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A complex Banach spaceA together with a continuous triple productA3 3 (a, b, c) 7→ {abc} ∈
A is called aJB∗-triple if it satisfies the following conditions (i)–(iv): (i){abc} is symmetric and
bilinear ina, c and conjugate linear inb; (ii) {xy{abc}}= {{xya}bc}+{ab{xyc}}−{a{yxb}c};
(iii) the operatorx 7→ {aax} is Hermitian with positive spectrum; (iv)‖{aaa}‖ = ‖a‖3. Every
C∗-algebra is aJB∗-triple via {abc} = 1

2(ab∗c + cb∗a). More generally, everyJB∗-algebra with
Jordan product(a, b) 7→ a ◦ b is aJB∗-triple with respect to{abc} = (a ◦ b∗) ◦ c + (b∗ ◦ c) ◦ a−
(a ◦ c) ◦ b∗. A JB∗-triple isometric to a subtriple of aC∗-algebra is called aJC∗-triple. A JB∗-
triple A is said to be prime if forx, y ∈A, Qx,y = 0 impliesx = 0 or y = 0, whereQa,b is defined
asQa,b(x) = {axb}.

This paper is devoted to results concerning the existence of a universal constantK > 0 such that
for any primeJB∗-triple A anda, b ∈ A we have‖Qa,b‖ ≥ K‖a‖ · ‖b‖. For primeJB∗-algebras
representable on a complex Hilbert space, known asJC∗-algebras, an admissible value ofK =

1
20 412 was given for the universal constant, and the problem for a prime exceptionalJB∗-algebra
was left open. The purpose of the present paper is both to sharpen and to extend this result for any
primeJB∗-triples.

The main result of the paper is Theorem 4.3: LetA be a primeJB∗-triple, and leta, b ∈A. Then
‖Qa,b‖ ≥ 1

6‖a‖ · ‖b‖. Further, ifA is (i) aJC∗-triple, then‖Qa,b‖ ≥ 1
4‖a‖ · ‖b‖; (ii) a C∗-algebra,

then‖Qa,b‖ ≥ (
√

2− 1)‖a‖ · ‖b‖.
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