear isomorphisms of CRDs given by Theorem

1.4 leads to a disproof of the seemingly plausible continuous analog of Sunada’s

theorem.

Theorem 1.8. There are linearly isomorphic bounded CRDs without admitting a

linear isomorphism which maps real valued functions to real valued functions.

The construction with Möbius twist, a continuation of [7, Example 2.10],

sheds light to possible connections between combinatorial topology and CRDs.

2. Notations, preliminaries

Throughout this work, let Ω be an arbitrarily fixed locally compact topological

Hausdorff space. As usually, R and C are the fields of all real resp. complex

numbers and C0(Ω), Cb(Ω) and B(Ω) will denote the complex Banach spaces of

all continuous functions vanishing at infinity resp. all bounded continuous resp.

all bounded Borel-measurable functions Ω → C equipped with the spectral norm

‖f‖∞ := sup |f |. We keep fixed the notations ‖.‖ and D for another complex

Banach lattice norm on C0(Ω) and its open unit ball

D := {f ∈ C0(Ω) : ‖f‖ < 1},

respectively. According to [10, Cor. 4 of Thm. 5.3] the norm ‖.‖ is necessarily

equivalent to ‖.‖∞. Therefore D is a bounded open convex set in C0(Ω) with the

CRD-property (1.7). Conversely, given any convex complete CRD in C0(Ω), its

gauge function is a Banach lattice norm on C0(Ω). Moreover, it is worth noticing

that the convex hull of an open set in C0(Ω) satisfying only (1.6), is necessarily

a complete CRD satisfying (1.7) as well.∗ Since the norms ‖.‖ and ‖.‖∞ are equ-

∗ Proof. Assume C ⊂ C0(Ω) is an open convex set satisfying (1.6) and let f, g ∈

C0(Ω) with f ∈ C and |g| ≤ |f |. For k = 1, 2 define fk := Tk(f, g) where

T1, T2: {(ζ1, ζ2) ∈ C
2 : |ζ1| ≥ |ζ2|} → C are the continuous transformations Tk(ζ1, ζ2) :=

ζ2 + (−1)ki[ζ2/|ζ1|]
√

|ζ1|2 − |ζ2|2 for (ζ1, ζ2) 6= (0, 0) and Tk(0, 0) := 0. Then we have

f1, f2 ∈ C0(Ω) and |f1| = |f2| = |f |. Property (1.6) of C implies f1, f2 ∈ C. On the other

hand g = 1
2f1 + 1

2f2 ∈ 1
2C + 1

2C = C.
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A Banach–Stone type theorem for lattice norms in C0-spaces 197

ivalent, their continuous linear functionals coincide and the common dual space

admits the Riesz-Kakutani representation

C0(Ω)′ = dM(Ω) = {dµ : µ ∈ M(Ω)}, dµ: C0(Ω) ∋ f 7→
∫
f dµ

where M(Ω) denotes the family of all complex Radon measures with bounded total

variation on Ω. For any Borel set S ⊂ Ω we let M(S) := {µ ∈ M(Ω) : µ(U) =

0 for U Borel ⊂ Ω \ S}. In the sequel we shall use the notations

‖dµ‖∗ := sup
f∈D

|
∫
f dµ|, µ ∈ M(Ω) and D∗ := {dµ : µ ∈ M(Ω), ‖dµ‖∗ < 1}

for the dual norm of ‖.‖ and its open unit ball, respectively. To simplify formulas,

in later calculations we shall write
∫
fLdµ instead of the operator form [Ldµ]f

whenever L is any self-mapping of dM(Ω). Furthermore we write φ instead of Mφ.

With these conventions we have the handsome formal identity [φ dµ]f =
∫
fφ dµ

for any f ∈ C0(Ω). Given a bounded linear functional Φ on C0(Ω), we introduce

the formal notations
∫
S

Φ and supp(Φ) for the value µ(S)(=
∫
S
dµ) respectively

the support of the unique measure µ ∈ M(Ω) satisfying Φ = dµ. Observe that ω ∈

supp(Φ) if and only if for every neighborhood U of the point ω there is a function

f ∈ C0(Ω) vanishing outside U and such that Φ(f) 6= 0. In particular supp(gΦ) =

supp(g) ∩ supp(Φ) if g ∈ Cb(Ω) where supp(g) := closure{ω : g(ω) 6= 0}. We shall

denote with δω the measure with unit mass supported on {ω} and 1S stands for the

indicator function of a Borel subset S in Ω (that is
∫
f dδω = f(ω) for f ∈ B(Ω)

and 1S(η) = [1 if η ∈ S, 0 else]). Notice that 1{ω}Φ = M1{ω}
Φ = (

∫
{ω} Φ) dδω for

any Φ ∈ C0(Ω)′. For later use we remark the following.

Lemma 2.1. Assume F is a subspace in C0(Ω)′ such that fF ⊂ F , f ∈ C0(Ω).

We have dim(F ) ≥ n if and only if there are functionals 0 6= Φ1, . . . ,Φn ∈ F with

pairwise disjoint support. If dim(F ) < ∞ then F = dM(S) for some set S ⊂ Ω

with #S = dim(F ).

Proof. Define S :=
⋃

Φ∈F supp(Φ) and consider a sequence ω1, . . . , ωm ∈ S. There

are open sets U1, . . . , Um ⊂ Ω with pairwise disjoint closures such that ωk ∈ Uk.

We can choose Ψ1, . . . ,Ψm ∈ F and g1, . . . , gm ∈ C0(Ω) with ωk ∈ supp(Ψk),

gk(Ω \ Uk) = 0 and
∫
gkΨk = Ψk(gk) 6= 0. Then the functionals Φk := gkΨk

have pairwise disjoint supports and hence they are are linearly independent. Thus

dim(F ) ≥ #S ≥ sup{m : ∃Φ1, . . . ,Φm ∈ F \{0} supp(Φk)∩supp(Φℓ) = ∅ (k 6= ℓ)}.

Suppose #S < ∞. By choosing m to be maximal with S = {ω1, . . . , ωm}, we see

that F ⊂ {Φ : supp(Φ) ⊂ S} = dM(S) =
∑m
k=1 Cdδk.
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198 L.L. STACHÓ

Finally we recall the concept of Hermitian operators in Banach spaces. Fol-

lowing the terminology established in [1], given a bounded domain G in a Ba-

nach space E, we say that a continuous linear map A:E → E is G-Hermitian

if exp(itA)G = G for all t ∈ R. We shall write Her(G) for the family of all G-

Hermitian operators. Though this notation does not contain any explicit hint to

the space E and the underlying norm, the domain G itself determines E up to

norm equivalence unambiguously.

3. Hermitian operators in the dual space

Lemma 3.1. Let L ∈ Her(D∗), ω ∈ Ω and f : Ω → R be a bounded Borel function

such that f(ω) = 0. Then the operator L̃ := fL1{ω} + 1{ω}Lf is D∗-Hermitian.

We have L̃ = 0 if fLdδω = 0. Otherwise the constant λ :=
∫

{ω} Lf
2Ldδω is strictly

positive and

exp(itL̃) dδω = cos(λ1/2t)dδω + iλ−1/2 sin(λ1/2t)fLdδω, t ∈ R.

Proof. The multiplication operators with the bounded real valued Borel functions

f and 1{ω} are D∗-Hermitian. The commutator of two D∗-Hermitian operators

is i-times a D∗-Hermitian operator and hence L̃ = −[f, [1{ω}, L]] ∈ Her(D∗). By

writing δ̃ for the unique measure with dδ̃ = fLdδω, direct calculation yields that

L̃dδω = dδ̃ and L̃dδ̃ = λdδω. In particular the two-dimensional subspace spanned

by {dδω,dδ̃} is L̃-invariant and for all t ∈ R we have

exp(itL̃)dδω =

{
dδω + itdδ̃ if λ = 0,

cos(λ1/2t)dδω + iλ−1/2 sin(λ1/2t)dδ̃ if λ 6= 0.

Since L̃ ∈ Her(D∗), the orbit {exp(itL̃)dδ : t ∈ R} must be bounded. This is

possible only if λ = 0 and fLdδω = dδ̃ = 0 or if λ > 0.

Corollary 3.2. Given a D∗-Hermitian operator L and a point ω ∈ Ω, we have

‖gLdδω‖2
∗ = 〈g|g〉(L,ω), g ∈ B(Ω)

in terms of the sesquilinear form 〈g|h〉(L,ω) :=
∫

{ω} LghLdδω ‖dδω‖2
∗ on B(Ω).
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A Banach–Stone type theorem for lattice norms in C0-spaces 199

Proof. For short, write 〈.|.〉 instead of 〈.|.〉(L,ω). Consider any function g ∈ B(Ω)

and define f := 1Ω\{ω}g. Thus g = g(ω)1{ω} + f and

(3.3) gLdδω = αdδω + fLdδω where α := g(ω)
∫

{ω} Ldδω.

According to [12], multiplication operators with Borel functions of module 1 are

‖.‖∗-isometries. In particular ‖gLdδω‖∗ = ‖|g|Ldδω‖∗. Thus we may assume

without loss of generality g = |g| ≥ 0 and f ≥ 0. Furthermore α ∈ R in

(3.3) for the following reason. The functional 0 6= ∆ω:dµ 7→
∫

{ω} dµ = µ{ω}

supports the unit ball D∗ of the norm ‖.‖∗ at the point dδ0ω := ‖dδω‖−1
∗ dδω

(that is ‖dδ0ω‖∗ = 1 and ∆ω(dδ0ω) = sup‖dµ‖∗≤1 |∆ω(dµ)| = ‖dδω‖−1
∗ ). Since

L ∈ Her(D∗), the numerical range characterization [4] of Hermitian operators

establishes
∫

{ω} Ldδω = ∆ω(Ldδω) ∈ R. Then we can apply Lemma 3.1 with

λ := 〈f |f〉‖dω‖−2
∗ =

∫
{ω} Lf

2Ldδω. We have the only alternatives λ > 0 or λ = 0.

If λ > 0 then, with the choice t := 1√
λ
arcos α√

λ+α2
, Lemma 3.1 implies

exp(itL̃)dδω = α[λ+ α2]−1/2
dδω + iλ−1/2λ1/2[λ+ α2]−1/2fLdδω. It follows

‖gLdδω‖2
∗ = ‖αdδω + fLdδω‖2

∗ = ‖αdδω + ifLdδω‖2
∗ = [λ+ α2]‖dδω‖2

∗.

If λ = 0 then fLdδω = 0 and gLdδω = αdδω. Thus in both cases we have

‖gLdδω‖2
∗ = [λ+ α2]‖dδω‖2

∗ = 〈f |f〉 + g(ω)2[
∫

{ω}fLdδω]2‖dδω‖2
∗.

Since g = g(ω)1{ω} + f and 1{ω}f = 0, 〈g|g〉 = g(ω)2〈1{ω}|1{ω}〉+ 〈f |f〉. Hence we

complete the proof with the observation

〈1{ω}|1{ω}〉 = ‖dδω‖2
∗
∫

{ω} L1{ω}Ldδω = ‖dδω‖2
∗
∫

{ω} L[
∫

{ω} Ldδω]dδω =

= ‖dδω‖2
∗[

∫
{ω} Ldδω]2.

Recall that the unit ball D of the norm ‖.‖ is a bounded open neighborhood

of the origin with respect to the natural maximum-norm ‖.‖∞ in C0(Ω). Therefore

we can fix a natural number ND such that

(3.4) N−1
D ‖.‖∞ ≤ ‖.‖ ≤ ND‖.‖∞.

Lemma 3.5. Given a D∗-Hermitian operator L and a point ω ∈ Ω, the support of

the measure µ ∈ M(Ω) with dµ = Ldδω consists of at most N4
D points.
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200 L.L. STACHÓ

Proof. Define F := {fLdδω : f ∈ C0(Ω)} and consider a sequence Φk := fkLdδω,

k = 1, . . . , n with functionals of pairwise disjoint non-empty support and such that

‖Φk‖∗ = 1. In view of Lemma 2.1, we have to see only that n ≤ N4
D. Observe that

the family {f1, . . . , fn} is orthonormed with respect to the sesquilinear form 〈.|.〉 :=

〈.|.〉(L,ω). Indeed, if k 6= ℓ we have supp(fkfℓLdδω) = supp(fkfℓ) ∩ supp(Ldδω) ⊂⋂
j=k,ℓ supp(fj) ∩ supp(Ldδω) =

⋂
j=k,ℓ supp(Φj) = ∅ entailing fkfℓLdδω = 0

and 〈fk|fℓ〉 =
∫

{ω} LfkfℓLdδω = 0. Also, for any index, 〈fk|fk〉 = ‖Φk‖
2
∗ = 1.

Therefore, for the functional Φ :=
∑n
k=1 Φk we have ‖Φ‖∗ = 〈Φ|Φ〉1/2 = n1/2. On

the other hand, the disjointness of the sets supp(Φk) implies that the total variation

norms ‖Φk‖1 sum up in the sense that ‖Φ‖1 =
∑n
k=1 ‖Φk‖1. Furthermore from

(3.4) it follows N−1
D ‖.‖1 ≤ ‖.‖∗ ≤ ND‖.‖1. Hence we get the conclusion n ≤ N4

D

from the estimates

n1/2 = ‖Φ‖∗ ≥ N−1
D ‖Φ‖1 = N−1

D

∑n
k=1 ‖Φk‖1 ≥ N−2

D

∑n
k=1 ‖φk‖∗ = nN−2

D .

Recall that Radon measures with finite total variation admit a unique de-

composition into atomic and continuous part. That is M(Ω) = Mat(Ω) ⊕ Mc(Ω)

where Mat(Ω) := {
∑∞
n=1 αnδωn :

∑
n |αn| < ∞, ω1, ω2, . . . ∈ Ω} and Mc(Ω) :=

{µ ∈ M(Ω) : µ{ω} = 0 ∀ ω ∈ Ω}. For any µ ∈ M(Ω), the set At(µ) :=

{ω ∈ Ω : µ{ω} 6= 0} is countable with
∑
ω∈At(µ) |µ{ω}| < ∞ and the measure

µat :=
∑
ω∈At(µ) µ{ω}δω is the unique element ν ∈ Mat(Ω) with µ− ν ∈ Mc(Ω).

Theorem 3.6. Any D∗-Hermitian operator L preserves the subspaces dMat(Ω) and

dMc(Ω) of C0(Ω)′.

Proof. Assume L ∈ Her(D∗). The relation LdMat(Ω) ⊂ dMat(Ω) is established

by Lemma 3.5. Let µ ∈ Mc(Ω) and suppose indirectly that Ldµ 6∈ dMc(Ω).

Then
∫

{ω} Ldµ 6= 0 for some point ω ∈ Ω. By Lemma 3.5 we can write Ldδω =∑n
k=1 αkdδωk

with suitable finite systems {α1, . . . , αn} ⊂ C and {ω1, . . . , ωn} ⊂ Ω

such that ω1 = ω and αk 6= 0, 1 ≤ k ≤ n. Define

S := Ω \ {ω1, . . . , ωn}, L̃ := 1SL1{ω} + 1{ω}L1SL.

Then L̃ ∈ Her(D∗). Furthermore 1{ω}dµ = 0, 1Sdµ = dµ, 1Sdδωk
= 0 and

L̃dµ = 1SL(1{ω}dµ) + 1{ω}L(1Sdµ) =
∑n
k=1 αk1{ω}dδωk

= α1dδω 6= 0 ,

L̃2
dµ = α1L̃dδω = α11SLdδω = α1

∑n
k=1 αk1Sdδωk

= 0 .

Thus exp(itL̃)dµ = dµ+ itα1dδω, t ∈ R which contradicts the ‖.‖∗-isometry of the

operators exp(itL̃), t ∈ R.
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A Banach–Stone type theorem for lattice norms in C0-spaces 201

Lemma 3.7. Given any operator L ∈ Her(D∗), the matrix

(3.8) a(L) = [a(L)
ηω ]η,ω∈Ω , a

(L)
ηω :=

∫
{η} Ldδω

indexed with the points of the space Ω has at most N4
D non-zero entries in every

column [a
(L)
ηω ]η∈Ω respectively every row [a

(L)
ηω ]ω∈Ω. Furthermore a(L) is self-adjoint

with respect to the inner product

(3.9) 〈ϕ|ψ〉 :=
∑
ω∈Ωm(ω)ϕ(ω)ψ(ω) , m(ω) = ‖dδω‖2

∗

defined on F(Ω) := {functions Ω → C with finite support} in the sense that

〈a(L)ϕ|ψ〉 = 〈ϕ|a(L)ψ〉 with the identification a(L)ϕ ≡
[
η 7→

∑
ω a

(L)
ηω ϕ(ω)

]
.

Proof. We know already that, given any point ω ∈ Ω, #supp(Ldδω) ≤ N4
D and

a
(L)
ηω = 0 for η 6∈ supp(Ldδω) and Ldδω =

∑
η∈Ω a

(L)
ηω dδη.

In particular #{η : a
(L)
ηω 6= 0} ≤ N4

D. It follows also L
∑
ω∈Ω ϕ(ω)dδω =∑

η∈Ω[
∑
ω∈Ω ϕ(ω)]dδη =

∑
η∈Ω[a(L)ϕ](η)dδη, ϕ ∈ F(Ω). Thus an application

of Corollary 3.2 with the indicator function f := 1{η} yields ‖1{η}Ldδω‖2
∗ =∫

{ω} L1{η}Ldδω‖dδω‖2
∗. That is |a

(L)
ηω |2‖dδη‖

2
∗ =

∫
{ω} La

(L)
ηω dδη‖dδω‖2

∗ or equ-

ivalently |a
(L)
ηω |2m(η) = a

(L)
ηω a

(L)
ωη m(ω). With the change ω ↔ η we get also

|a
(L)
ωη |2m(ω) = a

(L)
ωη a

(L)
ηω m(η). Therefore

(3.10) a
(L)
ηω m(η) = a(L)

ωη m(ω), η, ω ∈ Ω.

From (3.10) it immediately follows that #{ω : a
(L)
ηω 6= 0} ≤ N4

D and the matrix

a(L) is 〈.|.〉-selfadjoint.

Remark 3.11. By the Alaoglu-Bourbaki theorem, the unit ballD∗ of the dual norm

‖.‖∗ is weak*-compact in C0(Ω)′ = dM(Ω). We have not applied this property

during the considerations in Section 3. Therefore the statements in 3.1–3.10 hold

when ‖.‖∗ denotes any lattice norm on dM(Ω) with respect to the natural ordering

and D∗ is the unit ball of ‖.‖∗. By [10, Cor. 4 of Thm. 5.3], the norm ‖.‖∗ is

necessarily equivalent to ‖.‖1 even in this more general setting and the constant

ND in (3.4) can be replaced with some N without reference to a ball in the predual.
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4. Proof of Theorems 1.1 and 1.4

Definition 4.1. We are now in a position of being able to specify the main objects

Π and [〈.|.〉S : S ∈ Π] in Theorems 1.1 and 1.4. Henceforth let

Π := {Ωω : ω ∈ Ω} where Ωω := {η ∈ Ω : ∃A ∈ Her(D) 1{η}A
∗
dδω 6= 0},

m(ω) := ‖dδω‖2
∗ for ω ∈ Ω,

〈ϕ|ψ〉S :=
∑

ω∈S
m(ω)ϕ(ω)ψ(ω) for S finite ⊂ Ω and ϕ,ψ ∈ C(S).

Lemma 4.2. Let Z ⊂ Ω be a finite set. Then given any complex matrix [aηω]η,ω∈Z
with the symmetry property (3.10) and such that aηω = 0 whenever η 6= ω 6∈ Ωω,

there exists an operator A ∈ Her(D) such that A∗
dδω =

∑
η∈Z aηωdδη, ω ∈ Z.

Proof. Let Z = {ω1, . . . , ωN} and W := {(ωk, ωℓ) : k < ℓ, ωk ∈ Ωωℓ
}. For any co-

uple (η, ω) ∈ W choose an operator Bηω ∈ Her(D) such that βηω :=
∫

{η}B
∗
ηωdδω 6=

0. Define Ẑ := Z ∪
⋃

(η,ω)∈W
⋃
ζ∈Z suppB∗

ηωdδζ . The set Ẑ is finite by Lemma

3.5. Therefore, for any point ζ ∈ Z we can fix a bounded continuous function

fζ : Ω → R such that fζ(ζ) = 1 and f(Ẑ \ {ζ}) = 0. Observe that the operator

Cζ of the multiplication with fζ on C0(Ω) belongs to Her(D) its adjoint C∗
ζ is

the multiplication with fζ on C0(Ω)′ belonging to Her(D∗). It is also well-known

that iHer(D) with the usual commutator product is a Lie subalgebra in L(C0(Ω)).

Consider the operators

Aηω := −[Cη, [Cω, Bηω]], Ãηω := i[Cη, Aηω] for (η, ω) ∈ W.

Furthermore write Aωω := Cω, ω ∈ Z. Then all of them are D-Hermitian and

direct calculation shows the following relations: A∗
ωωdδω = dδω, A∗

ωωdδζ = 0

if ζ ∈ Z \ {ω} and, for all (η, ω) ∈ W , A∗
ηωdδζ = 0 if ζ ∈ Z \ {η, ω} and

A∗
ηωdδω = βηωdδη. By Lemma 3.7, the matrix of the operator A∗

ηω satisfies (3.10).

Therefore A∗
ηωdδη = m(η)m(ω)−1βηωdδω 6= 0. Hence we get Ã∗

ηωdδζ = 0 for

ζ ∈ Z \ {η, ω}, Ã∗
ηωdδω = iβηωdδη and A∗

ηωdδη = −im(η)m(ω)−1βηωdδη. We

complete the proof with the observation that the real linear combination A :=∑
ω∈Z αωAωω +

∑
(η,ω)∈W (αηωAηω + α̃ηωÃηω) satisfying the relations αω = aωω

and (αηω + iα̃ηω)βηω = aηω, suits the requirements of the lemma.
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Proposition 4.3. The family Π is a partition of Ω into sets of ≤ N4
D elements

with a constant ND satisfying (3.4). The subspaces dM(S) :=
∑
η∈S Cdδη, S ∈ Π

of C0(Ω)′ are the minimal finite-dimensional subspaces of C0(Ω)′ being invariant

under the operators in Her∗(D) := {A∗ : A ∈ Her(D)} and we have

(4.4)
∥∥∥
∑
η∈S ϕ(η)dδη

∥∥∥
2

∗
= 〈ϕ|ϕ〉S , S ∈ Π, ϕ ∈ C(S).

Proof. The space dMat(Ω) is an atomic Banach lattice when equipped with the

norm ‖.‖∗. In [11] we have shown an analogous result on general atomic Banach

lattices which can be applied if we replace the sets Ωω with the adjacency classes

Ω̂ω := {η ∈ Ω : ω ∼ η} of the relation ω ∼ η :⇔ ∃ L ∈ Her(Dat
∗ ) 1{η}Ldδω 6= 0

where Dat
∗ := D∗ ∩ dMat(Ω). Hence the family Π̂ := {Ω̂ω : ω ∈ Ω} is a partition

of Ω and each subspace dMat(Ω̂ω) is a Hilbert space with orthogonal basis {dδη :

η ∈ Ω̂ω}. According to Theorem 3.6, the restriction of each D∗-Hermitian operator

to dMat(Ω) is Dat
∗ -Hermitian. Therefore we have Ωω ⊂ Ω̂ω, ω ∈ Ω and (4.4) holds.

Thus, taking into account Lemma 2.1, it remains to prove only that each set Ωω
consists of at most N4

D points and the relation ω ≈ η :⇔ η ∈ Ωω (⇔ ∃ A ∈

Her(D) 1{η}A
∗1{η}dδω 6= 0) is an equivalence.

In terms of supports of measures, we have Ωω =
⋃
A∈Her(D) supp(A∗

dδω).

According to Lemma 3.5, the sets supp(A∗
dδω) consist of at most N4

D elements for

any operator A ∈ Her(D) and each point ω ∈ Ω. Since real linear combinations

of D-Hermitian operators are D-Hermitian, it is just elementary linear algebra to

conclude hence that also #Ωω ≤ N4
D and there exists Aω ∈ Her(D) such that

Ωω = supp(A∗
ωdδω).

The symmetry and reflexivity of ≈ is immediate from Lemma 4.2. To establish

its transitivity, assume ω ≈ η ≈ ξ for three distinct points in Ω. Applying Lemma

4.2 with the set Z := {ω, η, ξ}, we can find a couple of operators A,B ∈ Her(D)

such that A∗:dδω 7→ dδη 7→ m(η)m(ω)−1
dδω, dδξ 7→ 0 and B∗:dδη 7→ dδξ 7→

m(ξ)m(η)−1
dδη, dδω 7→ 0. By setting C := −i[A,B], it follows C ∈ Her(D) and

C∗
dδω = idδξ 6= 0 entailing ω ≈ ξ.

Remark 4.5. 1) As soon as we know that the set Ωω is finite, by the aid of Corollary

3.2 we can establish (4.3) in a self-contained manner as follows. Let ω ∈ Ω and

a function ϕ ∈ C(Ωω) be arbitrarily given. An application of Lemma 4.2 with

Z := Ωω yields the existence of an operator A ∈ Her(D) such that A∗
dδω =∑

η∈Ωω
dδη and Adδη = m(η)m(ω)−1

dδω for ω 6= η ∈ Ωω. Thus, with the function

f :=
∑
η∈Ωω

ϕ(η)1{η} ∈ B(Ω) we have
∑
η∈Ωω

ϕ(η)dδη = fA∗
dδω. By Corollary

3.2, we get

‖
∑
η∈Ωω

ϕ(η)dδη‖
2
∗ = 〈f |f〉(A

∗,ω) =
∑
η∈Ωω

|ϕ(η)|2〈1{η}|1{η}〉
(A∗,ω).
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By definition, 〈1{η}|1{η}〉
(A∗,ω) =

∫
{ω}A

∗1{η}A
∗
dδω‖dδω‖2

∗. Since m(ω) = ‖dδω‖2
∗

and 1{η}A
∗
dδω = dδη, on the right-hand side above we can write

〈1{η}|1{η}〉
(A∗,ω) =

∫
{ω}A

∗
dδηm(ω) = a

(A∗)
ωη m(ω) = m(η)m(ω)−1m(ω) = m(η).

2) The partition Π may be strictly finer than the partition Π̂ = {Ω̂ω : ω ∈ Ω}

borrowed from [11] in the proof of Proposition 4.2. We mention the following

example without the straightforward but tedious proof. Let D be the unit ball of

the norm ‖f‖ := sup{|f(ω)|, (|f(0)|2 + |f(1)|2)1/2 : 0 < ω < 1} on C[0, 1]. Then

‖dµ‖∗ = (|µ{0}|2 + |µ{1}|2)1/2 + ‖1(0,1)dµ‖1, for any measure µ ∈ M[0, 1]. Thus

Dat
∗ =

{∑∞
n=0 αndδωn : (|α0|

2 + |α1|
2)1/2 +

∑∞
n=2 |αn| < 1, 0 < ω2, ω3, . . . < 1

}

where ω0 := 0 and ω1 := 1. For the corresponding partitions of Ω := [0, 1] we have

Ωω = {ω}, ω ∈ [0, 1] while Ω̂0 = Ω̂1 = {0, 1} and Ω̂ω = {ω} only if 0 < ω < 1.

4.6. End of the proof of Theorem 1.1. Observe that, given a finite subset S

in Ω and an operator A ∈ Her(D), we have Af |S = af |S , f ∈ C0(Ω) with

a suitable linear mapping a: C(S) → C(S) if and only if S =
⋃
ω∈S Ωω and

a1{ω} =
∑
η} a

(A∗)
ηω 1{η}, ω ∈ S. This fact is an immediate consequence of the rela-

tions Af(ω) = [A∗
dδω]f =

[ ∑
η∈Ωω

a
(A∗)
ηω dδη

]
f and [af |S ](ω) =

∑
η∈S f(η)αηω =

[ ∑
η∈S αηωdδη

]
f where αηω := [a1{η}](ω). Therefore, taking into account Propo-

sition 4.3, the partition Π has property (1.2), moreover Π is the only finest partition

satisfying (1.2). The fact that (1.3) holds as well, follows directly from (4.4).

4.7 End of the proof of Theorem 1.4. Let us write D̃ and D for the unit

balls of the norms ‖.‖∼ and ‖.‖, respectively. Observe that, in terms of the

Lie adjoint U#X := U−1XU , X ∈ L(C0(Ω)) of the surjective ‖.‖∼ → ‖.‖

isometry U , we have A ∈ Her(D) if and only if U#A ∈ Her(D̃). Therefore

the operation [U∗]#:Y 7→ [U∗]−1Y U∗ establishes a one-to-one correspondence

Her∗(D̃) ↔ Her∗(D) and the Her∗(D̃)-invariant subspaces of dM(Ω̃) = C0(Ω̃)′

are exactly the U∗-images of the Her∗(D)-invariant subspaces of dM(Ω) = C0(Ω)′.
In particular, since dim(F ) = dim(U∗F ) for any subspace F ⊂ dM(Ω), F̃ is a

minimal finite-dimensional Her∗(D̃)-invariant subspace if and only if F̃ = U∗F for

some minimal finite-dimensional Her∗(D)-invariant subspace. Thus by Proposition

4.3 we have

(4.8) {U∗
dM(S) : S ∈ Π} = {dM(S̃) : S̃ ∈ Π̃}.
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Then the invertibility of the operator U∗ implies the existence of a (unique) bijec-

tion T : Π ↔ Π̃ such that U∗
dM(S) = dM(T (S)), S ∈ Π. Consider any partition

member S ∈ Π and let S̃ := T (S). Clearly #S = dim(M(S)) = dim(U∗M(S)) =

#S̃. Given any point ω ∈ S, U∗
dδω ∈ dM(S̃). Hence, by introducing the S̃ × S-

indexed matrix u(S) := [u
(S)

η̃ω
]
η̃∈S̃,ω∈S with the entries u

(S)

η̃ω
:=

∫
{η̃} U

∗
dδω, we have

Uf̃(ω) = [U∗
dδω]f̃ =

∑

η̃∈S̃

u
(S)

η̃ω
f̃(η̃), f̃ ∈ C0(Ω̃).

Thus (1.5) holds with the linear mapping u(S): C(T (S)) → C(S) defined by

u(S)ϕ̃ :=
[
S ∋ ω 7→

∑
η̃∈S̃ u

(S)

η̃ω
ϕ̃(η̃)

]
for any function ϕ̃:T (S) = S̃ → C. Since U∗

is a ‖.‖∗ → ‖.‖∼
∗ isometry, from (4.4) applied to both of these norms, we see that

the mapping u(S) is a 〈.|.〉∼
T (S) → 〈.|.〉S isometry with respect to the inner pro-

ducts 〈ϕ̃|ψ̃〉∼
T (S) :=

∑
ω̃∈T (S)

[‖dδ
ω̃
‖∼

∗ ]2ϕ̃ψ̃ and 〈ϕ|ψ〉S :=
∑
ω∈S ‖dδω‖2

∗ϕ(ω)ψ(ω),

respectively.

5. A counterexample to continuous Sunada type theorems

Let Ω and Ω̃ be the following compact topological subspaces of C
2:

Ω :=
⋃
k=1,2{ωk,t : 0 ≤ t < 2π} where ω1,t := (1, eit), ω2,t := (−1, eit)

Ω̃ :=
⋃
k=1,2{ω̃k,t : 0 ≤ t < 2π} where ω̃1,t := (eit/2, eit), ω̃2,t := (−eit/2, eit).

Consider the following (symmetric) continuous Reinhardt domains

D := {f ∈ C(Ω) : |f(ω1,t)|
2 + |f(ω2,t)|

2 < 1, 0 ≤ t < 2π},

D̃ := {f̃ ∈ C(Ω̃) : |f̃(ω̃1,t)|
2 + |f̃(ω̃2,t)|

2 < 1, 0 ≤ t < 2π}.

Notice that Ω = {±1} × T is the union of two disjoint circles and can be regarded

as the border of a cylindric band with middle circle {0}×T, while Ω̃ = {(eit/2, eit) :

t ∈ R} is topologically equivalent to a circle and can be regarded as the border of

a Möbius band with the same middle circle {0} × T. Conveniently, we can identify

the spaces C(Ω) and C(Ω̃) with simple subspaces of couples of continuous functions

on the compact interval [0, 2π]. Namely, given ϕ1, ϕ2 ∈ C[0, 2π], with the functions

fϕ1,ϕ2
(ωk,t) := ϕk(t), f̃ϕ1,ϕ2

(ω̃k,t) := ϕk(t), 0 ≤ t < 2π,
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we have C(Ω) = {fϕ1,ϕ2
: ϕ1, ϕ2 ∈ F} and C(Ω̃) = {f̃ϕ1,ϕ2

: (ϕ1, ϕ2) ∈ F̃} where

F := {(ϕ1, ϕ2) ∈ (C[0, 2π])2 : ϕ1(0) = ϕ1(2π), ϕ1(0) = ϕ1(2π)},

F̃ := {(ϕ1, ϕ2) ∈ (C[0, 2π])2 : ϕ1(0) = ϕ2(2π), ϕ2(0) = ϕ1(2π)}.

Hence the mapping

Ũ∗fϕ1,ϕ2
:= f̃cos(t/2)ϕ1(t)+sin(t/2)ϕ2(t),eit/2[− sin(t/2)ϕ1(t)+cos(t/2)ϕ2(t)], f ∈ F ,

is a linear isomorphism C(Ω) ↔ C(Ω̃) and U∗D = D̃.

5.1 Proof of Theorem 1.8. There is no linear isomorphism W∗: C(Ω) ↔ C(Ω̃) such

that W∗D = D̃ and W∗Re C(Ω) = Re C(Ω̃).

Proof. Given a discrete complex measure µ :=
∑∞
n=1(anδω1,tn

+bnδω1,tn
) on Ω, we

have |
∫
f dµ| < 1 for all f ∈ D if and only if

∑∞
n=1(|an|

2 + |bn|
2)1/2 ≤ 1. Hence,

with the notation of the previous section, ΠD = {{ω1,t, ω2,t} : 0 ≤ t < 2π} for

the partition associated with the domain D. Similarly, Π
D̃

= {{ω̃1,t, ω̃2,t} : 0 ≤

t < 2π}. Suppose indirectly that W∗: C(Ω) ↔ C(Ω̃) is a linear isomorphism with

W∗D = D̃ and W∗Re C(Ω) = Re C(Ω̃). By Theorem 4.8 (applied with the weight

functions m = 1Ω and m̃ = 1
Ω̃
), the operator W∗ must have the form

W∗f(ω̃1,t) = w11(t)f(T ω̃1,t) + w12(t)f(T ω̃2,t),

W∗f(ω̃2,t) = w21(t)f(T ω̃1,t) + w22(t)f(T ω̃2,t), 0 ≤ t < 2π, f ∈ C(Ω),

where
(
w11w12

w21w22

)
is a unitary matrix for any t ∈ [0, 2π) and T : Ω̃ ↔ Ω is a mapping

with the effect {{T ω̃1,t, T ω̃2,t} : 0 ≤ t < 2π} = {T (S̃) : S̃ ∈ Π
D̃

} = ΠD =

{{ω1, ω2} : 0 ≤ t < 2π}. We can write without loss of generality T ω̃k,t = ωk,T#(t),

k = 1, 2, 0 ≤ t < 2π with a suitable permutation T#: [0, 2π) ↔ [0, 2π). Thus given

any couple (ϕ1, ϕ2) ∈ F , we have

W∗fϕ1,ϕ2
= f̃ψ1,ψ2

for some (ψ1, ψ2) ∈ F̃ with ψk(t) =
∑2
ℓ=1 wkℓ(t)ϕℓ(T#(t))

if k = 1, 2 and 0 ≤ t < 2π. The assumption W∗Re C(Ω) = Re C(Ω̃) means

that the functions ψ1, ψ2 are real valued whenever ϕ1, ϕ2 are real valued in the

above formula. By considering the particular cases (ϕ
(1)
1 , ϕ

(1)
2 ) := (1Ω, 0) and

(ϕ
(2)
1 , ϕ

(2)
2 ) := (0, 1Ω) we see that there are continuous functions ψkℓ: [0, 2π] → R

such that

ψkℓ(t) = wkℓ(t), 0 ≤ t < 2π, k, ℓ = 1, 2; (ψ11, ψ21), (ψ12, ψ22) ∈ F̃ .

Acta Sci. Math. (Szeged),73:1−2(2007)
All rights reserved c© Bolyai Institute, University of Szeged

All rights reserved © Bolyai Institute, University of Szeged



A Banach–Stone type theorem for lattice norms in C0-spaces 207

This is impossible for the following reasons. The matrices (ψkℓ(t))
2
k,ℓ=1, 0 ≤ t ≤ 2π

are orthogonal with real entries. Thus necessarily

ψ21(t) = ε(t)ψ12(t), ψ22(t) = −ε(t)ψ11(t), ψ11(t)
2 + ψ12(t)

2 = 1, 0 ≤ t ≤ 2π,

for some function ε: [0, 2π] → {±1}. The connectedness of the interval [0, 2π] along

with the continuity of the functions ψkℓ entails that actually ε(t) ≡ const, say

ε(t) ≡ ε0. However, since (ψ11, ψ21), (ψ12, ψ22) ∈ F̃ , we also have the boundary

conditions

ψ11(0) = ψ21(2π), ψ21(0) = ψ11(2π), ψ12(0) = ψ22(2π), ψ22(0) = ψ12(2π).

Hence ψ11(0) = ψ21(2π) = ε0ψ12(2π) = ε0ψ22(0). On the other hand, ψ11(0) =

−ε0ψ22(0). Thus necessarily ψ22 = ψ22(0) = 0. Similarly, ψ21(0) = ψ11(2π) =

−ε0ψ22(2π) = −ε0ψ12(0) and ψ21(0) = ε0ψ12 implying ψ21(0) = ψ12(0) = 0.

These conclusions contradict the fact that (ψkℓ(0))2k,ℓ=1 6= 0.
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