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§1. Weak Dependence Conditions and’
Covariance Inequalities

Let X3, X», ... be a sequence of real r.v.’s, F2 the o-algebra generated by
Xi, a <i<b, Rthereal line, and N = {1,2,...}.

Later on we shall assume that the sequence Xl, Xs, ..
following weak dependence conditions: >

. satisfies one of the

1. m-dependence: F] and F2° are independent for all integers r and r’ such
that1§r<r’<oo,'r —7r>m;

2. y-mizing:
¥(T) = sup sup

teN AcFi, BEFZ,
P{A}>0, P{B}>0

3. uniformly strong mizing (u.s.m.):

(1) = sup sup |P{AB} — P{A}P{B}|/P{A} | 0, T — oo;
teN AeF}, BEF,

P(A)>0

4. absolute regularity (a.r.):

teN

B(r) =supE ( sup |[P{B/F{} - P{B}I> 10, 7— OOV;.
BeF3,

5. strong mizing (s.m.):

a(T) = sup sup

teN AeF!, BEFE,

|P{AB} —P{A}P{B}| | 0, T — co.

Strong mixing was introduced by Rosenblatt (1956), absolute regularity
by Kolmogorov (Volkonskii and Rozanov (1959)), uniformly strong mixing
by Ibragimov (1962), ¢-mixing by Blum, Hanson and Koopmans (1963) and
m-dependence by Hoeffding and Robbins (1948) (and goes back to Bernstein
(1926)).

All of these conditions are requirements of weak dependence between the -

start and end of a sequence of r.v.’s.

Information about these and other measures of weak dependency (and the
corresponding mixing coefficients) as well as appropriate references may be
found, for example, in Ibragimov and Linnik (1965), Ibragimov and Rozanov
(1970), Statulevicius (1974), Philipp and Stout (1975), Bradley, Bryc and
Janson (1985), Bradley (1986) and Bulinskii (1987), (1989). The mixing coef-
ficients defined above are interrelated by the following inequalities (Ibragimov
and Linnik (1965), Hipp (1979a)):

20(7) < ¢M*(7),
a(r) < B6(r) < olr

) < (),
a(r) < 1/4, o(r) < 1.

P{AB}—P{A}P{B}/P{AIP{B} |0, 7 — o;

e P —
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Important refinements of these inequalities, a comparison of the mixing
coefficients and other measures of dependency are found in Kolmogorov and
Rozanov (1960), Ibragimov and Linnik (1965), Ibragimov and Rozanov (1970),
Peligrad (1982), Bradley (1983), (1986), Bradley and Bryc (1985), Bradley,
Bryc and Janson (1985), Bulinskii (1985b), (1989) and Liptser and Shiryaev
(1986). We denote by cov(¢,n) = E&n — E{En the covariance of real r.v.’s §
and n. We shall subsequently need bounds for the covariance in terms of the
mixing coefficients o, 3, ¢ and 2. ' ~

Lemma 1. Suppoée that & is Fi-measurable and n is Fg2 .. -measurable;

t,T€N.
1. IfE[¢| < oo and E|n| < oo, then (see Philipp (1969a)):

| cov (€, n)| < EEEn}e(r); M
2. IfEl¢| < oo and P{|n| > C} =0, then (see Billingsley (1977)) |
|cov(,m)| < 2CE[E|o(r); )

3. fE|¢]? < 00 and Eln|” < o0, g, 7 > 1, ¢~ + 771 = 1, then (see Ibragimov
(1962))
| cov(é,m)| < 2BYUECEY T |n|" 0"/ (r); (3)

4. If P{|¢| > C1} = P{ln| > C2} = 0, then (see Volkonskii and Rozanov

(1959), (1961), Ibragimov (1962))
| cov(§,m)| < 4C1Cra(7); NG

5. IfEl¢]" < o0, 7 > 1, and P{|n| > C’} = 0, then (see Davydov (1968), Hipp
(1979a)) B
| cov(£,7)] <4CE1/T§£|T( ) (5)

6. FE[|9 <0 and Eln|" < oo, ¢, m>1, ¢t +r7t <1, then (see Davydov
(1968), Hipp (1979a))

10°v<€m>ls6E1/q1§|QE1-/T|n1r<a<f>>1—q‘l—r‘l. G

Inequalities (1-6) may be extended easily by induction to finitely many
r.v.’s (see, for example, Volkonskii and Rozanov (1959), (1961), Roussas and
Tonnides (1987)). We shall need a result that follows from (4) and (5).

Lemma 2. Suppose that §; is J—':j -measurable, j = 1,2,.. . k, where 1 <
51 <t <8<ty < ... < 8 St < 0, and that T = 1I<1'.‘lji2k($j+1 —t;).

1. If P{|&] > C;}=0,j=1,2,...,k, then for k > 2

k k
E(H&-) HE»:J <4(k-1) _H (7)
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2. FE/& <00, r>1, and P{&;| > C;} = 0,5 =2,3,...,k, then fork > 2

k k. k
E (Hfj) - 1B <4k -nEV NGl T Cilam)™=" (8)
j=1

Sometimes it is advantageous to have an estimate of the covariance of r.v.’s
in terms of the mixing coefficients when the o-algebras F} (the “past”) and
F2, (the “future”) are replaced by o- algebras of a more complex structure
(see, for example, Lemma 3).

Let o(G UH) be the o-algebra generated by the o-algebras G and H.

Lemma 3 (Takahata (1981)). Let & be Fyil " ‘-measurable and n be

o{F} U FZorn_1}-measurable, t, T, n € N.
1. FEl <0 and Eln[" < oo, q,7 >0, ¢ +r~1 =1, then
|cov(g, m)] < GEMUEBM ol ary;  (9)

2. IfE|£|? < 00 and Ejn|" < 00, ¢,7 >0, g7t +r~1 < 1, then

1 1

| cov(¢,m)| < I8EYAIENEY |n|"(8()) =0 T, (10)

If ¢ and 7 in inequalities (1)-(10) are complex r.v.’s, then the right-hand

sides of these inequalities must be multiplied by 4 (see, for example, Ibragimov

and Linnik (1965), Roussas and Ionnides (1987)).

§2. Estimation of the Rate of Convergence in the Central Limit
Theorem for Weakly Dependent Random Variables

N

2.1. Introduction and Notation.

We shall concentrate on estimating the rate of convergence in the one-
dimensional central limit theorem (CLT).

Conditions for the applicability of the CLT to weakly dependent r.v.’s have
been studied by many authors.

Devoted specifically to m~dependent r.v.’s are the papers by Hoeffding and
Robbins (1948), Diananda (1955), Kallianpur (1955), Orey (1958), Zaremba

(1958), and Berk (1973); to functionals defined on Markov chains, the pa--

pers by Bernstein (1926), Sirazhdinov (1955), Dobrushin (1956a,b), Nagaev
(1957), (1962), Statulevigius (1961), (1969a,b), (1970a), Gudynas (1977), and
Lifshits (1984). Ibragimov (1962) is basic as far as strictly stationary sequences
of weakly dependent r.v.’s are concerned. The results in that paper were sub-
sequently refined and generalized by Rosén (1967), Serfling (1968), Philipp
(1969a), Berk (1973), Ibragimov (1975), Bradley (1981), (1988), Peligrad
(1982), (1985), (1986a,b), (1986), (1990), Herrndorff (1983a,b), (1985), Utev
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(1984), (1990a,b), Samur (1984), Grin’ (1990a,b), etc. Bergstrom (1970),
(1971), (1972) studied this problem by means of his comparison method. The
latest results as well as a bibliography on this topic may be found, for exam-
ple, in the above papers by Peligrad, Bradley, Utev and Grin’. The advances
by Utev in (1990a,b) were made by taking advantage of Peligrad’s bounds for
large deviation probabilities (1985) which were also used in a modified form
by Grin’ (1990a) (see also (1990b)).

As of today, there exists much research devoted to studying the rate of
convergence in the CLT for weakly dependent r.v.’s.

This question was first investigated by Petrov for m-dependent r.v.’s in
(1960). He obtained a bound in the uniform metric of order O(n~(s=2)/(6s=4))
under the assumption that the s-th absolute moments of the variables,
2 < s < 3, are uniformly bounded and the variance of their sum increases
linearly; here and elsewhere 7 is the number of terms. The problem was later
investigated for m-dependent r.v.’s by Ibragimov (1967), Egorov (1970), Stein
(1972), Erickson (1973)—(1975), Tikhomirov (1980), Shergin (1976), (1979),
(1983), Maejima (1978), Yudin (1981), (1989a), Zuparov (1981), Heinrich
(1982), ((1984), (1985a,b,d), Sunklodas (1982), (1984), (1989), Rhee (1985),
(1986a), Zuev (1986) and others. The first optimal estimate, that is, of or-
der O(n=(=2/2) in the uniform metric for m-dependent r.v.’s in the CLT
was obtained by Ibragimov (1967). He considered a sequence of r.v.’s of the
form f(€;,€i41,- -+ Eitm—1), % = 1,2,..., where €1, €, . .. are independent and
identically distributed r.v.’s with E|e1]® < 00, 2 < s < 3.

The rate of convergence in the one-dimensional CLT has been estimated
under other weak dependence conditions by Statulevidius (1962), (1974),
(1977a,b), losifescu (1968), Philipp (1969b), Stein (1972), Dubrovin (1971),

Bulinskii (1977), Yoshihara (1978a), Negishi (1977), Tikhomirov (1976), (1980),

Dubrovin and Moskvin (1979), Schneider (1981), Zuparov (1981), Yudin
(1984), (1987), (1989b), (1990), (1991), Sunklodas (1977a), (1982), (1984),
(1989), Lappo (1986) and others.

These papers made use of diverse methods of proof.

The method of cumulants (semi-invariants) involving the logarithmic deriva-
tives of the characteristic function (c.f.) of the original sum was developed by
Statulevi¢ius in (1961), (1969a,b), (1970a) in which he found exact bounds
for nonhomogeneous Markov chains. This method was investigated under
other weak dependence conditions in (1962), (1974), (1977a,b). Many of the
papers mentioned above (see, for example, Petrov (1960), Iosifescu (1968),
Philipp (1969b), Egorov (1970) and Bulinskii (1977)) employed methods of
proof based on Bernstein’s fruitful idea of splitting the sum Z, of r.v.’s into
two sums Z, = U, + V5. Then by virtue of the weak dependency, U, be-
haves as if its terms are independent and V,, has a relatively small variance.
For example, when Z,, is centered and normalized, this was accomplished as
a rule via the following inequality (Petrov (1960)): For any positive £ and
Tz €R,
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|P{Ups + Vo <2} — ()| < sup [P{U, < z} — B(z)]
' €
+\/_2—7T+P{|Vn| > e}, (11)

where ®(z) is the standard normal distribution function. However the esti-

mates obtained in this way for the one-dimensional case are not optimal and

the order is no better than O(n~%/4) in the uniform metric.
Nevertheless, Bernstein’s classical method has received further develop-

ment in recent years in the estimation of the rate of convergence in the CLT .

for weakly dependent n-dimensional and infinite-dimensional r.v.’s. It is pre-
cisely in the infinite-dimensional case that this method has manifested its
generality. But since we are confining ourselves to only the one-dimensional
(that is, the R-valued) case, the reader interested in Bernstein’s method in
the n-dimensional and infinite-dimensional cases is referred to the papers by

Hipp (1979b) and Zuparov (1983), (1984) (see also Dubrovin (1974), Lap- "

inskas (1976), Gabbasov (1977), Sunklodas (1978)). Multi-dimensional and
infinite-dimensional analogues of (11) may be found in Lapinskas (1976), Sun-
klodas (1978), Hipp (1979b) and Zuparov (1984). The passage to independent
infinite-dimensional r.v.’s under absolute regularity can be accomplished by
means of appropriate approximating inequalities in Gudynas (1989) and Eber-

lein (1984) (see also Yoshihara (1976), Hipp (1979b)), Zuparov (1983), (1984)).
n (1972), Stein gave a new way of estimating the rate of convergence in

the CLT for weakly dependent r.v.’s. Stein’s method involves using a lin-

ear differential equation in terms of the difference between the distribution -

function (d.f.) of the sum of weakly dependent r.v.’s and the normal distribu-
tion. By means of this method, Stein was able to derive a uniform bound for
the rate of convergence in the CLT of order O(n~1/21n?n) under complete
regularity (this is weaker than u.s.m.), and the optimal order O(n~'/2) for
m-dependency. However, he required the eight-order moments of the terms to
be finite and that the original sequence of r.v.’s be strictly stationary.

Developing Stein’s idea further, Tikhomirov (1980) constructed a similar °

differential equation for the c.f. of a sum of weakly dependent one-dimensional
r.v.’s. Using this, he succeeded in obtaining the wanted bound for how close
this c.f. is to the c.f. of the normal distribution. Finally, under minimal re-
strictions on the moments (the finiteness of the s-th order absolute moments,
2 < s £ 3), in particular Tikhomirov derived the following uniform estimates
for the rate of convergence in the CLT:

(a) when the s.m. coefficient decreases exponentially, the order is
O(n=(=2/2 (Inn)s—1);
(b) for m-dependent r.v.’s, the optimal estimate is of order O(n=(5=2)/2),

Tikhomirov (1980) also obtained a nonuniform estimate for strongly mixing
r.v.’s (Theorem 11).

However the class of r.v.’s considered in (1980) is narrowed down by the
requirement of strict stationarity. Schneider (1981) considered a uniformly

I
' |
|
|
!
|
I
|
i
!
|
i
|
|
|
i
|
]
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strong mixing sequence and he replaced strict stationarity and finiteness of
the s-th order absolute moments of the variables, 2 < s < 3, by uniform
boundedness of the third-order absolute moments of the variables and linear
growth of the variance of their sum. Then assuming the exponential decay of
the u.s.m. coefficient, he obtained a uniform estimate for the rate of conver-
gence in the CLT of order O(n~/2Inn).

Specifically devoted to the m-dependency case are the papers. by Shergin
(1976), (1979), (1983) and Heinrich (1982), (1984), (1985a,b,d). They employ
the c.f. to work out differing ways of estimating the rate of convergence in the
one-dimensional CLT to optimal order.

Yudin solved a more general problem in (1981)-(1991). He gives a general
method of estimating the rate of convergence of the distributions of sums of
weakly dependent r.v.’s to infinitely divisible distributions. His method is also
applicable to the normal case. In addition, he studies how to approximate the
distributions of sums of weakly dependent r.v.’s by distributions in the class
L (1989a,b), (1991). We point out also that Yudin uses Bernstein’s method
of partitioning a sum and the basic idea behind Tikhomirov’s method (1987),
(1989)-(1991) when approximating the distributions of sums of weakly de-
pendent r.v.’s by the distributions in class L. These studies are represented
in detail in Yudin’s book (1990).

Because they yield optimal estimates for the rate of convergence in the one-
dimensional CLT for weakly dependent r.v.’s under minimal restrictions on
the moments of the terms and because they are simple to use and are capable
of solving other problems, the methods of Stein, Tikhomirov and Heinrich are
currently some of the most extensively used techniques. Therefore we shall give
a more detdiled presentation below of precisely these three methods. Before

- doing this, we introduce some notation.

N will denote a real r.v. with standard normal d.f. ®(z) and density ¢(z) =
@' (z).

Later on, we shall estimate the difference Eh(Z,) — EA(N), where Z,, is
a normalized sum of weakly dependent centered r.v.’s and h is either the
indicator of an interval or satisfies a smoothness condition.

For any function g : R — R, let

: lg(z) — g(y)]
L(g;p,a) = su ;
(9:7:0) = 5P T e T Jale + 0P)

and ¢’ be the derivative of g.
In §2, 2.3. and §3, we shall assume that A : R — R satisfies ||A|joc < 00
(except in Theorems 3 and 16) and one of the conditions H; (P) — L(hyp,a) <

oo or HP) = LW;p+1l,a)<ocowithp>0and 0<a < 1.
We now single out the space BL(R) of bounded functions » : R — R
satisfying a Lipschitz condition, that is, such that

1Alloo < 00 and [|h||L=supMy_)|
z#y |z -yl

llglloo = sup lg(z)],

< 0.
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Write
18]l = IRlloo + HP,  1Ikl]5z = |Alloo + 1Az

Let
X1, Xo,... (12)

be a sequence of real r.v.’s with EX; =0 and EXf < oo', i=12,...,n. Let

n
Sn=> X;, BL=ES, Z,=05n/B,, Fo(z)=P{Z, <z},
i=1

o
|
>

/Bn,  Aj=Ajlas<n, A5 = Al
n n . n —
) ZE|AJ'|T7 Z’mn = ZE|ZJ'|T7 Lrpn = ZE|AJ'IT7
=1 i=1 j=1

L* =nd dsn = max E|A4;]°
s5,m 8,709 5,7 1<5<n | Jla

=
3
3

Il

o

P{Zu <o} - B(a), An=suplAn(a)] |r-||1=/ || da,

—o0

>
3
N
8
N
Il

dP)(F,, @) = sup |EA(Z,) — ERN)|/|IRl| g g
heH® z

dpr(Fn,®) = sup [EA(Zn) — ER(N)|/|IA||5L,
he€BL(R)

where H§p> ={h: |||l < 0, Hi(p) < o0}, 1 =1,2, and 14 is the indicator
of event A, t > 0 and B, > 0.
The quantities dgp ) (E,,®) and dpr(F,, @) may be expressed as follows:

ReH(P)

2
<
HhHBHEP)_l

dpr(Fn,®) = sup |Eh(Z,) — EAN)|.
heBL(R)
Il g <1
The quantity dgr(Fy, ®) is known as the bounded Lipschitz distance be-
tween the d.f.’s F,, and &.

Later on, we shall omit the subscript n in the notation L, ., fnn, fm,
L, and d,, and instead of d® (F,,,®) and dpr(F,, ®) we shall write d®

8n
and dpr,.
The letter C(-) with or without a subscript will denote a finite positive
constant (not always the same one) that depends on the quantities indicated
in the parentheses. C is an absolute positive constant; © is a complex function

not exceeding one in modulus; 0 < K < oo and A > 0 are constants.

[

ITI. Approximation of Distributions of Sums 121

We shall show later how the methods of Stein, Tikhomirov and Heinrich
yield upper bounds for ||A,(z)]]1, dgp ), dpr and A, if the sequence (12)
satisfies one of the above weak dependence conditions. »

The bounds for ||A,(z)||1 (Theorem 1 and Corollary 1), dgp ) (Theorems 3—
8 and Corollaries 2, 3) and A, (Theorem 10) for the mixing coefficients de-
scribed above are new and are due to the author. More general results are
contained in Propositions 2—4.

To describe the methods of Stein and Tikhomirov, we shall make use of the
r.v.’s

ZJ@ = Z\ A, and zj(f) =Zn — ZJ(-I)
|p—j|<im
with 2mi+1 < nandm =1,2,...; in the case of m-dependence, m = 0,1,....
The bounds derived by Stein’s method make use of a subsidiary r.v. J which
is uniformly distributed on the set {1,2,...,n} and independent of the r.v.’s

X5, Xo, ..o, Xn: !
Let
m+1 under m-dependency,
14 2y, under ¥-mixing,
e =< 1+49, under u.s.m.,

1+12B,, under a.r.,
1+ 124, , under s.m.

n—1

n—1 n—1
where d)n = 21 w(’r% Qn = Z_:l 4'91/2(7-)7 Bn,?" = 21(5(7-))(7"—2)/7"7 A'n:"" =
P e(m) T2/ and 2 < r < .

T

Applying the respective inequalities (1), (3) and (6), we find when the
sequence (12) is either m-dependent, ¥-mixing or u.s.m. that :

EZ2 < c.Lo. (13)
For a.r. or s.m., ‘
n
EZ. <c.> EYT4;", 2<r<co. (14)
=1
However, for 2 < r < oo,
ZE2/T|Aj|T < T‘L(T_2)/TL3/T. (15)

i=1

Therefore for the weakly dependent r.v.’s defined above in (12) with ¥, ®,,
By, and Ay, respectively finite, the estimates (13)-(15) imply that

n—(r—2)/2's c:/er ' (16)

for 2 <r < co. Consequently if C1(-)(m + 1) > n, then
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1< (G2 m+ )L, )
By virtue of (17), it suffices to consider the case where C1(:)(m + 1) <n
when estimating ||An(2)|[1, d§p ). dpr and A,
2.2. Estimation of ||An(2)||1.

Theorem 1. Suppose that the sequence (12) is m-dependent. Then for
m>0andt>0,

1An(@)]]1 < C{L1 + (m+ 1)Is + (m+ 1)?T5 + (m + 1)°Ly).

If the truncation level in this estimate is taken to be ¢ = 1 and fl is replaced
by (m -+ 1)Ly, then one obtains Erickson’s result (1974) (see also Sunklodas
(1982)).

Corollary 1. Let the hypotheses of Theorem 1 hold and let E|X;|® < oo,
2<s<3andj=12,...,n. Then form >0,

[An (@)l < C(m +1)* L.

By means of (24) below, similar bounds may be obtained for ||An(z)][1

in the case of the mixing coefficients ¥, ¢ and 8. Bounds were found by .

Sunklodas (1982), (1986) and Takahata (1983) for other mixing coefficients.
For the sake of simplifying the presentation, we confine ourselves here to
estimating ||An(z)||1 just for m-dependent r.v.’s.

Heinrich’s results for m-dependent r.v.’s (1985d) imply this particular one.

Theorem 2 (Heinrich (1985d)). Suppose that the sequence (12) is m-de-
pendent and that B|X;|® < co with 2 < s <3 and j =1,2,...,n. Then for
1<p<andnz>1,

o0 1/p
([~ @+ tan@pa)” <cm+ns
—CoQ

Shergin (1983) considered m-dependent r.v.’s (12) with finite k-th absolute
moments, k > 2, such that > BEX? < M,B;, for all n > ng, where Mo
and ng are positive constants. He used Stein’s technique to derive a bound for
ffooo |z|¥| A, (z)|dz in terms of Lyapunov’s quotients for 0 < £ < k — 1.

Proof of Theorem 1. -

-Stein pointed out the following characterization of the standard normal
law: If the r.v. W = N, then Ef/(W) — E[W f(W)] = 0 for a fairly broad
class of functions f, and conversely (see Stein (1972), (1981)). Consequently,
the quantity Ef (W) — E[W f(W)] is a good measure of the proximity of the
rv. Wto N,

et R —
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Therefore to estimate the difference EA(W) —EA(N), it suffices to estimate
the right-hand side of the relation
Eh(W) — ER(N) = Ef/ (W) — E[W f(W)).
To this end, consider the linear differential equation
') = yfy) =h(y) —~ERWN). (18)

Its solution is

Yy oo
fly) =ev'/? / ho(u)e™ /2 du = —e¥'/2 / ho(w)e™ /2du,  (19)

—00 y

where ho(y) = h(y) — EA(N).

For instance, to estimate P{W < z}—®(z), it is necessary to take k in (18)

to be the indicator function of the interval, i.e., h(y) = he(y) = 1(—co,2)(¥)-
Then (18) and (19) become respectively

f;(y) - yfm(y) = 1(——00,::) (y) - @(:c) (20>
and
B(—2z)® ) if 3
ORS i N e

To estimate ||An(z)]|1, we make use of the following result.

Lemma 4 (Erickson (1974), Ho and Chen (1978)). Let f. be given by (21).

Then for all real y,

/oo fo@ldz=1 and /w FLwlds < 1

In order that all of the r.v.’s occurring in (22) and (24) below should be
well defined, it is assumed further that 6m + 1 < n.

For brevity, put Q; = Aij(-l) _ E(Ajzj(l))-
It follows from (20) that

An(z) = E {fa/c(Zn) - ZAjfm(Zn)}

- {f"‘ (Z) + 20 45 [ = fu(2)] - ZAjfz(z§1))} |

i=1

Applying the Newton-Leibniz formula to the differences fm(zj(-l)) ~ fz(Zy)
and fo(u) — f2(Z,) and noting (20), we find that
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‘ e
An(z) = Ef,(Z +ZE{ / / falv dvdu}
+3 LB A2} - SE(A )
Jj=1 Jj=1

n z](.l) ' v
+ ZE{ ; /Z ooy () — 1(_w,x)(zn)}du}
=1 U JZ

- Y BA4,Z0 £(2)).

j=1

Similar reasoning leads to

ICCIVIEARETE NS B ARAES)
+J21E{Qg 2 [ 7 frya }

+ ZE{Qj[l(—oo,:c) (Zn) - 1(—oo,z) (ZJ(2))]}

=1

Since EZ2 = 1, we have

1-iAjZ§” ZQ +ZE{A 27}
j=1 )

From the last three equalities, we conclude that (Sunklodas (1982))

where
l L zJ(.l) u
= A ! dvdu
Bx(2) ;E{ AR AL u}
- o [5
By() = 5 3 B{A(Z0) £a(Za),
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6]

i{/n

Z {QJ L(~00,2)(Zn) = 1(—oo,z)(zg(-2))1},

(—oo,:t) (’LL) - 1(—oo,x) (Z'ﬂ)] du} ’

= - > B{4; L)),

Jj=1

DL CIAC O

= zn:E{Ajzj(.l)}E F(Z0).
j=1

It is precisely (22) that plays a basic role in estimating |[|A,(z)|[; for
weakly dependent r.v.’s. A similar relation was used by Erickson (1974) for
m-dependent r.v.’s.

Applying Lemma 4 and the fact that

/ ) L (—o0,2) (1) = L(—c0,0) (V) de = [u = v], (23)

-0

for any u,v € R, we can deduce the next result from (22).
Basic Inequality (Sunklodas (1982)):

[[An ()|l < Ii(m) 4 I(m) B (24)
with
Ii(m) = 2|42 +nBl (2] + 2mEIQs 7| +
+ gE|AJ(Z§”)2(Z§2) — ZM 4+ nBIQ 2P 2P — 2
and

n
Iy(m) = _E{AJ(Z(I))2252)| + nE|QJZ§2)z53)| +

+ Z[HE{A fal( Nl +nlB{Ar2}.

Jj=

)Ml + Qs £ (24

Since I1(m) involves the moments of “close” r.v.’s, its estimation does not
require the use of the weak dependence of X3, Xo,...
It is easy to see that for any real » > 1
B|Z5

<@mi+ 1) L, i=0,1,..., (25)

and that
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E|Z - 2§70F < (@2m)"n L., i=23,... (26)

Therefore the application of Holder’s inequality and the estimates (25) and
(26) yield

1
é(2m + 1)(128m? + 50m + 5)Ly.  (27)

[Ii(m)| < (2m +1)(18m +5)L3 +

Io(m) has to be estimated separately for each weak dependence condition.

Let the sequence (12) be m-dependent. Then
n ‘
L(m) = SB|A;(Z3Y2| +nBIQs 27 2F)

Put

i =Bz}, & =EZP].

Then
E|A;(Z)2P| < BlA;(20)? +E1AJ<Z<”>%31,
E[Q,29:P| < B|Q;2P?| + B|Q 2?6},

If fj = ZpeB A, and 7' = E|&|%, where B; C {1,2,...,n} for any j =
1,2,...,n, it is easy to see that ‘
Elr5[/t <BlgsP, 0<i<i. (28)

Then (25), (26), (28) and Hélder’s inequality imply that

B|4;(Z)% < (2m+1)*n7 Ls,
E|A;(Z$)2#)] < (2m +1)%(4m + 1)n " Ly,
EQ,Z¥| < 2(2m + 1)(4m + 1)n"'Ls,
E|Q,ZP6Y] < 2(2m + 1)(dm + 1)(6m + 1)n" Ly

Consequently,

I(m) <

Therefore substituting (27) and (29) in (24) and dropping the condition
6m + 1.< n by means of (17), we obtain the following result.

(2m + 1)[(9m + 2.5) L3 + (52m? + 23m + 2.5)Ly). (29)

Proposition 1. Suppose that the sequence (12} is m-dependent and EX ;1 <
oo, 7=1,2,...,n. Then form >0,

1AL (2)|]1 € (2m + 1)[(27m + 7.5) L3 + (10/3)(22m? + 9.4m + 1)Ly).

o—
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Truncation. To complete the proof of Theorem 1, we truncate the r.v.’s 4;,
j=1,2,...,n, at the level £ > 0 (§2, 2.1); in addition we put

— — —(0)

+(©) = = =0 _ x5O
A =A; -E4;, A, =A;-EA;, Z, =4
s=1

Since any pair of r.v.’s £ and 7 satisfies the inequality (see Erickson (1974),
p. 527)

IP{¢ <z} ~P{n<az} <E[—n] ~(30)
it follows that |
| (az) — ®(z)|l: < V2/m[1—a™| (31)

for any positive a.
Therefore when E(ZELO) )2 > 0, the sequence (12) satisfies

1An()]]x < 2f1+¢2/—w|1 B(ZO) +
+EV2EZOVIPZY < 2B2ZY)) - 8@l (32)

We note that the truncation inequality (32) holds for any dependency of
the sequence (12).

Since
=(0)2 —( ) =(0) —(0) =(0)
1-E(Z, P <9L+ >, |BMA 4 )+2E@A; 4 ), (33)
1<i#j<n .
any m-dependent sequence (12) satisfies
1-EZO? <9@m+1)I; =& (34)

To prove Theorem 1, it is assumed that €; < 1/2 (otherwise the estimates
are trivial). From (34), we have that £ < E(Z (0))2 < 2 and consequently,

7
SOEA EAEPr < T, (33)
j=1
for positive 7.

By virtue of the truncation inequality (32) and the bounds (34) and (35),
to complete the proof of Theorem 1, it is sufficient to estimate ||A,(z)]|1 for
untruncated, r.v.’s. In other words, we make use of Proposition 1.

Corollary 1 follows from Theorem 1 with ¢t = (m + 1)1
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2.3. Estimation of dgp) and dpg.

Theorem 3. Suppose that the sequence (12) is m-dependent with
E|X;|>Pt* <00, j=1,2,...,n. If6m + 1 <n, then

[ER(Zp) — ER(N)| < C(p, ) HE{(m + 1)+ Lo a(1 + E| Z,[?)
+(m+ )P L0}

Thus by Theorem 3, the estimation of [Eh(Z,) — ER(N)|, where h satis-
fies either the condition H£p ) < oo or Hz(p ) < oo, reduces to estimating the
absolute moment E|Z,|?, p > 0.

Bounds for the absolute moments of a sum of weakly dependent r.v.’s were
obtained by Utev (1984). For ¢-mixing or absolutely regular r.v.’s, estimating
dz(-p ), 1 =1,2, can also be reduced to estimating the absolute moments of Z,
(although of a higher order than p). However, for the sake of simplicity, we

shall only consider here the estimation of dgo), 1=1,2.

Theorem 4. Let the sequence (12) be ¥-mizing with ¥(1) < KT7#, where
p=>(r—1)r and let E|X;|" < o0, 4<r<ocoand j=1,2,...,n. Then

4 < O(K o, @) {nl D Ly 4 L),

Theorem 5. Let the sequence (12) be absolutely regular and let E>|le’” <

©,4<r<coandj=1,2,...,n.
1. If B(r) < Ke™>", then
d® < C(K, M\, a){Loraln®™*(n+1) + L,}.
2. If B(r) < K77 with p > 2(r — 1)1, then
dgo) < C(K, p,rya) {(n2A+)r=D/up, o+ L)
Truncation of the r.v.’s leads, for example, to the following results.

Theorem 6. Let the sequence (12) be m-dependent. Then for m > 0 and
t > O —x = j—
& < C(){L; + (m+1)°L, + (m+1)"**Tora).

Corollary 2. Let the hypotheses of Theorem 6 hold.
L FEX;|*"® <0, j=1,2,...,n, then for m >0
df” < Cle)(m+1)*0*)Lg,,.
2. IfEIX;I°<o0,2<s8<3andj=1,2,...,n, then form >0

dpr < C(m + 1)8_1[43.
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Theorem 7. Suppose that (12) is 1-mizing with ¢(7) < Ke™>7. Then
49 < C(K, A\ r,0){Ts + Iy + Lot 0™ (n+1) + I}

fort>0and4 <r < 0. ‘ |

Corollary 3. Suppose that the hypotheses of Theorem 7 ﬁold.
1. FEIX;]?T® <00, j=1,2,...,n, then

4 < C(K, )\ 0)Lg, o In*H) (n 4 1),
2. IfB|X;[°<o00,2<s<3andj=1,2,...,n, then
 dpr < OB, N)Lsko*H(n+ 1),

Theorem 8. Suppose that (12) is Y-mizing with w(r) < K77F, where
w> 12, '

1. FE|X;|?"®* <0, j =1,2,...,n, then
d® < C(K, p, a)n30te)/npe.
2. IfE|X;]°<o00,2<s8<3andj=1,2,...,n, then
dpr, < C(K, pynP~V/E L.

The reader can learn more details about estimating with the bounded Lip-~
schitz metric dgr by consulting Sunklodas (1989).

Proofs of Theorems 3-8.
The following result is true.

Lemma 5. Let f and f’ be gwen by (18) and (19).
1. If ||Allco < 00, then (see Erickson (1974), Barbour and Eagleson (1985))
FW) < eillholleo  and  [f/()] < 2ilholles (36)

for Yy € R, where ¢1 = sup,5¢=(z) and E(z) = &(—2z)/¢(z).
2. If H® < 00 or HP) < oo, then (Barbour (1986))

L(f'p,a) < Ci(p, 0) HP, (37)

wherei =1 if H? < 00 and i =2 if HP < oo.
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Furthermore, let 6m + 1 < n. Then (18) implies that

Eho(Z Z{EAZ(”)EJ”( n) = B[4; £(Zn)] + B(4;2")Ef'(Z,)}.

=1
In the summation, we first add and subtract E(A; Z§1))Ef’(z§l)) E[A;f(z (1))]
and E[AjZJ(-l)f’(zj(.l))] and then E[ij’(zj(.z))]. Then using the identity

Z

F(Za) = f() = £z 20 = /0 T ) - £ ),

we find that

ER(Z,) —ER(N) = I + I, (38)

where

j=1
=SB () - £
=1
n (€]
J
—ZE{A;- (77 +w) '<z§-”>]du}
j=1 0
and
ke3
I2:_ZE{QJ (2) }+ZE (1) YEf'(Z)
=1
n
Z ()]
Put
vi = B|ZV), 4 =E(2P -z, ¢ =E|ZP), & = Bz,
1 2 1 2
s = BEPED - 2P, vy = B(Z” - 2))(27 - 7).
Estimating |I;| with the help of (37), we obtain
1] < Clp, ) HEP (nI] + 1Y), (39)

where

R
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Il = BlA;2103] + BlA, 2084 + B4, 20wy
+E|A;207% + BlA; 2080 + BlA, 2w
+E|As (Z(l))1+a| +E[AJ(Z§1))l+p+°‘]

+E|AS( 282D - 20| + Bl4; 20 (2P - Z250)
+ E|AJZ‘(]1) (ZS2) - Z‘Sl))P+a|
+Bl4,25(25 - 2725 - 25|
and
I = S BIAZPIEZ) P+ B - 200 P

j=1

+ DBl (Z0) 7 (P + Bl 20 (2 - 20
j=1

Applying (25), (26), (28) and Hélder’s inequalities, we find that E|A JZSl) vy,
E|4;20+%, BlA,(Z0))) and B|4;2 (2 - Z{V)e| are bounded above
by (2m+1)1**n~1Ly ., and the remaining terms of I{ are bounded above by
(2m + 1)1HPren=1,  ptq. Therefore

I < Cpa)nt(m+ D)Mo Lova + (m+ 1P 2 Lopp0). (40)

‘We point out that it would have been possible to manage without the weak
dependency of the r.v.’s (12) because I{ involves moments of close r.v.’s.

The quantities I’ and |I2| will be estimated separately for each weak de-
pendency.

Let the sequence (12) be m-dependent. Since

E|z{PP < (1V2P")(B|Z,]? + E|Z"]P), i=1,2,

the m-dependence implies that _

I < (1v 2 ([Bl4s 25005 + BIAS 25095 + BlAS(25))
+E[4;280(2P - 2B | Z, P + B4, 2500515
+E| A 257585 + BlAs(25) o8|
+B|4,257(27 - 259)*85)). (41)

The expression multiplying E|Z,|? has already been estimated. The es-
timates (25), (26), (28) and Holder’s inequality can be used to show that

each of the remaining terms in (41) is bounded above by at least (6m +
y*Pren=1r, prq. Consequently,

I} < Cp, ) (m + 1) LowaBIZa + (m+ VP e Ls).  (42)
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L=0 by virtue of the m-dependence. Therefore to complete the proof of
Theorem 3, it suffices to substitute (40) and (42) in (39).
When p =0, ‘

I} = nlBlA; 25003 + BlA;2045] + BlAS(2)) e
+E|4;20(25 - 2]
occurs in the expression for nIj. Thus from (39) and (40), we find that
L] < Cla)HOmM oL, . (43)

If Hl(o) < oo or HZ(O) < oo, it follows from (38) and (43) that any weakly
dependent sequence (12) satisfies

[ER(Zy) — ER(N)] < C(@)H{Om Ly o +| D). (44)

Suppose that (12) is ¢-mixing. Then estimating with (9) and using (36),
we obtain .

L] < 6]|ho||con[2BY2(A47Z2)2 + (23/2 + ¢ )EV/2 42
+ 25 2EY2(A202)| M2 (m + 1). . (45)
By virtue of (25), (28) and Hélder’s inequality,
1I2] < Cllhlloon™ L5 + m Ly /2 (m + 1). (46)
The estimates (44) and (46) yield the following result.

Proposition 2. Let sequence (12) be -mizing and let EXJ‘-L < 00, j =
1,2,...,n. Then

df? < C(a){m***Lova +n'/?L% + mLy/* "2 (m + 1)}
providing 6m + 1 < n.

Under a.r., the quantity |I2| can be estimated with the help of (10) and in
similar fashion we deduce the following

Proposition 3. Let sequence (12) be absolutely regular and let EXJ‘-L < 00,
i=12...,n. Then

4 < Claf{m™**Losa + PP/4LY* + mnt/L*)5%4(m + 1)}
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Theorems 4 and 3 are consequences of the respective Propositions 2 and 3.
Truncation. As in the estimation of ||A,(z)||1, therv’s 45, =1,2,...,n,
are truncated at level ¢ > 0 (§2, 2.1). Recall the subsidiary variables

n
O 7, ~B4; and ZV =37

S

j=1
Let h € ’H§°>. Then any real r.v.’s £ and 7 satisfy

[Eh() — Eh(n)| < 3H{OE[¢ —n*." | (47)

: 7(0) o T =(0)2
It is easy to see that E|Z, — Z,,'|* < 2%L; and, when E(Z,")? > 0, that

—(0 —1/2,5(0 o ' (0120
B|Z,)(1-E72(Z,)))|* < L - B(Z, )|
Therefore estimating according to (47), we conclude that

0) 1507 —=(0)\2a
[ER(Zn) — EA(N)| < 3H; [2°Ly +|1-E(Z,")|%]
—(0 —(0
+[BAZY /BA(Z))) B (48)
when € H* and E(?ELO))Z > 0.
The truncation inequality (48) clearly holds for any dependency of the

sequence (12). Therefore, the proofs of Theorems 6-8 are completed on merely
applying it to Theorems 3-5.

2.4. Estimation of A,,.

Theorem 9. Let the sequence (12) be m-dependent and let E|X;|® < oo,
2<s<3andj=12,....n. Then form >0 andn>1.

A, <Clm+1)°"1L:

Theorem 10. Let (12) be a strongly mizing sequence and let E|X;[° < 00,
2<s<3andji=12,...,n.

1. Ifa(r) < Ke™>", then
An < C(E, N\ 8)LE " (n + 1).

2. Ifafr) < K+ with‘u > %[ﬂ(&is —-6)—(s—2)(3—9)] and 8 > 1,
then
An S C(K7IB7 S)?’Lcds,

where ¢ = (48 + 2 — 4)/(2(28 + s — 4)).
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For the exponential s.m. coefficient, the power of the logarithm may be
lowered but under more stringent conditions on the moments of the terms.
‘We now give a nonuniform bound in the case of strict stationarity.

Theorem 11 (Tikhomirov (1980)). Suppose that (12) is a strictly station-
ary and strongly mizing sequence with a(r) < Ke™*" and that E|X1[*T < o0
for some positive v. Then .

A, < C(K, ), y)n'l/z Inn
and

’ In®n
|An(z)] < C(K,x\,y)m-

Heinrich (1985d) obtained a nonuniform bound for |A,(z)| for m-dependent
r.v.’s. In particular, he proved the following result. '

Theorem 12 (1985d). Suppose that the sequence (12) is m-dependent and
that B|X;[®* <o00,2<s<3and j=1,2,...,n. Then

(m + 1)‘5_1L:
An(@] < =7

for all real z and n > 1.

When s = 3, the rate of convergence in Theorem 12 cannot be improved

in relation to n, = (see Petrov (1987)) and m (see Berk (1973)).

We shall limit ourselves to proving Theorems 9 and 10.

Shergin (1979), (1990) was able to replace L by Lyapunov’s quotient L,
in Theorems 9 and 12.

Tikhomirov (1986) obtained an estimate for the rate at which the d.f. of
the maxlSkSn(Xl + ...+ Xy) for a strictly stationary and strongly mixing
sequence converges to the d.f.

x+ 5
\/2/77/ e 2 du

0
in the uniform metric, where = = max(0, 7)-

Proofs of Theorems 9 and 10.

Tikhomirov’s method (presented in detail in Tikhomirov (1980) for a
strictly stationary sequence) consists in deriving a linear differential equa-
tion for the cf. f,(¢t) = Ee®4n of a centered and normalized sum Z,.
This differential equation is “close” to the homogeneous differential equation
f(t) = —tf(t) whose solution is the c.f. of the standard normal law, that is,
F(t) = et/

It will be recalled that Theorems 9 and 10 do not assume the stationarity
of the r.v.’s (12). Similar bounds for A, were found by Sunklodas (1984)
for a sequence of either m-dependent or strongly mixing r.v.’s but under the
additional condition B2 > cyn, 0 < ¢q < o0
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In addition to the notation of §2, 2.1, write

r —itz"
’ 77§ ) =€ 7= 15 .

r—1 ‘
o on(wfie). #oa
=1

= >0 1 E(i4;¢"%), by successively adding and subtracting
4 o) itz =l YR TN
E(GA;€7e™% ), ..., B(i4; J] §7€™% ) in the
=1
summation, one finds that (Tikhomirov (1980))

fj(l) _ eu(zy-l)-zj@) -1

Since f/(¢)

e
the quantities E(i4;e"% ),

The relation ,
) z( r r 1t Zn
Ee*" = E(n)” +1)fa(t) + B(n” — En{”)e"%]

can be utilized to prove that the derivative of f,,(t) with respect to ¢ is (Sun-

klodas (1984))
fn(t) = (By + E2) fn(t) + Bs + B4 + Es + Eg, (49)

in which

k
PEn® + 3ol VB + 1)

'1)7 Es = i

j=1

t
li

M

k\g/-\

L,
[
8

of VB[] ~ By e

IS
[
M=

Ms

7

,,
il
N

Lo,

2 = 12
ZAjl_‘[f * ) E6:Z (1457 7),
=1

1 =1

LY
Il

IS
Il
/\ g

ZAJ H g(l ztz( 2 E ztz(r))

=1

>E

Jj=1

NE

Es =

1l
)

T

It is assumed here that 2km +1 < n.
The linear differential equation (49) is the starting point for proving Theo-

rems 9-11. The passage from (49) to the difference of the c.f.’s is accomplished

by means of the following lemma.
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Lemma 6 (Sunklodas (1984)). Let the linear differential equation
F1t) = (=t + 6a(t)) f(t) + 6b(2), f(0)=1, (50)
be given for |t| < Ty, where

at) = a©® a<1)|t| + a(P2 + a(3)|t[5‘1,
b(t) = p0 4 B2,

2<8<3,

Here the coefficients a® > 0 (i = 0,1,2,3) and b > 0 (j = 0,2) are
independent of t; and 0 is a complex function such that |0] < 1.
If o) < 1/6, then

1F(8) — e 772 < Cla@lt] + a®e + a@[t3 + a® |t~ /4

+C[b® min(jt] 7, [¢]) + 5@ |¢]] (51)

for |t] < min(T1,T3), where

) 1 1 1 1/(s—2)
T2 =.1min W’ ——6(1,(2) y <——-—6a(3)> .

Lemma 6 and Essen’s inequality (see, for example, Petrov (1987), p. 154)
lead easily to the next assertion:

If the c.f. f(t) = Ee™*t of areal r.v. ¢ satisfies the linear differential equation

(50) for [¢| < T, then
sup |P{¢ < 2} —(z)| < C(a@ +a® +a® 4+ O 1 pA T L T7Y). (52)
z

Therefore to estimate A,, all attention will be directed to deriving linear
differential equation (50) for f,(t) so that its coefficients and T; assure a
bound for A,, as close as possible to being optimum.

Let us proceed to prove Theorem 9 and 10.

Assume that E|les <oo,2<s<3and j=1,2,...,n. For any depen-
dency,

B = —tiE(AjZJ(.l)) +6(2575 /(s — 1))(2m + 1)~ Lt (53)

Now let the sequence (12) be m-dependent. Then

By = —t+6(2°7%/(s —1))(2m + 1)*7 L [t)5 L (54)
It is easily seen that ‘
B2l 2 < V2(m +1)dY/ [t (55)
and that _
BV 2 < V/2r(m -+ 1)dY/* . (56)
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By virtue of the m-dependence and (55),

r—1
r— l
[ag- 1)| < E1/2A§ | | E1/2}§J(. )|2.

=1
< d/*(vV2(m + 1)dy/ |t = o h. (57)
Since §
1Bal <3 1P [BI® ] + Y |a§f-”1> . (58)
j=1 - r=3

(56) and (57) can be used to show that
|Es| < C(m+1)°nd3/*¢ - (59)

for [¢| < (v2e2(m + 1)d¥*)~1 = T.
By the m-dependence and the estimates (56) and (57), we find for 1t| < T
that

: 1/2
k n
|E3| < Z CL(fr‘—l) Z Z El/2[n§7"),2El/2lm()r) |2
r=2 j=1|p—j|<3rm
< C(m+1)%2n1/2g3/5¢2, (60)
By virtue of (57),
|E4) < na® < C(m 4 1)2nt/2d3/5¢? (61)

for & > 2+ i1lnn and [¢f| < Ti. Since BEs = FEg = 0 because of the
m-dependence, on substituting (54), (59)—(61) in (49), we find that

fu(t) = (=t + 0an(t)) fa(t) + 6bn(t) (62)
providing 2km + 1 <n, k> 2+ Inn and [t| < T}, where

a8 +aDNEt, balt) = b,
ol = C(m+1)nd¥’*, af¥ = C(m+1)°1Lr,
b;,z) — C’(m+ 1)5/277,1/2(12/8.

3
S
—~

ok
~

Il

Relations (52) and (62) yield Theorem 9 if m+1 < n/(Cln(n+1)),C > 1.
Theorem 9 follows for all m > 0 from the third inequality in Lemma 7 of
§2, 2.5 and Esseen’s inequality.

(@

iy, 3@
3 + 2,7, where

5(
éj(-i) is the sum of those Apin zj(.i) for which p < § —im and é(-z) is the sum of

g
A, for which p > j +im.
Then according to (6),

Now suppose that (12) is a s.m. sequence. Write z;
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n

> B < 347+ 1B(A, 39y

o,

n2d§/s(a(m + 1))(5—2)/3.

l/\

Therefore (53) yields _
By = —t+0(2°7%/(s = 1))(2m + 1)° T Ly [¢°7}

+66n2dY/* (o + 1)) (=25 )¢ (63)
Put f = it — 1, §j = €% — 1, where z = Ap; and
p=j—im
Jtim .
y= > Ap. Then by Minkowski’s inequality, for 1 < u.<'s
p=j+(I-1)m+1
- (0
max{BYHEL 1, BYH(E 14} < (m+1)dy/ 1] (64)
and
EY¢ (" # < (2rm+ 1)dY/ ot =1, (65)
Similarly,
M < (2m +1)d2/°Jt). - (66)
-1 oo 1) < 120 4 120 e
We next estimate a for r = 3,4,...,k. Since £ < || + &5 |, we
have
afD w 1T )
|<ZZE JHf" I & | (67)
p=p+1

in which > denotes summatlon over all collections of indices 1 < I <3 <
< <r—1land 1 < lp1 <lpgpo < ... <lpy <r—1such that [, # [,
for v # p (see Tikhomirov (1980)). '
By Holder’s inequality,

r—=1
A(u)
(&)
aHf 11 &
p=p+1
A0 s/(s—1)

EG-D/s

H (Z)HA(M AH//f(Z)HH

where [[” and [] are respectively products over all even and all odd ! from
luptor—1.

Let » — 1 be even (if r — 1 is odd one proceeds in the same way). Put
(-) = (m+ 1)d°|t|. Then by (7), (8) and (64),

< El/s
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/A(lu) < s('r' 1)/2 +8(

3)23(r—1)/2a(m + 1)

= T4 1%

and

[/
2 < /=D [()slr=1/(2(e=1)

J H//é_(l 2) H//

+8(r — 1)28(r D/CE=D) (o, + 1))(6—2)/(5—1)]_

Therefore

<8d§/$(a(m+1))(s D/s(p —1)27—1

JHW H §

p=p+1
T LD et s 1) )

Since there are at most 27~ terms in (67), for [¢| < (32(m+1) 1/3) =173
and r = 3,4, ..., k, we obtain ‘

4r
(r-1) 2 3/s,2 (1
la; 7 < C{m d3/5¢ (§>

#di/*alm + 1) [r(3 ) + ratm+ )]} = 0. (69)

It is now possible to estimate |E4|. For k£ > Inn/(81n2) > 3 and t| < T3,
we find that
|By4| < na® < Clm3nt/24%/5¢ + dXen(a(m 4 1)) =29y, (69)

We estimate the terms Fs, E3 and Es subject to the additional condition

k245 (o(m + 1))V° < 1. (70)
Substituting (66), (65) and (68) in (58), we find for [¢| < T3 that
|Bs| < Olm?nd¥/*t? + nd/* (a(m + 1)) (=2/9] (71)

under condition (70).

Consider cov(¢,n) = E(¢ — E¢)(n — En). By virtue of (6),

1/2
IE3|<Za(T 2 (ZZICOV 0", & P)

Jj=1lp=1

<Za(r 1) (Z Z ]31/2'77 r)|2E1/2|n(r)|2

J=1 |p—j|<2rm

. 1/2
+3 Y 2B TR 2| (a(lp—jl—%m))(s"?)“) :

i=1 |p—j|>2rm
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Noting (66), (65) and (68), we obtain
|Bs| < Clm*"? + AY/Z)[m*n/?d3/° + n'2dy/*(a(m + 1))¢72/] (12)
for |t| < T3 under assumption (70).

The definition of 2 z ) shows that zj( ) and :ABE-T) cannot vanish simultaneously.
We shall consider that both do not vanish (otherwise the computations merely
become simpler). Observe that

r—1
E iAj ng(_l)(etiz:g > Eeitz§ ))} l

=1
! () ! 5 () 2

E <’LAJ H £§l)eitzj > _E <’LA] H fj(_l)eztzj ) Ee itZ;
=1 =1

r—1
s 5 (7
E ’iAj H§§l)(eztz§ ) — Ee i2; )>‘| {
=1

r—1
E <¢Aj 11 55.”) .
=1

The right-hand side of this last inequality can be estimated by means of
inequalities (5) and (4) and one can show that it does not exceed
48 - 2714 (a(m + 1))(~1/¢. Summing the resultant inequalities over all
j and r, we conclude that

|E5| < 48ndY/*(a(m +1))(s=2/s (73)

3(m)

Ee ztz E ztz )

+ — Ee ztz

under condition (70).
| Es| may be estimated in similar fashion with the result

|Bs| < 32nd2/*(a(m + 1))s~1/s. , (74

Put A = >0 (a(r))~2)/¢. The substitution of (63), (69), (71)—(74) in
(49) yields this: If A; < oo, k3/24k( (m+1)Y$<1,3 <Ilnn/(8n2) <k
and 2k(m + 1) < n, then

Fo(t) = (=t + 02, (1)) fu(t) + OB, (t) (75)

~

for [t] < T3, where ‘
an(t) = Y + oMt + alPt + aP [t

bn(t) = O + bPe2,

D = Onds"*(a(m +1))-2/s, ai) = Ondy*(a(m + 1))~/
@ = cm2nd¥°, o) = Cme1L,

B = C(A, )ndl/s( (m+1)6"2/s b = C(4,)m¥/2nt/2d3/".

The differential equations (50) and (75) are of the same form and so (52)
yields the following
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Proposition 4. Suppose that (12) is a s.m. sequence, E|X;|° < o0, 2 <
s<3andj=1,2,...,n, A; < 0o and k3/24*(a(m + 1))1/° < 1, with the
positive integers k and m satisfying 3 <Ilnn/(81n2) < /-c and 2k(m +1)<n.
Then

An < C(A)M 1 LE + nd%* (a(m + l))(s 2/,

It merely remains to select & and m depending on the rate of decay of the
s.m. coefficient.
If n > C(K,A,s), part 1 of Theorem 10 follows from Proposition 4 with
3s 1 _
If n > C(K,B,s), part 2 of Theorem 10 follows from Proposition 4 with
m=nf], e = s(s— 2)/(2(s — 1)(28 + s — 2)) and k = [8(%[11) In(n+1)].

For small n, Theorem 10 is a consequence of the estimate (17).

2.5. Heinrich’s Method for m-Dependent Random Variables.

Heinrich’s method (1982) is a fairly general way of deducing various limit
theorems for the sums Z,, of m-dependent r.v.’s. It is based on the factorization
of the c.f. f,(t) = Ee®*%» (or moment-generating function Ee*?~, z € (C!) in
a neighborhood of ¢ =0 (or z = 0).

‘We shall only consider here the factorization of fn(t). By making use of the
factorization of f,(t) once it has been found, one can obtain, for instance, these
sorts of results for sums of m-dependent r.v.’s: convergence to unbounded
distributions, uniform and non-uniform bounds for the rate of convergence in
the CLT, asymptotic expansions, moderate and large deviations and so on.

The gist of Heinrich’s method will be demonstrated by the proof of a single
lemma.

Lemma 7. Suppose that (12) is an m-dependent sequence and that
E|X;* < 00,2<s<3andj=12,...,n Then the following inequali-
ties hold in the interval

_ 1/(s—2)
i< (12 1 1
2C1(s) (m+1)*-1Lz

form > 0:
2
LI falt) + 5| < Culs)lm o+ 1) L8P,
| fa()] < e,
fn(t) — et /2 < Ci(s)(m+ 1) Lk Se_Ctz,
S
where

1 24—-5
01(5)2 149-’-; m, 0<C<1/2.
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When s = 3, Lemma 7 follows (with different constants) from Corollary 3.2
in Heinrich (1982). Since |e*| < el?l and |e* — 1| < |z]el*! for any complex 2,
the second and third inequalities in Lemma 7 are consequence of the first one.
To prove the first inequality, we need several preliminary assertions.

For any sequence of complex r.v.’s &1, &, ...such that E|¢|* < oo, j =
1,2,...,k, the symbol Eflfz ... &, means that E§1 = E&; and for k > 2, that
(see Heinrich (1982))

k-1
&G . & =FE&&. . G- Y Ba . B & (76)
=1

S

This synzlbol was first introduced in another way by Statulevi¢ius (1970b)
and is known as the k-th centered moment. Among the many interesting
properties of centered moments are the following.

Lemma 8 (Heinrich (1982)). Let&q,&s,. .., & be 1-dependent complex r.v.’s.

L. IfE|§F <0, j=1,2,...,k, then

E@i+a) (& +a2) .. (& +ax) =B ... &, (77)

where a1, as, ..., 0 are any complex numbers.
2. IfEl§P <0, j=1,2,...,k, then

k
B&ige .. &l < 25 [ EY214 2 (78)

=1

Corresponding to a sequence (12) of m-dependent r.v.’s, we form new
1-dependent r.v.’s

F(m+1)

Y; = Z Ap,

p=(j—1)(m+1)+1

{ Zz:N(m-l—l)-i—l Ap
0

j=1,2,...,N=[n/(m+1)),‘

Veor — if N(im+1) <n,
ML= if Nim+1)=mn,
where [z] is the integer part of .

PutU; =57 .Y, i=12....N+1,w=

uj(t) = 2EY/2|e#Yi-1 — 1|2EY/2|e?Y5 — 12,
Then the following is true.

max E/2|eitYs

—1/% and
1<j<N+1

e —
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Lemma 9 (Heinrich (1982)). If w < 1/6, then

N+1
L. )= ] 90, . (79)
j=1 ' )
where g1 (t) = Ee®™ | and for j =2,3,...,N+1,
Ecitls v | s B(etYe — 1) (Yot — 1)L (¢ — 1)
g(t) = EeitUi: Ee'™ + Z J=1 ;
o=t IT 95(%)
p=a
(80)
2. forj=12,...,N+1,
lg;(8) = 1] < [Be™7 — 1] + 3u;() (81)
< 2w. (82)

Lemma 9 is proved by induction using relations (76)—(78).
By virtue of (80),

N+1 N+1
Y olgt)—1=) (Be™ —1)
j=1 §=1
. N+1j-1 ( 1 1) E(eftYe —1)... (% - 1)
= o \9a(t) - 951 (1) . |
N+1j-2
+ N B - 1), (e - 1)
=3 a=1
N+1
+ (-1 — 1)(™% —1).
j=2
Since Y1,Ys,..., Y11 are 1-dependent r.v.’s with zero expectations,
2 N-+1 N2
% => [Ee“yj -1- %E}ﬂ
j=1

N+1
+ 3B —1)(e - 1) — (it 2B (Y1 Y5)]
=2

N+1 N+1

- DB —1)= 3 BE 1) 1),

j=2
Adding the last two relations, we find that if (12) is a sequence of m-
dependent r.v.’s and E|X;|®* < c0,2<s<3and j=1,2,...,n, then
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t2 .
mn@+5=&+m+&, (83)
where
N+1
3y = ) [lng;(t) — (g;(t) — 1],
=1
N+1j-1 1
5, = (o — 1) B - (5 -1,
j; =\ ga(t) .- gj1(t) ( ) oo )
N+1j=2 ‘
Y3 = Z B(efYe —1)... (% — 1),
7=3 a=1
N1 N2
%y = [Ee“yf -1- %Eyﬂ ,
j=1
N+1

35 =

—

B(em — 1)(e ~ 1) — (it ’B(%1Y)]

(o
i
[\

Everywhere below when estimating the right-hand side of (83) we are
assuming that w < 1/6.

By the simple inequality |Inz — (z — 1)| < |z — 1|?, which is true for

|z — 1| £ 1/2, and the estimates (81)—(82), it follows that

N+1 ] N+1
B1| < 2w ) [Be™ — 1]+ 6w Y u(2). o (84)
j=1 j=2 '
According to (82),
1

e | S ar

and the estimate (78) leads to

N+1
|Sa| < 27w > u;(t). (85)
j=2
The estimate (78) also assures that
N+1 :
IZs] < 3wy uy(®). (86)
=3

For 2 < s <3,
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|eiw _ 1| < 23_5|$|3_2,
€ —1—ia| < (2°7/(s = D)l

@1 —iz— @’ < (2% /(s — V)s)|zl*,

and so
N+1
D4l < (2570 /(s — D)s)|t* > BIY; )%, (87)
§=1
N+1 :
12s] < 3(2°7°/(s — 1) IE° Z Ely;l5, (88)
and
N+1

D)X +1),_max B (89)

w Z |Be®Ys — 1] < (287%/(s —
=1

Adding (84)—(88) and using (89) in conjunction with the fact that

N+1 N+1 )
S u <4y B 1)
=2 =1

we find for w < 1/6 that

2

In frn(t) + —| < C1(8)(m+ 1)*"*LA[t)°. (90)

It remains to observe that w < 1/6 when [¢t| < Ty. Consequently, the first
inequality of Lemma 7 has been proved and thereby all of Lemma 7.

From Lemma 9 it is seen that the functions g;(¢) (whose product is the c.f.
of Z,) although not ¢.f.’s, behave primarily like the c.f.’s of the ¥;’s. The next
lemma, for example, underscores this fact.

Lemma 10 (Heinrich (1982)). Let the sequence (12) be m~dependent and
let max E|X;|P < oo for somep=1,2,.... Then when w < 1/6,
<ign

dp

. <

! 1 <G4 dtpgj()l C(p)1<§riN+1 bl
aP ‘

2 1<GEN 1 dti"l gj(t)’ () 1<Ijn<a13f<+1ElY|

where the constants C(p) can be determined ezplicitly.

Lemma 9 therefore plays a fundamental role in the study of the limiting
law for the distribution of the normalized sum Z, of m-dependent r.v.’s (see
Heinrich (1982), (1984), (1985a,b,c,d))}.
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§3. Estimation of the Rate of Convergence in the Central Limit
Theorem for Weakly Dependent Random Fields

Let Z¢ = {a = (a1,...,aq) : a; € {0,£1,...}, i = 1,2,...,d}, ||a|| =
mex |a;| and V = {V C Z¢ .

Jmax V| < oo}, where [V| = #{a :a € V}is
the number of elements in V. The distance between Vi, V5 € V is defined as
follows: d(V1,Va2) = min{||a — b|| : @ € V3,b € Va}. Fyy denotes the o-algebra
of events generated by the r.v.’s {X,,a € V}.

In what follows, we shall consider a real random field {X,,a € Z%}, d > 1,
satisfying one of the following weak dependence conditions:

1. m-dependence: Fy, and Fy, are independent for VVi, Vs e V with
d(V1,V2) > m;

2. strong mizing (s.am.): if there exist functions M : Z2 — [1,00) and
@ : N — [0,00) such that M is nondecreasing in each argument, c(r) | 0 as
r — oo and for VYV, Vo € V),

S |P{AB} — P{A}P{B}| < M(|V1|, |Va])a(d(V1, V2)).

BeFy,

The definition of these and other mixing coefficients for random fields as
well as references on the subject may be found, for instance, in Dobrushin

(1968), Bulinskii (1987), (1989), Takahata (1983), (1984), Sunklodas (1986)

and Nakhapetyan (1987). Let
{X,, a€ 2%, d>1, (91)

be a real random field with EX, = 0 and EX?L <ocoforaeV.ForV eV,
V # 0, put

Sy =Y X., By=ES}, Zv==Sy/By,

acV
Fy(z) = P{Zv <z}, Aa=Xo/Bv, L.=>» ElA,
acV
Ly = |Vids, ds= n1€a§E|Aa|s, Ay (z) = Fy(z) — (),
a
o]
Av = splav@) lIAvel = [ [Av()ids
z —o0

dP (Fy,®) = sup [EA(Zv) — BR(N)|/|IAl| g,
heH®) ’

where H" is the class of functions & : R — R with norm ||A]| gy defined
in §2,2.1, and i = 1,2. '

The rate of convergence in the CLT for weakly dependent random fields
has been estimated by generalizing the methods developed for sequences of
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weakly depenent r.v.’s. The specific difficulties that have to be overcome in es-
timating Ay for multi-indexed terms, the distinctive features of mixing fields,
the limits of applicability of Bernstein’s method to random fields and other
related question are discussed in detail in Bulinskii’s book (1989). Leonenko
(1975) found a bound for Ay in the case of m-dependent random fields for
integer parallelepipeds V € Z¢. When d = 1, it reduces to Petrov’s result
(1960) cited above. By generalizing Maejima’s results (1978) for r.v.’s, Rao
(1981) found a nonuniform bound for |Ay (z)| for integer parallelepipeds for
m-dependent random fields. He conjectured particularly that it was impos-
sible to obtain an estimate for Ay of order O(|V|™7), 0 < v < 1/2, even
for an m-~dependent random field. This conjecture was disproved by Takahata
(1983) and Guyon and Richardson (1984). A more precise uniform estimate
(compared to those of Leonenko (1975) and Rao (1981)) for weakly dependent
random additive functions (encompassing the class of m-dependent ones) was
found by Bulinskii (1977). He subsequently strengthened this estimate (1987).
The proofs by Rao, Leonenko and Bulinskii (1977) utilize Bernstein’s method.

More exact estimates of the rate of convergence in the CLT for weakly
dependent random fields have been found by means of the techniques of Stein
and Tikhomirov.

Guyon and Richardson (1984) study the rate of convergence in the CLT for
centered weakly dependent random fields {X,,a € Z¢} (either m-dependent
or s.m. with M = 1) that satisfy sup,eze E|X,[*T® < o0, § > 0. The sum-
mation Sy, =3 ey, Xa is over a strictly increasing sequence of sets V,, € V
such that lim inf, . B /|Va| > 0, where BV =ESZ .

In particular, they show that

1. for m-dependent fields

A _{O(B‘f) fo<d<l; (92)
" 0By (log B, )@ V/2) i 5> 15 (93)

2. for s.m. random fields with M = 1 and o an exponentially decreasing
function (here a A b = min(a, b))

Av, = O[B7 " (log By, )40-92), (94)
If sup,c z¢ E| X, |49 < 00, § > 0, the last estimate can be improved to
Av, = O[By (log By, )%). (9)

Guyon and Richardson (1984) also investigated the case where M # 1 and
o decreases like a power function. The proofs are carried out by Tikhomirov’s
method.

Takahata (1983) found upper bounds for Ay, and ||Av, (2)||1 when the
random field is m-dependent or s.m. with M # 1 and o exponentially de-
creasing; the summation Sy, = 3 .y, X, is over a sequence of sets V,, € V
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such that V| — oo (n — o0) and liminfp e BE /|Va| > 0. Under these
-conditions, the following was shown:
1. for m-dependent random fields

Av, = O(|Va|/?) (96)
if sup,eze EXE < o0, and

1Av, (@)l = O(IVal7/%) (97)

if sup,cze EX2 < o00;
2. for s.m. random fields with M(n,m) < B(n + m)* for some k > 1 and
a(r) < Ke ™7
Ay, = O[|Va| 72 (log [Va))] (98)

if sup,eze E|X,[BH < 00, § > 0, and
1AV, (@)l = O[|Va| 7/ (log |Val)] (99)

if sup,eza E| X, |41 < 00, 6 > 0.

The estimate (96) established by Takahata (1983) for an m-dependent ran-
dom field refines Riauba’s paper (1980). Takahata (1983) used Stein’s tech-
nique to prove his result.

The methods of Stein (Takahata (1983), Sunklodas (1986)) and Tikhomirov

(Guyon and Richardson (1984), Sunklodas (1986), Bulinski (1986a), (1987))
may be extended to weakly dependent nonstationary random fields whose
-terms have finite absolute moments of order s, 2 < s < 3. Without any
assumptions about the linear growth of the variance BZ of the sum Sy, Vev,
one may estimate ||Ay (x)||1 (by Stein’s method) and Ay (by Tikhomirov’s
method) in such a way that for d = 1 these estimates yield the best known
estimates (or ones close to them) for a weakly dependent sequence of r.v.’s
(Tikhomirov (1980), Erickson (1974), Sunklodas (1982)).
‘We state a number of results of this kind.

Theorem 13 (Sunklodas (1986)). Suppose that the random field (91) is
m-dependent and that E|X,|° < o0, 2<s<3 andacV. Then

Ay < C(@){(m+1)*DLE + (m + 1)%dL/*(In(|V| + 1))@=/}
form+ 1< [VIH/(Cln([V]+1)), C > L.

Theorem 14 (Sunklodas (1986)). Suppose that (91) is a s.m. random field
with M(n,m) < Bln+m)?, o(r) < Ke™" and that E|X,|* < 00, 2 <5< 3,
witha € V. If 0 < p < o0, then

Av < C(B, K, d,p, $){L3(In(|V] + 1)) %~
+ V245 (V| + 1)) r(aplem2/ ),
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Theorem 15 (Sunklodas (1986)). Suppose that (91) is an m-dependent
random field and B|X,|* < 00, 2<38<3,a€V. Then form >0

1Av(@)|h < C(d)(m + )41, |

The author has also found more precise estimates for ||Ay(z)||1 when the
terms have finite second moments.

It should be noted that for weakly dependent random fields (just as for a
sequence of r.v.’s), Ay can be estimated in terms of L% and ds and [|Ay(2)||1
can be estimated in terms of Lyapunov’s quotient L;.

Close results to Theorems 13 and 14 were obtained independently by Bu- !
linskii (1986a), (1987). His mixing conditions are more general since they take
into account a “geometric” aspect of selecting the sets used to define the ‘ |
mixing coefficient (see also Bulinskii (1989)). |

Herrndorf (1983b) constructed an example of a s.m. strictly statlonary se-
quence of r.v.’s whose s.m. coefficient decrease arbitrarily fast and whose par-
tial sums have a variance increasing regularly. However, the CLT is not obeyed
if just the second moments of the terms exist. It is therefore reasonable to es-
timate the rate of convergence in the CLT for weakly dependent random fields !
by imposing moment restrictions such as sup,¢ ze EG(|X4|) < 0o on the terms, ]
where G satisfies the condition limg—.., 272G(z) = co. Bulinskii and Doukhan
(1990) obtained an estimate for the rate of convergence in the CLT for &-
mixing random fields (see (1990)) assuming the finiteness of the moments of
the terms of “small” order (for example, of the type EX2In _,_( z) < 00). These
estimates were derived by means of truncation as applied to Bulinskii’s results
(1986a,). The author (1990) found estimates for dgp ), i = 1,2, for various types
of mixing random fields. The problem is reduced to estimating an absolute
moment of Zy whose order depends on p and the type of mixing.

Here we state just one estimate which generahzes Theorem 3 to random |
fields. ‘

Theorem 16 (Sunklodas (1990)). Suppose that the function h : R — R
satisfies the condition H < co or HQ(p) < 00 (see §2, 2.1) and that (91) is
an m-dependent random field with E| X,|>TPT* < co anda € V. If (6m+1)4
|Vi, then

[BA(Z0) ~ BR(N)| < C(d,p, ) HP {(m +1)% 9 Ly (14 EI 2y )

+(m+ )P Ly v}

The boundedness of h is not required in Theorem 16.
Zuev. (1989) found an estimate for Ay for m(d)-dependent random fields ' |
(for an exact definition, see that paper). ;
Shergin (1988), (1990) found estimates for Ay, Av
for finitely dependent r.v.’s (see Chen (1978)).
Mukhamedov (1987) obtained estimates for [°°_
technique for s.m. and u.s.m. random fields.

)and [ |z|'| Ay (z)|dz

|z|*|Av (z)|dz using Stein’s
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For weakly dependent stationary r.v.’s and random flelds with a very slowly
increasing mixing coefficient, Nakhapetyan (1987), (1989) applied his small
blocking method to find estimates of the rate of convergence in the CLT that
are sufficient for the law of the iterated logarithm. }

Tikhomirov (1983) found a nonuniform estimate for |Ay (z)| for strongly
mixing strictly stationary random fields defined on the integer lattice Z% and
taking values in a finite-dimensional Euclidean space R*. Tikhomirov (1983)
extended his method to the estimation of the rate of convergence in the CLT
for strictly stationary Hilbert-valued r.v.’s.

Asymptotic expansions for weakly dependent r.v.’s and random fields may
be found in the papers by Heinrich (1985a), (1986), (1990a), Rhee (1985)
and Gétze and Hipp (1983), (1989). Stein’s method was investigated by Bar-
bour (1990) in the context of functional approximation of Wiener and other
Gaussian processes. :
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