Norms of certain Jordan elementary operators ${ }^{\text {N }}$

Xiaoli Zhang, Guoxing Ji*
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, PR China

A R T I C L E I N F O

Article history:

Received 15 April 2008
Available online 27 May 2008
Submitted by R. Timoney

Keywords:

Jordan elementary operator
Norm
Numerical range

Abstract

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. For $A, B \in \mathcal{B}(\mathcal{H})$, the Jordan elementary operator $U_{A, B}$ is defined by $U_{A, B}(X)=A X B+B X A, \forall X \in \mathcal{B}(\mathcal{H})$. In this short note, we discuss the norm of $U_{A, B}$. We show that if $\operatorname{dim} \mathcal{H}=2$ and $\left\|U_{A, B}\right\|=\|A\|\|B\|$, then either $A B^{*}$ or $B^{*} A$ is 0 . We give some examples of Jordan elementary operators $U_{A, B}$ such that $\left\|U_{A, B}\right\|=\|A\|\|B\|$ but $A B^{*} \neq 0$ and $B^{*} A \neq 0$, which answer negatively a question posed by M. Boumazgour in [M. Boumazgour, Norm inequalities for sums of two basic elementary operators, J. Math. Anal. Appl. 342 (2008) 386-393].

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a complex Hilbert space and let $B(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. For $A, B \in B(\mathcal{H})$, we define the Jordan elementary operator $U_{A, B}$ on $B(\mathcal{H})$ by

$$
U_{A, B}(X)=A X B+B X A \quad(\forall X \in \mathcal{B}(\mathcal{H}))
$$

The lower bound of $\left\|U_{A, B}\right\|$ was studied by many authors, see for instance [1,2,4,7]. In [1], it is shown that $\left\|U_{A, B}\right\| \geqslant$ $\|A\|\|B\|$. This lower bound is the best known result to date. In [2] and in [8], M. Boumazgour get this lower bound. He proved that if $A B^{*}=B^{*} A=0$, then $\left\|U_{A, B}\right\|=\|A\|\|B\|$. Conversely, if $\left\|U_{A, B}\right\|=\|A\|\|B\|$, does it follow that $A B^{*}=B^{*} A=0$? This question was posed by the author in [2, Question 4.3(1)]. In this note, we prove that the converse does not hold in general. On the other hand, M . Boumazgour also considered some additional necessary conditions for $\left\|U_{A, B}\right\|$ to be $\|A\|\|B\|$ by use of numerical range in [2] (cf. Proposition 2.8). We recall that for $A, B \in \mathcal{B}(\mathcal{H})$, the numerical range $W_{B}\left(A^{*} B\right)$ of $A^{*} B$ relative to B is defined to be the set $W_{B}\left(A^{*} B\right)=\left\{\lambda \in \mathbb{C}\right.$: there exists $\left\{x_{n}\right\} \subseteq \mathcal{H},\left\|x_{n}\right\|=1$ such that $\lim _{n \rightarrow \infty}\left\langle A^{*} B x_{n}, x_{n}\right\rangle=\lambda$ and $\left.\lim _{n \rightarrow \infty}\left\|B x_{n}\right\|=\|B\|\right\}$.

It is known that $W_{B}\left(A^{*} B\right)$ is a closed convex subset of the complex plane \mathbb{C} for each pair $A, B \in \mathcal{B}(\mathcal{H})$. Some exceptional properties are listed in [3]. In [2], M. Boumazgour proved that $0 \in W_{B}\left(A^{*} B\right) \cup W_{A}\left(B^{*} A\right)$ if $\left\|U_{A, B}\right\|=\|A\|\|B\|$ for some special pairs A, B and he asked whether this holds for any pairs A, B such that $\left\|U_{A, B}\right\|=\|A\|\|B\|$ (Question 4.3(2) in [2]). We also consider this problem and give some partial results.

2. Main results

Let \mathcal{H} be a Hilbert space. We denote by $N(\mathcal{H})$ and $B_{2}(\mathcal{H})$ respectively the algebras of nuclear (trace-class) operators and Hilbert-Schmidt operators on \mathcal{H}. The nuclear (respectively Hilbert-Schmidt) norm of a nuclear (respectively Hilbert-

[^0]Schmidt) operator T will be denoted by $\|T\|_{N}$ (respectively $s_{2}(T)$). Recall that for a nuclear (respectively Hilbert-Schmidt) operator T, we have $\|T\|_{N}=\sum_{i} \sigma_{i}(T)$ (respectively $s_{2}(T)=\left(\sum_{i} \sigma_{i}^{2}(T)\right)^{1 / 2}$), where $\sigma_{i}(T)$ denotes the sequence of singular values of T. We refer readers to see [1] for details.

We firstly consider two dimensional Hilbert space case, that is $\mathcal{H}=\mathbb{C}^{2}$. We identify $\mathcal{B}(\mathcal{H})$ with 2×2 complex matrices M_{2}. The idea of the following proof comes from [1].

Theorem 1. Suppose $\operatorname{dim} \mathcal{H}=2$. If $\left\|U_{A, B}\right\|=\|A\|\|B\|$, then either $A B^{*}=0$ or $B^{*} A=0$.
Proof. We can assume that $\|A\|=\|B\|=1$. Note that $\left\|U_{A, B}\right\|=\left\|U_{W A V, W B V}\right\|$ for any unitary matrices $W, V \in M_{2}$. It is clear that $W A V(W B V)^{*}=W A B^{*} W^{*}$ and $(W B V)^{*} W A V=V^{*} B^{*} A V$. Hence from the proof of Proposition 3.6 in [1, p. 485], we may chose an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of \mathcal{H} such that A has the representation $\left(\begin{array}{ll}1 & 0 \\ 0 \mu\end{array}\right)$, where $\mu \in \mathbb{C}$ with $|\mu| \leqslant 1$, and B has the representation $\left(\begin{array}{l}w \\ y \\ y\end{array}\right)$, with w, x and z real, non-negative and $x \geqslant|y|$. From Remark 7 in [8], we know that $\left\|U_{A, B}\right\| \geqslant s_{2}(A) s_{2}(B)$. Since $s_{2}(A) \geqslant\|A\|=1$ and $s_{2}(B) \geqslant\|B\|=1, s_{2}(A)=s_{2}(B)=1$. From $s_{2}^{2}(A)=1+|\mu|^{2}=1$, we get $\mu=0$. We similarly have that B is of rank-one. If $w=x=0$, then we easily have that $B^{*} A=0$. Thus we may assume that $y=\lambda w, z=\lambda x$ for some constants $\lambda \in \mathbb{C}$. That is, $B=\left(\begin{array}{cc}w & x \\ \lambda w & \lambda x\end{array}\right)$, where $w \geqslant 0, x \geqslant 0, \lambda x \geqslant 0, x \geqslant|\lambda w|$.

If $\lambda=0$, then $B=\left(\begin{array}{cc}w & x \\ 0 & 0\end{array}\right)$. In this case we have $s_{2}^{2}(B)=w^{2}+x^{2}=1$. From Lemma 3.2(iii) and Proposition 2.1 in [1], we get

$$
\left\|U_{A, B}\right\|^{2} \geqslant\left\|U_{A, B}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right)\right\|_{N}^{2}=4 w^{2}+x^{2}=3 w^{2}+1
$$

It follows that $w=0$, which implies that $A B^{*}=\left(\begin{array}{cc}w & 0 \\ 0 & 0\end{array}\right)=0$.
We now assume that $\lambda \neq 0$. If $x=0$, then $B=\left(\begin{array}{cc}w & 0 \\ \lambda w & 0\end{array}\right)$ and $s_{2}^{2}(B)=\left(1+|\lambda|^{2}\right) w^{2}=1$. From Lemma 3.2(iii) in [1] again, we have $\left\|U_{A, B}\right\|^{2} \geqslant\left\|U_{A, B}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)\right)\right\|_{N}^{2}=4 w^{2}+|\lambda|^{2} w^{2}=3 w^{2}+1$, so $w=0$. This is a contradiction since $\|B\|=1$. Hence $x>0$. Note that $w \geqslant 0, \lambda x>0, \lambda w \geqslant 0$ and $x \geqslant \lambda w$. It is known that

$$
\begin{equation*}
s_{2}^{2}(B)=w^{2}+x^{2}+\lambda^{2} w^{2}+\lambda^{2} x^{2}=1 \tag{1}
\end{equation*}
$$

From Lemma 3.2(iii) in [1], we get $\left\|U_{A, B}\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right)\right\|_{N}^{2}=4 w^{2}+(x+\lambda w)^{2}$. Thus

$$
\begin{equation*}
4 w^{2}+(x+\lambda w)^{2} \leqslant 1 \tag{2}
\end{equation*}
$$

By (1) and (2), we obtain

$$
\begin{equation*}
w^{2} \leqslant \frac{1}{3} \lambda^{2} x^{2} . \tag{3}
\end{equation*}
$$

From the proof of Proposition 3.6 in [1, p. 486], we have

$$
\left\|U_{A, B}\left(\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right)\right\|_{N}^{2} \geqslant 1+(\lambda x+w)(x+\lambda w)-\frac{1}{2}(x-\lambda w)^{2} .
$$

It now follows that $(\lambda x+w)(x+\lambda w)-\frac{1}{2}(x-\lambda w)^{2} \leqslant 0$, which implies that

$$
\begin{equation*}
0<\lambda x+w \leqslant \frac{1}{2} \frac{(x-\lambda w)^{2}}{x+\lambda w} \tag{4}
\end{equation*}
$$

Similarly, we can get

$$
\left\|U_{A, B}\left(\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)\right)\right\|_{N}^{2} \geqslant 1+(\lambda x-w)(x-\lambda w)-\frac{1}{2}(x+\lambda w)^{2}
$$

and thus

$$
\begin{equation*}
\lambda x-w \leqslant \frac{1}{2} \frac{(x+\lambda w)^{2}}{x-\lambda w} . \tag{5}
\end{equation*}
$$

Multiplying together (4) and (5), we obtain

$$
\begin{equation*}
\lambda^{2} x^{2}-w^{2} \leqslant \frac{1}{4}\left(x^{2}-\lambda^{2} w^{2}\right) \tag{6}
\end{equation*}
$$

Combined (2) with (6), we get

$$
\begin{equation*}
\lambda^{2} x^{2} \leqslant \frac{1}{4}\left(x^{2}-\lambda^{2} w^{2}\right)+\frac{1}{4}\left[1-(x+\lambda w)^{2}\right]=\frac{1}{4}-\frac{1}{2} \lambda w x-\frac{1}{2} \lambda^{2} w^{2} \leqslant \frac{1}{4} . \tag{7}
\end{equation*}
$$

From (2), we know that

$$
\begin{equation*}
x+\lambda w \leqslant 1 \tag{8}
\end{equation*}
$$

Since $x \geqslant \lambda w$, it follows from (8) that

$$
\begin{equation*}
\lambda w \leqslant \frac{1}{2} \tag{9}
\end{equation*}
$$

By (3) and (7), we get

$$
\begin{equation*}
w^{2}+\lambda^{2} x^{2} \leqslant \frac{4}{3} \lambda^{2} x^{2} \leqslant \frac{1}{3} \tag{10}
\end{equation*}
$$

Taking into account (1), we conclude from the last inequality that

$$
\begin{equation*}
x^{2}+\lambda^{2} w^{2} \geqslant \frac{2}{3} \tag{11}
\end{equation*}
$$

By (9) and (11), we get

$$
\begin{equation*}
x^{2} \geqslant \frac{5}{12} \tag{12}
\end{equation*}
$$

Combining (7) with (12), we get $\frac{5}{12} \lambda^{2} \leqslant \lambda^{2} x^{2} \leqslant \frac{1}{4}$, so $\lambda^{2} \leqslant \frac{3}{5}<1$.
Since $0<\lambda<1$, we know that $w^{2} \geqslant \lambda^{2} w^{2}$ and $\lambda x^{2} \geqslant \lambda^{2} x^{2}$. By the proof of Proposition 3.6 in [1, p. 488], we have

$$
\begin{aligned}
\left\|U_{A, B}\left(\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\right)\right\|_{N}^{2} & \geqslant \frac{1}{2}\left[(2 w+x)^{2}+x^{2}+2 x(\lambda w+\lambda x)\right]=\frac{1}{2}\left(4 w^{2}+4 w x+2 x^{2}+2 \lambda w x+2 \lambda x^{2}\right) \\
& =2 w^{2}+2 w x+x^{2}+\lambda w x+\lambda x^{2}=w^{2}+w^{2}+x^{2}+\lambda x^{2}+2 w x+\lambda w x \\
& \geqslant w^{2}+\lambda^{2} w^{2}+x^{2}+\lambda^{2} x^{2}+2 w x+\lambda w x=1+2 w x+\lambda w x .
\end{aligned}
$$

Since $\lambda>0, x>0$ and $\left\|U_{A, B}\right\|=1$, we get $w=0$. Hence $A B^{*}=\left(\begin{array}{cc}w & \lambda w \\ 0 & 0\end{array}\right)=0$.
We have thus shown that either $A B^{*}=0$ or $B^{*} A=0$. The proof is complete.
Corollary 2. Assume that $\operatorname{dim} \mathcal{H}=2$. If $\left\|U_{A, B}\right\|=\|A\|\|B\|$, then $A B^{*}=B^{*} A=0$ if one of the following conditions is satisfied:
(1) $B=A^{*}$,
(2) both A and B are self-adjoint.

Proof. This is obvious from Theorem 1.
However, in general we cannot get both $A B^{*}$ and $B^{*} A$ are 0 even for two dimensional Hilbert spaces.
Example 3. Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, then $\left\|U_{A, B}\right\|=\|A\|\|B\|$, but $B^{*} A \neq 0$.
If we let $B=A^{*}$, then $U_{A, A^{*}}$ is a positive linear map on $\mathcal{B}(\mathcal{H})$. By the Russo-Dye theorem (cf. Corollary 2.9 in [5]), we knew that $\left\|U_{A, A^{*}}\right\|=\left\|A A^{*}+A^{*} A\right\|$. By Corollary 2 , we know that for the positive Jordan elementary operator $U_{A, A^{*}}$, the condition that $\left\|U_{A, A^{*}}\right\|=\|A\|\left\|A^{*}\right\|$ does imply that $A B^{*}=B^{*} A=A^{2}=0$ if $\operatorname{dim} \mathcal{H}=2$. However if $\operatorname{dim} \mathcal{H} \geqslant 3$, this does not hold in general.

Example 4. Let $\operatorname{dim} \mathcal{H}=3$ and $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & \alpha & 0 \\ 0 & 0 & 0\end{array}\right) \in M_{3}$, where $0<\alpha \leqslant \frac{1}{\sqrt{2}}$. Then $\|A\|=1$ and $\left\|A A^{*}+A^{*} A\right\|=1$, but $A^{2} \neq 0$.
We next consider Question 4.3(2) of [2]. We first note that the answer is positive if $\operatorname{dim} \mathcal{H}=2$ by Theorem 1.
Corollary 5. Suppose $\operatorname{dim} \mathcal{H}=2$. Then either $W_{B}\left(A^{*} B\right)$ or $W_{A}\left(B^{*} A\right)$ is $\{0\}$ if $\left\|U_{A, B}\right\|=\|A\|\|B\|$.
To show Proposition 7, we need the following lemma proved in [6].
Lemma 6. (See Theorem 5 in [6].) If $A, B \in B(\mathcal{H})$ are not zero, then we have

$$
\left\|U_{A, B}\right\| \geqslant \sup \left\{\left|\|A\|\|B\|+\frac{\lambda \mu}{\|A\|\|B\|}\right|, \lambda \in W_{B}\left(A^{*} B\right), \mu \in W_{A}\left(B^{*} A\right)\right\} .
$$

Proposition 7. Let $A, B \in B(\mathcal{H})$ such that $\left\|U_{A, B}\right\|=\|A\|\|B\|$.
(1) If $B=A^{*}$, then $W_{B}\left(A^{*} B\right)=W_{A}\left(B^{*} A\right)=\{0\}$.
(2) If $\|A\|^{2} B^{*} B \leqslant\|B\|^{2} A^{*} A$ (respectively $\|B\|^{2} A^{*} A \leqslant\|A\|^{2} B^{*} B$), then $W_{B}\left(A^{*} B\right)=\{0\}$ (respectively $W_{A}\left(B^{*} A\right)=\{0\}$).

Proof. (1) If $B=A^{*}$, then $U_{A, A^{*}}$ is a positive map on $\mathcal{B}(\mathcal{H})$ and thus $\left\|U_{A, A^{*}}\right\|=\left\|A A^{*}+A^{*} A\right\|=\|A\|^{2}$ by the RussoDye theorem (cf. Corollary 2.9 in [5]). Let $\left\{x_{n}\right\} \subseteq \mathcal{H}$ be a sequence of unit vectors such that $\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=\|A\|$ and $\lim _{n \rightarrow \infty}\left\langle A^{2} x_{n}, x_{n}\right\rangle=\lambda$. Then $\left\langle\left(A A^{*}+A^{*} A\right) x_{n}, x_{n}\right\rangle \leqslant\left\|A A^{*}+A^{*} A\right\|=\|A\|^{2}$, which implies that $\lim _{n \rightarrow \infty}\left\|A^{*} x_{n}\right\|=0$. Note that $\lim _{n \rightarrow \infty}\left\langle A^{2} x_{n}, x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle A x_{n}, A^{*} x_{n}\right\rangle=0$. Then $\lambda=0$ and thus $W_{A}\left(A^{2}\right)=\{0\}$. We similarly get $W_{A^{*}}\left(\left(A^{*}\right)^{2}\right)=\{0\}$.
(2) We can assume that $\|A\|=\|B\|=1$. If x is a unit vector in \mathcal{H}, then $\left\|U_{A, B}\right\| \geqslant\left\|U_{A, B}(x \otimes B x)(x)\right\| \geqslant\|A x\|^{2}\|B x\|^{2}+$ $\left\langle B^{*} A x, x\right\rangle\left\langle A^{*} B x, x\right\rangle\left|=\|A x\|^{2}\|B x\|^{2}+\left|\left\langle B^{*} A x, x\right\rangle\right|^{2}\right.$. If $B^{*} B \leqslant A^{*} A$, we have $\|A x\| \geqslant\|B x\|$. For any $\lambda \in W_{B}\left(A^{*} B\right)$, there exists a sequence of unit vectors $\left\{x_{n}\right\} \subseteq \mathcal{H}$ such that $\lim _{n \rightarrow \infty}\left\|B x_{n}\right\|=\|B\|=1$ and $\lim _{n \rightarrow \infty}\left\langle A^{*} B x_{n}, x_{n}\right\rangle=\lambda$. Then $\lim _{n \rightarrow \infty}\left\langle B^{*} A x_{n}, x_{n}\right\rangle=\bar{\lambda}$. Since $\left\|A x_{n}\right\| \geqslant\left\|B x_{n}\right\|$, we have $\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=\|A\|=1$. It now follows that $\bar{\lambda} \in W_{A}\left(B^{*} A\right)$. We deduce from Lemma 6 that $1=\left\|U_{A, B}\right\| \geqslant 1+|\lambda|^{2}$, which implies that $\lambda=0$. Therefore $W_{B}\left(A^{*} B\right)=\{0\}$. The proof is complete.

We note that if either A or B is an isometry, then the condition (2) of Proposition 7 is satisfied.

Acknowledgment

The authors would like to thank the referee for his/her helpful comments.

References

[1] A. Blanco, M. Boumazgour, T.J. Ransford, On the norm of elementary operators, J. London Math. Soc. (2) 70 (2004) 479-498.
[2] M. Boumazgour, Norm inequalities for sums of two basic elementary operators, J. Math. Anal. Appl. 342 (2008) 386-393.
[3] B. Magajna, On the distance to finite-dimensional subspaces in operator algebras, J. London Math. Soc. (2) 47 (1993) 516-532.
[4] M. Mathieu, More properties of the product of two derivations of a \mathcal{C}^{*}-algebras, Bull. Austral. Math. Soc. 42 (1990) 115-120.
[5] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge University Press, 2002.
[6] A. Seddik, On the numerical range and norm of elementary operator algebras, Linear Multilinear Algebra 52 (2004) 293-302.
[7] L.L. Stachó, B. Zalar, On the norm of Jordan elementary operators in standard operator algebras, Publ. Math. Debrecen 49 (1996) 127-134.
[8] R.M. Timoney, Norms and CB norms of Jordan elementary operators, Bull. Sci. Math. 127 (2003) 597-609.

[^0]: ty This research was supported by the National Natural Science Foundation of China (No. 10571114) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2005A1).

 * Corresponding author.

 E-mail address: gxji@snnu.edu.cn (G. Ji).

