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T O P O L O G I C A L  I N T E R S E C T I O N  T H E O R E M S  
OF S E T - V A L U E D  M A P P I N G S  
W I T H O U T  C L O S E D  G R A P H S  
A N D  T H E I R  A P P L I C A T I O N S  

E. TARAFDAR and XIAN-ZHI YUAN* (Brisbane) 

1. Introduction 

Let X and Y be non-empty sets and f : X x Y ~ R be a function. A 
minimax problem is to find certain conditions such that the following holds: 
infvey sup~ex f ( x ,  y) = sup~ex infv¢r f ( x ,  y). The original motivation for 
the study of minimax theorems was, of course, von Neumann's work on the 
game theory of strategies in 1928. After a lapse of nearly ten years, gener- 
alization of von Nemuann's original results for matrices started appearing. 
As time went on, these generalizations became progressively more remote 
from game theory, and minimax theory started becoming object of study 
in their own right. The importance of connectedness in the study of mini- 
max theory was first recognized by Wu [26]. Then this idea was picked by 
Terkerson [23]. By a refined method, it is Tuy, who derived a generalized 
version of Sion's classical minimax theorem in [24] (see also Geraghty and 
Lin [2])). Independently, inspired by JoS's paper [5], the method o.f level sets 
was developed by Jo6 and his Hungarian compatriots Stach6 [22] and Ko- 
mornik [14]. For example, by introducing the concept of the interval space, 
it was Stach6 [22], who established an intersection theorem which was used 
by Komornik [14] to derive a generalization of Ha's minimax theorem [3]. All 
these results were unified by Kindler-Trost [12]. Following this line, many 
minimax theorems which only involve the connectedness instead of convex- 
ity were obtained by Komiya [13], Horvath [4], Lin and Quan [16], Kindler 
[9-11], KSnig [15], Simons [18-19] et al. We only mention a few names here; 
for the historical trace of the development of minimax theory starting from 
von Neumann's work, we refer the reader to Simons' recent survey paper 
[20]. There have been various types of minimax theorems as mentioned by 
Professor Simon, for example, such as (i) 'topological minimax theorems' in 
which various connectedness hypotheses are assumed for X, Y and the func- 
tion f; (ii) 'quantitative minimax theorems' in which no special properties 
are assumed for X and Y, but various quantitative properties are assumed 
for f; (iii) 'mixed minimax theorems' in which the quantitative and the topo- 
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logical properties are mixed; and (iv) 'unified metaminimax theorems' which 
include the minimax theorems of types (i)-(iii) above as special cases. Using 
the idea that the minimax theorems can be reduced to the equivalent exis- 
tence problems of non-empty intersection of a set-valued mappings (e.g., see 
Remark 5 of Kindler [9, p.1008]), it is Kindler, who is the first person to give 
a number of topological (resp., abstract set theoretical) characterization of 
the existence of non-empty intersection theorems [9-11], by unifying ideas of 
Wu [26], Terkerson [23], Tuy [24], Jo6 [5-6], Jo5 and Stach6 [7], Komyia [13], 
Komornik [14], KSnig [15], Simons [18-19], Horvath [4] and so on. As appli- 
cations of his intersection theorems for set-valued mappings, many minimax 
theorems are derived in [11]. In particular, Kindler proved the following 
topological existence theorem of constant selector for set-valued mappings 
(e.g., see Corollary 1 of Kindler [9], and see also Proposition 2 of Stach6 
[22]): 

THEOREM A. Let X and Y be topological spaces and F : X ~ 2 Y be a 
set-valued mapping with non-empty values such that 

(i) the graph of F is closed in X x Y; 
(ii) Y is compact; 

(iii) for each A E .T(X), tithe set f3xEaF(x) is non-empty, then [qxEAF(x) 
is connected, where .T(X) denotes the family of all non-empty finite subsets 
of X;  

(iv) for each z l ,x2 e X ,  the set { x e X :  F(x) C F(~gl) I.J F ( x 2 ) }  i8 con- 
nected. 

Then F has a constant selector, i.e., nxex F(x ) ~ 0. 

We recall that a topological space X is called an interval space (e.g., see 
Stach6 [22, p.158]) if there exists a mapping [-, .] : X × X ~ {the family of 
all non-empty connected subsets of X} such that xl,  z2 E Ix1, z2] = [z:, xl] 
for all xl,x~ E X .  

As the condition (iv) of Theorem A above implies that X is an interval 
space (the inverval structure mapping [.,.] can be defined by [Xl,X2] := { x 
E X : F(x) C F(xl)  U F(z2)} for each xl,x~ E X) ,  thus Proposition 2 of 
Stach6 in [22] indeed includes Theorem A above as a special case. 

If the graph of F in Theorem A above is closed, it then implies the fol- 
lowing property (i)~: 

(i)' F(x) and F - l ( y )  := { x e  X : y e  F(x)} are closed for each x e Z 
and y E Y. 

It is also clear that the converse does not hold in general, i.e., condition 
(i)' above could not guarantee that the graph of F is dosed. On the other 
hand, motivated by the existence of minimax theorems for separately upper 
(or lower) semicontinuous functions (e.g., see Remark 4.4 and question 4.5 of 
Kindler and Trost [12, p.45]; Remark of Jo6 [6, p.171] and KSnig [15, p.57]), 
Kindler asked the following question in [9, p.1007]: 
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QUESTION. Does the conclusion of Theorem A above remain true, if con- 
dition (i) is replaced by condition (i)' ? 

Being motivated by the above question, we first prove some topological 
intersection theorems for set-valued mappings without closed graphs. Then 
we show that  one of our intersection theorems answers Kindler's question 
above in the affirmative when the underlying space X has the so-called c~- 
connectedness structure in the sense of Tuy [24, p.145]. Indeed, our result 
shows that  the positive answer for Kindler's question above remains true 
even when the space Y is not compact provided the space X is a non-empty 
convex subset of a vector space E without any topology. As applications, 
topological fixed points and minimax theorems are derived. Finally, some 
topological variational inequalities are also given. Our results improve and 
unify many corresponding results in the literature (e.g., see Chang et al [1], 
Jo6 [6], Geraghty and Lin [2], Uomornik [14], Kindler [9] and so on). 

2. Topological intersection theorems 

In order to explain our results clearly, we first recall some notations and 
definitions. Let X be a non-empty set. Then 5v(X) and 2 X denote the fam- 
ily of all non-empty finite subsets of X and the family of all subsets of X,  
respectively. Let X and Y be two sets. A set-valued mapping F : X --. 2 Y 
is said to have closed (resp., open) inverse values if the set F - l ( y ) : - -  ( x 
E X :  y E F(x)} is closed (resp., open) in  X for each y E Y. If X and Y are 
topological spaces, the set-valued mapping F : X --. 2 y is said to be upper 
(resp., lower) semicontinuous if the set { z E X :  F(x) C U} is open (resp., 
closed) for each open (resp., closed) subset U in Y. 

We now have the following topological intersection theorem: 

THEOREM 1. Let X and Y be both topological spaces. Suppose that F : X 
2 y is a set-valued mapping with non-empty compact values such that 
(1) for each x,y E X,  there exists a continuous mapping u~,y : [0,1] ---* X 

with ux,v(0)= x, ux,y(1)= y and F((ux,y(t)) C F(ux,y(ti)) U F(ux,v(t2)) 
for each t E [tl,t2] C [0,1] (resp., the set {x E X :  F(z)  C F(x)  U F(y)} is 
connected); 

(2) for each A • ~(X) ,  if the set N~:eAF(x) is non-empty, then NxeAF(x) 
is connected; 

(3) for each y • Y, the set F-X(y) = { x • X :  y E F(x)}  is closed (resp., 
F-X(y) is open (and thus F is lower semicontinuous)) in X.  

Then N:~cxF(x ) ~ O. 

PROOF. We shall first prove that  F(x) O F(y) # 0 for each x, y E X.  Sup- 
pose F(x) n F(y) = 0. By (1), there exists a continuous function uz,u : [0, 1] 

X such that  F(u::,u(t)) C F(x)  U F(y) for each t E [0,1]. Let 
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Ml = {t  e [O, 1]: F(u~,u(t)) c F ( x ) }  and -/1//2= {t  e [O,1]: F(ux,u(t)) 
C F(y)}.  Then M1 and Mz are non-empty and disjoint. Note that for each 
t e [0,1], F(ux,y(t)) C F(x)U F(y), F(ux,y(t)) is connected, and F(x) and 
F(y) are both closed and disjoint, so that F(u~,u(t)) C F(x )or  F(u~:,u(t)) 
C F(y). Thus t must be in M1 or M2. Therefore M1 U M2 = [0, 1]. 

Next we shall prove that both M1 and M2 are open in [0,1]. Let 
to e M1 and x0 = ux,y(t0). Then f (xo)  C F(x). For each z E F(y), we have 
z ¢_ F(xo), i.e., xo e X \ F- l (z ) .  By (3), X \ F- l ( z )  is open in X,  and thus 
there exists a non-empty open neighborhood Vz of z0 such that z ¢_ F(x ~) for 
each x ~ E Vz. Let Uz -1 = u~,y(Vz). Then Uz is an open neighborhood of to in 

! It [0, 1]. Thus there exist --z ~' , ..z x" e [0,1] with A~z < to < )t~ such that to e [Az, ~z] 
C Uz. Therefore z• F(ux ,u (~) )  t3F(ux,y(,~)) .  Since F(u~,y()/z) ) and 
F(ux,y()t~)) are compact, there exist non-empty open neighborhoods Vz ~ 
and V" of z such that z' C_ F(uz,~(,V)) and z" ~_ F(u  ~:,y,~A"~ for all Z ' z , j  e V" 
and z" • Vz". Let Vz = V~ gl VIz ~. Then V~ is a non-empty open neighbor- 
hood of z such that z' ~_ F(uz ,y(~))  U F(u  ~A"~ for each z' ~,u~ ~jj • V~. Tak- 
ing over z • F(y),  then the family { Vz: z • F(y) } is an open cover of 
F(y). By the compactness of F(y), there exists a finite number of sub- 
sets {Vz~,... ,Vz,} of the family {Vz : z • F(y)} such that Un=lVz, D F(y). 
Now let ,V := max{)/z, : i =  1 , . . . , n}  andS"  := m i n { ~  : i =  1 , . . . , n} .  Then 
A' < to < ~" and ()¢,)¢') is a non-empty open neighborhood of to in [0, 1]. 
Moreover, for each t • ()t', A"), z ~[ F(u~,~(t)) for all z • F(y). Thus ()¢, ~") 
C M1. It follows that M1 is open in [0, 1]. Similarly, the set M2 is also 
open in [0, 1]. Thus the segment [0, 1] is the union of two non-empty, dis- 
joint open subsets M1 and M2, which is impossible. Therefore we must have 
F(x) f3 F(y) 7t 0 for each x, y • X. 

(Resp., if the set F - l ( y )  = { x •  X : y •  F(x)} is open in X for each 
y • Y, we shall be able to show that F(x) FI F(x) # 0 for each x, y • X.  If not, 
there exist xl,x2 • X such that F(xl)  A F(z2) = 0. Let C = {x • X : F(x) 
C F(Zl) U F(x2)} and Mi = { x • C:  F(z) C F(zi)} for i = 1,2. Then C is 
connected and M1 U M2 = C by the condition (1). Note that F(xl)  FI F(x2) 
= 0, so that M1 fl M2 = 0. By (3), F is lower semicontinuous and F(xi) is 
closed, hence the set M[ = { x • X :  F(x) C F(xi)} = { x • X :  F(x) C X 
\ F(z3-i)} is closed in X.  Note that M[fl C = Mi, so that Mi is dosed in 
C. As C is connected, both M1 and M2 are non-empty closed in C, M1 n M2 
= 0 and C = M1 U M2, which is a contraction. This contradiction shows that 
F(xl)  A F(x2) ~t 0 for each Xl,X2 • X).  

Finally, we shall prove that A~eAF(x ) ~ 0 for each A • } ' (X) by the 
induction. Without loss of generality, we may assume that fq'~=lF(xi ) ?t 0 
for each x l , . . . ,  xn • X,  where n • N and n > 2. Define a mapping F1 : X 

2 Y by FI(x) = A'~-~IF(xi)f3 F(x)for each x • X. Then Fl(x) ~t 0 for each 
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x e X. Moreover it is easy to verify that F1 satisfies all hypotheses (1)-(3). 
Thus FI(x t) N FI(X") ~ 0 for each x' ,x" e X by the earlier proof above. Let 
x I = xn and z" = X n + l ,  then n n + l p ( x ' ~  ' 'i=1 --~ , J i ~ 0. Therefore the compact family 
{ F ( x ) :  x E X} has the finite intersection property, so that AxexF(x)  ~ 0. 
[] 

REMARK 1. We would like to point out that the condition (1) of Theo- 
rem 1 implies that X is an interval space with a practically interval mapping 
[.,.] defined by [x,y] := {ur,~(t): t E [0, 1]} for each x , y  E X.  However we 
do not know whether Theorem 1 is still true if X is a general interval space 
such that the condition (1) of Theorem 1 is replaced by the following: 

(1)' F(z) c r ( x ) u  r(y)  for z e [x,y] for each x,y e x .  

We also remark that Theorem 1 not only improves corresponding results 
of Theorem 1 of Chang et al [1], but it also shows that the condition 'X is a 
W-space' is superfluous which was given by Chang et al [1] (we recall that a 
topological space is called to be a W-space (e.g., see Chang et al. [1, p.231]) 
if there exists a family { CA : A E ~'(X)} of non-empty connected subsets of 
X,  indexed by A E }-(X) such that A C CA). 

Let X be a non-empty convex subset of a vector space E. In what fol- 
lows, we shall denote by [xx,x2] the line segment { txl + (1 - t)x2: t E [0, 1] }, 
equipped with the Euclidean topology (of course, each topological vector 
space E with this structure Ix,y] is an interval space). A function f : X  
--+ R U  {-oo,+oo} is said to be segment upper (resp., lower) semicontinuous 
if the function t ---+ f ( t x l  + (1 - t)x2) is upper (resp., lower) semicontinuous 
on [0, 1] for each given Zl, x2 E X. 

When X is a non-empty subset of a vector space, the following theorem 
can be shown to follow from Theorem 1. However we provide a direct proof 
here. 

THEOREM 2. Let X be a convex of a vector spoce E and Y be a topologi- 
cal space. Suppose that F : X ~ 2 Y is a set-valued mapping with non-empty 
compact values such that 

(1) for each  ,ye X, F(z) C F(x)U F(y) for each z e 
(2) for each A E Y (X) ,  if the set OxeAF(X) is non-empty, then N~eAF(x ) 

is connected; 
(3) for each y e Y,  the set F - l ( y )  is closed in the line segment [Zl,X2] 

for each Xl,X2 E X. 
Then A~:exF(x) # 0. 

PROOF. Step 1. We shall first prove that F(Xl) A F(x2) # 0 for each 
xl,  x2 E X. If it were false, then there exist Xl, x2 E X with Xl # x2 and 
F(xl)  A F(x2)= O. Now let Mi := {x  e [xl,x2] : F(x) C F(xi) } f o r / =  1,2. 
Note that F(x) is non-empty connected for each x E X,  we must have Ix1, x2] 
= M1 U M2 by the condition (1). For simplicity, we shall denote the set 
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[xa,x2] \ {x2} by [xa,x2) = (xs,xl]. Now we claim that both M1 and Ms 
are open in [xl,x2]. If not, without loss of generality, we assume Mx is not 
open in [Xl,X2]. Then there exist a point x0 E M1 and a convergent net 
{x~)aet in Ms such that xa ~ x0. In order to prove f'l~eM2F(x) ~ 0, it 
suffices to prove that the compact family {F(z)  : z E Ms} has the finite in- 
tersection property. For each zx, z2 E 21//2, there exist ~1, ,~2 E [0, 1] such that 
zi = (1 - )q)xl + ~ix2 for i = 1,2. Without loss of generality, we may as- 
sume that Ax -<_ A2, so that [Xl, Zl] C [Xl, Z2]. Note that zl E [Xl, z2], so that 
F(zl) C F(Xl) U F(z2) by the condition (1). Since F(zl) C F(x2) and F(zl)  
M F(x2) -- 0, so that F(zl) C F(z2). Therefore F(zi )  M E(z2) ~ O for each 
zl,z2 E i 2 .  Next we shall prove that MzeAF(z) ~ 0 for each A E .T((x0,x2]). 
Assume that M~=IF(zi ) ~ 0 for each xx,x2, . .  ,xn E X and n _>_ 2. Now de- 
fine a mapping/ '1 : X -~ 2 Y by Fl(x) = M'~--~F(xi) n F(x) for each x E X. 
Then it is clear that F~ satisfies all hypotheses (1)-(3). By repeating the same 
arguments above, we have that Fl(x') n Fl(X") ~ 0 for each x', x n E (x0, x2] 

,~n+l F x" = 1142. Let x~= x,~ and x"= Xn+l. Then iq= 1 ( , )  ~ 0. Thus the com- 
pact family { F(x ) : x  E (x0,x2]} has the finite intersection property. There- 
fore Nze(xo,x2]F(z) ~ 0. Taking Yo E Nze(~:o,z~]F(z), then Yo E F(x) for each 
x E (xo, X2]. Therefore (x0,xs] C F-l(yo). Since {x~}aei is a net in Ms 
such that x ,  --, x0 E M1, so x ,  E F-l(yo) .  Note that F-X(yo) is dosed 
in [xl,x2] by (3), we have that x0 E F- l (yo) ,  i.e., Yo E F(xo). Therefore 
Yo E E(xo) M E(x2), i.e., F(xo) n F(x2) ~ 0 which contradicts that F(xo) 
M F(xs) C F(xl)N F(x2) = 0. This contradiction shows that F(xl)f l  E(x2) 

0 for each Xl,X2 E X.  

Step 2. By induction, we shall prove that M~:eAF(x)~ 0 for each 
A E ~'(X). Without loss of generality, we may assume that N~=IF(Xi ) ~ 0 
for each x l , . . . , x n  E X,  where n E N and n _>_ 2. Define a mapping F2 : X 
--, 2 y by F2(x) = N'~-lF(xi) N E(z) for each x E X. Then F2(x) ~ 0 for 
each x E X. Moreover it is clear that the mapping F2 satisfies all hypothe- 
ses (1)-(3). Therefore F2(x') n Fl(x") ~ 0 for each x ~, z" E X by the proof 
of Step 1. Let x' = xn and x" xn+l. Then nn+lF(xi)  ~ 0. Therefore the 
compact family { F(x) : x E X )  has the finite intersection property, so that 

[] 

R~,MA~K 2. Theorem 1 answers Kindler's problem above in the affirma- 
tive when the underlying topological space X has some so-called a-connected 
structure which was first introduced by Tuy [25, pp.145-146]. When X is 
not a topological space, Theorem 2 also shows that Kindler's question above 
still holds positively when the underlying space X is a non-empty convex 
subset of a vector space and the topological space Y may not be compact. 
But we still do not know if the above result remains true in the case X is 
a topological space instead of having a-connected structure in the sense of 
Tuy [25] or being a convex subset of a vector space. 
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Let Y be a regular space and F : X ~ Y be upper semicontinuous with 
dosed values. Then F has a closed graph, which in turn implies that F -1 (y) 
= { x e X : y e F ( x ) }  is closed in X for each y E Y .  As consequences of 
Theorem 1, we have the following: 

COROLLARY 3. Let X and Y be both topological spaces. Suppose that 
F : X ---, 2 y is a set-valued mapping with non-empty compact values such 
that 

(1) for each z, y E X ,  there exists a continuous mapping u~,u : [0,1] ---, X 
with uz,u(0) = x, u~,y(1)= y and F((u~,y(t)) C F(uz,u(tl)) U F(u:~,y(t2)) 
for each t E [tl,t2] C [0, 1]; 

(2) for each a E .T(X), if the set n~eaF(x ) is non-empty, then N::eAF(x ) 
is connected; 

(3) the graph of F is closed in X x Y.  
Then N~:ex F(x) ~ O. 

As the condition (3) of Theorem 1 could not, in general, guarantee that 
the graph of F is closed, thus Theorem I is a topological intersection theorem 
for set-valued mappings which may not have closed graphs. 

3. Topological fixed points and minimax inequalities 

As applications of Theorems 1 and 2, we have the following topological 
fixed point theorems: 

TaEOREM 4. Let X be a topological space. Suppose that F : X --, 2 x is 
a set-valued mapping with non-empty compact values such that 

(1) for each z, yE X,  there exists a continuous mapping u :[0,1] 
X with u(O)= x, u(1)=  y and F((u(t)) c F(u(tl)) u F(u(t2)) for each 

t E [tl,t2] C [0,1] (resp., the set { x E X :  F(x) C F(x)UF(y)}  is connected); 
(2) for each A E .T(X), if the set M:~eAF(x) is non-empty, then N~eAF(x ) 

is connected; 
(3) for each y E X ,  the set F - l ( y )  is closed (resp., F - l ( y )  is open) in X .  
Then there exists Xo E X such that Xo E F( xo ). 

PROOF. By Theorem 1, M~:exF(x ) ~ 0. Take any fixed x0 E N,:exF(x). 
Then x0 E F(xo). [] 

Similarly, as an application of Theorem 2, we have the following: 

THEOREM 5. Let X be a convex subset of a vector space E (which may 
not be a topological vector space). Suppose that F : X ~ 2 x is a set-valued 
mapping with non-empty compact values such that 

(1) for each x ,y  e X ,  F(z) C F(x)U F(y) .for each z E [x,y], where [x,y] 
is a line segment; 

(2) for each A E .T(X), if the set N~:eAF(x) is non-empty, then A~:eAF(x) 
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is connected; 
(3) for each y E X ,  the set F-I (y)  is closed in the line segment [xl,x2] 

for each xl ,  x2 E X .  
Then there exists zo E X such that Zo E F( xo ). 

Let P := N~exF(x ) in Corollaries 4 and 5. Then P is, in fact a non- 
empty fixed point set of the mapping F. We also note that Theorems 4 and 
5 improve and unify corresponding fixed point theorems of Jo6 [5-6] and 
Proposition 2 of Stach6 [22] in several aspects. 

As another application of the topological intersection Theorem 2 above, 
we have the following topological minimax theorem: 

TI~EOREM 6. Let X be a compact topological space and Y be a non-empty 
convex subset of a vector space E. Suppose f : X x Y ~ t t  U {-oc,  +c¢} is 
such that 

(1) the set NueA{X E X :  f ( z , y )  > a} is connected or empty for each A 
E jr(y) ,  where a := inf~ey maxxex f ( x ,  y); 

(2) for each fixed y ~ Y,  the mapping x ~ f (x ,  y) is upper semicontinu- 
ous; 

(3) for each fixed x e X ,  the set { y e Y :  f ( x , y )  < a} is convex in Y;  
and 

(4) for each fixed x Y, the mapping y S(x, y) is segment upper semi- 
continuous. 

Then 

max inf f ( x ,  y) = inf m.ag f ( z ,  y). 
xEX yEY yEY xEA 

PaOOF. We define a set-valued mapping F : Y -~ 2 x by 

F ( y ) = { x e X : f ( x , y ) > = a }  

for each y E Y. Since X is compact, F(x) is non-empty and closed for each 
y E Y by (2). Moreover we have: 

(i) the set nueAF(y ) is connected or empty for each A E 3c(Y) by (1); 
(ii) for each Yl,Y2 E Y , F ( z )  C F(yl) U F(y2) for each z E [Yl, Y2] by (3); 

(iii) for each z E X, the set F-I (x )  = {y  E Y :  x E F(y)} = {y E Y :  
f(x, y) > a} which is closed in the segment [yx, Y2] for each given Yl, Y2 E Y 
by (4). 

Therefore F satisfies all hypotheses of Theorem 2. By Theorem 2, there 
exists Xo E X such that xo E nyeyF(y).  Thus f(xo, y) >= infamy maxxex 
f (z ,y)  for all y e Y, so that maxzexinf~eyf(x ,y)>= infv~yf(xo,  y) 
=> infvev maxxex f ( x ,  y). Note that maxxax inf~ey f ( x ,  y) <= infvey maxzex 
f ( x ,  y) holds in general, we must have 

max inf f ( x ,  y) = inf max f ( x ,  y). 
~vEX yEY yEY xEX 

Aeta MaZhernatica Hungarica 73, 1996 



TOPOLOGICAL INTERSECTION THEOREMS OF SET-VALUED MAPPINGS 137 

Theorem 6 improves Theorem 3 of Komornik [14] in the sense that X 
need not be an interval space. Theorem 6 also includes corresponding results 
of Geraghty and Lin [2] and Example 5.1 of Kindler [9] as special cases. For 
other extensive study of topological minimax theorems by employing con- 
nectedness, we refer to Kindler [11], KSnig [15], Simons [19] and his survey 
paper [20]. 

Before we conclude this paper, we would fike to give the following topo- 
logical variational inequalities. 

THEOREM 7. Let X be a non-empty convex subset of  a vector space and 
Y be a compact topological space. Let (E,C)  be a topological Riesz space, 
where C is a closed cone with C ° ~ 0, where C ° denotes the interior of  C. 
Suppose r E E and f : X × Y --. E satisfies the following conditions: 

(1) the set {y E  Y :  f ( x , y )  ~. r + C  °} is non-empty and closed in Y for  
each x E X ;  

(2) for  each y E Y ,  the set { x E X : f ( x , y )  ~. r + C °} is closed in each 
line segment and is convex in X ;  and 

(3) the set M~eA { y E Y :  f ( x ,  y) ~_ r + C ° } is connected or empty for each 
A E ,~(X) .  

Then there exists Yo E Y such that 

f ( x ,  Yo) f[ r + C ° for all x E X .  

PROOF. We define a mapping F : X ~ 2 Y by 

F(x) = { y e Y:  I(x,  y) ¢ r + C °} 

valued 
(1) 
(2) 

x;  
(3) 

for each x E X. Then it is easy to verify that the mapping F satisfies 
all hypotheses of Theorem 2. By Theorem 2, n ~ : e x F ( x ) ~  0. Taking 
yo E O~exF(x) ,  then we have f ( x ,  Yo) t[ r + C ° for all x E X. [] 

As an immediate consequence of Theorem 7, we have the following: 

COROLLARY 8. Let X be a non-empty convex subset of  a vector space 
and Y be a compact topological space. Suppose f : X × Y ~ R is a real- 

funct ion such that 
for  each x E X ,  there exists y E Y such that f ( x ,  y) < O; 
for  each fixed y E Y ,  x ~ f ( x ,  y) is segment lower semicontinuous in 

for  each fixed x E X ,  y ~ f ( x ,  y) is lower semicontinuous in Y ;  
(4) for  each a E .~(X) ,  the set { y E Y :  f ( x , y )  < O} is connected or 

empty; and 
(5) for  each y e Y ,  the set { x E X :  f ( x , y )  <= 0} is convex. 
Then there exists Yo E Y such that 

f(x,  yo)==O for  all x E X .  
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We would like to mention how the concept of 'connectedness' and related 
'topological intersection theorems' play roles in the study of some problems 
in functional analysis could be found in a recent paper of Ricceri [17]. 

A c k n o w l e d g m e n t .  Both authors would like to thank the anonymous 
referee for his/her critical reading and helpful comments offered to improve 
this paper. 
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