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E X T E N S I O N S  OF K Y  FAN S E C T I O N  
T H E O R E M S  A N D  M I N I M A X  I N E Q U A L I T Y  

T H E O R E M S  

XIAN-ZHI YUAN (Brisbane) 

Dedicated to Professor Ky Fan on his 80th birthday 

1. In t roduc t ion  

In 1961, Fan [10] proved a generalization of the classical KKM theorem 
in infinite dimensional Hausdorff topological vector spaces and established 
an elementary but very basic 'geometric lemma' for multivalued mappings. 
It was stated as: 

THEOREM A. Let E be a Hausdorff topological vector space, X C E be 
a non-empty compact convex subset and A be a subset of X x X such that 

(a) for each y e X ,  the set {x E X : (x,y)  E A} is closed in X ;  
(b) for each x E X ,  the set {y E X :  (x,y)  • A} is convex or empty; 
(c) for each x E X ,  (x,x) E A. 
Then there exists a point xo E X such that { x0} × X C A. 

In 1968, Browder [4] gave a fixed point form (using different techniques) 
of Fan's geometric 1emma and it is now called Fan-Browder fixed point theo- 
rem. Fan's geometric lemma above was stated by himseff [13] in the following 
equivalent form for convex sets (later it was called the Fan's section theorem): 

THEOREM B. Let X be a non-empty compact convex subset of a Haus- 
dorff topological vector space and let B C X x X .  Assume 

(a) for each f ixedx E X ,  the section {y  E X :  (x,y)  E B}  is open in X ;  
(b) for each fxed  y E X ,  the set { x E X :  (x,y) E B}  is non-empty and 

convex. 
Then there exists a point Xo E X such that ( Xo, Xo ) E B. 

Fan's theorem above has numerous connections with other ,ureas of math- 
ematics and serves to unify many results in the literature, in particular in the 
study of minimax inequality theory, fixed point theory for set-valued map- 
pings, mathematical economics, game theory and so on (see e.g. Aubin [1] 
and references therein). A number of generalizations and applications have 
been given by Bardaro and Ceppitelli [2], Ben-E1-MechaJekh et al [3], Chang 
and Yang [6], Degundji and Granas [7], Ding and Tan [8], Fan [14-15], Granas 
and Liu [18], Ha [19-21], Horvath [22], Park [34], Shih and Tan [35], Tan and 
Yuan [41], Tarafdar [42] and others. It is our purpose in this paper to give 
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some generalizations of Fan's section theorem. Then as applications, some 
new Ky Fan minimax inequalities and fixed point theorems are given. 

Now we explain some definitions and notations. Throughout this paper 
all topological spaces are assumed to be Hausdorff unless otherwise spec- 
ified. The set of all real numbers is denoted by t t  and the set of natural 
numbers is denoted by N. If X is a set, we shall denote by 2 x the family of 
all subsets of X.  Let A be a subset of a topological space X. We shall denote 
by intx(A) the interior of A in X and by clx(A) the closure of A in X. If A 
is a subset of a vector space, we shall denote by co A the convex hull of A. 
Let X and Y be two non-empty sets and T : X --+ 2 Y be a mapping. Then 
the graph of T, denoted by GraphT is the set { (x,y)  • X × Y :  y • T(x)}.  
Suppose X is a non-empty convex subset of a topological vector space E 
and f : X -+ t t  U { - ~ ,  +c~} is an extended valued function. Then f is 
said to be quasi-concave (respectively, quasi-convex) if the set { x • X : f ( x )  
> A} (respectively, the set { x • X :  f ( x )  < )~} ) is convex for each X • It .  
A topological space X is said to be contractible if the identity mapping I x  
of X is homotopic to a constant function. 

2. Extensions of  Ky Fan section theorems 

By employing the same arguments of Eilenberg and Montgomery [9, 
p. 106-107] and using Theorem 6.3 of Gbrniewicz [17, p. 111] instead of the co- 
incidence theorem used in [9, p.106-107], the following lemma was obtained 
by Shioji [36, p.188]: 

LEMMA 1 (Eilenberg and Montgomery, Gbrniewicz and Shioji). Let A N 
be an n-dimensional simplex with the Euclidean topology and Y be a compact 
topological space. Let ¢ : Y ~ AN be a single-valued continuous mapping 
and T : AN ~ 2 ]" be a set-valued upper semicontinuous mapping with non- 
empty compact contractible values. Then there exists xo E A N  such that Xo 
E ¢ o T(xo), where ¢ o T denotes the composition of the mapping T with ¢.  

As an application of Lemma 1, we have the following section theorem 
which generalizes Theorem 3 of Ha [19] which in turn improves Fan's section 
Theorem in [10] and [13]. 

THEOR~,M 2. Let X be a topological space and Y be a non-empty convex 
subset of  a H~usdorff topological vector space F. Suppose that A is a subset 
of  X × Y and there exist a subset B of A and a non-empty compact subset 
K of  X such that B is closed in X × Y and 

(a) for each y E Y ,  the set { x E X :  (x,y) E A} is closed in X ;  
(b) for each z • X ,  the set {y  • Y :  (x,y)  ¢. A} is convex or empty; 
(c) for each y • Y ,  the set { x  E K :  (x,y) • B} is non-empty and c o n -  

tractible. 
Then there exists xo • K such that {x0} × Y C A. 
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PROOF. Following Ha [19], for each y • Y, let A(y) = { x • X : (x,  y) 
A}. Suppose that the conclusion of Theorem 2 were false. Then for each 

x • K,  there exists y • Y such that (x,y) ¢ A, i.e., x ~ A(y), so that K 
C UyeyA(y). By (a) and the compactness of K,  there exists a finite subset 

n {Yl,Y2,...,Yn} of Y such that K C Uj=IA(yj). Let ~I, A2,.. . ,An be non- 
negative real valued continuous functions on K such that for each 1 __< j = n, 

n Aj vanishes on K \ A(yj) and Ej=I$ ~ = 1 for all x • K. Define a function 
p : K - ~ Y b y  

p(x) = Ejn=l)U(x)yj 

for each x E K .  Note that for each x E K  and j =  1 , 2 , . . . , n ,  if )~j(x) 
> 0, then z • A(yj). By (b), we have that (x ,p(x))  CA.  Now let Z 
:= co(y1, . . . ,  Yn) and define a mapping q : Z --* 2 g by 

¢(z) = { x e K :  (x,z)  • B}  

for each z E Z. Then q has non-empty closed values by (c). Note that B 
is closed in X × Y so that the graph of q is also closed in Z × K and q has 
non-empty compact contractible values. Since p is continuous, by Lemma 
1, there exists z0 E Z such that z0 E p(q(zo)). Let x0 E q(zo) be such that 
p(xo) = zo. Then (x0,p(x0)) E B C A which contradicts that (x,p(x)) ~. A 
for all x E X. Thus there must exist x0 E K such that {x0} × Y C A. [] 

Theorem 2 improves Theorem 3 of Ha [19] in the following ways: (i) the 
space X may not have linear structure and (ii) the set { x • K :  (x,y) • B} 
may not be convex. 

As an equivalent form of Theorem 2, we have the following section the- 
orem which improves Fan's section Theorem B: 

THEOREM 2 I. Let X be a topological space and Y be a non-empty con- 
vex subset of a Hausdorff topological vector space F. Suppose that A1 is a 
non-empty subset of X × Y and there exist a non-empty open subset B1 of 
X x Y and a non-empty compact subset K of X such that 

(a) for each y • Y ,  the set { x E X :  (x ,y)  E A1} is open in X ;  
(b) for each x • X ,  the set { y • Y :  (x ,y)  • A1 } is convex and for each 

x • K ,  theset  { y E Y  : (x , y )  E A t }  # 0 ;  
(c) for each y • Y, the set { x • K :  (x,y)  ¢ B1 } is non-empty and con- 

tractible. 
Then there exists (xo, Yo) e A~ such that (xo, yo) ¢- B1. 

PROOF. Let A := X × Y \ A1 and B := X × Y \ B1. By condition (b), 
the conclusion of Theorem 2 does not hold. Note that A and B satisfy all the 
conditions (a) and (b) of Theorem 2. Thus B must not be a subset of A, so 
that B1 7t Ax. Therefore there exists (x0, Yo) • A~ such that (x0, Y0) ¢ B1. 
[] 

Acta Mathematica Hungarica 71, 1996 



174 XIAN-ZHI YUAN 

It is clear that Theorems 2 and 2 ~ include Theorems A and A t as special 
cases. Let X := Y := K; B := A and X := Y := K in Theorem 2, where A 
= { (x, x) e X x X : x  e X} .  Then Theorem 2 reduces to Theorem A. Let 
X : = Y : = K  and B1 : = X × X \ A i n  Theorem2 t. By Theorem2 t , the re  
exists (z0, Y0) E A1 with (x0, Y0) ¢ B1, i.e., (x0, y0) E A so that (x0, x0) e A1 
and Theorem B follows. 

3. Ky Fan minimax inequalities 

As an analytical form of Theorem 2, we have the following minimax in- 
equality which is a generalization of Theorem 1 of Ha [21] which in turn 
improves the well-known. Ky Fan minimax inequality in [13]: 

THEOREM 3. Let X be a non-empty convex subset of a Hausdorff topo- 
logical vector space E and Y be a compact topological space. Suppose f : X 
× Y ~ t t  U {-c~,  + ~ }  is such that 

(a) for each y 6 Y ,  x ~ f ( x ,  y) is quasi-convex in X;  
(b) for each x e X ,  y ~ f ( z ,  y) is upper semicontinuous; 
(c) suppose T : X ~ 2 v is a set-valued mapping with non-empty con- 

tractible compact values. 
Then there exists Yo e Y such that 

inf f(x, y) < in.f f(x, Yo) < max inf f(x, y). 
x E X , y E T ( x )  = x E ~  = y E Y  x E X  

PROOF. In order 

A:= { ( x , y l e X x Y  
Then we have: 

(a t) for each y E Y, 

to apply Theorem 2, let A := infzex,yeT(~)f(x,y),  
:/(x,y)> A} andB:= {(z,y) e X x Y  :yeT(z)} .  

the set {x e X : (x,y) 9~ A} = {x e X :  f ( x , y ) <  A} 
is convex or empty by (a); 

(b') for each x e X,  the set { y e Y :  (x,y) e A} = {y  e Y :  f ( x , y )  > A} 
is dosed in X by (b); 

(d) note that T is upper semicontinuous with closed values so that B is 
closed in X x Y; 

(d') for each x e  X, the set { y E  Y : (x ,y)  e B} = { y e  Y :yeT(z)} 
= T(x)  which is non-empty and contractible. 

It is clear that B = Graph T C A. Now let K := Y and exchange both X 
and Y in Theorem 2. By Theorem 2, there exists Yo fi Y such that X × {yo} 
C A. From the definition of A, we have 

inf f(z,y) < i~f f(x, yo) < max inf f(x,y). 
x E X , v E T ( x )  = = v EY  x E X  

[] 
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As an application of Theorem 3, we have the following best approxima- 
tion theorem which generalizes Theorem 2 of Ha in [21] which in fact can be 
used to improve Theorem 1 of Fan [12] by using his argument hence we omit 
it here. 

THEOREM 4. Let X be a non-empty compact convex subset of a Haus- 
dorff topological vector space E and Y be a compact topological space. Sup- 
pose T : X ~ 2 Y is upper semicontinuous with non-empty contractible com- 
pact values and the extended real-valued function g : X × Y ~ RU {-oc,  +oc} 
is such that 

(a) g is (jointly) lower semicontinuous and for each fixed x E X ,  
y ~ g(x, y) is upper semicontonus (hence, y ~ g(x, y) is continuous for each 
fixed x E X);  

(b) x ~ g(x, y) is quasi-convex for each fixed y E Y .  
Then there exists Xo E X and Yo E T(xo) such that 

g(x0,y0) 5 inf g(x, y0). 
x E X  

PROOF. Define a mapping f : X × Y --+ R U {-oc,  +oc} by 

f ( x , y )  = g ( x , y ) -  inf g(z,y)  
zEX 

for each (x, y) E X × Y. Clearly f satisfies condition (a) of Theorem 3. Note 
that y ~ g(x,y)  is continuous for each fixed x E X, therefore f is lower semi- 
continuous by (a). Hence by Theorem 3, there exists Y0 E Y such that 

(1) inf f ( x , y )  < " xeX,yeT(~:) = l ~ f  f ( x ,  yo)= ~exinf [g(x, yo)-- zcxinf g(z, yo)] = O. 

Note that T has a closed graph which is compact in X × Y, and x ~ f ( x ,  y) 
is lower semicontinuous for each fixed y E Y, so that the infimum on the 
left side of (1) above is attained. Thus there exists y0 E T(xo) such that 
g(xo, Yo) 5 infxex g(x, Yo). [] 

As another application of Theorem 2, we have the following minimax 
inequality: 

TItEOREM 5. Let X be a topological space and Y be a non-empty convex 
subset of a Hausdorff topological vector space F. Suppose f : X × Y ~ R 
U { - ~ ,  +oc} is lower semicontinuous such that 

(a) for each x E X ,  y ~ f ( x , y )  is quasi-concave; 
(b) for each non-empty compact subset K of X ,  the set {x  E K :  f ( x , y )  

<= t} is contractible for each t E R.  
Then 

(2) inf sup f (x ,  y) = inf sup min f ( x ,  y) 
xEX yEY K C X  yEY xEK 

Acta Mathe,matica Hungarica 71, 1996 



176 XIAN-ZHI YUAN 

where the infimum on the right side of (2) is taken over all non-empty com- 
pact subsets K of X .  If  in addition, X is compact, then 

min sup f(x, y) = sup min f(x, y). 
xEX yEY yEY xEX 

PRoof .  It is clear that infzEX supyey f ( x ,  y) < supyey inf~ex f ( x ,  y). To 
prove (2), we can assume that infKCX supyey infzeg f ( x ,  y) < +oo. Choose 
t E R. with t > in fgcx  supyey infxeg f ( x ,  y) and let A := B := { (x, y) E X 
× Y :  f ( x , y ) <  t} .  It is clear that A satisfies conditions (a) and (b) 
of Theorem 2. Let K be a non-empty compact subset of X such that 
t > supyey infzeK f ( x ,  y). Then for each y e Y, the set { x E K : f ( x ,  y) 
<__ t} is contractible and non-empty by the choice of K.  By Theorem 2, 
there exists xo e K such that {z0} x Y C A, that is, f(xo, y) <= t for all y 
e Y. Thus infxex suPyey f ( x ,  y) < t and hence (2) holds. In addition, if X 
is compact, then 

min sup f ( x ,  y) = inf sup min f (x ,  y) = sup min f ( x ,  y). 
xEX YEY KCX yEY xEK yEY xEX 

[] 

As an immediate consequence of Theorem 5, we have the following corol- 
lary which is Theorem 4 of Ha in [19]: 

COROLLARY (Ha [19]). Let X be a non-empty convex subset of a topolog- 
ical space E and Y be a non-empty convex subset of a Hausdorff topological 
vector space F. Suppose f : X × Y --* t t  LJ {-oo,  +oo} is lower semicontin- 
uous such that 

(a) for each x E X ,  y ~ f ( x ,  y) is quasi-concave; 
(b) for each y E Y ,  x ~ f ( x ,  y) is quasi-convex. 
Then 

(3) inf sup f(x,y) = inf sup min f ( x , y )  
xEX yEY KCX yEY xEK 

where the infimum on the right side of (3) is taken over all non-empty com- 
pact convex subsets K of X .  If in addition, X is compact, then 

inf sup f(x, y) = sup min f(x, y). 
xEX yEY yEY xEX 

PRooF. Let ~'1 and 5v2 be the family of all non-empty compact convex 
subsets of X and non-empty compact subsets of X respectively. Clearly, 
F1 C ~'2. Note that 

inf sup f ( x , y )  >= inf sup min f ( x , y )  
xEX yEY KE~I yEY xEK 
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and 

inf sup min f (x ,  y) <_ inf sup min f ( x , y ) .  
ZE.T2 yEY zEZ KE-T1 yEY xEK 

Hence the conclusion follows by (2) of Theorem 5. [] 

4. Extensions of Ky Fan's fixed point theorems 

Finally ~s applications of Lemma 1, we shall give some extensions of Ky 
Fan's fixed point theorems in [12]. We first h~ve: 

THEOREM 6. Let X be a non-empty compact and convex subset of a 
Hausdorff topological vector space E and F be a Hausdorff topological vec- 
tor space with sufficient continuous linear functionals. Suppose T : X --* 2 F 
is upper semicontinuous with non-empty closed convex values and g : X ~ F 
is a (single-valued) continuous mapping such that 

(a) T(x)n g(Z) # 0 for each x C X ,  
(b) for a given continuous seminorm p on F and x E X ,  the set { z 

e Y :p(g(z) -  g(x)) <= 5} i~ convex, where ~ e R, and g - l ( T ( z ) )  is con- 
tractible for each z E X .  

Then there exists xo E X such that g(xo) E T(xo). 

PROOF. Following the argument  of Ha [20, pp.13-14], suppose the con- 
clusion were false. Then for each z E X ,  0 ¢_ g(z) - T(x) and so there exists 
~ > 0 and a continuous seminorm p~ on F such that  pz(g(x) - u) > 2tf~ for 
all u E T(x).  By the upper  semicontinuity of T and the continuity of g, there 
exists an open neighborhood N(x)  of x in Z such tha t  p x ( g ( z ) -  v) > ~x for 
all z E N(x)  and v E T(x). Since the family { N ( x ) : x  E X } is an open cover 
of the compact  set X,  there exists a finite subset ( x l , . . . ,  xm} of X such tha t  
U ( N ( x i )  : i =  1 , 2 , . . . , m }  D X.  Now define a seminorm p :  F ~  P~ by p(z) 
= maxi=l,2 ..... ,~ {px,(z)} for each z E F.  Let ~ = mini=l,2 ..... m{/f~,}. Then p 
is a continuous seminorm on F and 

(4) p(g(x)-  u) > 

for all x E X  and u E T ( x ) .  Let B ( z ) =  { x E X : p ( g ( z ) - g ( x ) )  < 5 }  for 
each z E X.  Then the family { B ( z ) : z  E X }  is an open cover of the com- 
pact set X so tha t  there exists a finite subset { z l , . . . , z n }  of X such tha t  
U~=lB(Zj) D X .  Let {•i : i  = 1, 2 , . . . ,  n} be a continuous part i t ion of unity 

on X subordinated to the cover { B ( z j ) : j  = 1 , 2 , . . . , n } ,  tha t  is A1, - . . ,An 
are non-negative real valued continuous functions on X such that  )U(x) = 0 
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for each x E X \ B ( z j )  and E'~=l)U(x ) = 1  for all x E X .  Let Z = c o ( z j :  
j = 1, 2 , . . . ,  n). Then Z C X. Define a function ~ : X -~ Z by 

¢(x) = r =l j(x)zj 

for each x E X .  Note that  for each x E X ,  and j =  1 , 2 , . . . , n ,  if )~j(x) 
5 0 ,  then x e B(zj) and so that  p(g(z j ) -g (x ) )  < 5. For each x e  X,  let 
Cx = { z E Y :  p(z - g(x)) __< 5}. Then C is a non-empty closed subset of C 
and g(zj) E C if )~j(x) ~ O. Since g- l (C) is  convex by (c), so that  g(O(x))  
e C, i.e., p(g(O(x)) -g (x ) )  <= 5. Now define h :  Z ~ 2 x by 

h(z)= {xeX:g(x)eT(z)} 

for each z E Z. Then h is a set-valued mapping with non-empty and con- 
tractible values by (a) and (b). Moreover it is easy to verify that  the graph 
of h is closed in Z × X and so h is upper semicontinuous on Z. By Lemma 
1, there exist zo e Z C X and x0 E X such that  Zo = ~(x0) and x0 E h(zo). 
This means that  g(xo)E T(zo). Note that p ( g ( O ( x ) ) - g ( x ) ) ) ~  5 for all 
x E X. Thus p(g(zo) -  g(x0)) ~ 5, which contradicts (1). Therefore there 
must exist Xo E X such that  g(xo) e T(xo). [] 

REMARK 1. The condition (b) of Theorem 6 is satisfied if g-l(C) is con- 
vex (maybe empty) for each closed convex C of F.  Thus Theorem 6 improves 
Theorem 2 of Ha [20] in the sense that g-l(C) may be not convex for each 
closed convex subset C of F. 

TI~EOREM 7. Let X be a non-empty compact and convex subset of a 
Hausdorff topological vector space E and F be a Hausdorff topological vec- 
tor space with sufficient continuous linear functionaIs. Suppose f, g : X --+ F 
are two (single-valued) continuous mappings such that g(X) is convex and 
g-l(y) is contractible for each y E g(X). 

Then one of the following must hold: 
(a) there exists a point Xo E X such that g(xo)= f(xo), or 
(b) there exists a point ~ E X such that 

(5) 0 < p(g(&)-  f(&)) 5 P ( Y -  f(&)). 

PROOF. Assume that the conclusion were false. Then g(x) ~ f(x)  for 
all x E X. By using similar arguments as in the proof of Theorem 6 above, 
there exist 5 > 0 and a continuous seminorm p o n  F such that  p ( g ( x ) -  f(x)) 
> 0  for ~ x E X .  Moreover for each x E X ,  there is y E g ( X )  such that  
p ( g ( x ) -  f(x)) > p ( y -  f(x)) (since we assume that  (b) does not hold). 
Now for each y e g(X),  let A(y) = {x e X :  p (g ( x ) -  f(x)) > p ( y -  f(x)) }. 
Then {A(y) :  y e  g(X)} is an open cover of the compact set X. Thus 
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there exists a finite subset {Yl , . . . ,  Ym) in g(X)  such that  um=lA(yi) D X.  
Let {A/ , . . . ,Am} be a continuous partition of unity on X subordinated to 
{A(y i ) :  i =  1 , 2 , . . . , m }  and Z := co(y/:  i=  1 , 2 , . . . , m ) .  Define a mapping 
~ : X - + Z b y  

@(x) = ~{m=lAi(x)yi 

for each x E X .  Now for each x E X ,  if A{(x) ~ q) for s o m e i =  1 , 2 , . . . , m ,  
then x E A(y{) so that  p ( g ( x ) -  f(x)) > p ( y i -  .f(x)). Hence p ( g ( x ) -  f (x) )  
> p ( V ( x ) - f ( x ) )  for a l l x E X .  For each z E Z ,  let h ( z ) = g - i ( z ) .  Then 
clearly h is an upper semicontinuous set-valued mapping on Z with non- 
empty  contractible values. By Lemma 1, there exist zo E Z C g(X)  (since 
g(X)  is convex) and x0 E X such that  z0 : ~(x0) and x0 E h(zo), i.e., z0 
: g(xo). Note that  since p ( g ( x ) -  f (x))  > p(~P(x)-  f (x) )  for all x E X,  we 
must have that  

p(g(xo) - f ( xo )  > p( zo - f(xo)) = p(g(xo) - f(xo)) 

which is impossible. Therefore the conclusion must hold. [] 

REMARK 2. Theorem 7 shows that  Theorem 3 of Ha [20] is still true in 
the case the set g- l (y)  may not be convex. When E := F and g : X --+ X is 
the identity mapping, Theorem 7 reduces to Theorem 2 of Fan in [12]. 

Finally as an immediate consequence of Theorem 7, we have: 

THEOREM 8. Let X be a non-empty compact and convex subset of a 
Hausdorff topological vector space E and F be a Hausdorff topological vector 
space with sufficient continuous linear functionals. Suppose f,  g : X ~ F are 
two (single-valued) continuous mappings such that 

(a) g(X)  is convex and g-a(y) is contractible for each y E g(X);  
(b) for each x E X ,  there exists a number A (real or complex, depend- 

ing on whether the vector space F is real or complex) such that [)~l < 1 and 
Ag(x) + (1 - A)f(x)  E g(X).  

Then there exists xo E X such that f(xo) = g(xo). 

PROOF. Suppose that  g(x) ~ f ( x )  for all x E X. By Theorem 7, there is 
a point x0 E X and a continuous seminorm p on F which satisfies (5). Now 
there exists a number A with [A I < 1 and y = Ag(xo) + (1 - )~)f(xo) E 9(X).  
Substituting this y in (5), it follows that  

0 < p ( g ( x o ) -  f(xo)) <= IAip(g(xo)- f (xo)) ,  

which contradicts IAI < 1. 

REMARK 3. Let X and Y be non-empty sets and f : X )< Y --+ R be 
a function. A minimax problem is to find certain conditions such that  the 
following holds: 

inf sup f ( x ,  y) = sup inf f ( x ,  y). 
yEY xEX xEX yEY 
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It is well-known that this minimax problem could be solved by fixed point 
theorems under certain circumstances. But it was Wu in [45] who first rec- 
ognized the importance of the connectedness in the study of minimax theory. 
This idea then was picked by Terkerson in [43]. By a refined method, it is 
Tuy who derived a generalized version of Sion's classical minimax theorem 
in [44] (see also Geraghty and Lin [16]). Independently, inspired by Jo6's pa- 
per [24], the method of level sets was developed by Jo6 and his Hungarian 
compatriot Stach6 [40] and Komornik [31]. For example, by introducing the 
concept of the interval space, it was Stach6 [40], who established an intersec- 
tion theorem which was used by Komornik [31] to derive a generalization of 
Ha's minimax theorem in [19]. All these results were unified by Kindler and 
Trost [29]. Following this line, many minimax theorems which only involve 
connectedness instead of convexity were obtained by Chang et al [5], Hor- 
vath [22-23], Komiya [30], Lin and Quan [33], Kindler [26-28], KSnig [32], 
Simons [37-38], Thompson and Yuan [46] et al. 

Finally we would like to note that our minimax inequalities and fixed 
point theorems in this paper are proved by section theorems of Ky Fan type. 
Therefore our results here are independent of those given by authors men- 
tioned above. 
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