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Abstract

We establish lower bounds for norms and CB-norms of elementary operat&&On Our main
result concerns the operatfif ,x = axb+bxa and we show T, |l > la||[|b]|, proving a conjecture
of M. Mathieu. We also establish some other results and formulagrfo |, and|| 7, p || for special
cases.
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Our results are related to a problem of M. Mathieu [13,14] asking wheltfigs|| >
clla|lllp|| holds in general witle = 1. We prove this in Theorem 6 below.

In [14] the inequality is established fer= 2/3 and the best known result to date is
¢ =2(~/2—1) as shown in [5,11,17]. There are simple examples which show ttenot
be greater than 1 in general and there are results which prove the inequality with
in special cases. The cagé=a andb™ = b is shown in [12] where it is deduced from
|Ta.bllce = I Ta p|l under these hypotheses.

The equality of the the CB norm and the operator nornTQf also holds ifa, b are
commuting normal operators. See Section 3 below for references.

A result forc = 1 is shown in [2] under the assumption that+ zb| > ||| for all
z € C. In more general contexts similar results (with varying values)adre shown in
[5,6].

As this manuscript was being written we learned of another proof of the main result [4],
using rather different methods. Thanks are due to M. Mathieu for drawing our attention to
this reference.
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1. Preliminaries

We callT : B(H) — B(H) an elementary operatorif has a representation

¢
T(x)= Zaixbi

i=1

with a;, b; € B(H) for eachi. We cite [1] for an exposition of many of the known results on
(more general) elementary operators and for other concepts we cite a number of treatises
on operator spaces including [7,8,15]. In particular we will use the completely bounded
(or CB) norm||T ||, of an elementary operator, the operator ngrfij and the estimate in
terms of the Haagerup tensor product ndrfii| < (1T |lep < || Zle a; Qbi|ln.

We recall that the Haagerup norm of an element B(H) ® B(H) (of the algebraic
tensor product) is defined by

k

E aa’

i=1

k

> bib;

i=1

2 .
lwll; =inf

where the infimum is over all representatians= Zf.‘zl a; ® b;. Moreover this infimum is
achieved with botlt-tuples(az, az, ..., ax) and(b1, ba, .. ., by) linearly independent.

ThroughoutH denotes a (complex) Hilbert space aBdH) the algebra of bounded
linear operators o/ . Forx in the class of Hilbert—Schmidt operators Hnwe denote the
Hilbert—Schmidt norm byjx |2 (so that||x ||§ = tracex*x).

2. Lower bounds

Lemma 1. Given linearly independet, » € B(H), we can finct1, co € B(H), §1,82 >0
andzeC\ {0} sothata @ b+b®a=c1® c1+ c2® c2, c1 = (za + z ) /2,
c2=1i(za —z tb)/v/2 and

la®b+b®ally = 81c1¢; + Sacach |l = |87 cier + 85 chea|.
Proof. We know from general facts cited above that the Haagerup norm infimum for

w=a®b+ bR a is realised via a representation= a1 ® b1 + a2 ® bp. Moreover,
by scalinga; to Aa; andb; to A~1b; for a suitable. we can arrange that

lwln = llaaa] + azaz |l = [|b3b1 + b3b2|.
We adopt a convenient matrix notation
w=[a,b]O[b,a] =[a1,a2] © [b1, b2]

for the two tensor product expressions abavéof transpose) and note that all possible
(linearly independent) representationsiofake the form

w = [a}, ay] © [by, by1' = ([az, azla) © (a b1, b2l')
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for a 2 x 2 invertible scalar matrixc. We use the transpose notation also for the linear
operation on the tensor product that seag® b1 to b1 ® a1. Then we have

w=w' = [b1, b2] © [a1, az]' = ([az, azler) © ([b1, b2l(¢™Y)')".

From [b1, b2] = [a1, az]la and[a1, a2)a! = [b1, b2] together with linear independence we
geta = o' symmetric.

We can now express = uAu’ whereu is a unitary matrix and\ is a diagonal matrix
with positive diagonal entries;” L 85 ! ([10, Takagi’s factorisation, 4.4.4] — see also the
problems on pp. 212, 217 in [10]). Take;, a5] = [a1, azlu, [b}, by] = [b1, b21(u™1)" so
that

w = [a}, ay) © [b, by,
lwlly = [[(@D(@)* + (@) (ar)*|| = | (BD*BY) + by * b)) |
and
[a}, ay)A = [ay, azlu A = [a1, azla(u™)" = [ba, bol (u™t)" = [, D).

In other Wordsalfal._1 =b;(i=12).
We now taker; = /3; b and we then have = ¢1 ® c1 + c2 ® c2 together with

-1 -1
lwlln = lI81c1¢] + S2c2c3|l = || 87 “cfer + 85 "chez|.

It remains to relater, co t0 a, b as claimed. If we put/ = (c1 — ic2)/~/2 andb’ =
(c1+ic2)/~/2 we have
w=ad Qb +b ®a =[d,b10[V,d] =[a,b]O[b,al.

An easy argument shows that therezis C with eithera’ = za andb’ =z b or else
a’ =z~ 1b andb’ = za. The first case is exactly as required but for the second case we need
to swap the roles af; andca. O

Theorem 2. Assume tha# is two-dimensionaland, b € B(H). LetT, »(x) = axb+bxa.
Then

ITabllco = llall2l]l2.

Proof. In the case where, b are linearly dependent:(= Ab, say, T, px = 2 axa) we
know || T |lcs = IT || = 2||allllbll = llali2llb]l2. So we deal only with the case of independent
a,b.

We first apply Lemma 17, 5lcs = lla ® b + b ® al|, and the fact that the norm of a
2 x 2 positive matrix (the max of the eigenvalues) is at least half the trace to get

2 2
1 Tabller = = (81llclls + 82llc2ll5),

1y w2 s—Lp . 2
ITabllcr > = (81 " Nenllz + 85 lleall3)-

We deduce

NI NI
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ITapller = = ((81+ 871 leall3 + (82 + 851) lle2ll3)

2 2
> S (lleallz + lle2ll3)

tracgcic1 + c5c2)

RPNIRPNRFP DR

=3 tracg((za)*(za) + (Z_lb)*(z_lb))

1
= S(lzal3 + =7 ]5)
> |zallz|z7 b ||, = lall2llbll. O

Corollary 3[11, Theorem 2.1]For a, b € B(H) (H arbitrary)

1Tabllcs = Nlalllibll.

Proof. We can reduce the proof to the case wharés two-dimensional by the argument
givenin [11, Theorem 2.1] (take unit vectdrsy € H where||a&|| > |la|| — € and||bn| >
6]l — &; considerT, ., 45, Wherep is a projection onto the span &fn andqg a projection
onto the span af&, bn). In two dimensions the result follows from Theorem 231
Proposition 4. If a, b € B(C?) are symmetric matrices, then

1 Tasllco = I Tapll = Inf |xaa® + (1/x)bb"

Proof. Now c1, c2 obtained from Lemma 1 are symmetric matrices. Usihg- ¢; = the
complex conjugate matrix we have

|87 cter + 85 chea| = || 87 M erer + 85 Meaca| = |81 erer + 85 Mer o
Thus

S1+ 67t So+ 685t
1 Tapllep = H quc; + 5 2

> |le1e] + cacs | = llefer + c5eall

€205

so that the infimum in the Haagerup tensor norm is attaineddyith§; = 1. We thus have

1Tabllcr = igf|| |z|%aa* + |z|72bb* |

and the desired formula fdit7, 5 ||c» (takingx = 1z]?).
From [18] we know that the convex hulls of the following two sets of matrices intersect

Wi {[mczs,a (cacit, &) }: A

(c1c38,8) (c2c3§.§)
2
<<Zcz-c;*)§,$>=IITa,hllcb}, )
i=1
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crean, n) {csean, ) |.
ereunm e i e gl =1.

"= {[@’{0277, n) (czcan, n)
2
<(ZC?Q’)H, n> = ||Ta,b||cb}. )
i=1

Moreover the equality 7, »|lc» = || T4 »|| holds if and only if the sets themselves intersect.
For either of the sets (sa&¥;) to consist of more than one element, the hermitian operator
concerned must have a double eigenvalue of the maximum eigenyajud.», which
means that (taking the ca®g)

2
> et
i=1

is a multiple of the 2« 2 identity matrix. But then by complex conjugation and symmetry
Ziz:l c’c; is the same multiple of the identity.

In the case wheWV; (and W, by the symmetry) are singletons, we ha\g, ., =
| 7251l @and using the following lemma, we can complete the proof for the other case.

Lemma 5. If ¢1, ¢ € B(C?) are symmetric and satislyic] + c2c; = a multiple of the
identity matrix, there exists unitary so that eithewciu’ and ucou’ are both diagonal
(¢ for transposgor

t_ A0 r [ ¢ ¢B
uclu—(o A)’ uczu-(gﬁ —C&)

withA>0,8>0,|¢|=1.

Proof. We can findu so thatuciu’ is diagonal (with positive entries, [10, 4.4.4]).

We can replace; by uc;u’ (i = 1,2) and assume without loss of generality thats
diagonal. Themrxcj is diagonal, which means that the rowscgfare orthogonal. An easy
analysis shows that eithes is diagonal or is a multiple (of modulus one) of a matrix of
the form

(5 %)

The relation satisfied by, andc; dictates that is a multiple of the identity in the latter
case. O

Proof of Proposition 4 (completedl Invoking the lemma and the fact that(x) =

uT (u'xu)u' has the same norm &5 and the same CB norm, we can reduce to the case
whereci, c2 generate a commutative® algebra. In this case the fact tHet||., = ||S] is
known (see references in Section 3)1

Theorem 6. If a, b € B(H) and T, »(x) = axb + bxa. Then
1Tanll = llalllibll.
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More generally, the same inequality holdsAfis a prime C*-algebra,a, b are in the
multiplier algebra ofA and7, ,: A — A iS T, p(x) = axb + bxa.

Proof. As shown in [14] and [11, Theorem 2.1], the essential case is the case where
A =B(H) andH = C? is 2-dimensional. We show in this case th}, || > |la|l||b]|2 >
la|l|b]l and so we can assunie| = ||bll2 =1 (a, b € B(C?)).

There exista, v unitary so thatwav is a diagonal matrix with diagonal entriesil
0< A £ 1. Replacingl’ by S(x) = uT (vxu)v we can assume that

(1 0 _ (b1 D12
a_(O /\>’ b_(bZl bzz)'
By multiplying 4 by a scalar of modulus 1 we can assume that= [b12|. Multiplying both
a andb by a diagonal unitary with diagonal entries 1 ankb1/|b21] (that is, replacing’

by S(x) =uT (xu)) we can assume also thigt; = |b21|.
Now considerT; (x) = T (x")" = axb' + b*xa and

Ty(x) = %(T(x) + T;(x)) = axby + byxa

with
1 b11 s12 b12+ bo1
by==(b+0b")= =
! 2( ) (Slz bz )’ $12 2
We claim that||7y|| > 1 and this will prove the theorem becausE| = ||T|| and so
1Tl < T

To show|| T;|| > 1 we invoke Proposition 4 and shdi#s ||, > 1. Note

1 1
5 <Ibsll3 = 1615 = 5 (b12— b2n* < 1,
o ( 1b112+5s2,  s1a(b11+b2o)
bSby = T 2 2
s12(b11+022)  |b221” + 575
and writep? = |b;;|2 + s2, (i = 1, 2) for the diagonal entries.
Now consider a unit vectdr = (¢1, &) € C2. Then
|xaa* + (1/x)bsb} || > ((xaa™* + (1/x)bsb})E, &)
=x(aa*£, &)+ (1/x)(bsb;&, &)
>2,/(aa*§, §)(bsb}E, £)
and we claim that there is a point in the joint numerical range
W ={(x,y) = ((aa*§,§), (b;b}&,8)): I§] =1} S R?

which is also on (or above) the hyperbala= 1/4. Verifying the claim will complete the
proof.

We assume from now dhat = 0, as this is the hardest case (smallest‘s, &)).
Being the joint numerical range of two hermitian operators (or the numerical range
of the single operataga™® + ib,b;), W is a convex set in the plane. In fact, because the
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space is 2-dimensionaly is either a straight line (in the case where the two operators
commute, that is;2(b11 + b22) = 0) or else an ellipse (together with its interior) [3, 1.6.2].
The ellipse touches the vertical lines= 0 andx = 1 at the pointg0, M%) and (1, M%)-
Hence the centre of the ellipse is at the midpdirg, yo) = (1/2, (1/2)(;;% + p,%)) =
(1/2, (1/2)(1b11l? + b22l®) + s35) = (1/2, (1/2) | bs|13).-

In the case where we have a line and not a genuine ellipse, gither 0 (then the
midpoint is (1/2, 1/2) and so on the hyperbola) 65, = —b2, and the line is horizontal
(aty = (1/2)||bs||§ > 1/4 and so also meets the hyperbola))dfi| > |b22|, then the

point (x,y) = (1, Mi) on the ellipse already satisfiexsy#> 1 and so we assume that
|b22| > |b11].
For the genuine ellipse case we write its equation in the form

a11(x — x0)? + 212(x — x0)(y — yo) + (v — yo)* + B =0. (3)
Using the information that the ellipse has a vertical tange(m,atg) and its intersection
with the linex = 1/2 is the line segmer(1/2, y): |y — yo| < s12|b11+ b22|} (take& with
£ = 1/+/2), we can solve for the coefficients

a1z = 5 — pf = b2l — 1b11f?,

B = —s2,|b11+ b2, 4)

2 -
11 = (|1911|2 - |b22|2) + 4sZ,|b11+ bool? = a2, — 4B.

We can rewrite the equation in the form

(12(x — x0) + (y — yo))2 —4B(x —x0)?>+ =0
and so we can parametrise the ellipse via

x =x0+ (1/2) sinw, (5)
y = yo — (1/2)a125inw + /— B cosw
= (1/2)(1b111% + 1b221?) + 5% — (1/2)(1b221? — |b11/?) Sine
+ s12|b11 + b2o| COSW (6)

(0 < w < 27). We look forw € [0, 7/2] where &y > 1. We uselb11 + bao| > |boo| —
|b11] = €12 (say) and represent for convenienbe:|? + |b22/° = cog6 (0< 6 < /2).
Note &2, > (b12 — b21)?, 252, > (1/2)(b12 — bp1)? = 1 — ||bs||3, 457, > 1 — co$6 and
s12 > (1/2) sind. Moreover|byy| + |b11] < v/2cos. Thus

2y > (1/2) + (1/2) cog 6 + £12(Sind cosw — +/2 coF sinw). (7)
Choosew = tan1((1/+/2) tand), sinw = sind/v/sirf 6 + 2 co6 and
sing

A1+ cog6

Remark 7. With some additional effort, we can adapt the proof above to establish the
lower bound| T, ;|| > |lall2]|b||2 for the caser, b € B(C?) (and thus get a stronger result
than Theorem 2).

dxy > (1+ )(1/2+ (1/2)co€6)>1. O
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It seems that this does not follow from the methods used in [4].

Proof. A sketch of the additional details follows. We assume by symmetry |thés/
llall < 1b]12/ 1161l and normalisdlall = 1, ||b]|2 = 1 as before. This time we cannot assume
1 = 0, but we note thatdetb| > |1|/(1+ |A|?) (for example, také = ubov whereu, v are

unitary andbo is diagonal with diagonal entrieg /1 + u2 andu/+/1+ 2, 1> u > |A)).
In this case the ellipse will have vertical tangentscat |A|2 andx = 1 and will be
centered atxo, yo) = (1 + [x[%)/2, (1/2)]|b,]13). Eq. (3) of the ellipse now has

_ 122l — |b1a?
1—(x2
B as in (4) andr11 = a2, — 4B/(1— |A|%)2. We can rewrite the equation of the ellipse as
- ﬁ(ﬁc—xo)uﬂ:()
and then we can parametrise via
x=(1/2)(1+ [A?) + (1/2)(1 - |A%) sinw (8)

(in place of (5)) and (6) as before.

We now seek a pointx, y) on the ellipse wherexdy > 1+ |A|2.

To dispose of the casé11| > |bao| we show 49 > 1 + |A|2 (and this also deals with
the case where the ellipse degenerates into a line). Usifiig= 1,

(ca2(x — x0) + (v — y0)°

4y =2|[bg||” =2 — (b12 — ba1)® = 1+ (|b11/* + [b22l* + 2b12b21)
2] 2
> 14 2|b11b22 — b12b21| 2 14+ 2———= > 1+ |A]“.
+ 2|b11b22 — b1ob21| = 1+ 1T A2 + (Al
Whene12 = |b2o] — |b11] > 0 we choose the sameas before. From the lower bound (7)
and (8) we get the desiredc# > 1 + |A|2 if we have co86 > 2|A|2/(1+ |A|%). For the
remaining case note that

1 1 1
2y > |b11l? + bl + 252, = 5T §(|b11|2+ |b221%) + b12b21 > i | deth|

and the resulting 2> 1/2+ |A|/(1+ |1|?) is a better lower bound that (7) when é6s<
2|A1/(1+2]3). In this situation we do getey > 1+ |1|2. All eventualities are now covered
because &|2/(1+ A% < 2IAl/1+|2?. O

3. Commuting cases

We consider now some cases where we can find relatively explicit formuld&fo| .
These may shed some light on the difficulty of finding any explicit formula for the norm of
a general elementary operator. One may consider the Haagerup formula for the CB norm
as an explicit formula, though we shall observe that this is not so simple to compute even
in the simplest cases.
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The equality of the CB norm and the operator nornTpf, holds ifa, b are commuting
normal operators. This appears already in the unpublished [9]. A significant part of the
argument from [9] is published in [1, §85.4] and the remaining part uses the fact that all
states on a commutative*-algebra are vector states. (By the Putnam—Fuglede theorem
the C*-algebra generated by commuting normal operators is commutative.) See also [16,
Theorem 2.1] for a more general result on bimodule homomorphisms. Another proof (with
slightly weaker hypotheses) is in [18].

We deal here only wittH of dimension 2.

Proposition 8. If H is two-dimensional and:, b € B(H) commute, then| T, »llco =
7ol

Proof. We can find an orthonormal basis &f so thata andb both have upper triangular
(2 x 2) matrices. Ifa, b are diagonal, then they generate a commutaiitsubalgebra of
B(H) and in this case thatT, sllco = la @b+ b ® alln = || Tu.»|l (S€€ @bove).

Now c1, c2 obtained from Lemma 1 are also commuting upper triangular matrices.
As used already in (1)—(2), from [18] we know that the convex hulls of the two sets
of matrices intersect. In this case the sets are as not quite as beforec;Edwuld be
replaced by/3; ¢; in the definition ofW; and by 1./3; ¢; for W,.. Moreover the equality
ITabller = I To.5 | holds if and only if the sets themselves intersect. For either of the sets
(sayW;) to consist of more than one element, the hermitian operator concerned must have
a double eigenvalue of the maximum eigenva|dg ;|| .», Which means that (taking the
casew))

2
Z(Sicic;‘
i=1

is a multiple of the 2< 2 identity matrix. But the following lemma asserts that this cannot
happen unless/81c1 and 4/ c» are simultaneously diagonalisable (the case where we
know the result). SA¥; and W, have one element each, they intersect and the result
follows. O

Lemma 9. If a1,a2 are commuting elements &f(H) with H of dimension2 and if
aiaj + aza; is a multiple of the identity, thein, a> generate a commutativesubalgebra
of B(H).

Proof. In a suitable orthonormal basis féf we can represent;, a; as upper triangular
matrices

_|x1:n _|x2 y2
“1—[0 zl] a2_|:0 22}
and then the condition for them to commuteyig(xo — z2) = y2(x1 — z1). (For later
reference we call this valyg) So if y; = 0, then eithep, also zero (both matrices diagonal

and we are done) or elsg = z1 anday = x1/2 is @ multiple of the identity. But thema;
is a multiple of the identity and this forces = 0 (both diagonal again).
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In the case whems andy; are both nonzero, we compute

X1l + [y112 + x2? + [y21?  y1Z1+ yziz}
V121 + y2z2 |221% + |z21% ]

aiaj +aza; = |:
Thus we havenzi + y2z2 = 0, which implies(z1, z2) = @(y2, —y1) for somew € C. We
also have equality of the two diagonal entries of the above matrix which gives us
x1l?+ [x2/” = (lof? = 1) (Iyal® + 1y2/).

Now x1 = p/y2 + z1= p/y2 + wyz andxz = p/y1 — wy1, yielding
2 2
+ = (|ol? = 1) (1y2l? + Iy2l?)

P , P -
— twy2 — —w)
y2 y1

and hence the impossible condition

1P (vl ™2 + 1y2l %) = —(Iyl> + y2l%). O

Example 10. ConsiderT, ; acting onB(C?) with a, b diagonal 2x 2 matrices. Them,
c2 in Lemma 1 are also diagonal and we can see then directly that

1 1 -1
llcrey + cacsl < 5 (I181c1¢5 + S2c2c3 || + |67 “cter + 85 “chezl|)

so that the Haagerup norm is minimised widh = 6> = 1. Also |lcic] + coc5|l =
IlzI2aa* + |z]~2bb*| and so the Haagerup norm is the minimum of this.

Say the diagonal entries ake, A2 for ¢ andu1, w2 for b. Normalisinga andb to have
norm one, we can assume nigx|, |A2|) = 1 and max|u1|, |u2|) = 1. If they both attain
the maximum at the same index then it is easy to see|tha|| = 2 = 2||a||||5||. If not,
assume by symmetry thgt;| = 1 = |u2| and thaf 1| < |A2|. The Haagerup norm is then
the minimum value of the maximum of two functions, and can be computed by elementary
means. It gives the norm (the same as the CB norm in this case) as

2|22 if [A2] >1/v/2 andjpa|® < 2— [a2| 2,

1Tl = 1—|uaf?rgl?
VA=) A 13202)
Summarising the calculation in a basis independent way, we can state the following.

9

otherwise

Proposition 11. Suppose that, b € B(C?) are commuting normal operators and that
lall2/llall = Ibll2/112]l. If a, b attain their norms at a common unit vector, thigh, , || =
2|la|lIb]]. If not

2bll\/lallz = lal? i lall2 > v/3/2]al and||b]5 <

316112 = (lall®1611?)/lall3 — llall?)
lall3bN + llall?1bl3 — llali3lb13

J@lal2— lal3)@1b12 - 1613)

I Tapll = (10)

otherwise
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Proof. Note that in a suitable orthonormal basis@, a, b will both be represented by
diagonal matrices. O

4. A formulafor self-adjoint operators

Our aim here is to present a proof of a formula from [12] that follows a similar approach
to the one used in Section 2.

For a linear operatof : B(H) — B(H) we denote byT* the associated operator
defined byT*(x) = T (x*)*. We callT self-adjointif7* =T.

Lemma 12 [18]. For T:B(H) — B(H) a self-adjoint elementary operator, there is a
representatior’ x = Zfzo gicixc withc; e B(H), ¢; € {—1, 1} for eachi and
¢

E cicl .

i=1

ITlley =

Lemma 13 [18]. Let T = T*:B(H) — B(H) be an elementary operatoffx =
Zf.‘zl cixcl — Zf:kH cixcr withO<k </ and(cl-)f:l linearly independen{We include
k = O for the case where the first summand is absent and whei4 the second summand
is absen). Then the ordered paitk, £ — k) (which we could call the ‘signaturgis the
same for all such representationsDf

Example 14 [12]. ForT : B(H) — B(H) given byTx = axb™* + bxa™ with a, b linearly
independent, we have

IT|lep = inf{llraa® + sbb* + 2t3(ab®)||: r > 0,5 > 0,1 € R, rs —1? =1}
(whereJ(ab*) = (ab* — ba™)/(2i) is the imaginary part).

Proof. We can rewriteTx = cixcj — caxcy if we take c1 = (a + b)/v/2 andc =
(a — b)/+/2. Note for later use that we can undo this changeaby (c1 + ¢2)/v/2,
b=(c1—c2)/V2.
According to Lemmas 12 and 13 we can fifi@||;, as the infimum ofijcj(c))* +
c5(cy)* || where
[c}, 5] = [c1, 2]
ande is an invertible 2< 2 matrix with the property that

fo S)r=lo 5]

As unitary diagonal have no effect on the estimafe](c})* + c5(c5)*|| we can work
modulo these unitaries and then elementary analysis of the possibilities shows that we
need only consider the cases

[ P \/pz—le"g}
o =
/p2_1e—i9 p
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(with p > 1,0 € R). This leads us to consider only

[c}. chl=[per+ /P2 — L& e, \/ p2 — 1€%c1+ pea].

Hence

1Tl = _inf _llea(ed)” + e’

= inf|| (2p2 — l) (c1c] + c2c3) +4py/ p? — 15)’%(eieclc§) ||
=inf|(2p® — 1)(aa* + bb*) + 2p,/ p? — 1cosh (aa* — bb*)

+4py/ p? — 1singI(ab™)||
_ R 2 _ 2 _ *
_p2llr,1f96R” (2p* — 14 2p,/ p? — Lco¥)aa
+ (2p% = 1—2p\/ p2 — Lco0)bb* + 4p,/ p? — 1sinOI(ab™)|.

The claimed formula follows by taking= 2p? — 1+ 2p/p2 —1co9, s = 2p%> — 1 —
2py/ p?2 —1cow andt = 2p./p? — 1sind, noting thatrs — 12 = 1. We can recovep
and co® from r,s (with r > 0, s >0, rs > 1) usingr +s =2(2p?> — 1), r —s =
4p./p? — 1cos. From the sign of = £4/rs — 1 we get si and sa® modulo 2r. O

Remark 15. In [12] it is also shown that, fof" as in the example abovéT ||, = |IT .
A more general result can be found in [18].
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