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TECHNICAL NOTE

New Saddle Point Theorem Beyond
Topological Vector Spaces1

J. YU2 AND X. Z. YUAN2,3

Communicated by P. L. Yu

Abstract. The purpose of this note is to prove a new topological saddle-
point theorem, which in turn includes classical saddle-point theorems
such as the Sion minimax theorem and others in topological vector
spaces as special cases.
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1. Introduction

Let X and Y be nonempty sets, and let/ :Xx 7-» Ru {-oo, +00} be
an extended real-valued function. A point (x*, y*) eX x Y is said to be a
saddle point of/in X x Y i f
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fmal\(x,y)eX* Y.
Now, consider a two-person zero-sum game G/ generated by the func-

tion /. This means that the first player selects a point x from X and the
second player selects a point y from Y. As a result of this choice, the second
player pays the first one the amount/(x, y). A point (x*, y*)eX x y is said
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to be a solution of the game G/ if and only if it is a saddle point of/in
Xx Y.

The first saddle-point theorem was proved by Von Neumann (Ref. 1);
Sion (Ref. 2) proved a very general saddle-point theorem for a function
which is quasiconcave and upper semicontinuous in its first variable and
quasiconvex and lower semicontinuous in its second variable in topological
vector spaces.

In this note, we shall prove some new saddle-point theorems without
any linear structure by an elementary proof which depends mainly on the
connectedness of topological spaces. This method has been used by many
authors; see also Refs. 3-16. Thus, our result includes the Sion saddle point
theorem and related minimax results in topological vector spaces as special
cases.

2. Preliminaries

Let X and Y be two Hausdorff topological spaces. Let/be a real-valued
function defined in X x Fsuch that, for each fixed xeX, y i-> f(x, y) is lower
semicontinuous and, for each fixed yeY, xt->f(x,y) is upper semi-
continuous. If X and Y are both compact, we know that min^y
ma.x.xsxf(x, y) and maxxeX mmye Y (x, y) both exist. Denote

3. Main Results

Let fssJ and R denote the set of all positive integers and the set of all
real numbers. We then have the following topological saddle-point theorem
by an elementary proof which depends mainly on the connectedness of
topological spaces.

Theorem 3.1. Let X and Y be compact Hausdorff topological spaces.
Then, the function/: X x y-» R u {-oo, +00} has a saddle point if the fol-
lowing conditions are satisfied:

(Al) for each fixed xeX, yt-*f(x, y) is lower semicontinuous;
(A2) for each fixed ye Y, xi->f(x, y) is upper semicontinuous;
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then, it is clear that v<,v. Moreover it is well known and easily proven that
v = v if and only if/has a saddle point.



(A3) for each ceR, mel^J, and y^ Y, i= 1 , . . . , m, the set

JOTA: VOL. 96, NO. 1, JANUARY 1998 213

is either connected or empty;
(A4) for each y}, y2e Y, there exists a function S{y^}: [0, 1] -» Y such

that

and for each xeX, neN,;= 1, . . . . 2"~\

and for any £e[0, 1],

where T:= {j/(2")\ne^;j=0,1,..., 2"}.

Proof. It suffices to prove that v = v. We set

Let us show that the family tF has the finite intersection property, i.e.,

where yte Y, c,<ti, and i'= 1 n. We prove (1) by induction on neN.
For n = 1, if there exist y<>e Y and c0 < v such that

then

and

which is a contradiction.

^max{/(x, S(yi,y2]((j- l)/(2"-'))),



For a given neN, we suppose that, for any yte Y and c,< v, /'= 1,. .., n,
it holds that
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but by contradiction we suppose that there exist yte Y, i= 1 , . . . , « +1, such
that

Without loss of generality, we may assume that

Then,

By (A4), there exists a function S{y]^: [0, l]-»7 such that

For any Ae[0, 1], define

In the previous definition, it is understood that

By the induction assumption, /(A) is nonempty and

On the other hand, from conditions (A2) and (A3), /(A) is closed (hence,
compact) and connected. Now, we construct two sequences {M*}*^ and
{wk}k£f» in T as follows. Let u\ '•= 0 and w\ •= 1. Suppose that we have
defined uheT, w,,eT, with 1 <h<k, such that



Now, we define uk+\ and wk+l as follows: by the induction hypotheses and
connectedness properties, we have
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If/((M* + w*)/2)c:/(M*), let

Otherwise, set

Repeating this procedure, we obtain two sequences {uk}ke«i and {wk}keN

such that

with uk -> ̂  and wk -> £e[0, 1]. Denote

and select v > c* > c\. By the induction assumption, there exists x* such that

Then,

From condition (A4), we have

Therefore, there exist up and wr/ in Y such that

so that

We may assume thatp < q. Since I(wp) => /(w¥), so that x* el(wp), this contra-
dicts I(up)r\I(wp) = 0. Therefore, & has the finite intersection property
and C\Fe.r F=£ 0 as F is compact for each Fe&.



Remark 3.1. The proof of Theorem 3.1 actually tells us that the follow-
ing minimax theorem holds. For the convenience of our readers, we state it
as follows.

Corollary 3.1. Let X be a compact Hausdorff topological space, and
let Y be a Hausdorff topological space, not necessarily compact. Suppose
that the function f:Xx 7->Ru{-oo,+oo} satisfies conditions (A1)-(A4)
of Theorem 3.1. Then, we have
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If y<G, there exists ceR such that v<c<v. Select x0eC\FeSfF. Then,

and we have

which is a contradiction; hence, v-v and we complete the proof.

is either connected or empty;
(B4) for each fixed xeX, yi-+f(x, y) is quasiconvex.

Then, we have

In particular, we have the following minimax theorem as an application
of Theorem 3.1.

Theorem 3.2. Let X be a compact Hausdorff topological space, and
let 7 be a nonempty convex subset of a Hausdorff topological vector space
F. Suppose that/:^x F->Ru{-oo,+oo} is a function such that the fol-
lowing conditions are satisfied:

(Bl) for each fixed xeX, y*-*f(x,y) is lower semicontinuous;
(B2) for each fixed ye Y, xt-+f(x,y) is upper semicontinuous;
(B3) for each ceIR, meN, and >>,eY, i= 1 , . . . , m, the set

In particular, if Y is compact, then/has a saddle point in X* Y.

Proof. It suffices to verify that/satisfies all the hypotheses of Theorem
3.1. For each y\,y2eY, define S{yiJ>2): [0, l]-»7by



and the proof is completed.
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For each xeX, neM,j= 1 , . . . , 2" ', by (4) we have

By (Bl) and since S^,^ is continuous, for each £e[0, 1] we also have

Thus, all the hypotheses of Theorem 3.1, except the compactness of Y, are
satisfied. By Theorem 3.1 and Remark 3.1, it follows that

Remark 3.2. As the minimax equality plays a very important role in
the study of optimization and other subjects, the existence of equalities in
the topological minimax equality theory has been studied extensively by
many authors in recent years; e.g., see Refs. 3-6, 9, 11. However, the topo-
logical minimax theorems from Refs. 3-6, 9, 11 are not comparable with
our Theorems 3.1 and 3.2. Moreover, Theorems 3.1 and 3.2 include corre-
sponding results of Refs. 1-3, 7-8, 12, 14-16 as special cases.

As an immediate consequence of Theorem 3.2, we have the following
saddle-point theorem in topological vector spaces, which includes the Sion
classical minimax inequality in Ref. 2 as a special case.

Corollary 3.2. Let A' be a nonempty compact and convex subset of a
Hausdorff topological vector space E, and let Y be a nonempty convex subset
of a Hausdorff topological space F, respectively. Suppose that/: X x y-»R
satisfies the conditions below:

(Cl) for each fixed xeX, yi-*f(x,y) is lower semicontinuous and
quasiconvex;

(C2) for each fixed ye Y, x\-+f(x,y) is upper semicontinuous and
quasiconcave.

Then, we have

Moreover, if Y is compact, then / has a saddle point in X * Y.



Proof. For each fixed weN, each y/eY, i= 1,. . ., m, and for each
fixed ceM, if

4. Conclusions

In this note, we have established a topological minimax result (i.e.,
Theorem 3.1), which allows us to consider the existence of saddle points
without the traditional linear structure. Also, our results are new and
independent from previous results in the literature (Refs. 3-16).

Finally, we note that, for the application of the saddle-point theorem
to mathematical economics and game theory, the interested reader can find
more details in Aubin and Ekeland (Ref. 17), Border (Ref. 18), Ichiishi (Ref.
19), and references therein. Furthermore, a comprehensive bibliography for
the study of topological versions of saddle points and minimax theorems
can be found in Simons (Ref. 12).
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then by (C2), the set

is convex for /= 1,. . ., m. Therefore,

is nonempty convex, and hence nonempty connected. Thus, all the
hypotheses of Theorem 3.2 are satisfied. By Theorem 3.2, the conclusion
follows.
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