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Parallel sets and their boundaries

Let A ⊂ R
d be bounded and r > 0. dA(x) := infa∈A |a − x |

Closed and open r -parallel set of A:

Ar = {z ∈ R
d : dA(z) ≤ r}, A<r = {z ∈ R

d : dA(z) < r}.

◮ ∂+Ar ⊆ ∂Ar ⊆ ∂A<r

positive boundary:

∂+X := {x ∈ ∂X : ∃y 6∈ X with dX (y) = |y − x |}

◮ Hd−1(∂+Ar ) ≤ Hd−1(∂Ar ) ≤ Hd−1(∂A<r )



Volume and surface area

VA(r) := Hd(Ar ) . . . volume of Ar

◮ continuous and strictly increasing
◮ Kneser function: For b ≥ a > 0 and λ ≥ 1, [Kneser 51]

VA(λb) − VA(λa) ≤ λd (VA(b) − VA(a)) .

◮ (VA)′(r) exists up to countably many r > 0 [Stacho 76]

VA(r) =

∫ r

0
(VA)′(t)dt

◮ (VA)′−(r), (VA)′+(r) exist for r > 0 and (VA)′−(r) ≥ (VA)′+(r)

◮ Md−1(∂A<r ) =
(VA)′−(r) + (VA)′+(r)

2

(d − 1)-dim. Minkowski content: Md−1(B) := lim
r→0

VB(r)

2r

◮ Hd−1(∂+Ar ) = (VA)′+(r), r > 0, [Hug, Last, Weil 01]



Rectifiability of the boundary

A ⊂ R
d is k-rectifiable if A is a Lipschitz image of a bounded

subset of R
k .

Proposition: For A ⊆ R
d bounded and any r > 0,

∂A<r and ∂Ar are (d − 1)-rectifiable.

Consequences: For any r > 0,

◮ Md−1(∂Ar ) = Hd−1(∂Ar ) and Md−1(∂A<r ) = Hd−1(∂A<r )

For all r > 0 except countably many:

V ′
A(r) = Md−1(∂A<r )

= Hd−1(∂A<r ) ≥ Hd−1(∂Ar ) ≥ Hd−1(∂+Ar )

= (VA)′+(r) = V ′
A(r)

◮ Hd−1(∂A<r ) = Hd−1(∂Ar ) = Hd−1(∂+Ar ) = (VA)′(r)



Minkowski content and Minkowski dimension

Let A ⊆ R
d be compact and 0 ≤ s ≤ d .

◮ s-dimensional Minkowski content of A:

Ms(A) := lim
r→0

VA(r)

κd−srd−s
(κt =

πt/2

Γ(t/2 + 1)
).

◮ Ms
(A),Ms(A) ... upper and lower Minkowski content

◮ upper and lower Minkowski dimension:

dimMA := inf{s : Ms
(A) = 0} = sup{s : Ms

(A) = ∞}
dimMA := inf{s : Ms(A) = 0} = sup{s : Ms(A) = ∞}

◮ dimMA ≤ dimMA ≤ d



Surface area based content and dimension

Let A ⊂ R
d be compact and 0 ≤ s < d .

◮ s-dimensional S-content of A:

Ss(A) := lim
r→0

Hd−1(∂Ar )

(d − s)κd−srd−1−s
Cs

k(A) := lim
r→0

Ck(Ar )

cs,k rd−k−s

◮ Ss
(A),Ss(A) ... upper and lower S-content

◮ s = d : lim
r→0

Hd−1(∂Ar )

r−1
= 0 =⇒ Set Sd(A) := 0.

◮ upper and lower S-dimension:

dimSA := inf{s : Ss
(A) = 0} = sup{s : Ss

(A) = ∞}
dimSA := inf{s : Ss(A) = 0} = sup{s : Ss(A) = ∞}

◮ dimSA ≤ dimSA ≤ d



Relations between S-content and Minkowski content

Theorem: Let A ⊂ R
d be compact with VA(0) = 0.

For 0 ≤ s ≤ d ,

Ss(A) ≤ Ms(A) ≤ Ms
(A) ≤ Ss

(A)

◮ If Ss(A) exists, then Ms(A) exists and Ms(A) = Ss(A).

◮ dimSA ≤ dimMA ≤ dimMA ≤ dimSA

Idea of proof: variation of l’Hôpitals rule

Ms(A) := lim
r→0

VA(r)

κd−srd−s
= lim

r→0

(VA)′(r)

(d − s)κd−srd−s−1
= Ss(A).



Relations between S-content and Minkowski content

Let A ⊂ R
d be compact with VA(0) = 0 and 0 ≤ s ≤ d .

from [Stacho] and the integral representation of VA:

◮ Ms
(A) ≤ Ss

(A)≤ d
d−s

Ms
(A)

◮ dimMA = dimSA

from isoperimetric inequality:

◮ c
(
Ms d

d−1 (A)
) d−1

d ≤Ss(A) ≤ Ms(A)

◮
d−1
d

dimMA ≤ dimSA ≤ dimMA

All inequalities can be strict!
d−1
d

is best possible!



S-dimension of self-similar sets

◮ fractal curvatures:

Ck(F ) = lim
r→0

Ck(Fr )

rd−k−sk
with sk := inf{t : lim

r→0

Ck(Fr )

rd−k−t
= 0}

◮ k = d − 1: sd−1 = dimSF , Cd−1(F ) = cSsd−1(F )

◮ known [W. ‘06]: If F satisfies OSC and has polyconvex Fr ,
then

sk ≤ dimMF

(and some formula to check whether ’=’ holds)

◮ Theorem: If F satisfies OSC and dimMF < d , then

sd−1 = dimSF = dimMF

◮ =⇒ 0 < MD
(F ) ≤ SD

(F ) ≤ d
d−1M

D
(F ) < ∞



Existence of S-content

average S-content of A:

S̃s(A) = lim
t→0

1

| log t|

∫ 1

t

Hd−1(∂Ar )

(d − s)κd−s rd−1−s
d log r

Theorem: Suppose F satisfies OSC and D < d .

(i) S̃D(F ) exists

(ii) If F is non-lattice, then SD(F ) exists.

F non-lattice ⇔ {ln r1, . . . , ln rN} are not rationally dependent
Corollary:

◮ If F is non-lattice, then SD(F ) = MD(F ).

◮ S̃D(F ) = M̃D(F )



Fractal strings - measurability

F ⊂ R compact, dimM F = D ∈ (0, 1),
L = (lj)

∞
j=1 associated fractal string

Theorem: The following assertions are equivalent:

(i) 0 < MD(F ) ≤ MD
(F ) < ∞

(ii) 0 < SD(F ) ≤ SD
(F ) < ∞

(iii) lj ≈ j−1/D as j → ∞

Theorem: (Minkowski measurability)
The following assertions are equivalent:

(i) F is Minkowski measurable

(ii) F is S-measurable, i.e., 0 < SD(F ) < ∞
(iii) lj ∼ Lj−1/D as j → ∞ for some L > 0.



Fractal strings - the sound
Ω ⊂ R bdd. domain, F = ∂Ω, L = (lj)

∞
j=1 assoc. fractal string

Eigenvalue counting function (of Dirichlet Laplacian ∆ on Ω):

N(λ) := #{j ∈ N : λj < λ}, λ > 0

where (λi )i∈N are the eigenvalues of ∆.

Recall: N(λ) =

∞∑

i=1

[ljx ] with x =
√

λ/π

Theorem: (Weyl-Berry-Conjecture) [Lapidus & Pomerance’92]
If F = ∂Ω is Minkowski measurable with dimM F = D ∈ (0, 1) then

N(λ) = φ(λ) − cDMD(F )λD/2 + o(λD/2), as λ → ∞.

To understand the second term, study the asymptotics of

φ(λ) − N(λ) =
∞∑

j=1

ljx −
∞∑

j=1

[ljx ] =
∞∑

j=1

{ljx} =: δ(x)

[x ] integer part, {x} fractional part of x



Fractal strings - the sound

F ⊂ R compact, dimM F = D ∈ (0, 1),
L = (lj)

∞
j=1 associated fractal string

Theorem: The following assertions are equivalent:

(i) 0 < MD(F ) ≤ MD
(F ) < ∞

(ii) 0 < SD(F ) ≤ SD
(F ) < ∞

(iii) lj ≈ j−1/D as j → ∞
(iv) δ(x) ≈ xD as x → ∞

Theorem: (Minkowski measurability)
The following assertions are equivalent:

(i) F is Minkowski measurable

(ii) F is S-measurable, i.e., 0 < SD(F ) < ∞
(iii) lj ∼ Lj−1/D as j → ∞ for some L > 0.

(iv) δ(x) ∼ cDxD as x → ∞



Fractal strings - upper bounds

What happens if dimMF < dimMF?

Theorem: (One sided upper bound)
The following assertions are equivalent:

(i) MD
(F ) < ∞

(ii) SD
(F ) < ∞

(iii) lj = O(j−1/D) as j → ∞
(iv) δ(x) = O(xD) as x → ∞

More precisely, if dimMF = D ∈ (0, 1) and

δ
D
(L) := lim sup

x→∞
x−Dδ(x)

then
c1MD

(F ) ≤ c1SD
(F ) ≤ δ

D
(L) ≤ c2MD

(F )



Fractal strings - lower bounds

One sided lower bounds?

MD(F )?,SD(F )?,MD(F ) − SD(F )?

For D ∈ (0, 1), let

δD(L) := lim inf
x→∞

x−Dδ(x).

Observation: Let D ∈ (0, 1). Then

c1 lim inf
rց0

(
V (Fr )

rD−1
− H0(∂Fr )

r−D

)
≤ δD(L) ≤ c2MD(F ).

In particular,

”dim(M−S)F ≤ dimδF ≤ dimMF”.



Open Questions

◮ S-measurability = Minkowski measurability in R
d?

◮ Characterization of dimδF

◮ What is the relation between dimS and complex dimensions?

◮ Consequences for tube formulas?

◮ Behaviour of other fractal curvatures? Representations as
higher order derivatives of the volume?
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