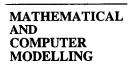


Mathematical and Computer Modelling 30 (1999) 147-152



www.elsevier.nl/locate/mcm

I-G-H-KKM Mappings and Minimax Inequalities

R. U. VERMA

International Publications, Mathematical Sciences Division 12046 Coed Drive, Orlando, FL 32826, U.S.A.

(Received December 1998; accepted January 1999)

Abstract—First, based on the notions of I-G-H-KKM mappings and I-G-H-KKM selections, some nonempty intersection theorems are proved, and then the obtained I-G-H-KKM theorems are applied to the theory of a new class of generalized minimax inequalities in a G-H-space setting. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords—I-G-H-KKM mapping, I-G-H-KKM selection, Generalized minimax inequality, G-H-space.

1. INTRODUCTION

The KKM theorem and its several generalizations give rise to minimax theorems and saddle points, which play a pivotal role in the solvability of a wider range of problems, from game theory to mathematical economies and optimization theory. Here we intend to establish a new class of generalized minimax inequalities along with several other special cases in a G-H-space setting. This class of generalized minimax inequalities does have significant applications to some generalized minimax theorems, saddle point existence theorems, and generalized variational inequalities [1-6]. For more details on variational inequalities, we refer to [7-12].

Let X be a topological space, P(X) denote the power set of X, and $\langle X \rangle$ the family of all finite subsets of X. Let Δ^n denote a standard (n-1) simplex $\{e_1, e_2, \ldots, e_n\}$ of \mathbb{R}^n .

DEFINITION 1.1. A triple $(X, H, \{p\})$ is called a G-H-space if X is a topological space, and $H: \langle X \rangle \to P(X) \setminus \{\emptyset\}$ a mapping such that:

- (i) for each $F, G \in \langle X \rangle$, there exists an $F_1 \subset F$ such that $F_1 \subset G \to H(F_1) \subset H(G)$;
- (ii) for each $F = \{x_1, x_2, \dots, x_n\} \in \langle X \rangle$, there exist $\{x_{i1}, x_{i2}, \dots, x_{ik}\} \subset F$ and a continuous mapping $p : \Delta^n \to H(F)$ such that for $\{i1, i2, \dots, ik\} \subset \{1, 2, \dots, n\}$, we have

$$p(\{e_{i1}, e_{i2}, \ldots, e_{ik}\}) \subset H(\{x_{i1}, x_{i2}, \ldots, x_{ik}\}).$$

A subset K of X is said to be G-H-convex if for each $A \in \langle X \rangle$, there exists an $A' \subset A$ such that $A' \subset K$ implies $H(A') \subset K$.

A subset K of X is called compactly closed in X if $K \cap L$ is closed in L for all compact subsets L of X.

^{0895-7177/1999/\$ -} see front matter © 1999 Elsevier Science Ltd. All rights reserved. Typeset by A_{MS} -T_EX PII: S0895-7177(99)00187-9

DEFINITION 1.2. Let $(X, H, \{p\})$ be a G-H-space, Y a topological space, and M_1, \ldots, M_n be subsets of Y. Let $V : X \to P(Y)$ be a multivalued mapping. A subset $\{x_1, \ldots, x_n\} \in \langle X \rangle$ is said to be an I-G-H-KKM selection for M_1, \ldots, M_n if there exists an $\{x_{i1}, x_{i2}, \ldots, x_{ik}\} \subset \{x_1, \ldots, x_n\}$ such that

$$V\left(H\left(\{x_{i1},x_{i2},\ldots,x_{ik}\}
ight)
ight)\subset igcup_{j=1}^k M_{ij},$$

where x_1, \ldots, x_n are not necessarily distinct.

DEFINITION 1.3. Let $(X, H, \{p\})$ be a G-H-space, Y a topological space, and $V : X \to P(Y)$ any mapping. A subset K of Y is called I-G-H-closed in Y if $K \cap V(H(A))$ is closed in V(H(A))for all $A \in \langle X \rangle$.

DEFINITION 1.4. Let $(X, H, \{p\})$ be a G-H-space, Y a topological space, and $V : X \to P(Y)$ any mapping. A mapping $T : X \to P(Y)$ is called I-G-H-KKM if for each $\{x_1, \ldots, x_n\} \in \langle X \rangle$, there exists a subset $\{x_{i1}, \ldots, x_{ik}\} \subset \{x_1, \ldots, x_n\}$ such that

$$V\left(H\left(\left\{x_{i1},\ldots,x_{ik}
ight\}
ight)
ight)\subset \bigcup_{j=1}^{k}T\left(x_{ij}
ight).$$

For X = Y and V = T, Definition 1.4 reduces to the following.

DEFINITION 1.5. Let $(X, H, \{p\})$ be a G-H-space and $T : X \to P(X)$ any mapping. The mapping T is I-G-H-KKM if for each subset $\{x_1, \ldots, x_n\} \in \langle X \rangle$, there exists a subset $\{x_{i1}, \ldots, x_{ik}\}$ of $\{x_1, \ldots, x_n\}$ such that

$$T\left(H\left(\left\{x_{i1},\ldots,x_{ik}
ight\}
ight)
ight)\subset igcup_{j=1}^kT\left(x_{ij}
ight).$$

Next, we give an example [8] of an I-G-H-KKM mapping in an interval space. A topological space X is called an interval space if there exists a mapping $[,] : X \times X \to \{\text{connected subsets of } X\}$ such that $\{x_1, x_2\} \subset [x_1, x_2] = [x_2, x_1]$ for all $x_1, x_2 \in X$. Among the notable special cases of the interval spaces, we mention Hausdorff topological vector spaces, contractible spaces, and connected spaces.

EXAMPLE 1.1. (See [8].) Let X be an interval space, Y a topological space, and $V: X \to P(Y)$ any mapping. Then a mapping $T: X \to P(Y)$ is I-KKM if

$$V\left([x_1, x_2]\right) \subset \bigcup_{i=1}^2 T(x_i), \qquad ext{for all } x_1, x_2 \in X.$$

For V = T in Example 1.1, T is called I-KKM in the sense of [2,4].

2. GENERALIZED MINIMAX INEQUALITIES

This section is intended to provide, based on I-G-H-KKM theorems, a new class of generalized minimax inequality theorems in G-H-spaces.

THEOREM 2.1. Let $(X, H, \{p\})$ be a G-H-space, Y a topological space, and M_1, \ldots, M_n be I-G-H-closed subsets of Y. Let V(H(A)) be compact for all $A \in \langle X \rangle$, $V : X \to P(Y)$ any mapping, and $q : H(A) \to V(H(A))$ a continuous function. Suppose that M_1, \ldots, M_n have an I-G-H-KKM selection. Then we have

$$\bigcap_{i=1}^n M_i \neq \emptyset$$

PROOF. Since the subsets M_1, \ldots, M_n have an I-G-H-KKM selection, there exist an $\{x_{i1}, \ldots, x_{ik}\} \subset \{x_1, \ldots, x_n\} = A \in \langle X \rangle$ and any mapping $V : X \to P(Y)$ such that

$$V\left(H\left(\{x_{i1},\ldots,x_{ik}\}
ight)
ight)\subsetigcup_{j=1}^kM_{ij}$$

Since $(X, H, \{p\})$ is a G-H-space, there exists a continuous function $p : \Delta^n \to H(A)$, where $\Delta^n = \{e_1, \ldots, e_n\}$. It follows that $q \circ p : \Delta^n \to V(H(A))$ is a continuous function. Let us set

$$E_i = (q \circ p)^{-1} (M_i \cap V(H(A))), \quad \text{for } i = 1, \dots, n.$$

Since each M_i is I-G-H-closed in Y, it suffices to show

$$\operatorname{co}\left(\left\{e_{i1},\ldots,e_{ik}\right\}\right)\subset \bigcup_{j=1}^{k}E_{ij}.$$

Assume an element $z \in co(\{e_{i1}, \ldots, e_{ik}\})$. Then we have

$$(q \circ p)(z) \in V\left(H\left(\{x_{i1},\ldots,x_{ik}\}\right)\right) \subset \bigcup_{j=1}^{k} M_{ij}$$

Therefore, there exists an index m $(1 \le m \le k)$ such that $(q \circ p)(z) \in M_{im}$, so $(q \circ p)(z) \in (M_{im} \cap V(H(A)))$. This implies

$$z \in (q \circ p)^{-1} \left(M_{im} \cap V(H(A)) \right) = E_{im}.$$

Finally, by the classical KKM theorem, we have $\bigcap_{i=1}^{n} E_i \neq \emptyset$, and as a result, $\bigcap_{i=1}^{n} M_i \neq \emptyset$.

THEOREM 2.2. Let $(X, H, \{p\})$ be a G-H-space and $T : X \to P(X)$ an I-G-H-KKM mapping. Let V(H(A)) be a compact subset of X and $q : H(A) \to V(H(A))$ a continuous function for all $A \in \langle X \rangle$ and for any mapping $V : X \to P(X)$. Suppose that:

- (i) for each $x \in X$, T(x) is compactly closed in X;
- (ii) there exists an $A \in \langle X \rangle$ such that $\bigcap_{x \in A} T(x)$ is a compact subset of X.

Then $\bigcap_{x \in X} T(x) \neq \emptyset$.

PROOF. Since T is an I-G-H-KKM mapping, it implies, for any $\{x_1, \ldots, x_n\} \in \langle X \rangle$, that there is a subset $\{x_{i1}, \ldots, x_{ik}\} \subset \{x_1, \ldots, x_n\}$ such that for $\{i1, \ldots, ik\} \subset \{1, \ldots, n\}$ and for any mapping $V: X \to P(X)$, we have

$$V\left(H\left(\{x_{i1},\ldots,x_{ik}\}\right)\right) \subset \bigcup_{j=1}^{k} T(x_{ij}).$$

Since each T(x) is compactly closed in X (and hence I-G-H-closed), by Theorem 2.1, the family $\{T(x) : x \in X\}$ has the finite intersection property. On top of that by (ii), $\{T(x) \cap (\bigcap_{x' \in A} T(x')) : x \in X\}$ is a family of compact subsets of X with the finite intersection property, and as a result, we have $\bigcap_{x \in X} T(x) \neq \emptyset$.

THEOREM 2.3. Let $X, H, \{p\}$ be a G-H-space, $V : X \to P(X)$ any mapping such that V(H(A)) is compact for all $A \in \langle X \rangle$, and $q : H(A) \to V(H(A))$ a continuous function. Suppose that $f, g : X \times X \to R$ and $h : X \to R$ are functions such that:

- (i) $f(x,y) \le g(x,y)$ for all $(x,y) \in X \times X$;
- (ii) f is lower semicontinuous in y on compact subsets of X;
- (iii) h is lower semicontinuous in y on compact subsets of X;
- (iv) for each $A \in \langle X \rangle$, $\bigcap_{x \in A} \{ y \in X : f(x, y) + h(y) h(x) \leq 0 \}$ is a compact subset of X:

(v) for each $\{x_1, \ldots, x_n\} \in \langle X \rangle$, there exist some $\{x_{i1}, \ldots, x_{ik}\} \subset \{x_1, \ldots, x_n\}$ and an $x \in H(\{x_{i1}, \ldots, x_{ik}\})$ such that

$$\begin{aligned} f(x,y) + h(y) - h(x) &\geq \min_{1 \leq j \leq k} \left\{ f(x_{ij}, y) + h(y) - h(x_{ij}), \\ g(x_{ij}, y) + h(y) - h(x_{ij}) \right\}, & \text{for all } y \in X. \end{aligned}$$

Then one of the following statements holds.

- (1) There exists an element $y' \in X$ such that $f(x, y') + h(y') h(x) \le 0$ for all $x \in X$.
- (2) There is an element $x' \in X$ such that g(x', x') > 0.

PROOF. Let us define mappings $V, T : X \to P(X)$, respectively, by

$$V(x) = \{y \in X : g(x, y) + h(y) - h(x) \le 0\}$$
 and

$$T(x) = \{y \in X : f(x, y) + h(y) - h(x) \le 0\},$$
 for all $x \in X.$

Assume that (2) does not hold. That means $g(x,x) \leq 0$ for all $x \in X$. Thus, V(x) is nonempty. By (i), $V(x) \subset T(x)$. Next, for each $\{x_1, \ldots, x_n\} \in \langle X \rangle$, there exists some $\{x_{i1}, \ldots, x_{ik}\} \subset \{x_1, \ldots, x_n\}$ such that for any $x \in H(\{x_{i1}, \ldots, x_{ik}\})$ and for any $y \in V(x) \subset T(x)$, we have

$$f(x,y) + h(y) - h(x) \le 0$$

Now, applying (v), there exists some index $m (1 \le m \le k)$ such that $g(x_{im}, y) + h(y) - h(x_{im}) \le 0$ or $f(x_{im}, y) + h(y) - h(x_{im}) \le 0$. This implies

$$y \in V(x_{im}) \subset \bigcup_{j=1}^k V(x_{ij}) \text{ or } y \in T(x_{im}) \subset \bigcup_{j=1}^k T(x_{ij}),$$

so

$$y \in \left(\bigcup_{j=1}^{k} V(x_{ij}) \cup \bigcup_{j=1}^{k} T(x_{ij})\right) \subset \bigcup_{j=1}^{k} T(x_{ij}).$$

Therefore, we have

$$V\left(H\left(\{x_{i1},\ldots,x_{ik}\}\right)\right)\subset \bigcup_{j=1}^{k}T(x_{ij}),$$

that is, T is an I-G-H-KKM mapping. Next, by (ii), each T(x) is compactly closed in X. As of now, all the conditions of Theorem 2.2 are met, we have $\bigcap_{x \in X} T(x) \neq \emptyset$, that is, there exists an element $y' \in X$ such that $f(x, y') + h(y') - h(x) \leq 0$ for all $x \in X$. This completes the proof of (1).

For V = T in Theorem 2.3, we have the following.

THEOREM 2.4. Let $(X, H, \{p\})$ be a G-H-space and $T : X \to P(X)$ a mapping such that T(H(A)) is compact for all $A \in \langle X \rangle$. Let $q : H(A) \to T(H(A))$ be a continuous function. Suppose that $f, g : X \times X \to R$ and $h : X \to R$ are functions such that:

- (i) $f(x,y) \leq g(x,y)$ for all $(x,y) \in X \times X$;
- (ii) f is lower semicontinuous in the second variable y on compact subsets of X;
- (iii) h is lower semicontinuous in y on compact subsets of X;
- (iv) for each $A \in \langle X \rangle$, $\bigcap_{x \in A} \{ y \in X : f(x, y) + h(y) h(x) \le 0 \}$ is a compact subset of X;
- (v) for each $\{x_1, ..., x_n\} \in \langle X \rangle$, there exist a $\{x_{i1}, ..., x_{ik}\} \subset \{x_1, ..., x_n\}$ and an $x \in H(\{x_{i1}, ..., x_{ik}\})$ such that $f(x, y) + h(y) h(x) \ge \min_{1 \le j \le k} \{f(x_{ij}, y) + h(y) h(x_{ij}), g(x_{ij}, y) + h(y) h(x_{ij})\}$ for all $y \in X$.

Then one of the following statements holds.

- (a) There exists an element $y_0 \in X$ such that $f(x, y_0) + h(y_0) h(x) \le 0$ for all $x \in X$.
- (b) There is an element $x_0 \in X$ such that $g(x_0, x_0) > 0$.

PROOF. Define mappings $S, T : X \to P(X)$, respectively, by

$$S(x) = \{y \in X : g(x,y) + h(y) - h(x) \le 0\} \text{ and } T(x) = \{y \in X : f(x,y) + h(y) - h(x) \le 0\}.$$

Then by (i), $S(x) \subset T(x)$ for all $x \in X$. Assume that (b) is false. Then there exists an element $x_0 \in X$ such that $g(x_0, x_0) \leq 0$. This implies that S(x) is nonempty. Before we can apply Theorem 2.2, we need to show that T is an I-G-H-KKM mapping. For each $\{x_1, \ldots, x_n\} \in \langle X \rangle$, there exists a subset $\{x_{i1}, \ldots, x_{ik}\} \subset \{x_1, \ldots, x_n\}$ such that for any $x \in H(\{x_{i1}, \ldots, x_{ik}\})$ and for any $y \in T(x)$, we have $f(x, y) + h(y) - h(x) \leq 0$. By (v), there exists an index m $(1 \leq j \leq k)$ such that either $g(x_{im}, y) + h(y) - h(x_{im}) \leq 0$ or $f(x_{im}, y) + h(y) - h(x_{im}) \leq 0$, that is, $y \in S(x_{im}) \subset \bigcup_{j=1}^k S(x_{ij})$ or $y \in T(x_{im}) \subset \bigcup_{j=1}^k T(x_{ij})$. Therefore, we have

$$y \in \left(\bigcup_{j=1}^{k} S(x_{ij}) \cup \bigcup_{j=1}^{k} T(x_{ij})\right) \subset \bigcup_{j=1}^{k} T(x_{ij}).$$

Hence, we have

$$T(H(\{x_{i1},\ldots,x_{ik}\}))\subset \bigcup_{j=1}^{k}T(x_{ij}),$$

that is, T is I-G-H-KKM. Now the proof follows from an application of Theorem 2.2.

For X compact in Theorem 2.3, we arrive at the following theorem.

THEOREM 2.5. Let $(X, H, \{p\})$ be a compact G-H-space, $V : X \to P(X)$ any mapping such that V(H(A)) is compact for all $A \in \langle X \rangle$, and $q : H(A) \to V(H(A))$ be a continuous function. Suppose that $f, g : X \times X \to R$ and $h : X \to R$ are functions such that:

- (i) $f(x,y) \leq g(x,y)$ for all $(x,y) \in X \times X$:
- (ii) f is lower semicontinuous in its second variable y;
- (iii) h is lower semicontinuous in y;
- (iv) for each $\{x_1, \ldots, x_n\} \in \langle X \rangle$, there exist an $\{x_{i1}, \ldots, x_{ik}\} \subset \{x_1, \ldots, x_n\}$ and an $x \in H(\{x_{i1}, \ldots, x_{ik}\})$ such that

$$f(x,y) \ge \min_{1 \le j \le k} \left\{ f(x_{ij},y) + h(y) - h(x_{ij}), g(x_{ij},y) + h(y) - h(x_{ij}) \right\}, \quad \text{for all } y \in X.$$

Then there is an element $y_0 \in X$ such that $f(x, y_0) + h(y_0) - h(x) \leq 0$ for all $x \in X$.

For f = g in Theorem 2.5, we have the following.

THEOREM 2.6. Let $(X, H\{p\})$ be a compact G-H-space, $V : X \to P(X)$ any mapping such that V(H(A)) is compact for all $A \in \langle X \rangle$, and $q : H(A) \to V(H(A))$ be a continuous function. Let $f : X \times X \to R$ and $h : X \to R$ be functions such that:

- (i) $y \to f(x, y)$ is lower semicontinuous;
- (ii) h is lower semicontinuous in y;
- (iii) for each $\{x_1, \ldots, x_n\} \in \langle X \rangle$, there exists some $\{x_{i1}, \ldots, x_{ik}\} \subset \{x_1, \ldots, x_n\}$ such that for any $x \in H(\{x_{i1}, \ldots, x_{ik}\})$, we have

$$f(x,y) \ge \min_{1 \le j \le k} \left[f(x_{ij},y) + h(y) - h(x_{ij}) \right], \quad \text{for all } y \in X.$$

Then there is an element $y_0 \in X$ such that $f(x, y_0) + h(y_0) - h(x) \leq 0$ for all $x \in X$.

R. U. VERMA

REFERENCES

- S.S. Chang and Y.H. Ma, Generalized KKM theorem on H-space with applications, J. Math. Anal. Appl. 163, 406-421 (1992).
- 2. S.S. Chang and W. Xian, Some new versions of Ky Fan's matching theorem and nonempty intersection theorem with applications, *Math. Sci. Res. Hot-Line* 1 (6), 19-27 (1997).
- I. Joo' and G. Kassay, Convexity, minimax theorems and their applications, Annales Univ. Sci. Budapest 38, 71-93 (1995).
- 4. L.L. Stacho, Minimax theorems beyond topological vector spaces, Acta Sci. Math. 42, 157-164 (1980).
- 5. R.U. Verma, Generalized H-KKM type theorems and their applications, *Math. Sci. Res. Hot-Line* 2 (9), 21-28 (1998).
- 6. R.U. Verma, I-G-H-KKM theorems and their applications, Math. Sci. Res. Hot-Line 2 (8), 35-37 (1998).
- R.U. Verma, Nonlinear variational and constrained hemivariational inequalities involving relaxed operators, ZAMM 77 (5), 387-391 (1997).
- R.U. Verma, Some intersection theorems and their applications involving RKKM mappings in interval spaces, Math. Sci. Res. Hot-Line 2 (9), 1-7 (1998).
- R.U. Verma, Generalized pseudocontractions and nonlinear variational inequalities, *Publ. Math. Debrecen* 53 (1/2), 23-28 (1998).
- R.U. Verma, Role of generalized KKM type selections in a class of minimax inequalities, Appl. Math. Lett. 12 (4), 75-79 (1999).
- 11. E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Springer-Verlag, New York, (1986).
- 12. E. Zeidler, Nonlinear Functional Analysis and Its Applications III, Springer-Verlag, New York, (1985).