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A SECTION THEOREM IN INTERVAL SPACE
WITH APPLICATIONS

Yuguang Xu and Xian Wu

Abstract. In this paper, we prove a section theorem of Ky Fan type in
interval space, and then, as its applications, some minimax inequalities
and a fixed point theorem are obtained.

1. Preliminaries

We recall some elementary concepts on an interval space (see [1] and [5]):
1) By an interval space we mean a topological space X endowed with

a mapping [·, ·] : X × X → {connected subsets of X} such that x1, x2 ∈
[x1, x2] = [x2, x1] for all x1, x2 ∈ X.

2) A subset K of an interval space X is convex if for every x1, x2 ∈ K we
have [x1, x2] ⊂ K.

Obviously, in any interval space X, convex sets are connected or empty.
The intersection of any family of convex sets is convex.

3) A function f mapping an interval space X into R is quasiconvex (or qua-
siconcave) if f(z) ≤ max{f(x1), f(x2)} (or f(z) ≥ min{f(x1), f(x2)}) when-
ever x1, x2 ∈ X and z ∈ [x1, x2]. Thus f is quasiconvex (or quasiconcave) if
and only if the sets {x|f(x) ≤ γ} (or {x|f(x) ≥ γ}) are convex for all γ ∈ R.

2. A Section Theorem of Ky Fan Type

In order to obtain our main result, we state a lemma which was proved in
[1].

Lemma 1. Let Y be an interval space, X a topological space and K be a
mapping of Y into the family of compact subsets of X, such that
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(1.1) K(y) 6= ∅ for all y ∈ Y ;
(1.2) K(z) ⊂ K(y1) ∪K(y2) whenever z ∈ [y1, y2] and y1, y2 ∈ Y ;

(1.3)
n⋂
k=1

K(yi) is connected or empty for every y1, y2, · · · , yn ∈ Y (n = 1, 2, · · ·);

(1.4) x ∈ K(y) whenever y = lim
α∈A

yα, x = lim
α∈A

xα and xα ∈ K(yα) for all
α ∈ A.

Then we have
⋂
y∈Y

K(y) 6= ∅.

In the following, we give our main result.

Theorem 2. Let X be a compact topological space, Y be an interval space
and A ⊂ X × Y such that

(2.1) A is open in X × Y ;
(2.2) A[x] = {y ∈ Y |(x, y) ∈ A} is convex and nonempty for each x ∈ X;

(2.3)
n⋂
i=1

(X\A [yi]) is connected for every finite subset {y1, · · · , yn} ⊂ Y,

where A[yi] = {x ∈ X | (r, yi) ∈ A}.

Then there exists a point y0 ∈ Y such that X × {y0} ⊂ A

Proof: If the conclusion of the theorem does not hold, then for each y ∈ Y ,
there exists a point x0 ∈ X such that (x0, y) 6∈ A. Let

K(y) = {x ∈ X | (x, y) 6∈ A}.

Then, K : Y → 2X is a multivalued mapping with nonempty compact values
because K(y) = X\A[y], A is open and X is compact. Moreover,

Graph(K)= {(y, x) ∈ Y ×X |x ∈ K(y)}

= {(y, x) ∈ Y ×X | (x, y) 6∈ A}

is closed since A is open. Hence, the condition (1.4) of Lemma 1 is satisfied.
If there exist two points y∗1 , y

∗
2 ∈ Y and z∗ ∈ [y∗1 , y

∗
2 ] such that

K(z∗) 6⊂ K(y∗1) ∪K(y∗2),

then there exists an x∗ ∈ K(z∗), but x∗ 6∈ K(y∗1) ∪K(y∗2). On the one hand,
by x∗ ∈ K(z∗), we have z∗ 6∈ A[x∗], because of

z∗ ∈ K−1(x∗)= {y ∈ Y |x∗ ∈ k(y)} = {y ∈ Y | (x∗, y) 6∈ A}

= {y ∈ Y | y 6∈ A[x∗]} = Y \A[x∗].
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On the other hand, by x∗ 6∈ K(y∗1)∪K(y∗2), we have x∗ 6∈ K(y∗j ) (j = 1, 2), and
so (x∗, y∗j ) ∈ A (j = 1, 2), i.e., y∗j ∈ A[x∗] (j = 1, 2). Hence, [y∗1 , y

∗
2 ] ⊂ A[x∗]

implies z∗ ∈ A[x∗] by (2.2). It is a contradiction. Therefore, the condition
(1.2) of Lemma 1 holds.

Summing up the above arguments, adding (2.3) in, we know that all the
conditions of Lemma 1 are fulfilled. By virtue of Lemma 1, we have that⋂
y∈Y

K(y) 6= ∅. It follows that there exists x ∈ K(y) for all y ∈ Y . It implies

y 6∈ A [x] for all y ∈ Y , i.e., A [x] = φ. This contradicts the condition (2.2).
Therefore, Theorem 2 is true.

Remark. Theorem 2 is a new section theorem of Ky Fan type. Its con-
ditions differ from other section theorems (c.f. [3], [4] and [6]).

3. Some Applications

3-1. Applications to Minimax Problems.

Now, we apply Theorem 2 to minimax problems.

Theorem 3. (Ky Fan Minimax Principle). Let X be a compact interval
space and f : X → R = R∪{±∞} (f 6≡ +∞) be a function. Let ϕ : X×X → R
be a function with ϕ(x, x) ≥ 0 for each x ∈ X. If the following conditions are
satisfied:

(3.1) for each x ∈ X, f(y) + ϕ(x, y) is quasiconvex in y;
(3.2) for each y ∈ X, f(x)− ϕ(x, y) is quasiconvex in x;
(3.3) the set {(x, y) ∈ X ×X | f(y) + ϕ(x, y) ≥ f(x)} is closed,
then there exists an x ∈ X such that

f(y) + ϕ(x, y) ≥ f(x)

for all y ∈ X.

Proof: Put

A = {(x, y) ∈ X ×X | f(y) + ϕ(x, y) < f(x)}.

Then A is open by (3.3). If the conclusion of theorem is false, then, for each
x ∈ X, there exists a y ∈ X such that f(y) + ϕ(x, y) < f(x). It implies
y ∈ A[x], i.e., A[x] 6= φ. By the conditions (3.1) and (3.2), we have that

A[x]= {y ∈ X | (x, y) ∈ A}

= {y ∈ X | f(y) + ϕ(x, y) < f(x)}
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is convex and

X\A[yi] = {x ∈ X | f(x)− ϕ(x, yi) ≤ f(yi)}

is convex, too. Hence,
n⋂
i=1

(X\A[yi]) is connected for every {y1, · · · , yn} ⊂ X.

By virtue of Theorem 2, there exists a y ∈ X such that X × {y} ⊂ A. It
implies f(y) +ϕ(x, y) < f(x) for all x ∈ X. Hence, ϕ(y, y) < 0. It contradicts
that ϕ(x, x) ≥ 0 for all x ∈ X. Therefore, Theorem 3 is true.

Theorem 4. (Ky Fan Minimax Inequality) Let X be a compact interval
space, and ϕ : X ×X → R be an upper semicontinuous function such that

(4.1) for each x ∈ X,ϕ(x, y) is quasiconvex in y;
(4.2) for each y ∈ X,ϕ(x, y) is quasiconcave in x;
(4.3) for each x ∈ X, there exists a point y′ ∈ X such that ϕ(x, y′) <

sup
y∈X

ϕ(y, y),

then there exists a y ∈ X such that

sup
x∈X

ϕ(x, y) ≤ sup
y∈X

ϕ(y, y).

Proof. We may assume that γ = sup
y∈X

ϕ(y, y) < +∞. Let A = {(x, y) ∈

X×X |ϕ(x, y) < γ}. Then A is open. For each x ∈ X,A[x] = {y ∈ X | (x, y) ∈
A} = {y ∈ X |ϕ(x, y) < γ} is a nonempty convex subset of X by (4.1) and
(4.3). The set

n⋂
i=1

(X \A[yi])=
n⋂
i=1

{x ∈ X | (x, yi) 6∈ A}

=
n⋂
i=1

{x ∈ X |ϕ(x, yi) ≥ γ}

is connected or empty by (4.2) for each finite subset {y1, · · · , yn} ⊂ X. By
virtue of Theorem 2, there exists a y ∈ X such that X × {y} ⊂ A, i.e.,
(x, y) ∈ A for all x ∈ X. It follows that ϕ(x, y) < γ for all x ∈ X. Hence,

sup
x∈X

ϕ (x, y) ≤ sup
y∈X

ϕ (y, y).

This completes the proof.

Theorem 5. (Von Neumann Inequality) Let X be compact topological
space and K be a nonempty compact convex subset of interval space Y . If
f : X × Y → R is an upper semicontinuous function such that



A Section Theorerm with Applications 325

(5.1) for each x ∈ X, f is quasiconvex on Y ;

(5.2) for each y ∈ Y, f is quasiconcave on X,

then
inf
y∈K

sup
x∈X

f(x, y) ≤ inf
K⊂Y

sup
x∈X

inf
y∈K

f(x, y).

Proof: If inf
k⊂Y

sup
x∈X

inf
y∈K

f(x, y) = +∞, then the theorem is obviously true.

So, we can assume that inf
K⊂Y

sup
r∈X

inf
y∈K

f(x, y) < +∞. And then, we choose a

real number t ∈ R such that inf
K⊂Y

sup
x∈X

inf
y∈K

f(x, y) < t. Let

A = {(x, y) ∈ X × Y |f(x, y) < t}.

Then A is open because f is upper semicontinuous. For each x ∈ X, the
section A[x] = {y ∈ Y |(x, y) ∈ A} = {y ∈ Y |f(x, y) < t} is convex by (5. l).

When inf
K⊂Y

sup
x∈X

inf
y∈K

f(x, y) < t, there exists a nonempty compact convex

set K0 ⊂ Y such that sup
x∈X

inf
y∈K0

f(x, y) < t. And then, for each x ∈ X, there

exists a point y ∈ K0 such that f(x, y) < t, i.e., y ∈ A[x]. Therefore, A[x] is
nonempty.

For every finite subset {y1, · · · , yn} ⊂ Y (n = 1, 2, · · ·), the set

n⋂
i=1

(X \A[yi])=
n⋂
i=1

{x ∈ X | (x, yi) 6∈ A}

=
n⋂
i=1

{x ∈ X | f(x, yi) ≥ t}

must be connected by (5.2). By virtue of Theorem 2, there exists a point
y0 ∈ K such that X × {y0} ⊂ A, i.e., f(x, y0) < t for all x ∈ X. Hence,

sup
x∈X

f(x, y0) ≤ t.

Obviously, inf
y∈Y

sup
x∈X

f(x, y) ≤ t. It turns out that

inf
y∈Y

sup
x∈X

f(x, y) ≤ inf
k⊂Y

sup
x∈X

inf
y∈K

f(x, y).

Remark. By an obvious inequality

inf
y∈Y

sup
x∈X

f(x, y) ≥ inf
k⊂Y

sup
x∈X

inf
y∈K

f(x, y),
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we have
inf
y∈Y

sup
x∈X

f(x, y) = inf
k⊂Y

sup
x∈X

inf
y∈K

f(x, y).

If, in addition, Y is compact, then

min
y∈Y

max
x∈X

f(x, y) = max
x∈X

min
y∈Y

f(x, y).

The above results differ from Theorem 3 in [2], and imply Theorem 4 in [3]
and Theorem 2 in [2].

3-2. Application on Fixed Point Problem.

Next, we apply the result of Theorem 2 to a fixed point problem.

Theorem 6. Let X be a compact interval space, and K : X → 2X be a
multivalued mapping with compact values, such that

(6.1) K has closed graph;
(6.2) X \K(x) is convex for each x ∈ X;

(6.3)
n⋂
i=1

K−1(yi) =
n⋂
i=1
{x ∈ X | yi ∈ K(x)} is connected or empty for every

finite subset {y1, · · · , yn} ⊂ X (n = 1, 2, · · ·);
(6.4) K−1(x) = {z ∈ X |x ∈ K(z)} 6= ∅ for each x ∈ X.

Then K has a fixed point in X.

Proof: Put A = {(x, y) ∈ X×X | y 6∈ K(x)}, i.e., A = X×X \Graph(K).
Hence, A is open by (6.1).

For each x ∈ X,A[x] = {y ∈ X|(x, y) ∈ A} = {y ∈ X | y 6∈ K(x)} =
X \ K(x) is convex by (6.2). If there is no fixed point of K in X, then
x 6∈ K(x) for every x ∈ X. Consequently, A[x] 6= ∅ for each x ∈ X. For each
finite subset {y1, · · · , yn} ⊂ X,

n⋂
i=1

(X\A[yi])=
n⋂
i=1

{x ∈ X | (x, yi) 6∈ A} =
n⋂
i=1

{x ∈ X | yi ∈ K(x)}

=
n⋂
i=1

K−1(yi)

is connected by (6.3).
By virtue of Theorem 2, there exists a point y ∈ X such that X×{y} ⊂ A,

i.e., for each x ∈ X, (x, y) ∈ A. Hence, y ∈K(x) for all x ∈ X. It follows that
K−1(y) = ∅, which contradicts (6.4). The conclusion of the theorem, therefore,
has been proved.
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