MR1416312 (97k:47043) 47D25 (46L05 47A30 47B47)
Stacho, L. L. (H-SZEG-B); Zalar, B. [Zalar, Borut] (SV-MARCE-BS)
On the norm of Jordan elementary operators in standard operator algebras. (English summary)

Let \(\mathcal{A} \) be an associative algebra. Then given \(a, b \in \mathcal{A} \), a basic elementary operator \(M_{a,b}: \mathcal{A} \rightarrow \mathcal{A} \) can be defined by \(M_{a,b}(x) = axb \). An elementary operator is a finite sum \(E = \sum_{i=1}^{n} M_{a_i,b_i} \) of basic ones.

It was proved by Mathieu that in the case of prime C\(^*\)-algebras the norm of a basic elementary operator can not only be estimated but in fact computed precisely. Mathieu also considered the operators \(U_{a,b} = M_{a,b} + M_{b,a} \) and proved that \(\|U_{a,b}\| \geq \frac{2}{3}\|a\| \cdot \|b\| \), where \(U_{a,b} \) act on a prime C\(^*\)-algebra \(\mathcal{A} \) [see M. Mathieu, Bull. Austral. Math. Soc. 42 (1990), no. 1, 115–120; MR1066365 (91k:46079)]. In the present paper, for the case of a standard operator algebra \(\mathcal{A} \) acting on a Hilbert space \(\mathcal{H} \), the authors obtain the estimate \(\|U_{a,b}\| \geq 2(\sqrt{2} - 1)\|a\| \cdot \|b\| \).

A standard operator algebra is a subalgebra of \(\mathcal{B}(\mathcal{H}) \) containing all finite-rank operators, where \(\mathcal{B}(\mathcal{H}) \) consist of all bounded linear operators.

Reviewed by Chun Lan Jiang

© Copyright American Mathematical Society 1997, 2008