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1. INTRODUCTION 

The KKM theorem and its several generalizations give rise to minimax theorems and saddle 

points, which play a pivotal role in the solvability of a wider range of problems, from game the- 

ory to mathematical economies and optimization theory. Here we intend to establish a new class 

of generalized minimax inequalities along with several other special cases in a G-H-space setting. 

This class of generalized minimax inequalities does have significant applications to some general- 

ized minimax theorems, saddle point existence theorems, and generalized variational inequalities 

[l-6]. For more details on variational inequalities, we refer to [7-121. 

Let X be a topological space, P(X) denote the power set of X, and (X) the family of all finite 

subsets of X. Let An denote a standard (n - 1) simplex {el, e2, . . . , e,} of Rn. 

DEFINITION 1.1. A triple (X, H, {p}) is called a G-H-space if X is a topological space, and 

H : (X) + P(X) \ (8) a mapping such that: 

(i) for each F,G E (X), there exists an Fj c F such that Fl c G + H(Fl) c H(G); 

(ii) for each F = {x1,x2,. . . ,z,} E (X), there exist {nil, xiz,. . . , xik} c F and a continuous 

mapping p : An + H(F) such that for {il, i2,. . ik} c {1,2, . . , n}, we haIre 

p({eil,eia,..., eik}) c H ({m,xi2,. . . I xik)) . 

A subset K of X is said to be G-H-convex if for each A E (X), there exists an A’ c A such 

that A’ c K implies H(A’) C K. 

A subset K of X is called compactly closed in X if KnL is closed in L for all compact subsets L 

OfX. 
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DEFINITION 1.2. Let (X, H, {p}) b e a G-H-space, Y a topological space, and MI,. . . , I&, be 
subsets of Y. Let V : X -+ P(Y) be a multivalued mapping. A subset {xi,. . . ,z,} E (X) is said 

to be an I-G-H-KKMselection for MI,. . . , Ad, if there exists an {C&I, xi2,. . . , &k} C {XI,. . . , 2,) 
such that 

V (H ({~l,3~2,. . . , 

j=l 

where xi,. . . , x, are not necessarily distinct. 

DEFINITION 1.3. Let (X, H, {p}) b e a G-H-space, Y a topological space, and V : X -+ P(Y) 

any mapping. A subset K of Y is caJJed I-G-ff-cfosed in Y if K n V( H (A)) is closed in V (H (A)) 

for all A E (X) . 

DEFINITION 1.4. Let (X, H, {p}) b e a G-H-space, Y a topological space, and V : X -+ P(Y) 

any mapping. A mapping T : X --+ P(Y) is called I-G-H-KKM if for each {xi,. . . ,x,} E (X), 

there exists a subset {xii,. . . , xik} c {xl,. . . ,x,} such that 

V(H({xil,..., ~1)) c ; T(w). 
j=l 

For X = Y and V = T, Definition 1.4 reduces to the following. 

DEFINITION 1.5. Let (X, H, {p}) be a G-H-space and T : X 4 P(X) any mapping. The map- 

ping T is I-G-H-KKM if for each subset {xi,. . , , z,} E (X), there exists a subset {xii,. . . , zik} 

of{xr,... ,x,} such that 

T (H ({xii,. . . , u))) c (j T (xij) . 
j=l 

Next, we give an example [8] of an I-G-H-KKM mapping in an interval space. A topological 

space X is called an interval space if there exists a mapping [ , ] : X x X --+ {connected subsets 

of X} such that {xl, x2) c [xl, x2] = [x2, xl] for all 51, x2 E X. Among the notable special cases 

of the interval spaces, we mention Hausdorff topological vector spaces, contractible spaces, and 

connected spaces. 

EXAMPLE 1.1. (See [8].) Let X b e an interval space, Y a topological space, and V : X --f P(Y) 

any mapping. Then a mapping T : X --+ P(Y) is I-KKM if 

V ([51,x21) c ;, T(G), 

i=l 

for all xi,22 E X. 

For V = T in Example 1.1, T is called I-KKM in the sense of [2,4]. 

2. GENERALIZED MINIMAX INEQUALITIES 

This section is intended to provide, based on I-G-H-KKM theorems, a new class of generalized 

minimax inequality theorems in G-H-spaces. 

THEOREM 2.1. Let (X, H, {p}) b e a G-H-space, Y a topological space, and Ml, . . , Mn be I-G- 

H-closed subsets of Y. Let V(H(A)) be compact for all A E (X), V : X -+ P(Y) any mapping, 

and q : H(A) -+ V(H(A)) a continuous function. Suppose that MI, . , Mn have an I-G-H-KKM 

selection. Then we have 

hMif0. 
i=l 
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PROOF. Since the subsets Ml,. . . , Mn have an I-G-H-KKM selection, there exist an {z;l, . . T x,1;} 

c {q?...,z,}=A~ (X) and any mapping V : X + P(Y) such that 

V(H({~il,.. ,xik})) C (J hfij. 

j=l 

Since (X, H, {p}) 1s a G-H-space, there exists a continuous function p : An + H(A), where 

An = {el,...,e,}. It follows that qop: An -+ V(H(A)) is a continuous function. Let us set 

E, = (4 0 P)-’ (Mi n V(H(A))) > for i = 1.. (72. 

Since each Mi is I-G-H-closed in Y, it suffices to show 

co ({eil, . . . , e,k)) C (J Eij. 
j=l 

Assume an element z E co({ell, . . . , eik}). Then we have 

(4 0 P)(Z) E V (H ({wt. . ,&k))) c (J m/j. 
J=l 

Therefore, there exists an index m (1 < m < k) such t,hat (q o p) (2) E A&,, so (q o p)( 2) E 

(Mi, n V(H(A))). This implies 

2 E (4 0 P)-’ (Mini. n V(H(A))) = &,. 

Finally, by the classical KKM theorem, we have ny=“=, Ei # 0, and as a result, fly=, Al, # 0. 

THEOREM 2.2. Let (X, H, {p}) be a G-H-space and T : X ---f P(X) an I-G-H-KKM mapping. 

Let V(H(A)) b e a compact subset of X and q : H(A) -+ V(H(A)) a continuous function for all 

A E (X) and for any mapping V : X 4 P(X). Suppose that: 

(i) for each II: E X, T(z) is compactly closed in X; 

(ii) there exists an A E (X) such that &E,l T(z) is a compact subset of X. 

Then f&x T(z) # 0. 

PROOF. Since T is an I-G-H-KKM mapping, it implies, for any (x.1,. . . , z,} E (X), that there is 

a subset {Zil, . . , xik} c (51,. . . ,x,} such that for {il, . . , ik} C (1,. . . , n} and for any mapping 

V : X -+ P(X), we have 

V (H ({w,. . . T.rtk})) C 6 T(z,j). 

j=l 

Since each T(z) is compactly closed in X (and hence I-G-H-closed), by Theorem 2.1, the family 

{T(z) : 5 E X} has the finite intersection property. On top of that by (ii), {T(z)n (r)s,EA T(d)) : 

2 E X} is a family of compact subsets of X with the finite intersection property, and as a result, 

we have nzEX T(z) # 0. 

THEOREM 2.3. Let X, H, {p}) be a G-H-space, V : X + P(X) any mapping such that V(H(A)) 

is compact for all A E (X), and q : H(A) --) V(H(A)) a continuous function. Suppose that 

f, g : X x X -+ R and h : X 4 R are functions such that: 

(i) f(z, y) I 9(x, y) for all (z, y) E X x X; 
(ii) f is lower semicontinuous in y on compact subsets of X; 

(iii) h is lower semicontinuous in y on compact subsets of X: 

(iv) for each A E (X), nlEA{y E X : f(rc, y) + h(y) - h(z) 5 0) is a compact subset of X; 
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(v) for each (21,. . . ,q} E (X), there exist some {xii,. . . ,xik} c {XI,. . . , z,} and an z E 

H({Ql> . . . , xik}) such that 

f(z, Y) +h(y) -h(z) 2 ,~J!&{f(Gj,Y) +h(y) - h(Gj), 
-- 

S(Gj,Y) + h(Y) - f4Gj)L for all y E X. 

Then one of the following statements holds. 

(1) There exists an element y’ E X such that f(z, y’) + h(y’) - h(z) < 0 for all 5 E X. 

(2) There is an element 2’ E X such that g(z’,z’) > 0. 

PROOF. Let us define mappings V, T : X + P(X), respectively, by 

V(s)= {YE x: L&y) t-h(Y)-@) 5 0) and 

T(z) = {Y E X: I +h(y) - h(z) 5 01, for all II: E X. 

Assume that (2) does not hold. That means g(z,z) 5 0 for all z E X. Thus, V(x) is nonempty. 

By (i), V(z) c T(z). Next, for each {xi,. . . ,z,} E (X), there exists some {xii,. . ,xik} c 

{Q,..., z,} such that for any z E H({zii,. . . ,xik}) and for any y E V(x) c T(z), we have 

f(& Y) + h(Y) -h(z) 5 0. 

Now, applying (v), there exists some index m (1 5 m < k) such that g(zim, y) +h(y) -h(si,) 5 0 

or f(zim, y) + h(y) - h(zi,) 5 0. This implies 

y E V(&m) C 6 V(%j) or Y E T(G,) c fJT(zij), 
j=l j=l 

so 

Therefore, we have 

yE iJV(Z.j)UbT(Zij) C (jT(~ij). 
j=l j=l j=l 

v (H ({Gl,. . . > ~/c})) C (J T(zij)t 
J=l 

that is, T is an I-G-H-KKM mapping. Next, by (ii), each T(s) is compactly closed in X. As of 

now, all the conditions of Theorem 2.2 are met, we have &-,- T(z) # 8, that is, there exists an 

element y’ E X such that f(z, y’) + h(y’) - h(z) 5 0 for all z E X. This completes the proof 

of (1). 

For V = T in Theorem 2.3, we have the following. 

THEOREM 2.4. Let (X, H, {p}) be a G-H-space and T : X + P(X) amappingsuch that T(H(A)) 

is compact for all A E (X). Let q : H(A) + T(H(A)) be a continuous function. Suppose that 

f, g : X x X + R and h : X -+ R are functions such that: 

(!i 
(iii) 

(iv) 

(v) 

f(z, Y) I g(z, Y) for all (z, y) E X x X; 
f is lower semicontinuous in the second variable y on compact subsets of X; 

h is lower semicontinuous in y on compact subsets of X; 

for each A E (X), ntEA{y E X : f(z, y) + h(y) - h(z) 5 0) is a compact subset of X; 

for each {xi,. . ,z,} E (X), there exist a {xii,. . . ,zik} c (~1,. . ,z,} and an z E 

H({zir,. . .,z,k}) such that f(z,y) + WY) -h(z) 2. miw<j5k{f(~ij,y) + h(y) - h(zij), 

g(Zij,y)+ h(y) - h(Xij)} for ally E X. 
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(a) There exists an element YO E X such that f(z, ye) + h(yo) - h(z) 5 0 for all z E X. 

(b) There is an element 50 E X such that g(zo,zo) > 0. 

PROOF. Define mappings S, T : X -+ P(X), respectively, by 

S(z) = {y E X: d&Y/) -th(Y) -h(z) IO) and T(z) = {y E X : f(z, y) + h(y) - h(x) 5 0). 

Then by (i), S(z) c T(z) for all 5 E X. Assume that (b) is false. Then there exists an element 

zo E X such that g(zo,zo) < 0. This implies that S(z) is nonempty. Before we can apply 

Theorem 2.2, we need to show that T is an I-G-H-KKM mapping. For each (51,. . . r,,} E (X), 

there exists a subset {zir, . . , zik} c (~1,. . . ,x,} such that for any 5 E H({zir,. ,.r,k}) and 

for any y E T(z), we have f(z, y) + h(y) - h(z) < 0. By (v), th ere exists an index m (1 5 j 5 k) 

such that either g(zim,y) + h(y) - h(zi,) 5 0 or f(zim, y) + h(y) - h(zi,) L 0, that is, y E 

S(h) c lJSzl s(zij) or Y E T(zim) c U,“=, T(zi,). Therefore, we have 

YE (jS(xii)" iJT(xij) 
j=l j=l 

Hence, we have 

T (H ({GI, . . . ,-m})) c lj T(zij), 

that is, T is I-G-H-KKM. Now the proof follows from an application of Theorem 2.2. 

For X compact in Theorem 2.3, we arrive at the following theorem. 

THEOREM 2.5. Let (X, H, {p}) be a compact G-H-space, V : X + P(X) an-y mapping such 

that V(H(A)) is compact for all A E (X), and q : H(A) + V(H(A)) be a continuous function. 

Suppose that f, g : X x X -+ R and h : X -+ R are functions such that: 

(i) .f(z, y) 5 g(s, y) for all (s, y) E X x X: 
(ii) f is lower semicontinuous in its second variable y; 

(iii) h is lower semicontinuous in y; 

(iv) for each {xl,. . . ,cc,} E (X), there exist an {xii,. . ,zQ~} c (~1,. . . ,xn} and an z E 

H( {zir , . . . , zik}) such that 

f(s,Y) 2 ,$,{f(z~j~Y) + h(y) -h(zij),g(zij,Y) + h(y) -h(~i~))) for all y E X. 
-- 

Then there is an element yo E X such that f(z, yo) + h(yo) - h(z) 2 0 for all z E X. 

For f = g in Theorem 2.5, we have the following. 

THEOREM 2.6. Let (X, H(p)) be a compact G-H-space, V : X + P(X) any mapping such that 

V(H(A)) is compact for all A E (X), and q : H(A) + V(H(A)) be a continuous function. Let 

f : X x X + R and h : X + R be functions such that: 

(i) y + f(z, y) is lower semicontinuous: 

(ii) h is lower semicontinuous in y; 

(iii) for each (51,. . . ,z,} E (X), there exists some {z~I, . . . 3 xik} c {XI,. . . , CL,} such that for 

any 2 E H({zil, . . , xik}), we have 

f(z, Y) 2 r$~~ [f(zij, Y) + h(y) - h(+)l > for all y E X. 
-- 

Then there is an element yo E X such that f(z,yo) + h(yo) - h(z) < 0 for all CC E X. 
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