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Abstract We provide general conditions, stable under finite unions, ensuring the existence
of the outer Minkowski content of Borel subsets of R

d . Such conditions turn out to be the same
which guarantee the existence of the (d −1)-dimensional Minkowski content of the boundary
of the involved sets. Moreover, our results also apply to the study of the differentiability of
the volume function of bounded sets, extending some known results in literature.
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1 Introduction and main result

Denoted by E⊕r the parallel set of a subset E of R
d at distance r and by Hn the n-dimensional

Hausdorff measure in R
d , the outer Minkowski content SM(E) of E is the quantity so defined

SM(E) := lim
r↓0

Hd(E⊕r\E)

r
,

provided that the limit exists finite, and it is of interest in many problems arising from real
applications (see [1] and reference therein). While quite general results on the existence of
the n-dimensional Minkowski content of compact subsets of R

d are available in literature,
only partial results on the outer Minkowski content are known. The most recent paper on
this subject until now [1] provides a class of sets stable under finite unions for which the
outer Minkowski content exists and equals the perimeter (in the sense of geometric measure
theory) of the involved sets, containing, for instance, all sets with Lipschitz boundary and a
type of sets with positive reach. Simple examples show that the outer Minkowski content of
a set can be greater than its perimeter, but general results about its value are not available in
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620 E. Villa

the literature yet. This is the main goal of the present paper. Improving some techniques in
[1], we prove here that the existence of the outer Minkowski content of a subset E of R

d is
ensured by the same well-known conditions which guarantee the existence of the (d − 1)-
dimensional Minkowski content of its boundary. Namely, referring to the next section for
formal definitions and notation, our main theorem (see Sect. 3) states that

SM(E) = P(E) + 2Hd−1(∂ E ∩ E0)

(here P(E) denotes the perimeter of E , and E0 is the set of points where E has null density)
for any subset E of R

d which belongs to the following class of sets, stable under finite unions.

Definition 1.1 (The class O) Let O be the class of Borel sets E of R
d such that

(i) ∂ E is a countably Hd−1-rectifiable bounded set;
(ii) there exist γ > 0 and a probability measure η in R

d absolutely continuous with respect
to Hd−1 such that

η(Br (x)) ≥ γ rd−1 ∀x ∈ ∂ E, ∀r ∈ (0, 1).

As it will emerge in the sequel, the density of E at its boundary points plays a central role in
the determination of the value of SM(E).

In the last section a series of further results, which follow as applications of the main the-
orem, are provided. For instance, we observe that the proof of the above-mentioned formula
for SM(E) also applies to Borel sets with (d − 1)-rectifiable boundary, and so to unions of
compact sets with positive reach. In particular, we show that the same conclusions stated for
the class O, still hold for another class of sets, defined similarly to the class O, by replacing the
condition of absolute continuity of η with the assumption that ∂ E admits (d −1)-dimensional
Minkowski content. Finally, we study the differentiability of the so-called volume function

VE (r) := Hd(E⊕r ), r ≥ 0 (1.1)

of a given bounded subset E of R
d , at r > 0 (clearly, the existence of the right derivative in

r = 0 corresponds to the existence of SM(E)), improving, in particular, a recent result of
Hug et al. in [2].

2 Basic notation and preliminaries

Throughout the paper Hn is the n-dimensional Hausdorff measure, B
Rd is the Borel σ -algebra

of R
d and Hn

|A denotes the restriction of Hn to a Hn-measurable set A ⊂ R
d (i.e. Hn

|A(E) =
Hn(A ∩ E) for all E ∈ B

Rd ). We shall mainly follow the notation used in [1], to which we
refer for a more detailed presentation of some common definitions and results introduced in
the present section. For r ≥ 0 and x ∈ R

d , Br (x) is the closed ball with center x and radius
r , while for every integer n we denote by bn the volume of the unit ball in R

n (for n = 0, we
set b0 := 1).

Given a subset E of R
d , ∂ E will be its (topological) boundary, Ec the complement set of

E , intE and clE the interior and the closure of E , respectively. We denote by E⊕r := {x ∈
R

d : dist(x, E) ≤ r} (where “dist” is the usual distance function) the parallel set of E at
distance r , and by dE : R

d → R the signed distance function from E , defined as follows

dE (x) := dist(x, E) − dist(x, Ec).
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On the outer Minkowski content of sets 621

The upper and lower outer Minkowski content of E are defined, respectively, as

SM∗(E) := lim sup
r↓0

Hd(Er\E)

r
, SM∗(E) := lim inf

r↓0

Hd(Er\E)

r
.

We say that a compact set S ⊂ R
d is n-rectifiable if it is representable as the image of a

compact set K ⊂ R
n , with f : R

n → R
d Lipschitz, and we recall that, given a subset S of

R
d and an integer n with 0 ≤ n ≤ d , the n-dimensional Minkowski content of S is defined

by

Mn(S) := lim
r↓0

Hd(S⊕r )

bd−nrd−n
,

whenever the limit exists finite. The following theorem is proved in [3, p. 275].

Theorem 2.1 (Federer) Mn(S) = Hn(S) for any compact n-rectifiable set S ⊂ R
d .

We also remind that a set S ⊂ R
d is said to be countably Hn-rectifiable if there exist countably

many n-dimensional Lipschitz maps fi : R
n → R

d such that S\ ⋃
i fi (R

n) is Hn-negligible;
if, furthermore, Hn(S) < ∞, then S is said Hn-rectifiable. An extension of Federer’s theorem
to this more general class of sets is given by the following theorem, proved in [4, p. 110].

Theorem 2.2 Let S ⊂ R
d be a countably Hn-rectifiable compact set and assume that

η(Br (x)) ≥ γ rn ∀x ∈ S, ∀r ∈ (0, 1) (2.1)

holds for some γ > 0 and some Radon measure η in R
d absolutely continuous with respect

to Hn. Then Mn(S) = Hn(S).

Remark 2.3 If a Radon measure η as in Theorem 2.2 exists, then it can be assumed to be a
probability measure without loss of generality. Indeed, it is sufficient to consider the measure
η̃(·) := η(W ∩ · )/η(W ), where W is a compact subset of R

d such that S⊕1 ⊂ W .

The two aforementioned theorems provide the more general sufficient conditions avail-
able in the literature concerning the existence of the n-dimensional Minkowski content of
compact sets. We shall show that the same conditions on the boundary of a subset E of R

d

guarantee the existence of its outer Minkowski content. To this end, we briefly recall now
some definitions and results from geometric measure theory, that will be used in the next
sections. (We refer to [4] for further details and remarks.)

If µ is a positive Radon measure in R
d and n ∈ {1, . . . , d}, then the following implication

holds:

B ∈ B
Rd , µ(B) = 0 �⇒ lim

r↓0

µ(Br (x))

bnrn
= 0 for Hn-a.e. x ∈ B. (2.2)

Considering now the restriction of Hn to a Hn-measurable subset of R
d , the next definition

is given.

Definition 2.4 (n-dimensional densities) For any Hn-measurable set S ⊂ R
d , the

n-dimensional density of S at x is defined by

�n(S, x) := lim
r↓0

Hn(S ∩ Br (x))

bnrn
,

provided that the limit exists.
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622 E. Villa

It is clear that, since open balls can be approximated from inside by closed balls and closed
balls can be approximated from outside by open balls, the limits above do not change if we
replace closed balls by open balls.

A classical rectifiability criterium, relying on density properties of the set, tells us that a
Borel set S ⊂ R

d with Hn(S) < ∞ is Hn-rectifiable if and only if

�n(S, x) = 1 for Hn-a.e. x ∈ S. (2.3)

Let E be a Hd -measurable subset of R
d . It is clear that �d(E, x) equals 1 for all x ∈ intE ,

and 0 for all x ∈ int(Ec), while different values can be assumed at the boundary points of
E . The set of points where the density is neither 0 nor 1 is called essential boundary and its
Hd−1 measure is closely related to the notion of perimeter.

Definition 2.5 For every t ∈ [0, 1] and every Hd -measurable set E ⊂ R
d let

Et := {x ∈ R
d : �d(E, x) = t}.

All the sets Et are Borel sets; in particular, the set ∂∗E := R
d\(E0 ∪ E1) is called essential

boundary of E .
Let χE be the characteristic function of E and B ⊆ R

d be an open set. The perimeter of
E in B is defined as the total variation |DχE | in B (see also [1]). More generally, if E has
finite perimeter in B, we define

P(E, A) := |DχE |(A)

for any Borel set A ⊆ B. In the sequel we will write P(E) instead of P(E, R
d). E is

said to have finite perimeter in A if P(E, A) < ∞. General theorems on sets with finite
perimeter (see [4, §3.5]) guarantee that if E has finite perimeter in an open set B ⊂ R

d ,
then the measures |DχE | and Hd−1

|∂∗ E coincide on the Borel subsets of B; as a consequence,

the perimeter measure can be computed in terms of the Hd−1 measure, and in particular the
following equalities can be proved

P(E, A) = Hd−1(∂∗E ∩ A) = Hd−1(E1/2 ∩ A). (2.4)

Finally, noticing that ∂∗E ⊆ ∂ E , it holds P(E) ≤ Hd−1(∂ E).

3 Proof of the main result

Theorem 3.1 (Main result) The class O is stable under finite unions and any E ∈ O admits
outer Minkowski content, given by

SM(E) = P(E) + 2Hd−1(∂ E ∩ E0). (3.1)

Before entering into the technical details of the proof, let us say a few words about the idea.
It is based on the different roles played by the different densities of E at its boundary points.
Intuitively, a small neighbourhood of a point x ∈ E1 ∩ ∂ E is “almost all contained” in E , so
that it gives no contribution to the volume of E⊕r\E ; thus, roughly speaking, we may say that
x has negligible weight in the computing of the outer Minkowski content of E . Conversely,
if E has null density in x ∈ ∂ E , then, in a small neighbourhood of x , E⊕r\E “almost all
coincides” with the Minkowski enlargement of ∂ E , so that, roughly speaking, we may say
that the weight of x in the computing of the outer Minkowski content of E is twice the weight
of a point y ∈ E1/2. This gives an intuitive explanation of the formula (3.1).
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On the outer Minkowski content of sets 623

It is easy to prove the following lemma, which will be applied in the proof of Theorem 3.1
to make use of the symmetric role of E and Ec, noticing that �d(Ec, x) = 1 − �d(E, x)

and Hd((∂ E)⊕r ) = Hd(E⊕r\E) + Hd((Ec)⊕r\Ec).

Lemma 3.2 Let {an} and {bn} be sequences in R. If

lim sup
n→∞

(an + bn) ≤ (a + b), lim inf
n→∞ an ≥ a, lim inf

n→∞ bn ≥ b,

with a and b finite, then limn→∞ an = a, limn→∞ bn = b.

The next statement is proved in [1].

Lemma 3.3 Let G ⊂ R
d be a Borel set and assume that there exist γ > 0 and a probability

measure η such that

η(Br (x)) ≥ γ rd−1 ∀x ∈ ∂G, ∀r ∈ (0, 1).

Then

lim sup
r↓0

Hd((∂G)⊕r ∩ G ∩ Bρ(x))

r
= o(ρd−1)

for Hd−1-a.e. x ∈ G0 ∩ ∂G.

Let us observe that condition (ii) in Definition 1.1 implies that Hd−1(∂ E) < ∞ (e.g. see
[1, Remark 2]), and denote by SM∗(E, A) and SM∗(E, A) the lower and upper outer
Minkowski content of E in A ∈ B

Rd , respectively, i.e.

SM∗(E, A) := lim inf
r↓0

Hd((E⊕r\E) ∩ A)

r
, SM∗(E, A) := lim sup

r↓0

Hd((E⊕r \E) ∩ A)

r
.

Lemma 3.4 For any E ∈ O it holds

(a) SM∗(E, Bρ(x)) = o(ρd−1) for Hd−1-a.e. x ∈ E1 ∩ ∂ E,
(b) SM∗(E, Bρ(x)) ≥ Hd−1(E1/2 ∩ intBρ(x)) for Hd−1-a.e. x ∈ E1/2,
(c) SM∗(E, Bρ(x)) ≥ 2Hd−1(E0 ∩∂ E ∩ intBρ(x))+o(ρd−1) for Hd−1-a.e. x ∈ E0 ∩∂ E.

Proof Equality (a) follows directly by Lemma 3.3 with G = Ec.
From the co-area formula and the fact that ∂ E is Hd -negligible it can be proved (see [1])

that SM∗(E, A) ≥ P(E, A) for any open set A in R
d . Then, taking into account (2.4), we

get

SM∗(E, Bρ(x)) ≥ Hd−1(E1/2 ∩ intBρ(x)),

and so (b) in particular.
For any closed set C well contained in Bρ(x) (i.e. the Hausdorff distance between C and

the complement of Bρ(x) is greater than 0) there exists r̃ > 0 such that C⊕r ⊂ Bρ(x),
∀r < r̃ . So, noticing that ∂ E ∩ C satisfies the assumptions of Theorem 2.2, we get that

2Hd−1(∂ E ∩ C) = lim inf
r↓0

Hd((∂ E ∩ C)⊕r )

r
≤ lim inf

r↓0

Hd((∂ E)⊕r ∩ C⊕r )

r

≤ lim inf
r↓0

Hd((∂ E)⊕r ∩ Bρ(x))

r
.
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624 E. Villa

Let {Cn}n∈N be an increasing sequence of closed sets well contained in Bρ(x) such that
Cn ↗ intBρ(x). By taking the limit as n tends to ∞, we obtain that

lim inf
r↓0

Hd((∂ E)⊕r ∩ Bρ(x))

r
≥ lim

n→∞ 2Hd−1(∂ E ∩ Cn) = 2Hd−1(∂ E ∩ intBρ(x)).

(3.2)

Finally, from Hd((∂ E)⊕r ∩ Ec ∩ Bρ(x)) = Hd(E⊕r ∩ Ec ∩ Bρ(x)) we have that

SM∗(E, Bρ(x)) = lim inf
r↓0

Hd((∂ E)⊕r ∩ Bρ(x)) − Hd((∂ E)⊕r ∩ E ∩ Bρ(x))

r

≥ lim inf
r↓0

Hd((∂ E)⊕r ∩ Bρ(x))

r
− lim sup

r↓0

Hd((∂ E)⊕r ∩ E ∩ Bρ(x))

r
.

Then (c) follows by (3.2) and Lemma 3.3. ��
Proof of Theorem 3.1 We have observed that Hd−1(∂ E) < ∞, and so E has finite perimeter
in R

d . Theorem 3.61 in [4] states that any subset of R
d of finite perimeter has density either

0 or 1 or 1/2 at Hd−1-almost every point of its boundary; therefore,

Hd−1(∂ E) = Hd−1(∂ E ∩ E0) + Hd−1(E1/2) + Hd−1(∂ E ∩ E1). (3.3)

Note also that ∂ E satisfies the assumptions of Theorem 2.2, hence

Md−1(∂ E) = Hd−1(∂ E). (3.4)

Let us show that the following lower bound for SM∗(E) holds:

SM∗(E) ≥ Hd−1(E1/2) + 2Hd−1(∂ E ∩ E0). (3.5)

Let µ be the measure in R
d so defined

µ(·) := 2Hd−1(E0 ∩ ∂ E ∩ · ) + Hd−1(E1/2 ∩ · ).
Taking into account [by (2.3) and (2.2)] that the limit

lim
ρ↓0

Hd−1(E0 ∩ ∂ E ∩ Bρ(x))

ρd−1

equals bd−1 for Hd−1-a.e. x ∈ E0 ∩∂ E , and 0 for Hd−1-a.e. x ∈ (E0 ∩∂ E)c, and analogous
conclusions hold for the limits

lim
ρ↓0

Hd−1(E1 ∩ ∂ E ∩ Bρ(x))

ρd−1 and lim
ρ↓0

Hd−1(E1/2 ∩ Bρ(x))

ρd−1 ,

from Lemma 3.4 we get that, for any ε > 0,

lim inf
ρ↓0

SM∗(E, Bρ(x)) + εHd−1(E1 ∩ ∂ E ∩ Bρ(x))

µ(intBρ(x))
≥ 1 for Hd−1-a.e. x ∈ ∂ E

(3.6)

(Note that the term εHd−1(E1 ∩ ∂ E ∩ Bρ(x)) in the above-mentioned fraction is to avoid
an indetermination of type 0/0 at points x ∈ E1 ∩ ∂ E .) Since the family of closed balls
Bρ(x) with µ(∂ Bρ(x)) = 0 is a fine cover of ∂ E , by Vitali-Besicovitch covering theorem
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On the outer Minkowski content of sets 625

(e.g. see [4, p. 52]), for any δ > 0 there exist finitely many disjoint closed balls C1, . . . , CN

with µ(∂Ci ) = 0 such that

µ(∂ E\ ∪i Ci ) < δ.

The balls Ci can be chosen with centers in ∂ E and such that

SM∗(E, Ci ) + εHd−1(E1 ∩ ∂ E ∩ Ci )
(3.6)≥ (1 − δ)µ(Ci ), i = 1, . . . , N .

Note also that µ(Rd\ ∪i Ci ) = µ(∂ E\ ∪i Ci ), being the support of µ contained in ∂ E . Thus
the following chain of inequalities holds:

SM∗(E) + εHd−1(E1 ∩ ∂ E) ≥ SM∗

(

E,

N⋃

i=1

Ci

)

+ εHd−1

(

E1 ∩ ∂ E ∩
N⋃

i=1

Ci

)

≥
N∑

i=1

(
SM∗(E, Ci ) + εHd−1(E1 ∩ ∂ E ∩ Ci )

)

≥ (1 − δ)

N∑

i=1

µ(Ci ) = (1 − δ)µ

(
N⋃

i=1

Ci

)

= (1 − δ)

(

µ(Rd) − µ

(

R
d\

N⋃

i=1

Ci

))

≥ (1 − δ)
(

2Hd−1 (
E0 ∩ ∂ E

) + Hd−1(E1/2) − δ
)
.

By taking now the limit as δ ↓ 0, and then as ε ↓ 0, we obtain the inequality (3.5).
Observing that Ec belongs to O too, we can also claim that

SM∗(Ec) ≥ Hd−1((Ec)1/2) + 2Hd−1(∂ Ec ∩ (Ec)0). (3.7)

By the co-area formula it can be shown (see [1]) that

Hd((∂ E)⊕r ) =
r∫

−r

Hd−1({x : dE (x) = t})dt,

and, similarly,

Hd(E⊕r\E) =
r∫

0

Hd−1({x : dE (x) = t})dt.

As dEc (x) = −dE (x), from the above-mentioned equation we also have

Hd((Ec)⊕r\Ec) =
0∫

−r

Hd−1({x : dE (x) = t})dt. (3.8)

Let

ar := 1

r

r∫

0

Hd−1({x : dE (x) = t})dt, br := 1

r

0∫

−r

Hd−1({x : dE (x) = t})dt,
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626 E. Villa

and observe that

lim inf
r↓0

ar = SM∗(E)
(3.5)≥ Hd−1(E1/2) + 2Hd−1(∂ E ∩ E0) =: a,

lim inf
r↓0

br = SM∗(Ec)
(3.7)≥ Hd−1(E1/2) + 2Hd−1(∂ E ∩ E1) =: b,

and

lim sup
r↓0

(ar + br ) = lim sup
r↓0

Hd((∂ E)⊕r )

r
= 2Md−1(∂ E)

(3.4)= 2Hd−1(∂ E)
(3.3)= a + b.

By applying now Lemma 3.2 we obtain that

SM(E) = P(E) + 2Hd−1(∂ E ∩ E0).

Finally, it is easy to check that the class O is stable under finite unions. ��

4 Further results and remarks

In this section we show how applications of Theorem 3.1 provide a series of general results
which turn out to be in accordance with available results in literature for some classes of sets.

We know (see [1, Remark 1]) that for any n-rectifiable compact set S ⊂ R
d there exist

γ > 0 and a probability measure η in R
d satisfying (2.1). We also point out that the further

assumption of absolute continuity of η with respect to Hd−1 in the definition of the class
O is used in the proof of the formula (3.1) in order to apply Theorem 2.2 to guarantee that
Md−1(∂ E ∩C) = Hd−1(∂ E ∩C) for any closed set C ⊂ R

d (which leads to the proof of (c)
in Lemma 3.4 and to the existence of the (d − 1)-dimensional Minkowski content of ∂ E at
the very beginning of the proof of Theorem 3.1); therefore, by Federer’s Theorem 2.1, we can
claim that the proof of formula (3.1) still works for sets whose boundary is (d −1)-rectifiable
and bounded. This proves the following statement.

Proposition 4.1 SM(E) = P(E) + 2Hd−1(∂ E ∩ E0) for any Borel set E ⊂ R
d such that

∂ E is (d − 1)-rectifiable and bounded.

Remark 4.2 Both in Theorem 3.1 and in the proposition stated above, E is a Borel set whose
boundary satisfies the assumptions of Theorem 2.2 (for countably Hd−1-rectifiable sets)
and Federer’s Theorem 2.1 (for (d − 1)-rectifiable sets), respectively, which guarantee that
Md−1(∂ E) exists equal to Hd−1(∂ E). Hence, in relation to the outer Minkowski content of
sets, taking into account Remark 2.3, Proposition 4.1 and Theorem 3.1 can be regarded as
the corresponding results to Theorem 2.1 and Theorem 2.2, respectively.

Furthermore, since Hd(E) = Hd(clE), we can state that for any Borel subset E of R
d

with empty interior and such that its boundary is (d − 1)-rectifiable and bounded, or more
in general, satisfies the conditions (i) and (ii) of Definition 1.1, it holds

SM(E) = 2Md−1(E) = 2Hd−1(∂ E).

Note that the class of compact sets with (d − 1)-rectifiable boundary is stable under finite
unions (because ∂(∪N

i=1 Ei ) ⊆ ∪N
i=1∂ Ei ); then, reminding that the boundary of a compact set

with positive reach is (d − 1)-rectifiable (e.g. see [1, Proposition 3]), as a direct application
of Proposition 4.1, we get the following general result for unions of sets with positive reach.
(For an exhaustive treatment of sets with positive reach see [5].)
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On the outer Minkowski content of sets 627

Corollary 4.3 Let E ⊂ R
d be a finite union of compact sets with positive reach; then E

admits outer Minkowski content, given by (3.1).

Remark 4.4 Available results in current literature concerning the existence of the outer
Minkowski content for unions of sets with positive reach require additional regularity assump-
tions on the involved sets; we mention the paper [6], where the existence of the outer
Minkowski content is proved for unions ∪i Ai of sets Ai with positive reach such that all
possible finite intersections of the Ai ’s have positive reach as well, and the paper [1], where a
certain condition on the normal cone characterizes, among all finite unions of sets with pos-
itive reach, those for which the outer Minkowski content coincides with the Hd−1 measure
of the boundary. Hence, Corollary 4.3 extends such results, and we may also notice that it is
in accordance with Example 1 and Example 2 in [1].

In [1] the following class of sets stable under finite unions has been introduced. (To be
precise, in the definition given in [1], compact sets are considered, having in mind real appli-
cations concerning closed sets as discussed in such paper, but it is easy to see that the same
results concerning compact sets in S still holds for Borel sets with bounded boundary.)

Definition 4.5 (The class S) Let S be the class of Borel sets E of R
d with bounded boundary

such that

• there exist γ > 0 and a probability measure η such that

η(Br (x)) ≥ γ rd−1 ∀x ∈ ∂ E, ∀r ∈ (0, 1);
• E admits outer Minkowski content and SM(E) = P(E).

Note that, in the above-mentioned definition, the absolute continuity of η with respect to
Hd−1 is not required; on the other hand, the outer Minkowski content of the involved sets is
assumed to exist equal to the perimeter. In [1] classes of sets satisfying such condition are
provided. Similarly, starting from the definition of the class O, we introduce now a new class
of Borel sets E of R

d , replacing the condition of absolute continuity of η with the assumption
that ∂ E admits (d − 1)-dimensional Minkowski content.

Definition 4.6 [The class O′] Let O′ be the class of Borel sets E of R
d such that

(i’) ∂ E is a countably Hd−1-rectifiable bounded set and Md−1(∂ E) = Hd−1(∂ E);
(ii’) there exist γ > 0 and a probability measure η in R

d such that

η(Br (x)) ≥ γ rd−1 ∀x ∈ ∂ E, ∀r ∈ (0, 1).

In order to state for O′ an analogous result to Theorem 3.1, let us prove that the class of
countably Hk-rectifiable closed sets which admit Minkowski content is stable under finite
unions.

Proposition 4.7 Let A1 and A2 be countably Hk-rectifiable closed sets such that Mk(Ai ) =
Hk(Ai ) for i = 1, 2. Then the union set A1 ∪ A2 admits k-dimensional Minkowski content
Mk(A1 ∪ A2) = Hk(A1 ∪ A2), as well.

Proof We first prove that if E ⊂ R
d is a countably Hk-rectifiable closed set such that

Mk(E) = Hk(E), then

Mk(E ∩ C) = Hk(E ∩ C) (4.1)

for any closed set C ⊂ R
d .
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Reminding that Mk∗(S) ≥ Hk(S) for any countably Hk-rectifiable closed set S (see
[4, Proposition 2.101]), we have that Mk∗(E ∩ C) ≥ Hk(E ∩ C). Let us show that the
opposite inequality holds for M∗k(E ∩ C). Consider the sequence {Cn}n∈N of closed sets
Cn := {x ∈ Cc : dist(x, ∂C) ≥ 1/n}, and note that Cn ↗ Cc as n goes to infinity. Clearly,
E⊕r ⊇ (E ∩ C)⊕r ∪ (E ∩ Cn)⊕r , and (E ∩ C)⊕r ∩ (E ∩ Cn)⊕r = ∅ for all r < 1/n. Hence

M∗k(E ∩ C) ≤ M∗k(E) − Mk∗(E ∩ Cn) ≤ Hk(E) − Hk(E ∩ Cn)

for all n ∈ N. Taking now the limit for n tending to infinity, we get that M∗k(E ∩ C) ≤
Hk(E ∩ C), and so the equality (4.1).

Consider now A1 ∪ A2; since it is closed and countably Hk-rectifiable, we know that
Mk∗(A1 ∪ A2) ≥ Hk(A1 ∪ A2). Observing that A1 ∩ A2 satisfies (4.1) and (A1 ∩ A2)⊕r ⊆
A1⊕r ∩ A2⊕r , we obtain

M∗k(A1 ∪ A2) ≤ M∗k(A1) + M∗k(A2) − Mk∗(A1 ∩ A2)

= Hk(A1) + Hk(A2) − Hk(A1 ∩ A2) = Hk(A1 ∪ A2).

��

The above-mentioned proposition tells us that the class O′ is stable under finite unions and
that, given E ∈ O′, Md−1(C ∩ ∂ E) = Hd−1(C ∩ ∂ E) for any closed set C . Therefore, the
following statement, which extends Proposition 4.1, holds.

Proposition 4.8 The class O′ is stable under finite unions and any E ∈ O′ admits outer
Minkowski content, given by SM(E) = P(E) + 2Hd−1(∂ E ∩ E0).

Remark 4.9 It is easy to see that Hd−1(∂ E ∩ E0) = 0 is stable under finite unions; so
Theorem 3.1 (and Proposition 4.8) implies that any finite union E of sets Ei ∈ O (resp., O′)
with SM(Ei ) = P(Ei ) admits outer Minkowski content SM(E) = P(E). This gives an
alternative proof of the fact, proved in [1], that the outer Minkowski content of finite unions
of compact sets with Lipschitz boundary exists and equals the perimeter. (It is sufficient to
observe that if E is a compact set with Lipschitz boundary then E belongs to the class O
with η equal to a suitable multiple of Hd−1

|∂ E , and Hd−1(∂ E ∩ E0) = 0 [4, Proposition 3.62].)

More in general, any set E in O (or O′) with Hd−1(E0 ∩ ∂ E) = 0 belongs to the class S.

Let us consider now enlarged sets and their respective volume function. It is well known
that the boundary of an enlarged set E⊕r can be much more regular than the boundary of
E . In particular, a simple application of Proposition 4.1 permits us to claim that the outer
Minkowski content of an enlarged set equals the perimeter; more precisely,

Proposition 4.10 For any bounded subset E of R
d , the enlarged set E⊕r belongs to the class

S for all r > 0.

Proof In [7, Proposition 1] Rataj proves that for any bounded subset E of R
d , the set ∂ E⊕r is

(d − 1)-rectifiable for all r > 0. Then E⊕r belongs to the class O′ for all r > 0 and, noticing
that ∂ E⊕r ∩ E0⊕r = ∅ (because if x ∈ ∂ E⊕r , then x ∈ ∂ Br (y) for some y ∈ ∂ E , and so the
density of E⊕r at x is greater than or equal to 1/2), we conclude that E⊕r ∈ S. ��

Let VE be the volume function of E , defined in (1.1). (For a more complete treatment
of VE we refer to [2,7,8] and references therein.) From now on we denote by V ′(−)

E (r) and
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V ′(+)
E (r) the left and right derivative of VE (r), respectively, at r > 0. Clearly, the right deriv-

ative of VE at r = 0, whenever it exists, is just the outer Minkowski content of E . As a direct
consequence of the above-mentioned proposition, we have that for any bounded set E ⊂ R

d

V ′(+)
E (r) = P(E⊕r ) ∀r > 0.

A recent result in this direction for compact sets in R
d is provided in [2, Corollary 4.6], where

the authors, by introducing support measures of arbitrary closed sets, prove that V ′(+)
E (r) =

Hd−1(∂+E⊕r ) for any compact set E ⊂ R
d and r > 0, having denoted by ∂+ A the so-called

positive boundary of A, defined as the set of all boundary points x of A such that there exists
a point y ∈ Ac with dA(y) = |y − x |. In [2, Corollary 4.5], the same authors provide a
necessary and sufficient condition for the differentiability of VE at r > 0, which involves
the support measures of E (signed measures on the normal bundle of E).

Moreover, a well-known result by Stachó [8] tells us that for all bounded subsets E of
R

d , V ′(−)
E (r) and V ′(+)

E (r) exist at any r > 0 and are equal with the possible exception of
countably many r ’s, and that

Md−1(∂ E⊕r ) = 1

2

(
V ′(+)

E (r) + V ′(−)
E (r)

)
∀r > 0; (4.2)

besides, as observed in [7],

V ′(+)
E (r) ≤ Hd−1(∂ E⊕r ) ≤ V ′−

E (r), (4.3)

and, in general, none of the inequalities above can be replaced by equality.
The above-quoted results on the differentiability of VE can be improved by a simple

application of the previous arguments, as follows.

Proposition 4.11 For any bounded subset E of R
d , the function VE (r) is differentiable at

r > 0 if and only if

Hd−1(∂ E⊕r ∩ E1⊕r ) = 0; (4.4)

in particular V ′
E (r) = P(E⊕r ) = Hd−1(∂ E⊕r ).

Proof We have observed in the proof of Proposition 4.10 that E⊕r ∈ O′ and ∂ E⊕r ∩E0⊕r = ∅
for all r > 0. Since (Ec)⊕r ∈ O′ as well,

SM((E⊕r )
c) = P(E⊕r ) + 2Hd−1(∂ E⊕r ∩ E1⊕r ).

Noticing that

V ′(−)
E (r) = lim

h↓0

Hd(E⊕r\E⊕r−h)

h

= lim
h↓0

1

h

r∫

r−h

Hd−1({x : dE (x) = t})dt

= lim
h↓0

1

h

0∫

−h

Hd−1({x : dE⊕r (x) = t})dt

(3.8)= lim
h↓0

Hd(((E⊕r )
c)⊕h\(E⊕r )

c)

h
= SM((E⊕r )

c),
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since V ′(+)
E (r) = P(E⊕r ) for all r > 0, it follows that VE is differentiable at r > 0 if and

only if condition (4.4) is fulfilled; in such case V ′
E (r) = P(E⊕r ) and, by (3.3), we also have

that Hd−1(∂ E⊕r ) = P(E⊕r ). ��
Remark 4.12 1. As a corollary of the above proposition, it follows that the set of r > 0

such that Hd−1(∂ E⊕r ∩ E1⊕r ) > 0 is at most countable.
Moreover, we know (see [1, Theorem 9]) that P(A) = Hd−1(∂ A) for any compact set
A ⊂ R

d with positive reach belonging to the class S; thus, accordingly with [2, p. 256],
condition (4.4) is satisfied for all r > 0 if E is convex, and at least for r ∈ (0, reach(E))

if E is a compact set with positive reach.
2. We have shown that V ′(−)

E (r) = P(E⊕r )+2Hd−1(∂ E⊕r ∩E1⊕r ) and V ′(+)
E (r) = P(E⊕r )

for all r > 0; besides,Md−1(∂ E⊕r ) = Hd−1(∂ E⊕r ) (being ∂ E⊕r (d−1)-rectifiable) and
Hd−1(∂ E⊕r ) = P(E⊕r ) + Hd−1(∂ E⊕r ∩ E1⊕r ) for all r > 0 (being ∂ E⊕r ∩ E0⊕r = ∅).
This proves the inequalities in (4.3) and it is in accordance with the result (4.2) of Stachó.

In [1, Definition 7] the class Sloc, corresponding to the sets that locally coincide with sets
in S, has been introduced in order to get local results for locally finite unions of sets in S.
Similarly, let us denote by Oloc the class of sets E such that for any R > 0 there exists F ∈ O
with (E
F)∩ BR(0) = ∅, where 
 is the symmetric difference of sets. By proceeding along
the same line of Theorem 3.1, it is easy to obtain the following local version of (3.1) (and,
similarly, analogous local versions of the subsequent results).

Proposition 4.13 If E ∈ Oloc, then

lim
r↓0

Hd((E⊕r\E) ∩ A)

r
= P(E, A) + 2Hd−1(∂ E ∩ E0 ∩ A)

for any Borel set A ⊂ R
d with Hd−1(∂ E ∩ ∂ A) = 0.

Finally, we conclude this section with an open question. From the aforementioned argu-
ments it emerged that the existence of the outer Minkowski content of a set E in R

d is closely
related to the existence of the (d −1)-dimensional Minkowski content of its boundary (see, in
particular, Remark 4.2 and Proposition 4.8). Thus, we are led to conjecture that the existence
of the outer Minkowski content of a set E ⊂ R

d might be equivalent to the existence of
Md−1(∂ E).
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