TAIWANESE JOURNAL OF MATHEMATICS Vol. 2, No. 3, pp. 321-327, September 1998

A SECTION THEOREM IN INTERVAL SPACE WITH APPLICATIONS

Yuguang Xu and Xian Wu

Abstract. In this paper, we prove a section theorem of Ky Fan type in interval space, and then, as its applications, some minimax inequalities and a fixed point theorem are obtained.

1. Preliminaries

We recall some elementary concepts on an interval space (see [1] and [5]): 1) By an *interval space* we mean a topological space X endowed with a mapping $[\cdot, \cdot] : X \times X \to \{\text{connected subsets of } X\}$ such that $x_1, x_2 \in [x_1, x_2] = [x_2, x_1]$ for all $x_1, x_2 \in X$.

2) A subset K of an interval space X is *convex* if for every $x_1, x_2 \in K$ we have $[x_1, x_2] \subset K$.

Obviously, in any interval space X, convex sets are connected or empty. The intersection of any family of convex sets is convex.

3) A function f mapping an interval space X into \mathbb{R} is quasiconvex (or quasiconcave) if $f(z) \leq \max\{f(x_1), f(x_2)\}$ (or $f(z) \geq \min\{f(x_1), f(x_2)\}$) whenever $x_1, x_2 \in X$ and $z \in [x_1, x_2]$. Thus f is quasiconvex (or quasiconcave) if and only if the sets $\{x|f(x) \leq \gamma\}$ (or $\{x|f(x) \geq \gamma\}$) are convex for all $\gamma \in \mathbb{R}$.

2. A Section Theorem of Ky Fan Type

In order to obtain our main result, we state a lemma which was proved in [1].

Lemma 1. Let Y be an interval space, X a topological space and K be a mapping of Y into the family of compact subsets of X, such that

Received November 20, 1995; revised September 25, 1996.

Communicated by M.-H. Shih.

¹⁹⁹¹ Mathematics Subject Classifications: 47H04, 47H10, 49J35, 52A07.

Key words and phrases: Interval space, compact set, convex set, connected.

- (1.1) $K(y) \neq \emptyset$ for all $y \in Y$;
- (1.2) $K(z) \subset K(y_1) \cup K(y_2)$ whenever $z \in [y_1, y_2]$ and $y_1, y_2 \in Y$;
- (1.3) $\bigcap_{k=1}^{n} K(y_i)$ is connected or empty for every $y_1, y_2, \dots, y_n \in Y(n = 1, 2, \dots);$
- (1.4) $x \in K(y)$ whenever $y = \lim_{\alpha \in A} y_{\alpha}, x = \lim_{\alpha \in A} x_{\alpha}$ and $x_{\alpha} \in K(y_{\alpha})$ for all $\alpha \in A$.

Then we have $\bigcap_{y \in Y} K(y) \neq \emptyset$.

In the following, we give our main result.

Theorem 2. Let X be a compact topological space, Y be an interval space and $A \subset X \times Y$ such that

- (2.1) A is open in $X \times Y$;
- (2.2) $A[x] = \{y \in Y | (x, y) \in A\}$ is convex and nonempty for each $x \in X$;
- (2.3) $\bigcap_{i=1}^{n} (X \setminus A[y_i]) \text{ is connected for every finite subset } \{y_1, \dots, y_n\} \subset Y,$ where $A[y_i] = \{x \in X \mid (r, y_i) \in A\}.$

Then there exists a point $y_0 \in Y$ such that $X \times \{y_0\} \subset A$

Proof: If the conclusion of the theorem does not hold, then for each $y \in Y$, there exists a point $x_0 \in X$ such that $(x_0, y) \notin A$. Let

$$K(y) = \{ x \in X \mid (x, y) \notin A \}.$$

Then, $K: Y \to 2^X$ is a multivalued mapping with nonempty compact values because $K(y) = X \setminus A[y]$, A is open and X is compact. Moreover,

$$Graph(K) = \{(y, x) \in Y \times X \mid x \in K(y)\}$$
$$= \{(y, x) \in Y \times X \mid (x, y) \notin A\}$$

is closed since A is open. Hence, the condition (1.4) of Lemma 1 is satisfied.

If there exist two points $y_1^*, y_2^* \in Y$ and $z^* \in [y_1^*, y_2^*]$ such that

$$K(z^*) \not\subset K(y_1^*) \cup K(y_2^*),$$

then there exists an $x^* \in K(z^*)$, but $x^* \notin K(y_1^*) \cup K(y_2^*)$. On the one hand, by $x^* \in K(z^*)$, we have $z^* \notin A[x^*]$, because of

$$z^* \in K^{-1}(x^*) = \{ y \in Y \mid x^* \in k(y) \} = \{ y \in Y \mid (x^*, y) \notin A \}$$
$$= \{ y \in Y \mid y \notin A[x^*] \} = Y \backslash A[x^*].$$

On the other hand, by $x^* \notin K(y_1^*) \cup K(y_2^*)$, we have $x^* \notin K(y_j^*)$ (j = 1, 2), and so $(x^*, y_j^*) \in A$ (j = 1, 2), i.e., $y_j^* \in A[x^*]$ (j = 1, 2). Hence, $[y_1^*, y_2^*] \subset A[x^*]$ implies $z^* \in A[x^*]$ by (2.2). It is a contradiction. Therefore, the condition (1.2) of Lemma 1 holds.

Summing up the above arguments, adding (2.3) in, we know that all the conditions of Lemma 1 are fulfilled. By virtue of Lemma 1, we have that $\bigcap_{y \in Y} K(y) \neq \emptyset$. It follows that there exists $\overline{x} \in K(y)$ for all $y \in Y$. It implies $y \notin A[\overline{x}]$ for all $y \in Y$, i.e., $A[\overline{x}] = \phi$. This contradicts the condition (2.2). Therefore, Theorem 2 is true.

Remark. Theorem 2 is a new section theorem of Ky Fan type. Its conditions differ from other section theorems (c.f. [3], [4] and [6]).

3. Some Applications

3-1. Applications to Minimax Problems.

Now, we apply Theorem 2 to minimax problems.

Theorem 3. (Ky Fan Minimax Principle). Let X be a compact interval space and $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ ($f \not\equiv +\infty$) be a function. Let $\varphi: X \times X \to \mathbb{R}$ be a function with $\varphi(x, x) \ge 0$ for each $x \in X$. If the following conditions are satisfied:

(3.1) for each $x \in X$, $f(y) + \varphi(x, y)$ is quasiconvex in y; (3.2) for each $y \in X$, $f(x) - \varphi(x, y)$ is quasiconvex in x; (3.3) the set $\{(x, y) \in X \times X \mid f(y) + \varphi(x, y) \ge f(x)\}$ is closed, then there exists an $\overline{x} \in X$ such that

$$f(y) + \varphi(\overline{x}, y) \ge f(\overline{x})$$

for all $y \in X$.

Proof: Put

$$A = \{(x, y) \in X \times X \mid f(y) + \varphi(x, y) < f(x)\}.$$

Then A is open by (3.3). If the conclusion of theorem is false, then, for each $x \in X$, there exists a $\overline{y} \in X$ such that $f(\overline{y}) + \varphi(x, \overline{y}) < f(x)$. It implies $\overline{y} \in A[x]$, i.e., $A[x] \neq \phi$. By the conditions (3.1) and (3.2), we have that

$$A[x] = \{ y \in X \mid (x, y) \in A \}$$

= $\{ y \in X \mid f(y) + \varphi(x, y) < f(x) \}$

is convex and

$$X \setminus A[y_i] = \{ x \in X \mid f(x) - \varphi(x, y_i) \le f(y_i) \}$$

is convex, too. Hence, $\bigcap_{i=1}^{n} (X \setminus A[y_i])$ is connected for every $\{y_1, \dots, y_n\} \subset X$.

By virtue of Theorem 2, there exists a $\overline{y} \in X$ such that $X \times \{\overline{y}\} \subset A$. It implies $f(\overline{y}) + \varphi(x, \overline{y}) < f(x)$ for all $x \in X$. Hence, $\varphi(\overline{y}, \overline{y}) < 0$. It contradicts that $\varphi(x, x) \ge 0$ for all $x \in X$. Therefore, Theorem 3 is true.

Theorem 4. (Ky Fan Minimax Inequality) Let X be a compact interval space, and $\varphi : X \times X \to \mathbb{R}$ be an upper semicontinuous function such that

- (4.1) for each $x \in X$, $\varphi(x, y)$ is quasiconvex in y;
- (4.2) for each $y \in X$, $\varphi(x, y)$ is quasiconcave in x;
- (4.3) for each $x \in X$, there exists a point $y' \in X$ such that $\varphi(x, y') < \sup_{y \in X} \varphi(y, y)$,

then there exists a $\overline{y} \in X$ such that

$$\sup_{x \in X} \varphi(x, \,\overline{y}) \le \sup_{y \in X} \varphi(y, \, y).$$

Proof. We may assume that $\gamma = \sup_{y \in X} \varphi(y, y) < +\infty$. Let $A = \{(x, y) \in X \times X \mid \varphi(x, y) < \gamma\}$. Then A is open. For each $x \in X, A[x] = \{y \in X \mid (x, y) \in A\} = \{y \in X \mid \varphi(x, y) < \gamma\}$ is a nonempty convex subset of X by (4.1) and (4.3). The set

$$\bigcap_{i=1}^{n} (X \setminus A[y_i]) = \bigcap_{i=1}^{n} \{x \in X \mid (x, y_i) \notin A\}$$
$$= \bigcap_{i=1}^{n} \{x \in X \mid \varphi(x, y_i) \ge \gamma\}$$

is connected or empty by (4.2) for each finite subset $\{y_1, \dots, y_n\} \subset X$. By virtue of Theorem 2, there exists a $\overline{y} \in X$ such that $X \times \{\overline{y}\} \subset A$, i.e., $(x, \overline{y}) \in A$ for all $x \in X$. It follows that $\varphi(x, \overline{y}) < \gamma$ for all $x \in X$. Hence,

$$\sup_{x \in X} \varphi\left(x, \overline{y}\right) \le \sup_{y \in X} \varphi\left(y, \, y\right).$$

This completes the proof.

Theorem 5. (Von Neumann Inequality) Let X be compact topological space and K be a nonempty compact convex subset of interval space Y. If $f: X \times Y \to \mathbb{R}$ is an upper semicontinuous function such that

(5.1) for each $x \in X$, f is quasiconvex on Y;

(5.2) for each $y \in Y$, f is quasiconcave on X,

then

$$\inf_{y \in K} \sup_{x \in X} f(x, y) \le \inf_{K \subset Y} \sup_{x \in X} \inf_{y \in K} f(x, y).$$

Proof: If $\inf_{k \in Y} \sup_{x \in X} \inf_{y \in K} f(x, y) = +\infty$, then the theorem is obviously true. So, we can assume that $\inf_{K \in Y} \sup_{r \in X} \inf_{y \in K} f(x, y) < +\infty$. And then, we choose a real number $t \in \mathbb{R}$ such that $\inf_{K \in Y} \sup_{x \in X} \inf_{y \in K} f(x, y) < t$. Let

$$A = \{(x, y) \in X \times Y | f(x, y) < t\}.$$

Then A is open because f is upper semicontinuous. For each $x \in X$, the section $A[x] = \{y \in Y | (x, y) \in A\} = \{y \in Y | f(x, y) < t\}$ is convex by (5. 1).

When $\inf_{K \subseteq Y} \sup_{x \in X} \inf_{y \in K} f(x, y) < t$, there exists a nonempty compact convex set $K_0 \subset Y$ such that $\sup_{x \in X} \inf_{y \in K_0} f(x, y) < t$. And then, for each $x \in X$, there exists a point $\overline{y} \in K_0$ such that $f(x, \overline{y}) < t$, i.e., $\overline{y} \in A[x]$. Therefore, A[x] is nonempty.

For every finite subset $\{y_1, \dots, y_n\} \subset Y$ $(n = 1, 2, \dots)$, the set

$$\bigcap_{i=1}^{n} (X \setminus A[y_i]) = \bigcap_{i=1}^{n} \{x \in X \mid (x, y_i) \notin A\}$$
$$= \bigcap_{i=1}^{n} \{x \in X \mid f(x, y_i) \ge t\}$$

must be connected by (5.2). By virtue of Theorem 2, there exists a point $y_0 \in K$ such that $X \times \{y_0\} \subset A$, i.e., $f(x, y_0) < t$ for all $x \in X$. Hence,

$$\sup_{x \in X} f(x, y_0) \le t.$$

Obviously, $\inf_{y \in Y} \sup_{x \in X} f(x, y) \le t$. It turns out that

$$\inf_{y \in Y} \sup_{x \in X} f(x, y) \le \inf_{k \subset Y} \sup_{x \in X} \inf_{y \in K} f(x, y).$$

Remark. By an obvious inequality

$$\inf_{y \in Y} \sup_{x \in X} f(x, y) \ge \inf_{k \subset Y} \sup_{x \in X} \inf_{y \in K} f(x, y),$$

Yuguang Xu and Xian Wu

we have

$$\inf_{y \in Y} \sup_{x \in X} f(x, y) = \inf_{k \subset Y} \sup_{x \in X} \inf_{y \in K} f(x, y).$$

If, in addition, Y is compact, then

$$\min_{y \in Y} \max_{x \in X} f(x, y) = \max_{x \in X} \min_{y \in Y} f(x, y).$$

The above results differ from Theorem 3 in [2], and imply Theorem 4 in [3] and Theorem 2 in [2].

3-2. Application on Fixed Point Problem.

Next, we apply the result of Theorem 2 to a fixed point problem.

Theorem 6. Let X be a compact interval space, and $K : X \to 2^X$ be a multivalued mapping with compact values, such that

- (6.1) K has closed graph;
- (6.2) $X \setminus K(x)$ is convex for each $x \in X$;
- (6.3) $\bigcap_{i=1}^{n} K^{-1}(y_i) = \bigcap_{i=1}^{n} \{x \in X \mid y_i \in K(x)\} \text{ is connected or empty for every finite subset } \{y_1, \cdots, y_n\} \subset X (n = 1, 2, \cdots);$
- (6.4) $K^{-1}(x) = \{z \in X \mid x \in K(z)\} \neq \emptyset \text{ for each } x \in X.$

Then K has a fixed point in X.

Proof: Put $A = \{(x, y) \in X \times X \mid y \notin K(x)\}$, i.e., $A = X \times X \setminus \text{Graph}(K)$. Hence, A is open by (6.1).

For each $x \in X$, $A[x] = \{y \in X | (x, y) \in A\} = \{y \in X | y \notin K(x)\} = X \setminus K(x)$ is convex by (6.2). If there is no fixed point of K in X, then $x \notin K(x)$ for every $x \in X$. Consequently, $A[x] \neq \emptyset$ for each $x \in X$. For each finite subset $\{y_1, \dots, y_n\} \subset X$,

$$\bigcap_{i=1}^{n} (X \setminus A[y_i]) = \bigcap_{i=1}^{n} \{ x \in X \mid (x, y_i) \notin A \} = \bigcap_{i=1}^{n} \{ x \in X \mid y_i \in K(x) \}$$
$$= \bigcap_{i=1}^{n} K^{-1}(y_i)$$

is connected by (6.3).

By virtue of Theorem 2, there exists a point $\overline{y} \in X$ such that $X \times \{\overline{y}\} \subset A$, i.e., for each $x \in X, (x, \overline{y}) \in A$. Hence, $\overline{y} \in K(x)$ for all $x \in X$. It follows that $K^{-1}(\overline{y}) = \emptyset$, which contradicts (6.4). The conclusion of the theorem, therefore, has been proved.

References

- L. L. Stacho, Minimax theorems beyond topological vector spaces, Acta Sci. Math. (Szeged) 42 (1980), 157-164.
- V. Komornik, Minimax theorems for upper semi-continuous functions, Acta. Math. Hungar. 40 (1982), 159-163.
- Chung-Wei Ha, Minimax and fixed point theorems, Math. Ann. 248 (1980), 73-77.
- Shi-Sen Chang and Xian Wu, Toplogical version of section theorems with applications, Appl. Math. Mech. 16 (1995), 123-131.
- Shi-Sen Chang and Xian Wu, Econoinic equilibrium theorems of Shafer-Sonnenschein version and nonempty intersection theorems in interval spaces, J. Math. Anal. Appl. 189 (1995), 297-309.
- Shi-Sen Chang, Xian Wu and Da-Cheng Wang, A new minimax theorem with applications, *Appl. Math. Mech.* 17 (1996), 291-296.

Yuguang Xu

Department of Mathematics, Kunming Teacher's College Kunming Yunnan 650031, China

Xian Wu Department of Mathematics, Yunnan Normal University Kunming Yunnan 650092, China