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Slovenija

Peirce projections P1, P1/2 and P0 are one of the fundamental technical tools in the
theory of JB*-triples. It is well known that all three of them are contractive. We show
that the sum of two Peirce projections need not be contractive. We also give the upper
estimate for the norm of such a sum, valid in all JC*-triples, and present a conjecture of
the exact value of this norm, based on some numerical experiments.
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1. Introduction

Historically JB*-triples arose in the study of complex holomorphy. A bounded sym-

metric domain is biholomorphic to the open unit ball of a JB*-triple. From the

viewpoint of operator theory, results about the structure of JB*-triples and the

methods used for the study of their properties are closely connected with the the-

ory of C*-algebras. In fact every C*-algebra can be viewed as a JB*-triple with the

same norm and ternary product {abc} = 1/2(ab∗c + cb∗a). Abstractly, a JB*-triple

is a complex Banach space W together with a ternary product {...} : W 3 → W

such that

• {abc} = {cba} and the product is linear in outer variables and conjugate

linear in the middle one;

• ‖{abc}‖ ≤ ‖a‖ · ‖b‖ · ‖c‖ for all a, b, c ∈ W ;

• ‖{aaa}‖ = ‖a‖3
for all a ∈ W ;

• the operator x 7−→ {aax} is positive hermitian for all a ∈ W ;

• the Jordan identity {xy{abc}} = {{xya}bc}+{ab{xyc}}−{a{yxb}c} holds

for all a, b, c, x, y ∈ W.

A basic example of JB*-triple, which cannot be given a C*-algebra structure,

is the space of all bounded linear operators B(H, K) between two complex Hilbert

spaces H and K, where the same formula {abc} = 1/2(ab∗c + cb∗a) as above still

makes sense and satisfies all required properties.
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It is possible to develop a theory of JBW*-factors, which is somewhat richer

than the theory of von Neumann algebras. There exist 6 families of type I factors.

Four of them are infinite. Factors of type B(H, K) are called rectangular. Factors

of type {x ∈ B(H) : xT = ±x} are called Hermitian and symplectic respectively.

Every Hilbert space with dimension ≥ 3 gives rise to a construction of a spin

factor, but we do not need to go into details here. JB*-triples for which all type

I representations are of one of the above four types, are called JC*-triples. Every

JC*-triple can be imbedded into B(H) for a suitable Hilbert space H. There exist

also two exceptional type I factors, constructed from octonion matrices. They are

both finite dimensional, their dimensions being 16 and 27, and are therefore more

interesting from algebraic viewpoint than a functional-analytic. It is known that

neither of them is embeddable into B(H).

An element u ∈ W is called a tripotent if {uuu} = u. These elements play a

similar role in JB*-theory as orthogonal projections play in C*-theory. In the case

of the triple B(H, K) it is not difficult to see that tripotents are precisely partial

isometries from H into K. If we consider the operator T (x) = {uux}, it can be

shown that the Jordan identity implies T (2T − 1)(T − 1) = 0 which shows that W

decomposes as W1 ⊕W1/2 ⊕W0 where Wi = {x ∈ W : {uux} = ix} . Of course this

decomposition, which is called Peirce decomposition, depends on the choice of u.

The corresponding Peirce projections Pi : W → W , whose ranges are Wi, can all

be given with an explicit algebraic formula

P1(x) = {u{uxu}u}, P1/2(x) = 2({uux}− {u{uxu}u},
P0(x) = x − 2{uux}+ {u{uxu}u}.
Peirce projections are one of the most widely used technical tools in research

about JB*-triples. It is known that all three Peirce projections are contractive.

Moreover P1 + P0 is also contractive. The purpose of this paper is to show that the

remaining combinations P1 + P1/2 and P1/2 + P0 are in general not contractive and

to give a reasonable estimate for their norms in JC* case.

The reader can find proofs of the above explained facts in classical papers [3, 9,

10, 11, 12, 13, 16] and surveys [7, 18, 19, 23]. For those interested in various modern

trends in JB*-theory, a starting sample is [1, 2, 4, 5, 6, 8, 14, 17, 20, 21, 22].

2. Example of a lower estimate

In this section we consider the special situation when W = B(H, K) is a JB*-triple

of bounded linear operators between two complex Hilbert spaces H and K. We use

a rather standard notation β ⊗α, where α ∈ H and β ∈ K, for a rank one operator

given by (β ⊗ α)ξ = 〈ξ, α〉 β for all ξ ∈ H. It is easy to see that β ⊗ α ∈ B(H, K);

more precisely ‖β ⊗ α‖ = ‖α‖ · ‖β‖ holds.

It is well known that tripotents in the case of a JB*-triple B(H, K) are precisely

the partial isometries. Let u ∈ W be a nonzero partial isometry and P1, P1/2, P1 :

W → W Peirce projections associated with u. Our aim in this section is to show that

in triples of the above form operators P1 +P1/2 and P1/2+P0 are not contractive; in
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fact we show that their norms, except in a trivial case where P0 = 0, P1 +P1/2 = 1,

are at least 1. 154 7.

At present it seems that the logic behind this example cannot easily be gen-

eralized to arbitrary JB*-triples, so it may still be true that in some classes of

JB*-triples operators P1 + P1/2 and P1/2 + P0 are contractive.

Lemma 2.1. Let W be a JB*-triple of the form B(H, K) and u ∈ W a partial

isometry. If P0 6= 0, then Keru 6= 0 and (Im u)
⊥ 6= 0.

Proof. Let x ∈ Im P0 be a nonzero operator. This means that 0 = 2 {xuu} =

xu∗u + uu∗x and, taking uu∗u = u into account,

0 = u∗ (xu∗u + uu∗x) u∗ = 2u∗xu∗.

Therefore

〈Im u, Im x〉 = 〈uu∗u(H), x(H)〉 = 〈u(H), uu∗x(H)〉
= −〈u(H), xu∗u(H)〉 = −〈H, (u∗xu∗)u(H)〉 = 0

implies 0 6= Im x ⊂ (Im u)
⊥

. On the other hand

ux∗ = uu∗ux∗ = u(xu∗u)∗

= −u(uu∗x)∗ = −(ux∗u)u∗ = 0

means that 0 6= Im x∗ ⊂ Keru.

With the aid of a numerical experiment, using Maple software, we found a

numerical example, which serves as the basis for the following result.

Proposition 2.1. Let W be a JB*-triple of the form B(H, K) and u ∈ W a partial

isometry. If P0 6= 0, then Keru 6= 0 and (Im u)⊥ 6= 0. If P0 6= 0, then the estimates

2√
3
≤
∥∥P0 + P1/2

∥∥ ,
2√
3
≤
∥∥P1/2 + P1

∥∥

hold.

Proof. From the above lemma we know that we may choose four unit vectors

ξ1 ∈ Keru, ξ2 ∈ (Keru)
⊥

= Im u∗ = Im u∗u,

η2 ∈ Im u = Im uu∗, η1 = (Im u)
⊥

= Keru∗.

Now we define a rank 2 operator x : X → Y by

x =
1√
3
η1 ⊗ ξ1 +

√
2√
3
η2 ⊗ ξ1 +

√
2√
3
η1 ⊗ ξ2 −

1√
3
η2 ⊗ ξ2.
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Since 〈η1, η2〉 = 〈ξ1, ξ2〉 = 0, we have, using the general multiplication formula

(α ⊗ β)(γ ⊗ δ) = 〈γ, β〉α ⊗ δ for rank 1 operators,

x∗x =

(
1√
3
ξ1 ⊗ η1 +

√
2√
3
ξ2 ⊗ η1 +

√
2√
3
ξ1 ⊗ η2 −

1√
3
ξ2 ⊗ η2

)
·

(
1√
3
η1 ⊗ ξ1 +

√
2√
3
η2 ⊗ ξ1 +

√
2√
3
η1 ⊗ ξ2 −

1√
3
η2 ⊗ ξ2

)

=
1

3
ξ1 ⊗ ξ1 +

√
2

3
ξ1 ⊗ ξ2 +

2

3
ξ1 ⊗ ξ1 −

√
2

3
ξ1 ⊗ ξ2

+

√
2

3
ξ2 ⊗ ξ1 +

2

3
ξ2 ⊗ ξ2 −

√
2

3
ξ2 ⊗ ξ1 +

1

3
ξ2 ⊗ ξ2

= ξ1 ⊗ ξ1 + ξ2 ⊗ ξ2.

The orthogonality of ξ1 and ξ2 implies that the last operator is an orthogonal

projection. Its norm is thus 1, which in turn gives ‖x‖ =
√
‖x∗x‖ = 1.

Next we compute (P1 + P1/2)(x). We know that u∗uξ2 = ξ2, u∗η1 = 0, uξ1 = 0

and uu∗η2 = η2. Using a general rule a(α ⊗ β) = (aα ⊗ β) for a multiplication

between a linear operator a and a rank one operator, we obtain

L(u, u)(η2 ⊗ ξ2) =
1

2
(uu∗(η2 ⊗ ξ2) + (η2 ⊗ ξ2)u

∗u)

=
1

2
((uu∗η2) ⊗ ξ2 + η2 ⊗ (u∗uξ2))

=
1

2
(η2 ⊗ ξ2 + η2 ⊗ ξ2) = η2 ⊗ ξ2

which shows η2 ⊗ ξ2 ∈ Im P1. Similarly

L(u, u)(η2 ⊗ ξ1 + η1 ⊗ ξ2) =
1

2
(uu∗(η2 ⊗ ξ1 + η1 ⊗ ξ2) + (η2 ⊗ ξ1 + η1 ⊗ ξ2)u

∗u)

=
1

2
(uu∗η2) ⊗ ξ1 +

1

2
η2 ⊗ (u∗uξ1) +

1

2
(uu∗η1) ⊗ ξ2

+
1

2
η1 ⊗ (u∗uξ2)

=
1

2
η2 ⊗ ξ1 + 0 + 0 +

1

2
η1 ⊗ ξ2 =

1

2
(η2 ⊗ ξ1 + η1 ⊗ ξ2)

shows η2 ⊗ ξ1 + η1 ⊗ ξ2 ∈ Im P1/2 while

L(u, u)(η1 ⊗ ξ1) =
1

2
(uu∗(η1 ⊗ ξ1) + (η1 ⊗ ξ1)u

∗u)

=
1

2
((uu∗η1) ⊗ ξ1 + η1 ⊗ (u∗uξ1))

= 0 + 0

shows η1 ⊗ ξ1 ∈ Im P0. Therefore

z = (P1 + P1/2)x =

√
2√
3
η2 ⊗ ξ1 +

√
2√
3
η1 ⊗ ξ2 −

1√
3
η2 ⊗ ξ2.
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We compute the norm of z using

‖z‖2
= ‖zz∗‖ = max {λ : λ ∈ sp(zz∗)} .

The operator zz∗ has rank 2, so its spectrum consists of 0 and two additional

positive eigenvalues. Computation

zz∗ =

(√
2√
3
η2 ⊗ ξ1 +

√
2√
3
η1 ⊗ ξ2 −

1√
3
η2 ⊗ ξ2

)

·
(√

2√
3
ξ1 ⊗ η2 +

√
2√
3
ξ2 ⊗ η1 −

1√
3
ξ2 ⊗ η2

)

= η2 ⊗ η2 +

√
2

3
η2 ⊗ η1 +

√
2

3
η1 ⊗ η2 +

2

3
η1 ⊗ η1

shows that zz∗ has the same positive eigenvalues as the complex matrix
[

1
√

2
3√

2
3

2
3

]
.

Those are easily seen to be 1/3 and 4/3 respectively, which means ‖zz∗‖ = 4/3 and

so

∥∥P1 + P1/2

∥∥ ≥
∥∥(P1 + P1/2)x

∥∥
‖x‖ =

√
4/3

1
=

2√
3
.

In a similar way we can also prove that
∥∥(P0 + P1/2)x

∥∥ ≥ 2/
√

3.

3. Universal upper estimate for JC*-triples

In this section we first give an upper estimate for the special case of the C*-algebra

B(H), regarded as a JB*-triple. As in the previous section, let u : H → H be

a partial isometry and P1, P1/2, P0 the associated Peirce projections. If we have

two orthogonal decompositions of the space H as H1 ⊕ H2 and K1 ⊕ K2, we can

decompose every operator v ∈ B(H) as a block operator

[
a b

c d

]
where a : H1 → K1,

b : H2 → K1, c : H1 → K2 and d : H2 → K2. In order to simplify further notation

we avoid the index notation 1K1
and 0H1,H2

for the identity operator on the space

K1 and the zero operator from H1 into H2 respectively, as the context will be clear

in all cases so that both 1K1
, 1K2

will be denoted by 1. Our estimate will be based

on the following fundamental result from [15] .

Theorem 3.1. Let A be a complex unital C*-algebra and x ∈ A an element whose

norm is less than 1. Then there exists a subset v1, ..., vn of unitary elements such

that

x =
1

n

n∑

i=1

vi.
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Note that n depends on x. From this result it follows that it is sufficient to estab-

lish an upper bound for
∥∥(P1 + P1/2)v

∥∥ where v is an unitary operator. We consider

decompositions H1 = (Keru)⊥, H2 = Keru and K1 = Im u, K2 = (Im u)⊥. If we

represent the unitary operator v as

[
a b

c d

]
according to the above decomposition,

we have the following:

Lemma 3.1. Operators a, b, c, d in the above decomposition satisfy the following

relations:

aa∗ + bb∗ = 1, cc∗ + dd∗ = 1, ac∗ + bd∗ = 0

a∗a + c∗c = 1, d∗d + b∗b = 1, a∗b + c∗d = 0.

Their norms are all less than or equal to 1.

Proof. Let p, q be projections onto (Keru)⊥ and Im u respectively. Let p, q be

their complementary projections. Then the above operators act on the following

spaces:

a : Im p → Im q,

b : Im p → Im q,

c : Im p → Im q,

d : Im p → Im q.

From this it follows that aa∗ + bb∗ is a well-defined operator acting on Im q. If h, k

denote arbitrary vectors from H, we can write explicit formulae for a, a∗, b and b∗,

via B(H), as

a(ph) = qvph, a∗(qk) = pv∗qk,

b(ph) = qvph, b∗(qk) = pv∗qk,

which imply

(aa∗ + bb∗)(qk) = aa∗(qk) + bb∗(qk)

= a(p(v∗qk)) + b(p(v∗qk))

= qvpv∗qk + qvpv∗qk

= qv(p + p)v∗qk

= qvv∗qk = qk.

The last equality follows from the fact that v is unitary, while q is a projection.

The above computation confirms that the operator aa∗ + bb∗ acts as the identity

operator on the space Im q. Other equalities can be proved in a similar way.

Lemma 3.2. In the same situation as above, the following norm estimates hold:

‖ac∗‖ , ‖ca∗‖ , ‖bd∗‖ , ‖db∗‖ , ‖a∗b‖ , ‖b∗a‖ , ‖c∗d‖ , ‖d∗c‖ ≤ 1

2
.
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This estimate is in general the best possible, as the example of a unitary 2×2 matrix
[

1√
2
− 1√

2
1√
2

1√
2

]

shows.

Proof. From c∗c = 1 − a∗a we have

‖ac∗‖2
= ‖ac∗ca∗‖ = ‖a(1 − a∗a)a∗‖ =

∥∥aa∗ − (aa∗)2
∥∥ .

Since ‖aa∗‖ ≤ 1, the estimate
∥∥aa∗ − (aa∗)2

∥∥ = max
{
λ − λ2 : λ ∈ sp(aa∗)

}

≤ max
{
λ − λ2 : 0 ≤ λ ≤ 1

}
=

1

4

implies ‖ac∗‖ ≤ 1/2. Other estimates can be proved in a similar way.

In course of the proof we shall use another numerical result

Lemma 3.3. The maximal value of the real function

f(ϕ) = A cos2 ϕ + B cosϕ sin ϕ,

where A, B are positive constants, is

1

2
· B2

√
A2 + B2 − A

.

This result is just an interesting exercise for a little more advanced students of

calculus, so we omit the proof.

Proposition 3.1. Let W = B(H) be a JB*-triple, u ∈ W a tripotent and

P1, P1/2, P0 Peirce projections corresponding to u. Then the estimates
∥∥P1 + P1/2

∥∥ ,
∥∥P1/2 + P0

∥∥ ≤ 1.1775

hold.

Proof. We already know that it is enough to consider
∥∥(P1 + P1/2)v

∥∥ where v ∈
B(H) is unitary. Consider the decomposition of v into components a, b, c, d with

respect to the same H1, H2, K1, K2 as above. In a similar way as in Proposition 2,

we can compute that the operator q = (P1 +P1/2)v is represented by

[
a b

c 0

]
. Using

Lemma 4 we can see that (qq∗)2 is represented by
[

1 + ac∗ca∗ a(1 + c∗c)c∗

c(1 + c∗c)a∗ cc∗

]
.

We already know that ‖cc∗‖ ≤ 1. The estimate

‖1 + ac∗ca∗‖ ≤ 1 + ‖ac∗‖ · ‖ca∗‖ ≤ 1 +
1

2
· 1

2
=

5

4
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follows from Lemma 5. In order to estimate off-diagonal elements, we use the identity

a∗a = 1 − c∗c, which implies

‖a(1 + c∗c)c∗‖2
= ‖a(1 + c∗c)c∗c(1 + c∗c)a∗‖
= ‖c(1 + c∗c)(1 − c∗c)(1 + c∗c)c∗‖
=
∥∥(cc∗) + (cc∗)2 − (cc∗)3 − (cc∗)4

∥∥ .

Since cc∗ is a positive operator on a subspace K2 with the spectrum inside the

interval [0, 1] , the last norm in the above computation is less than or equal to

max
{
λ + λ2 − λ3 − λ4 : 0 ≤ λ ≤ 1

}
=

107 + 51
√

17

512
≈ 0.61968

which implies

‖a(1 + c∗c)c∗‖ ≤
√

214 + 102
√

17

32
≈ 0.7872.

If ξ ∈ H is a unit vector, we decompose it into ξ = α + β with respect to the

decomposition K1 ⊕K2 so that ‖α‖2
+ ‖β‖2

= 1. Then, using the above estimates,

∥∥(qq∗)2ξ
∥∥2

=

∥∥∥∥
[

1 + ac∗ca∗ a(1 + c∗c)c∗

c(1 + c∗c)a∗ cc∗

] [
α

β

]∥∥∥∥
2

=

∥∥∥∥
(1 + ac∗ca∗)α + a(1 + c∗c)c∗β

c(1 + c∗c)a∗α + cc∗β

∥∥∥∥
2

= ‖(1 + ac∗ca∗)α + a(1 + c∗c)c∗β‖2
+ ‖c(1 + c∗c)a∗α + cc∗β‖2

≤ 25

16
‖α‖2 +

107 + 51
√

17

512
‖β‖2 + 2 · 5

4
·
√

214 + 102
√

17

32
‖α‖ · ‖β‖

+
107 + 51

√
17

512
‖α‖2

+ ‖β‖2
+ 2 ·

√
214 + 102

√
17

32
‖α‖ · ‖β‖

= 1 +
9

16
‖α‖2

+
107 + 51

√
17

512
+

9
√

214 + 102
√

17

64
‖α‖ · ‖β‖ .

We can denote ‖α‖ = cosϕ, ‖β‖ = sinϕ which bring us to the situation of Lemma

6. Its application gives us

∥∥(qq∗)2
∥∥2 ≤ 1 +

107 + 51
√

17

512
+

1

2
·

81·(214+102
√

17)
642√

92

162 + 81·(214+102
√

17)
642 − 9

16

=
619
√

230 + 102
√

17 + 5228 + 51
√

17
√

230 + 102
√

17 + 3468
√

17

512
(√

230 + 102
√

17 − 4
)

and thus
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∥∥(P1 + P1/2)v
∥∥

≤
8

√√√√√
619

√
230 + 102

√
17 + 5228 + 51

√
17

√
230 + 102

√
17 + 3468

√
17

512
(√

230 + 102
√

17− 4
)

< 1. 177 5

Theorem 3.2. Let W be a JC*-triple and u ∈ W a nonzero tripotent. If P1, P1/2

and P0 denote the Peirce projections with respect to u, then
∥∥P1 + P1/2

∥∥ ,
∥∥P1/2 + P0

∥∥ ≤ 1.1775.

Proof. There exists an injective triple homomorphisms φ : W → B(H) for a suit-

able Hilbert space H. Obviously φ(u) is a nonzero tripotent (i.e. partial isometry)

in B(H). Let P̃i denote Peirce projections, acting on B(H), with respect to φ(u).

Since Peirce projections can be given in terms of triple product, for example

(P1 + P1/2)x = 2{uux} − {u{uxu}u},

it is obvious that φ(P1 + P1/2) = (P̃1 + P̃1/2)φ. It is well known that injective triple

homomorphisms are isometric, so, for all w ∈ W, we have

∥∥(P1 + P1/2)w
∥∥ =

∥∥φ(P1 + P1/2)w
∥∥ =

∥∥∥(P̃1 + P̃1/2)φw

∥∥∥

≤ 1.1775 ‖φw‖ = 1.7775 ‖w‖ .

Conjecture 3.3. From the above proof it seems obvious that perhaps the given upper

bound could be improved by considering further similar computation for (qq∗)4,

(qq∗)8 and so on. At present, however, it seems that the polynomials arising in this

way become too complicated and their maximal values don’t seem to be explicitly

computable as was the case with

p(λ) = λ + λ2 − λ3 − λ4.

Even so, it seems improbable, that the given upper estimate 1.1775 is the best

possible one. Complex square matrices of dimension n can be viewed as a special

case of B(H). The operator P1 +P1/2 with respect to partial isometries of the type

u =

[
I 0

0 0

]
can be easily computed so it is possible to use various computer software

in order to form a conjecture. Our experiment consisted of generating matrices M

of various dimensions with the aid of a random number generator and computing

the quotient
∥∥(

P1 + P1/2

)
(M)

∥∥
op

‖M‖op
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where the approximation for the operator norm of M is computed numerically as the

square root of the largest eigenvalue for M ∗M. Such program, once we fix dimension

and u, can run random generation for many hours, and quotients can be stored in

separate file. In no such attempt were we able to obtain a number greater than

2/
√

3 ≈ 1. 154 7, so we believe that the following is true. If u is a nonzero tripotent

of a JC*-triple, then either we have a trivial case, P0 = 0 or P1/2 = 0, when∥∥P1 + P1/2

∥∥ = 1 or if all three projections are nonzero then
∥∥P1 + P1/2

∥∥ = 2/
√

3.
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