

Contents lists available at ScienceDirect

J. Math. Anal. Appl.

www.elsevier.com/locate/jmaa

Norms of certain Jordan elementary operators $\stackrel{\leftrightarrow}{\sim}$

Xiaoli Zhang, Guoxing Ji*

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 15 April 2008 Available online 27 May 2008 Submitted by R. Timoney

Keywords: Jordan elementary operator Norm Numerical range Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . For $A, B \in \mathcal{B}(\mathcal{H})$, the Jordan elementary operator $U_{A,B}$ is defined by $U_{A,B}(X) = AXB + BXA$, $\forall X \in \mathcal{B}(\mathcal{H})$. In this short note, we discuss the norm of $U_{A,B}$. We show that if dim $\mathcal{H} = 2$ and $||U_{A,B}|| = ||A|| ||B||$, then either AB^* or B^*A is 0. We give some examples of Jordan elementary operators $U_{A,B}$ such that $||U_{A,B}|| = ||A|| ||B||$ but $AB^* \neq 0$ and $B^*A \neq 0$, which answer negatively a question posed by M. Boumazgour in [M. Boumazgour, Norm inequalities for sums of two basic elementary operators, J. Math. Anal. Appl. 342 (2008) 386–393].

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a complex Hilbert space and let $B(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . For $A, B \in B(\mathcal{H})$, we define the Jordan elementary operator $U_{A,B}$ on $B(\mathcal{H})$ by

 $U_{A,B}(X) = AXB + BXA \quad \big(\forall X \in \mathcal{B}(\mathcal{H})\big).$

The lower bound of $||U_{A,B}||$ was studied by many authors, see for instance [1,2,4,7]. In [1], it is shown that $||U_{A,B}|| \ge ||A|| ||B||$. This lower bound is the best known result to date. In [2] and in [8], M. Boumazgour get this lower bound. He proved that if $AB^* = B^*A = 0$, then $||U_{A,B}|| = ||A|| ||B||$. Conversely, if $||U_{A,B}|| = ||A|| ||B||$, does it follow that $AB^* = B^*A = 0$? This question was posed by the author in [2, Question 4.3(1)]. In this note, we prove that the converse does not hold in general. On the other hand, M. Boumazgour also considered some additional necessary conditions for $||U_{A,B}||$ to be ||A||||B|| by use of numerical range in [2] (cf. Proposition 2.8). We recall that for $A, B \in \mathcal{B}(\mathcal{H})$, the numerical range $W_B(A^*B)$ of A^*B relative to B is defined to be the set $W_B(A^*B) = \{\lambda \in \mathbb{C}: \text{ there exists } \{x_n\} \subseteq \mathcal{H}, ||x_n|| = 1 \text{ such that } \lim_{n\to\infty} \langle A^*Bx_n, x_n \rangle = \lambda$ and $\lim_{n\to\infty} ||Bx_n|| = ||B||\}$.

It is known that $W_B(A^*B)$ is a closed convex subset of the complex plane \mathbb{C} for each pair $A, B \in \mathcal{B}(\mathcal{H})$. Some exceptional properties are listed in [3]. In [2], M. Boumazgour proved that $0 \in W_B(A^*B) \cup W_A(B^*A)$ if $||U_{A,B}|| = ||A|| ||B||$ for some special pairs A, B and he asked whether this holds for any pairs A, B such that $||U_{A,B}|| = ||A|| ||B||$ (Question 4.3(2) in [2]). We also consider this problem and give some partial results.

2. Main results

Let \mathcal{H} be a Hilbert space. We denote by $N(\mathcal{H})$ and $B_2(\mathcal{H})$ respectively the algebras of nuclear (trace-class) operators and Hilbert–Schmidt operators on \mathcal{H} . The nuclear (respectively Hilbert–Schmidt) norm of a nuclear (respectively Hilbert–

* Corresponding author.

^{*} This research was supported by the National Natural Science Foundation of China (No. 10571114) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2005A1).

E-mail address: gxji@snnu.edu.cn (G. Ji).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\,\, @$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2008.05.067

Schmidt) operator T will be denoted by $||T||_N$ (respectively $s_2(T)$). Recall that for a nuclear (respectively Hilbert–Schmidt) operator T, we have $||T||_N = \sum_i \sigma_i(T)$ (respectively $s_2(T) = (\sum_i \sigma_i^2(T))^{1/2}$), where $\sigma_i(T)$ denotes the sequence of singular values of T. We refer readers to see [1] for details.

We firstly consider two dimensional Hilbert space case, that is $\mathcal{H} = \mathbb{C}^2$. We identify $\mathcal{B}(\mathcal{H})$ with 2 × 2 complex matrices M_2 . The idea of the following proof comes from [1].

Theorem 1. Suppose dim $\mathcal{H} = 2$. If $||U_{A,B}|| = ||A|| ||B||$, then either $AB^* = 0$ or $B^*A = 0$.

Proof. We can assume that ||A|| = ||B|| = 1. Note that $||U_{A,B}|| = ||U_{WAV,WBV}||$ for any unitary matrices $W, V \in M_2$. It is clear that $WAV(WBV)^* = WAB^*W^*$ and $(WBV)^*WAV = V^*B^*AV$. Hence from the proof of Proposition 3.6 in [1, p. 485], we may chose an orthonormal basis $\{e_1, e_2\}$ of \mathcal{H} such that A has the representation $\begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix}$, where $\mu \in \mathbb{C}$ with $|\mu| \leq 1$, and *B* has the representation $\binom{w \ x}{y \ z}$, with *w*, *x* and *z* real, non-negative and $x \geq |y|$. From Remark 7 in [8], we know that $||U_{A,B}|| \ge s_2(A)s_2(B)$. Since $s_2(A) \ge ||A|| = 1$ and $s_2(B) \ge ||B|| = 1$, $s_2(A) = s_2(B) = 1$. From $s_2^2(A) = 1 + |\mu|^2 = 1$, we get $\mu = 0$. We similarly have that *B* is of rank-one. If w = x = 0, then we easily have that $B^*A = 0$. Thus we may assume that $y = \lambda w$, $z = \lambda x$ for some constants $\lambda \in \mathbb{C}$. That is, $B = \begin{pmatrix} w & x \\ \lambda w & \lambda x \end{pmatrix}$, where $w \ge 0$, $x \ge 0$, $\lambda x \ge 0$, $x \ge |\lambda w|$. If $\lambda = 0$, then $B = \begin{pmatrix} w & x \\ 0 & 0 \end{pmatrix}$. In this case we have $s_2^2(B) = w^2 + x^2 = 1$. From Lemma 3.2(iii) and Proposition 2.1 in [1], we

get

$$||U_{A,B}||^2 \ge \left\| U_{A,B} \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right) \right\|_N^2 = 4w^2 + x^2 = 3w^2 + 1.$$

It follows that w = 0, which implies that $AB^* = \begin{pmatrix} w & 0 \\ 0 & 0 \end{pmatrix} = 0$. We now assume that $\lambda \neq 0$. If x = 0, then $B = \begin{pmatrix} w & 0 \\ \lambda w & 0 \end{pmatrix}$ and $s_2^2(B) = (1 + |\lambda|^2)w^2 = 1$. From Lemma 3.2(iii) in [1] again, we have $\|U_{A,B}\|^2 \ge \|U_{A,B}(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix})\|_N^2 = 4w^2 + |\lambda|^2w^2 = 3w^2 + 1$, so w = 0. This is a contradiction since $\|B\| = 1$. Hence x > 0. Note that $w \ge 0$, $\lambda x > 0$, $\lambda w \ge 0$ and $x \ge \lambda w$. It is known that

$$s_2^2(B) = w^2 + x^2 + \lambda^2 w^2 + \lambda^2 x^2 = 1.$$
 (1)

From Lemma 3.2(iii) in [1], we get $\|U_{A,B}(\binom{1 \ 0}{0 \ 0})\|_{N}^{2} = 4w^{2} + (x + \lambda w)^{2}$. Thus

$$4w^2 + (x + \lambda w)^2 \leqslant 1. \tag{2}$$

By (1) and (2), we obtain

$$w^2 \leqslant \frac{1}{3} \lambda^2 x^2. \tag{3}$$

From the proof of Proposition 3.6 in [1, p. 486], we have

$$\left\| U_{A,B} \left(\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right) \right\|_{N}^{2} \ge 1 + (\lambda x + w)(x + \lambda w) - \frac{1}{2}(x - \lambda w)^{2}.$$

It now follows that $(\lambda x + w)(x + \lambda w) - \frac{1}{2}(x - \lambda w)^2 \leq 0$, which implies that

$$0 < \lambda x + w \leqslant \frac{1}{2} \frac{(x - \lambda w)^2}{x + \lambda w}.$$
(4)

Similarly, we can get

$$\left\| U_{A,B} \left(\frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \right) \right\|_{N}^{2} \ge 1 + (\lambda x - w)(x - \lambda w) - \frac{1}{2}(x + \lambda w)^{2}$$

and thus

$$\lambda x - w \leqslant \frac{1}{2} \frac{(x + \lambda w)^2}{x - \lambda w}.$$
(5)

Multiplying together (4) and (5), we obtain

$$\lambda^{2} x^{2} - w^{2} \leqslant \frac{1}{4} (x^{2} - \lambda^{2} w^{2}).$$
(6)

Combined (2) with (6), we get

$$\lambda^{2} x^{2} \leqslant \frac{1}{4} \left(x^{2} - \lambda^{2} w^{2} \right) + \frac{1}{4} \left[1 - (x + \lambda w)^{2} \right] = \frac{1}{4} - \frac{1}{2} \lambda w x - \frac{1}{2} \lambda^{2} w^{2} \leqslant \frac{1}{4}.$$
⁽⁷⁾

From (2), we know that

$$x + \lambda w \leqslant 1. \tag{8}$$

Since $x \ge \lambda w$, it follows from (8) that

$$\lambda w \leqslant \frac{1}{2}.$$
(9)

By (3) and (7), we get

$$w^2 + \lambda^2 x^2 \leqslant \frac{4}{3} \lambda^2 x^2 \leqslant \frac{1}{3}.$$
(10)

Taking into account (1), we conclude from the last inequality that

$$x^2 + \lambda^2 w^2 \geqslant \frac{2}{3}.$$
(11)

By (9) and (11), we get

$$x^2 \ge \frac{5}{12}.$$
(12)

Combining (7) with (12), we get $\frac{5}{12}\lambda^2 \leq \lambda^2 x^2 \leq \frac{1}{4}$, so $\lambda^2 \leq \frac{3}{5} < 1$. Since $0 < \lambda < 1$, we know that $w^2 \ge \lambda^2 w^2$ and $\lambda x^2 \ge \lambda^2 x^2$. By the proof of Proposition 3.6 in [1, p. 488], we have

$$\left\| U_{A,B} \left(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right) \right\|_{N}^{2} \ge \frac{1}{2} \left[(2w+x)^{2} + x^{2} + 2x(\lambda w + \lambda x) \right] = \frac{1}{2} \left(4w^{2} + 4wx + 2x^{2} + 2\lambda wx + 2\lambda x^{2} \right)$$
$$= 2w^{2} + 2wx + x^{2} + \lambda wx + \lambda x^{2} = w^{2} + w^{2} + x^{2} + \lambda x^{2} + 2wx + \lambda wx$$
$$\ge w^{2} + \lambda^{2} w^{2} + x^{2} + \lambda^{2} x^{2} + 2wx + \lambda wx = 1 + 2wx + \lambda wx.$$

Since $\lambda > 0$, x > 0 and $||U_{A,B}|| = 1$, we get w = 0. Hence $AB^* = \begin{pmatrix} w & \lambda w \\ 0 & 0 \end{pmatrix} = 0$. We have thus shown that either $AB^* = 0$ or $B^*A = 0$. The proof is complete. \Box

Corollary 2. Assume that dim $\mathcal{H} = 2$. If $||U_{A,B}|| = ||A|| ||B||$, then $AB^* = B^*A = 0$ if one of the following conditions is satisfied:

(1) $B = A^*$.

(2) both A and B are self-adjoint.

Proof. This is obvious from Theorem 1.

However, in general we cannot get both AB^* and B^*A are 0 even for two dimensional Hilbert spaces.

Example 3. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, then $||U_{A,B}|| = ||A|| ||B||$, but $B^*A \neq 0$.

If we let $B = A^*$, then U_{A,A^*} is a positive linear map on $\mathcal{B}(\mathcal{H})$. By the Russo-Dye theorem (cf. Corollary 2.9 in [5]), we knew that $||U_{A,A^*}|| = ||AA^* + A^*A||$. By Corollary 2, we know that for the positive Jordan elementary operator U_{A,A^*} , the condition that $||U_{A,A^*}|| = ||A|| ||A^*||$ does imply that $AB^* = B^*A = A^2 = 0$ if dim $\mathcal{H} = 2$. However if dim $\mathcal{H} \ge 3$, this does not hold in general.

Example 4. Let dim $\mathcal{H} = 3$ and $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & \alpha & 0 \\ 0 & 0 & 0 \end{pmatrix} \in M_3$, where $0 < \alpha \leq \frac{1}{\sqrt{2}}$. Then ||A|| = 1 and $||AA^* + A^*A|| = 1$, but $A^2 \neq 0$.

We next consider Question 4.3(2) of [2]. We first note that the answer is positive if dim $\mathcal{H} = 2$ by Theorem 1.

Corollary 5. Suppose dim $\mathcal{H} = 2$. Then either $W_B(A^*B)$ or $W_A(B^*A)$ is $\{0\}$ if $||U_{A,B}|| = ||A|| ||B||$.

To show Proposition 7, we need the following lemma proved in [6].

Lemma 6. (See Theorem 5 in [6].) If $A, B \in B(\mathcal{H})$ are not zero, then we have

$$||U_{A,B}|| \ge \sup\left\{ \left| ||A|| ||B|| + \frac{\lambda \mu}{||A|| ||B||} \right|, \ \lambda \in W_B(A^*B), \ \mu \in W_A(B^*A) \right\}.$$

Proposition 7. Let $A, B \in B(\mathcal{H})$ such that $||U_{A,B}|| = ||A|| ||B||$.

(1) If $B = A^*$, then $W_B(A^*B) = W_A(B^*A) = \{0\}$. (2) If $||A||^2 B^*B \le ||B||^2 A^*A$ (respectively $||B||^2 A^*A \le ||A||^2 B^*B$), then $W_B(A^*B) = \{0\}$ (respectively $W_A(B^*A) = \{0\}$).

Proof. (1) If $B = A^*$, then U_{A,A^*} is a positive map on $\mathcal{B}(\mathcal{H})$ and thus $||U_{A,A^*}|| = ||AA^* + A^*A|| = ||A||^2$ by the Russo-Dye theorem (cf. Corollary 2.9 in [5]). Let $\{x_n\} \subseteq \mathcal{H}$ be a sequence of unit vectors such that $\lim_{n\to\infty} ||Ax_n|| = ||A||$ and $\lim_{n\to\infty} \langle A^2x_n, x_n \rangle = \lambda$. Then $\langle (AA^* + A^*A)x_n, x_n \rangle \leq ||AA^* + A^*A|| = ||A||^2$, which implies that $\lim_{n\to\infty} ||A^*x_n|| = 0$. Note that $\lim_{n\to\infty} \langle A^2x_n, x_n \rangle = \lim_{n\to\infty} \langle Ax_n, A^*x_n \rangle = 0$. Then $\lambda = 0$ and thus $W_A(A^2) = \{0\}$. We similarly get $W_{A^*}((A^*)^2) = \{0\}$. (2) We can assume that ||A|| = ||B|| = 1. If x is a unit vector in \mathcal{H} , then $||U_{A,B}|| \geq ||U_{A,B}(x \otimes Bx)(x)|| \geq ||Ax||^2 ||Bx||^2 + \langle B^*Ax, x \rangle \langle A^*Bx, x \rangle| = ||Ax||^2 ||Bx||^2 + |\langle B^*Ax, x \rangle|^2$. If $B^*B \leq A^*A$, we have $||Ax|| \geq ||Bx||$. For any $\lambda \in W_B(A^*B)$, there

(2) We can assume that ||A|| = ||B|| = 1. If x is a unit vector in \mathcal{H} , then $||U_{A,B}|| \ge ||U_{A,B}(x \otimes Bx)(x)|| \ge ||Ax||^2 ||Bx||^2 + \langle B^*Ax, x \rangle \langle A^*Bx, x \rangle | = ||Ax||^2 ||Bx||^2 + |\langle B^*Ax, x \rangle|^2$. If $B^*B \le A^*A$, we have $||Ax|| \ge ||Bx||$. For any $\lambda \in W_B(A^*B)$, there exists a sequence of unit vectors $\{x_n\} \subseteq \mathcal{H}$ such that $\lim_{n\to\infty} ||Bx_n|| = ||B|| = 1$ and $\lim_{n\to\infty} \langle A^*Bx_n, x_n \rangle = \lambda$. Then $\lim_{n\to\infty} \langle B^*Ax_n, x_n \rangle = \overline{\lambda}$. Since $||Ax_n|| \ge ||Bx_n||$, we have $\lim_{n\to\infty} ||Ax_n|| = ||A|| = 1$. It now follows that $\overline{\lambda} \in W_A(B^*A)$. We deduce from Lemma 6 that $1 = ||U_{A,B}|| \ge 1 + |\lambda|^2$, which implies that $\lambda = 0$. Therefore $W_B(A^*B) = \{0\}$. The proof is complete. \Box

We note that if either A or B is an isometry, then the condition (2) of Proposition 7 is satisfied.

Acknowledgment

The authors would like to thank the referee for his/her helpful comments.

References

[1] A. Blanco, M. Boumazgour, T.J. Ransford, On the norm of elementary operators, J. London Math. Soc. (2) 70 (2004) 479-498.

[2] M. Boumazgour, Norm inequalities for sums of two basic elementary operators, J. Math. Anal. Appl. 342 (2008) 386–393.

[3] B. Magajna, On the distance to finite-dimensional subspaces in operator algebras, J. London Math. Soc. (2) 47 (1993) 516-532.

[4] M. Mathieu, More properties of the product of two derivations of a C^* -algebras, Bull. Austral. Math. Soc. 42 (1990) 115–120.

[5] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge University Press, 2002.

[6] A. Seddik, On the numerical range and norm of elementary operator algebras, Linear Multilinear Algebra 52 (2004) 293-302.

[7] L.L. Stachó, B. Zalar, On the norm of Jordan elementary operators in standard operator algebras, Publ. Math. Debrecen 49 (1996) 127–134.

[8] R.M. Timoney, Norms and CB norms of Jordan elementary operators, Bull. Sci. Math. 127 (2003) 597-609.