MR1645548 (99j:46085) 46L70 (17C65)

Bunce, L. J. (4-RDNG); Chu, C.-H. [Chu, Cho-Ho] (4-LNDG); Stachó, L. L. (H-SZEG-B); Zalar, B. [Zalar, Borut] (SV-MARCE-BS)

On prime JB***-triples.**

Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 279-290.

A complex Banach space A together with a continuous triple product $A^3 \ni (a, b, c) \mapsto \{abc\} \in A$ is called a JB*-triple if it satisfies the following conditions (i)–(iv): (i) $\{abc\}$ is symmetric and bilinear in a, c and conjugate linear in b; (ii) $\{xy\{abc\}\} = \{\{xya\}bc\} + \{ab\{xyc\}\} - \{a\{yxb\}c\};$ (iii) the operator $x \mapsto \{aax\}$ is Hermitian with positive spectrum; (iv) $\|\{aaa\}\| = \|a\|^3$. Every C^* -algebra is a JB*-triple via $\{abc\} = \frac{1}{2}(ab^*c + cb^*a)$. More generally, every JB*-algebra with Jordan product $(a, b) \mapsto a \circ b$ is a JB*-triple with respect to $\{abc\} = (a \circ b^*) \circ c + (b^* \circ c) \circ a - (a \circ c) \circ b^*$. A JB*-triple isometric to a subtriple of a C^* -algebra is called a JC*-triple. A JB*-triple A is said to be prime if for $x, y \in A$, $Q_{x,y} = 0$ implies x = 0 or y = 0, where $Q_{a,b}$ is defined as $Q_{a,b}(x) = \{axb\}$.

This paper is devoted to results concerning the existence of a universal constant K > 0 such that for any prime JB*-triple A and $a, b \in A$ we have $||Q_{a,b}|| \ge K||a|| \cdot ||b||$. For prime JB*-algebras representable on a complex Hilbert space, known as JC*-algebras, an admissible value of $K = \frac{1}{20412}$ was given for the universal constant, and the problem for a prime exceptional JB*-algebra was left open. The purpose of the present paper is both to sharpen and to extend this result for any prime JB*-triples.

The main result of the paper is Theorem 4.3: Let A be a prime JB*-triple, and let $a, b \in A$. Then $||Q_{a,b}|| \ge \frac{1}{6}||a|| \cdot ||b||$. Further, if A is (i) a JC*-triple, then $||Q_{a,b}|| \ge \frac{1}{4}||a|| \cdot ||b||$; (ii) a C^* -algebra, then $||Q_{a,b}|| \ge (\sqrt{2}-1)||a|| \cdot ||b||$.

Reviewed by Sh. A. Ayupov

© Copyright American Mathematical Society 1999, 2008